Theoretical Introduction to B-decays

Iain W. Stewart

QCD and High Energy Interactions XXX VIIIth Rencontres de Moriond March 22-29, 2003

Iain Stewart – p.1

Outline

• B-Physics Motivation

Heavy Quark Decays in 3 parts

- (1) $m_b/m_W \ll 1$, trees, penguins
- Applications: $\sin(2\beta) = \sin(2\phi_1)$, $\Delta m_{d,s}$
- (2) $\Lambda/m_b \ll 1$, Heavy Quark Effective Theory
- Applications: V_{cb} , V_{ub}
- (3) $\Lambda/Q \ll 1$ where $Q = \{E_H, m_b\}$, Factorization, Soft-Collinear Effective Theory
- Conclusion

Motivation

<u>b-Hadrons:</u>

- \bullet Heaviest bound states \rightarrow Laboratory for EW, new physics, & QCD
- The lightest B^0 , \overline{B}^0 , B^{\pm} decay weakly to many channels

$$B \to D^{(*)}e\nu, B \to D^{(*)}_{1,2}e\nu, B \to \pi e\nu, B \to \rho e\nu, B \to K^*\gamma, B \to Ke^+e^-, B \to \rho\gamma, B \to \tau\nu, B \to \gamma e\nu, B \to e^+e^-e\nu, B \to D\pi, B \to \pi\pi, B \to K\pi, B \to J/\Psi K_S, B \to X_u e\nu, B \to X_s\gamma, B \to X_s\nu\bar{\nu}, \dots$$

(Repeat for B_s , Λ_b , ...)

- \rightarrow To study high energy physics we need to elliminate hadronic uncertainties from QCD
- \rightarrow Alternatively, B-decays provide a system where we can study hadronic structure and power corrections in QCD

Motivation

CP violation, SM \rightarrow CKM matrix:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

3 angles + 1 phase which violates CP Heirarchy: ~ 1 , $\sim \lambda$, $\sim \lambda^2$, $\sim \lambda^3$ ($\lambda \simeq .22$)

- unlike K and D systems CP violation is a large effect
- top quark loops not CKM suppressed (larger mixing, rare decays)

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Want to overconstrain SM with many (clean) measurements

Motivation

CP violation, SM \rightarrow CKM matrix:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

3 angles + 1 phase which violates CP Heirarchy: ~ 1 , $\sim \lambda$, $\sim \lambda^2$, $\sim \lambda^3$ ($\lambda \simeq .22$)

- unlike K and D systems CP violation is a large effect
- top quark loops not CKM suppressed (larger mixing, rare decays)

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Want to overconstrain SM with many (clean) measurements

Unitarity Triangle

Unitarity Triangle

Theory

Effective Field Theory: Useful for separating physics at different momentum scales

Factorization:

To understand hadronic uncertainties we need to separate short ($p \sim Q$) and long ($p \sim \Lambda_{QCD}$) distance contributions

Some processes are cleaner than others!

Theory

Operators come with different CKM elements, $\lambda^1 = V_{ub}V_{ud}^*$, ...

$B \to \psi K_s$

$$\begin{array}{ll} B^0 \to \bar{B}^0(\ b\bar{d} \to c\bar{c}s\bar{d}\) \to \psi K_S \\ B^0 \to B^0(\ \bar{b}d \to \bar{c}c\bar{s}d\) \to \psi K_S \end{array} \qquad a_{CP} = \frac{\Gamma[\bar{B}^0(t) \to f] - \Gamma[B^0(t) \to f]}{\Gamma[\bar{B}^0(t) \to f] + \Gamma[B^0(t) \to f]} \end{array}$$

