Lattice QCD in Hadronic Physics

John W. Negele

Santorini Workshop on Advanced Computing in Nuclear and Hadronic physics
October 1, 2001

Outline

Introduction and motivation
Overview of lattice QCD
Physics opportunities
Calculation of hadronic observables on the lattice
 Masses
 Wave functions
 Matrix elements
 Instantons, monopoles, and vortices
The role of multi-Teraflops Computers
Introduction

Lattice QCD has become an essential tool in hadronic physics

- Only way to solve, rather than model, QCD
- Confluence of advances
 - Lattice field theory
 - Lattice chiral symmetry
 - Improved actions
 - Cluster algorithms
 - Computer technology
 - $1 / \text{Mflop}$
 - 10 Teraflop machines
- Crucial to understand physics of major experimental initiatives
 - Fundamental parameters of Standard Model – weak matrix elements
 - QDC thermodynamics – RHIC and beyond
 - Hadron structure and interactions – focus of this workshop
Motivation

- Understand structure and interactions of hadrons from QCD
- Profound differences between hadrons and other many-body systems

Atoms, molecules, solids, nuclei, . . .
 - Constituents can be removed
 - Exchanged boson generating interaction may be subsumed into static potential
 - photons \rightarrow Coulomb potential
 - mesons \rightarrow N-N potential
 - Most of mass from fermion constituents

Nucleons
 - Quarks are confined
 - Gluons are essential degrees of freedom
 - Carry half of momentum
 - Nonperturbative topological excitations
 - Most of mass generated by interactions
Nonperturbative QCD

- Fundamental differences relative to QED

 Self-interacting – highly nonlinear

 Interaction increases at large distance – confinement

 Strong coupling $\alpha_s \gg \alpha_{em}$

 Rich topological structure

- Solution of QCD

 Present analytical techniques inadequate

 Numerical evaluation of path integral on space-time lattice
Goals

• Use lattice field theory to solve QCD with controlled errors
 ○ Quantitative calculation of properties of nucleon
 Mass
 Form factors
 Light cone distribution of quark and spin densities
 ○ Understand origin of proton spin
 ○ Calculate exotics from first principles

• Use lattice field theory for insight into how QCD works
 ○ Identify paths that dominate action
 ○ Understand mechanism of confinement and chiral symmetry breaking
 ○ Calculate overlap with trial wave function
 \[|\langle \psi_{\text{trial}} | \psi_{\text{exact}} \rangle|^2 \]
 ○ Explore dependence on
 \[m_q, \quad N_f, \quad N_c \]
Lattice QCD

Euclidean:

\[e^{i \int dt d^3x \mathcal{L}} \to e^{-\int d\tau d^3x \mathcal{H}} \]

\[
\langle T e^{-\beta H} \psi \psi \cdot \cdot \cdot \bar{\psi} \bar{\psi} \bar{\psi} \rangle
\]

\[
= \frac{1}{Z} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] e^{-\int d^4x [\bar{\psi}(\partial + m + igA) \psi + \frac{1}{4} F_{\mu\nu}^2]} \bar{\psi} \psi \psi \cdot \cdot \cdot \bar{\psi} \bar{\psi} \bar{\psi}
\]

\[
\to \prod_n \frac{1}{Z} \int d\psi_n d\bar{\psi}_n dU_n e^{-\sum_n [\bar{\psi} M(U) \psi + S(U)]} \bar{\psi} \psi \psi \cdot \cdot \cdot \bar{\psi} \bar{\psi} \bar{\psi}
\]

\[
= \prod_n \int dU_n \frac{1}{Z \det M(U)} e^{-S(U)} \sum M^{-1}(U)M^{-1}(U) \cdots M^{-1}(U)
\]

Sample with M.C.

\[
\to \frac{1}{N} \sum_{U_i \in \frac{\det M(U)}{Z} e^{-S(U)}} M^{-1}(U_i)M^{-1}(U_i)M^{-1}(U_i)
\]

\[
S(U) = \sum_{\Box} \frac{2N}{g^2} (1 - N^{-1} \text{ReTr} U_{\Box}) \to \frac{1}{4} F_{\mu\nu}^2 U_{\Box} \equiv U_1 U_2 U_3 U_4^t \u^t
\]

\[
\bar{\psi} M(U) \psi = \sum_n [\bar{\psi}_n \psi_n + \kappa (\bar{\psi}_n (1 - \gamma_\mu) U_{n,\mu} \psi_{n+\mu} + \bar{\psi}_{n+\mu} (1 + \gamma_\mu) U_{n,\mu}^t \psi_n]
\]
Observables

\[\langle T e^{-\beta H} \hat{\psi} \hat{\psi} \hat{\psi} \cdots \hat{\psi} \hat{\psi} \rangle \]
\[= Z^{-1} \int D(U) e^{\ln \det M(U) - S(U)} M^{-1}(U) e^{-\bar{\psi} M(U) \psi} \]
\[= Z^{-1} \int D(U) e^{\ln \det M(U) - S(U)} \sum M^{-1}(U) M^{-1}(U) \cdots M^{-1}(U) \]

1. \(M^{-1} = (1 + \kappa U)^{-1} \) connects \(\bar{\psi} \) and \(\psi \) with line of \(U \)'s
 \[\rightarrow \text{Sum over all valence quark paths.} \]

2. \(\ln \det M \) generates closed loops of \(U \)'s
 \[\rightarrow \text{Sum over all } \bar{q}q \text{ excitations from sea} \]
 \[\text{omit in quenched approximation} \]

3. \(S(U) \) tiles with plaquettes
 \[\rightarrow \text{sum all gluons} \]

32^3 \times 64 \text{ lattice} \rightarrow 10^8 \text{ gluon variables}
Physics Opportunities

Nucleon structure

- Form factors

 Electromagnetic \(G_E(q^2) \) \(G_M(q^2) \)

 Pion cloud essential – demanding lattice calculation

 large volume \(L^3 \)

 small \(m_q \)

 Axial \(G_A \)

Strange form factor

 Parity-violating electron scattering measures
 strange quark content of nucleon

 \(\langle r^2 \rangle^{1/2}_{\text{strange}}, \langle \mu \rangle_{\text{strange}} \)

 Sea quark physics – disconnected diagrams
Nucleon structure (cont.)

\[x f(x, Q) \]

Parton distributions at \(Q = 5 \) GeV

- Moments of quark and gluon distributions

Leading twist

\[
\langle p | \bar{\psi} \gamma_\mu D \cdots D \psi | p \rangle \rightarrow \int dx \, x^n (q_\uparrow(x) + q_\downarrow(x))
\]

\[
\langle p | \bar{\psi} \gamma_5 \gamma_\mu D \cdots D \psi | p \rangle \rightarrow \int dx \, x^n (q_\uparrow(x) - q_\downarrow(x))
\]

\[
\langle p | \bar{\psi} \gamma_5 \sigma_{\mu\nu} D \cdots D \psi | p \rangle \rightarrow \int dx \, x^n (q_\uparrow(x) - q_\downarrow(x))
\]

Higher twist

\[\langle p | \bar{\psi} \tilde{F}^{\mu\nu} \gamma_5 \gamma_\mu \psi | p \rangle, \ldots \]

Generalized parton distributions

\[\langle p' | \bar{\psi} O D \cdots D | p \rangle \]
Physics Opportunities *(cont.)*

Spectroscopy

- N^* spectrum
 - Number and structure of states
 - Flux tube confinement
 - Fine and hyperfine structure
 - Transition form factors

- Glueballs
- Exotics, H
Physics Opportunities (cont.)

Hadron-hadron interactions

- Heavy-light mesons and baryon interactions
 - Light quark exchange
 - Gluon contributions

Fundamental aspects of QCD

- Chiral symmetry breaking
 - Role of instantons, zero modes
- Confinement
 - Role of center vortices, monopoles
- Dense hadronic matter
 - Phases and equation of state