Has a dominant weak phase \rightarrow theoretically clean

Tree: $\bar{A}_T = V_{cb} V_{cs}^* A_{c\bar{c}s}$

Penguin: $\bar{A}_P = V_{tb}V_{ts}^*P_t + V_{cb}V_{cs}^*P_c + V_{ub}V_{us}^*P_u$

Use Unitarity, $\sum_{i} V_{ib} V_{is}^* = 0$, to remove $V_{tb} V_{ts}^*$:

$$\bar{A} = V_{cb}V_{cs}^*[A_{c\bar{c}s} + P_c - P_t] + V_{ub}V_{us}^*[P_u - P_t]$$
$$\mathcal{O}(\lambda^2) \qquad \qquad \mathcal{O}(\lambda^4)$$

Strong phase cancels in \overline{A}/A since QCD preserves CP

Asymmetry: $a_{CP} = Im(\lambda_{\psi K_S}) \sin(\Delta m t) = sin(2\beta)sin(\Delta m t)$

 $\Delta m_{d,s}$

 B^0 - \overline{B}^0 , B_s - \overline{B}_s mixing dominated by top quarks $\Delta m_q = \frac{1}{6\pi^2} G_F^2 m_W^2 m_{B_q} |V_{tb} V_{tq}^*|^2 \eta_B S(x_t) f(\mu) f_{B_q}^2 B_{B_q}(\mu)$ perturbative corrections

<u>Lattice</u>: (% σ_{rel} in CKM Fitter) $\Delta m_d \rightarrow f_B^2 B_B$ (36%) $\frac{\Delta m_s}{\Delta m_d} \rightarrow f_{B_s}^2 B_{B_s} / (f_B^2 B_B)$ (10%)

(HQET or NRQCD actions for *b*)

Future: improvements in Lattice, help from CLEO_c and f_B/f_D , $f_{B_s}f_D/(f_Bf_{D_s})$

$$\Delta m_d = 0.489 \pm .008 \, ps^{-1}$$

Heavy Quark Effective Theory

Benefits:

- Rigorous power counting in Λ/m_b ,
- Separation of perturbative and non-perturbative contributions: $\alpha_s(m_b)$ corrections & universal hadronic parameters $\lambda_{1,2}$
- heavy-quark spin-flavor symmetry in $\mathcal{L}_{HQET}^{(0)}$

$$m_{B^{(*)}} = m_b + \bar{\Lambda} - \frac{\lambda_1}{2m_b} + d_h \frac{\lambda_2}{2m_Q} + \dots$$

Application: $B \rightarrow D^{(*)} e \bar{\nu}$

Exclusive Decays: Brown muck only feels $v \rightarrow v'$ six form factors $\implies \xi^{IW}(w)$ where $w = v \cdot v'$, $\xi^{IW}(1) = 1$

 $|V_{cb}|^2$ from extrapolation of $B \to D^* \ell \nu$ data to zero recoil, w = 1

Application: $B \to X_c \ell \bar{\nu}$

- $m_b \rightarrow \infty$ is free quark decay, $\alpha_s(m_b)$ corrections computable
- No Λ/m_b corrections \rightarrow OPE gives 0 at this order
- At Λ^2/m_b^2 have dependence on λ_1 , λ_2
- OPE results need to be smeared (duality assumed)

Method: fit E_{ℓ} , m_X^2 moments of spectra to m_b ($\bar{\Lambda}$), λ_1 , $|V_{cb}|$ CLEO: $|V_{cb}| = (40.4 \pm 1.3) \times 10^{-3}$, $\bar{\Lambda} = 0.35 \pm 0.12 \,\text{GeV}$, $\lambda_1 = -.24 \pm .11 \,\text{GeV}^2$

V_{ub}

$B \to X_u \ell \nu$:

Cuts to exclude $b \rightarrow c$ background make observables less inclusive

1)
$$m_X^2 \gg E_X \Lambda \gg \Lambda^2$$
, OPE in Λ/m_B
2) $m_X^2 \sim E_X \Lambda \gg \Lambda^2$, non-perturbative shape function Neubert
3) $m_X^2 \sim \Lambda^2$, resonance region, $B \to \pi \ell \nu$, $B \to \rho \ell \nu$