Adiabatic potential for $I = S = 0$ heavy-light mesons
Overlap between $|\psi_J\rangle$ and $|0\rangle$

\[
\langle J(t_3) J(t_1) \rangle = \sum_n |\langle \psi_J | n \rangle|^2 e^{-E_n (t_3 - t_1)}
\]

\[
A = \sum_n |\langle \psi_J | n \rangle|^2
\]

\[
B = |\langle \psi_J | 0 \rangle|^2
\]

\[
\frac{B}{A} = \frac{|\langle \psi_J | 0 \rangle|^2}{\sum_n |\langle \psi_J | n \rangle|^2} = \frac{|\langle \Psi_J | 0 \rangle|^2}{\langle J J \rangle} = P(0)
\]

\[
\frac{A - B}{B} = \frac{\sum_{n \neq 0} |\langle \psi_J | n \rangle|^2}{|\langle \psi_J | 0 \rangle|^2} = \frac{P(n > 0)}{P(0)}
\]

Optimize

- Vary parameters in trial function to maximize $P(0)$
- Tool to study physics of wave functions
CALCULATION OF MASSES AND WAVE FUNCTIONS:

2-POINT FUNCTIONS

\[-\frac{\partial}{\partial H} \]
\[\langle T e^{\int_{t_1}^{t_2} J(t) J^+(t') dt'} \rangle \]
\[= \langle 0 | J \sum_n e^{-E_n(t_1-t_2)} \langle n | J^+ | \Omega \rangle \]]
\[\rightarrow_{t_1 \to t_2} |\langle 0 | J | \Omega \rangle|^2 e^{-E_0(t_1-t_2)} \]

\(E_0 = \text{mass of lowest hadron} \)
\(\text{with quantum numbers of } J^+(|\Omega\rangle) \)

\[\langle 0 | J | \Omega \rangle = \langle \Psi_0 | \Psi_J \rangle \]
\(\text{overlap of ground state } \Psi_0 \)
\(\text{with trial function } \Psi_J \)
Lattice Measurement of Overlap

- Graph 1: Graph showing $D(t)$ versus t with two curves labeled A and B. The number of data points is $N = 65$.

- Graph 2: Graph showing $P(0)$ versus $\langle r \rangle^{1/2}$ with several data points.
Definition of Wave Functional of Quarks & Gluons

Explicitly or implicitly specify W.F. for Gluons \(\Psi[n(\vec{r}), \vec{A}(\vec{r})] \)

We consider 3 definitions

1) Axial Gauge \(\equiv \) String W.F. for Glue

\[
\left. \langle \Omega \left| \bar{q}(x) q(0) \right| \hbar \rangle \right|_{\text{AXIAL}} = \langle \Omega \left| e^{i \int_0^x A \cdot dx'} \bar{q}(x) q(0) \right| \hbar \rangle
\]

\[
\Psi[A]
\]

2) Coulomb Gauge Analogous (Write for QED)

\[
\left. \langle \Omega \left| \bar{q}(x) q(0) \right| \hbar \rangle \right|_{\text{COULOMB}} = \langle \Omega \left| e^{i \int d^3x \vec{E}_{\text{COUL}}(x) \cdot \vec{A}(x)} \bar{q}(x) q(0) \right| \hbar \rangle
\]

\[
\Psi[A]
\]

\[
\int \vec{A} \cdot \vec{E}_{\text{COUL}} = \int \vec{A} \cdot \vec{\nabla} \phi = -\int (\vec{\nabla} \cdot \vec{A}) \phi \rightarrow 0
\]

3) Adiabatic

\[
\left. \langle \hat{\Omega} \left| \bar{q}(x) q(0) \right| \hbar \rangle \right|
\]

\[
| \hat{\Omega}(x) \rangle = \text{QCD Ground State with static } q\bar{q}
\]

Compare \(|\psi|^2 \) with density \(\langle h \left| \hat{\rho}(x) \hat{\rho}(0) \right| h \rangle \)
Quark Distributions in Mesons

Definitions of Wave Functions

Gauge Fixed: \[\langle 0 | \psi(x) \psi(0) | h \rangle \]

String: \[\langle 0(\psi(x)e^{iS_A} \psi(0)) | h \rangle \]

Adiabatic: \[\langle s(x) | \psi(x) \psi(0) | h \rangle \]

Correlation Functions

\[\langle h | \hat{\rho}(x) \rho(0) | h \rangle \]

\[\langle h | \hat{\rho}(x) \rho(0) | h \rangle \bigg|_{\bar{q}q} \]
Square of Pion Waves with no hard wall (k4)
compared with walled and no-walled correl.

$	\eta	^2$ with line of flux (solid)
$	\eta	^2$ with Coulomb-flux(dashes)
$	\eta	^2$ with 1 staple (dots)
$	\eta	^2$ with 2 staple (dotdashes)

(\pi^0) with wall (dashed crosses)
(\pi^0) (solid circles)
Calculation of Matrix Elements on Euclidean Lattice

\(J^\dagger: \) Current with quantum number of proton

\[|\psi_J\rangle = J^\dagger|\Omega\rangle \quad \text{Trial function} \]

\[
\langle T J(t_3) \mathcal{O}(t_2) J^\dagger(t_1) \rangle = \sum_{m,n} \langle \psi_J|n\rangle \langle n|\mathcal{O}|m\rangle \langle m|\psi_J\rangle e^{-E_n(t_3-t_2)-E_m(t_2-t_1)}
\]

\[
|\langle \psi_J|0\rangle|^2 \langle 0|\mathcal{O}|0\rangle e^{-E_0(t_3-t_1)}
\]

Want \(|\langle \psi_J|n\rangle|^2 \sim \delta_{n0} \) for best plateau

Normalize:

\[
\langle T J(t_3) J^\dagger(t_1) \rangle = \sum_n |\langle \psi_J|n\rangle|^2 e^{-E_n(t_3-t_1)}
\]

\[
|\langle \psi_J|0\rangle|^2 e^{-E_0(t_3-t_1)} \quad \xrightarrow{t_3-t_1 \gg 1} \quad |\langle \psi_J|0\rangle|^2 e^{-E_0(t_3-t_1)}
\]

\[
\langle 0|\mathcal{O}|0\rangle = \frac{\langle J\mathcal{O}J^\dagger \rangle}{\langle JJ^\dagger \rangle} = \frac{\begin{array}{c}
\bullet
\
\end{array}}{\begin{array}{c}
\otimes
\end{array}}
\]
• Calculate plateau: measure $\langle O \rangle$, for m_q, a, L

• Connected diagrams

 \[p = 0 \]

 \[p \neq 0 \]

• Disconnected diagrams

• Extrapolate

 \[m_q : m_\pi \rightarrow 140 \text{ MeV} \]

 \[a \rightarrow \sim 0.05 \text{ fm} \]

 \[L \rightarrow \sim 5.0 \text{ fm} \]

• Note: For $\langle O \rangle_u - \langle O \rangle_d$, disconnected diagrams cancel
Moments of quark and gluon distributions

Moments of quark distributions in the proton

\[\langle x^n \rangle_q = \int_0^1 dx \, x^n (q(x) + (-1)^{n+1} \bar{q}(x)) \]

\[\langle x^n \rangle_{\Delta q} = \int_0^1 dx \, x^n (\Delta q(x) + (-1)^n \Delta \bar{q}(x)) \]

\[\langle x^n \rangle_{\delta q} = \int_0^1 dx \, x^n (\delta q(x) + (-1)^{n+1} \delta \bar{q}(x)) \]

where \(q = q_\uparrow + q_\downarrow \quad \Delta q = q_\uparrow - q_\downarrow \quad \delta q = q_\perp + q_\perp \)

are related to matrix elements of twist-2 operators

\[\langle PS | \bar{\psi} \gamma^{\mu_1} i D^{\mu_2} \ldots i D^{\mu_n} \psi | PS \rangle = 2 \langle x^{n-1} \rangle_q P^{\mu_1} \ldots P^{\mu_n} \]

\[\langle PS | \bar{\psi} \gamma^{\mu_1} \gamma_5 i D^{\mu_2} \ldots i D^{\mu_n} \psi | PS \rangle = 2 \langle x^{n-1} \rangle_{\Delta q} MS^{\mu_1} P^{\mu_2} \ldots P^{\mu_n} \]

\[\langle PS | \bar{\psi} \sigma^{\alpha} \gamma^{\mu_1} \gamma_5 i D^{\mu_2} \ldots i D^{\mu_n} \psi | PS \rangle = 2 \langle x^{n-1} \rangle_{\delta q} MS^{\alpha} P^{\mu_1} P^{\mu_2} \ldots P^{\mu_n} \]

where \{ \} \Rightarrow \text{symmetrization and} \ [] \Rightarrow \text{antisymmetrization}
Plateaus in full QCD for operators with $p = 0$
Rule of Classical Solutions in Quantum Field Theory