Inclusive

- Can cut on q^2 (& m_X^2) and still remain in 1) Bauer,Ligeti,Luke
- Can attempt to reconstruct the total rate
 LEP Working Group
- Make cuts on E_{ℓ} (or m_X) which put us in 2), and use shape function extracted from $B \to X_s \gamma$

CLEO

V_{ub}

$B \to X_u \ell \nu$:

Cuts to exclude $b \rightarrow c$ background make observables less inclusive

1)
$$m_X^2 \gg E_X \Lambda \gg \Lambda^2$$
, OPE in Λ/m_B
2) $m_X^2 \sim E_X \Lambda \gg \Lambda^2$, non-perturbative shape function Neubert
3) $m_X^2 \sim \Lambda^2$, resonance region, $B \to \pi \ell \nu$, $B \to \rho \ell \nu$

Exclusive

• Use exclusive channels plus form factor models (eventually Lattice)

$B \to \pi$ form factors

Yamada (Lattice '02)

- \bullet consistent, $\sim 20\%$ errors
- quenched, only large q^2 so far

Factorization

Theory so far dealt with soft hadrons (B, $D^{(*)}$) and fully inclusive quantities (Λ/m_b expansion)

For processes with energetic hadrons or collimated jets we need collinear degrees of freedom too.

$$\langle D\pi | \bar{d}u\bar{c}b | B \rangle = NF^{B \to D}(0) \int_0^1 d\xi \ T(\xi, \frac{m_c}{m_b}, Q, \mu) \ \phi_{\pi}(\xi, \mu)$$
Politzer-Wise
+ $\mathcal{O}(\Lambda/Q)$ BBNS (two-loops)

Factorization

eg2.

jet constituents:

$$(p^+, p^-, p^\perp) \sim \left(\Lambda_{QCD}, Q, \sqrt{Q\Lambda_{QCD}}\right) \sim Q(\lambda^2, 1, \lambda) \qquad \lambda \ll 1$$

Decay rate is given by factorized form

Korchemsky, Sterman

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dE_{\gamma}} = H(m_b, \mu) \int_{2E_{\gamma}-m_b}^{\bar{\Lambda}} dk^+ S(k^+, \mu) J(k^+ + m_b - 2E_{\gamma}, \mu) + \mathcal{O}(\Lambda/Q) + \mathcal{O}(\Lambda/Q)$$

 $S(k^+,\mu)$ is shape function

Soft-Collinear Effective Theory

Bauer, Fleming, Luke, Pirjol, I.S.

Introduce fields for infrared degrees of freedom

modes	$p^{\mu} = (+, -, \bot)$	p^2	fields
collinear	$Q(\lambda^2,1,\lambda)$	$Q^2\lambda^2$	$\xi_{n,p}, A^{\mu}_{n,q}$
soft	$Q(\lambda,\lambda,\lambda)$	$Q^2\lambda^2$	$q_{s,p}$, $A^{\mu}_{s,q}$
usoft	$Q(\lambda^2,\lambda^2,\lambda^2)$	$Q^2\lambda^4$	q_{us} , A^{μ}_{us}

Offshell modes with $p^2 \gg Q^2 \lambda^2$ are integrated out into coefficients Goals of EFT:

- simplify power counting in $\lambda = \Lambda_{QCD}/Q$, $\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \dots$, $O = O^{(0)} + O^{(1)} + \dots$
- make symmetries explicit (eg. gauge, spin, rpi)
- sum IR logarithms
- understand universal parts of factorization
- model independent description of power corrections

Other people: Rothstein, Chay Kim, Manohar Mehen, Leibovich Neubert, Hill Beneke, Feldmann Chapovsky, Diehl Wyler, Lunghi

. . .

Properties

Note: understanding power corrections will be crucial for *B*-decays since $\lambda \sim 1/5 - 1/3$ is not that small Gauge Symmetry:

- have separate collinear, soft, usoft gauge invariance
- integrating out offshell fluctuations builds up Wilson line $W[\bar{n} \cdot A_n]$
- $C(i\bar{n} \cdot D_c) = WC(\bar{\mathcal{P}})W^{\dagger}$ is hard-collinear factorization
- \bullet collinear fields can be chosen so that gauge transformations do not connect different orders in λ

Spinor reduction:

• $m \xi_n = 0$, for each n only have "good" components

Reparameterization Invariance:

 \bullet invariance under small changes in $n,\,\bar{n}$ restore Lorentz invariance order by order in λ

 constrains form of subleading operators, and uniquely fixes many of their Wilson coefficients

Properties

Matching:

- EFT reproduces IR divergences of full theory order by order in λ
- Matching for hard coefficients is IR-safe and independent of choice of IR regulator

Power Counting:

- SCET operators and diagrams are homogeneous in λ
- formula $\delta = 4 + \sum_k (V_c^k 4) + \ldots$ counts powers of λ solely through vertices in any graph, just like Chiral perturbation theory

Ultrasoft-collinear factorization

decoupling of ultrasoft gluons in $\mathcal{L}_{c}^{(0)}$ by field redefinitions

$$\xi_{n,p} = Y_n \,\xi_{n,p}^{(0)}, \quad A_{n,q} = Y_n \,A_{n,q}^{(0)} \,Y_n^{\dagger}$$

where $Y_n = P \exp \left[ig \int_{-\infty}^x ds \, n \cdot A^{us}(ns) \right]$ (color transparency)

Properties

eg. usoft-collinear Lagrangian

 $ig \not\!\!\!B_c^{\perp} = [i\bar{n} \cdot D_c, i \not\!\!\!D_c^{\perp}],$

Results

 $Q = m_b, m_c, E_\pi \gg \Lambda_{QCD}$ B, D are soft, π collinear All orders proof Bauer, Pirjol, I.S.

For endpoint region: $E_{\gamma} \gtrsim \frac{m_B}{2} - \Lambda_{\rm QCD} \simeq 2.2 \,{\rm GeV},$ X_s collinear, *B* usoft, $\lambda = \sqrt{\frac{\Lambda_{QCD}}{m_B}}$

reproduces Korchemsky, Sterman

Power corrections tractable

Heavy-to-Light Decays

- Large q^2 accessible on the Lattice ($B \rightarrow \pi \ell \nu$, $q^2 \gtrsim 17 \, {
 m GeV}^2$)
- For small q^2 , $E \gg \Lambda_{\rm QCD}$ and large energy factorization applies

Why is it interesting?

- Important ingredient for $B \rightarrow \pi\pi$ (PQCD vs. QCDF)
- Phenomenology: $|V_{ub}|, B \rightarrow \rho \gamma, B \rightarrow K^* e^+ e^-, \ldots$
- Interesting Features: Endpoint singularities, Sudakov suppression

Heavy-to-Light Form Factor

• For small q^2 , $E \gg \Lambda_{\rm QCD}$ and large energy factorization applies

SCET result $f(Q) = f^F(Q) + f^{NF}(Q)$

Bauer, Pirjol, I.S. (hep-ph/0211069)

$$f^{F}(Q) = \frac{f_{B}f_{M}m_{B}}{4E^{2}} \int_{0}^{1} dz \int_{0}^{1} dx \int_{0}^{\infty} dr_{+} T(z, Q, \mu_{0}) \times J(z, x, r_{+}, Q, \mu_{0}, \mu) \phi_{M}(x, \mu) \phi_{B}^{+}(r_{+}, \mu)$$

$$f^{NF}(Q) = C_{k}(Q, \mu) \zeta_{k}^{M}(Q, \Lambda, \mu).$$

Heavy-to-Light Form Factor

• For small q^2 , $E \gg \Lambda_{\rm QCD}$ and large energy factorization applies