Instantons (Points)

Monopole Lines

Vortex Sheets

Example: Instantons

Tunneling Solution

\[i + \alpha \rightarrow \frac{d^2x}{dt^2} = -\nabla (\nu) \]

Find by Relaxation

("cooling")

Measure Distribution

In Ground State

Find Observables Calculated with Only Instantons Close to Those Including All Gluons

See Quark Zero Modes in Spectrum

Localized at Instantons

Domiante \(\rho, \pi, q^1 \) Contributions to 2-Point Functions
UKQCD DATA REPRODUCED BY RINGUARD & SCHREMPF hep-ph 9805492
ALL GLUON CONFIGURATIONS

\[\frac{\langle 0 | J(x) J(0) | 0 \rangle_{\text{QCD}}}{\langle 0 | J(x) J(0) | 0 \rangle_{\text{FRSB}}} \]

\[J = \bar{q} \gamma_{\mu} q \]

\begin{align*}
\langle 0 | \bar{q} \gamma_5 \gamma_\mu q(x) \bar{q} \gamma_0 \gamma_\nu q(0) | 0 \rangle
\end{align*}

\begin{align*}
x (\text{fm})
\end{align*}

\begin{align*}
\text{(V)}
\end{align*}
Figure 5-8: The lowest 64 modes of the Dirac operator on one selected lattice after 0 and 100 relaxation steps. $\kappa = 0.1600$ on both graphs and large negative values on the lower graph indicated that κ_c for this configuration is much lower (≈ 0.125).
QUENCHED $m_a \sim 23$ MeV
The Role of Multi-Teraflops Computers

Extrapolate to continuum, infinite volume, and chiral limits:

- $L \rightarrow \infty$
- $\frac{1}{g^2} \rightarrow 0$
- $m_q : m_{\pi}^2 \rightarrow 0.02 \text{ GeV}^2$

5% measurement at $m_{\pi}^2 = 0.05 \text{ GeV}^2$ and lattice spacing $a = 0.1 \text{ fm}$:

$$N_{\text{OPS}} \sim 0.38 \left[\frac{L}{4} \right]^{4.55} \left[\frac{0.8}{a} \right]^{7.25} \left[\frac{0.3}{m_{\pi}/m_{\rho}} \right]^{2.7}$$

$\sim 8 \text{ Tflops-years}$
UKQCD DATA REPRODUCED BY RINGUACO & SCHERER

UKQCD Collaboration '98,
D.A. Smith and M.J. Teper

\[D(\rho) \left[\text{1/fm}^6 \right] \]

\[\rho [\text{fm}] \]

\[\alpha \rho^6 \]
Chiral Extrapolation of proton matrix elements

- Long-standing puzzle: Linear extrapolation in m_q
yields serious discrepancies

\[\langle x \rangle_u - \langle x \rangle_d \sim 0.24 - 0.28 \quad (0.16) \]

\[g_A = \langle 1 \rangle_{\Delta u} - \langle 1 \rangle_{\Delta d} \sim 1.0 - 1.1 \quad (1.26) \]

- Resolution: Chiral extrapolation

Pion cloud is essential

\[\langle x^n \rangle_u - \langle x^n \rangle_d \sim a_n \left[1 - \frac{(3g_A^2 + 1)m^2_\pi}{(4\pi f_\pi)^2} \ln \left(\frac{m^2_\pi}{m^2_\pi + \mu^2} \right) \right] + b_n m^2_\pi \]
Chiral Extrapolation of proton magnetic moment

D. Leinweber, D. Lu, and A. Thomas
hep-lat/0103006

![Graph showing the relationship between nucleon magnetic moment (μ_N) and m_π^2.]
Workshop talks

Philippe de Forcrand

Insight into chiral symmetry breaking and confinement

Constantia Alexandrou

Calculation of hadron wave functions

Paul Rakow

Calculation of moments of structure functions

Thomas Lippert

Study of sea quark physics

Colin Morningstar

Study of exotic hadrons

Thomas Lippert and J.N.

The technological frontier in lattice QCD: cost-optimized machines