SCET result $f(Q) = f^F(Q) + f^{NF}(Q)$

Bauer, Pirjol, I.S. (hep-ph/0211069)

$$f^{F}(Q) = \frac{f_{B}f_{M}m_{B}}{4E^{2}} \int_{0}^{1} dz \int_{0}^{1} dx \int_{0}^{\infty} dr_{+} T(z, Q, \mu_{0}) \times J(z, x, r_{+}, Q, \mu_{0}, \mu) \phi_{M}(x, \mu) \phi_{B}^{+}(r_{+}, \mu)$$

$$f^{NF}(Q) = C_{k}(Q, \mu) \zeta_{k}^{M}(Q, \Lambda, \mu).$$

- result at LO in 1/Q, all orders in α_s , where $Q = \{m_b, E_M\}$
- no double counting, no missing pieces
- no assumption about tail of wavefunctions in power counting
- "endpoint singularities" occur in f^{NF} , regulated by non-perturbative gluons in $Y^{\dagger}D_{\perp}^{us}Y$
- f^{NF} obey "symmetry" relations of Charles et al. (one ζ for pseudoscalar mesons, two for vector mesons)

$B \to \pi^+ \pi^-$

CP Asymmetry for $B^0(t) \to \pi^+\pi^-$, $\bar{B}^0(t) \to \pi^+\pi^-$

,

$$\mathcal{A}_{CP}(t) = -S_{\pi\pi} \sin(\Delta m_B t) + C_{\pi\pi} \cos(\Delta m_B t)$$
$$S_{\pi\pi} = \frac{2 \operatorname{Im} \lambda}{1 + |\lambda|^2}, \quad C_{\pi\pi} = \frac{1 - |\lambda|^2}{1 + |\lambda|^2}, \quad \lambda = e^{2i\alpha} \frac{1 + e^{i\gamma} P/T}{1 + e^{-i\gamma} P/T}$$

Unlike $B \rightarrow \psi K_S$ both weak phases give sizeable contributions T = tree P = penguin

remove Penguin pollution with $B^0, \bar{B}^0 \to \pi^0 \pi^0, B^+ \to \pi^+ \pi^0$ plus isospin analysis

Gronau and London

$B \rightarrow \pi^+ \pi^-$ Factorization

Two proposals for computing P/T: 1) "QCD Factorization"

Beneke, Buchalla, Neubert, Sachrajda

 $\langle O_i \rangle = F^{B \to \pi} T(x) \otimes \phi_{\pi}(x) + T(\xi, x, y) \otimes \phi_B(\xi) \otimes \phi_{\pi}(x) \otimes \phi_{\pi}(y)$

- same size in $1/m_b$
- second term suppressed by $\alpha_s(\sqrt{m_b\Lambda})$, first dominates
- predicts small strong phases

2) " k_T Factorization" (see next talk)

Keum, Li, Sanda

$B \rightarrow \pi^+ \pi^-$ Factorization

Recent $B \rightarrow \pi \pi$ SCET result

Chay, Kim

• Claims agreement with BBNS, ...

Current Experimental Results:

Babar: $S_{\pi\pi} = .02 \pm .34 \pm .05$, $C_{\pi\pi} = -.30 \pm .25 \pm .04$ Belle: $S_{\pi\pi} = -1.23 \pm .41 \stackrel{+.08}{_{-.07}}$, $C_{\pi\pi} = -.77 \pm .27 \pm .08$

Conclusions

- B-physics is a fundamental testing ground for electroweak physics, new physics, and QCD
- CKM picture passed its first test, and is probably the dominant source of CP violation in flavor changing processes
- Uncertainties from QCD need to be handled in a controlled fashion (with convergent power expansions and/or Lattice).

SCET-Conclusions

- Factorization emerges from an effective theory, operator formulation
- SCET allows us to address power corrections in model independent way
- Can also be applied to Inclusive/Exclusive Hard Scattering Processes (not discussed here)