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Outline

• Factorization & the Soft-Collinear Effective Theory

Focus on B decays:

Outlook

B → Dπ B → Dρ
i)  charm (test factorization):

iii)  inclusive decays (Vub, shape functions):
B → Xu!ν̄ B → Xsγ

•

•

• Motivation
power expansion
of QCD 

(SCET)

Λb → Σ(∗)
c π

:CP B → ππ B → Kπ B → ρπii)  
B → π"ν̄relation to



B decays - Motivation
• Heavy Stable Hadrons lots of decays
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BOTTOM MESONSBOTTOM MESONSBOTTOM MESONSBOTTOM MESONS
(B = ±1)(B = ±1)(B = ±1)(B = ±1)

B+ = ub, B0 = db, B0 = d b, B− = ub, similarly for B∗’s

B-particle organizationB-particle organizationB-particle organizationB-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily
included such admixtures in the B± section, but because of their importance we have created
two new sections: “B±/B0 Admixture” for Υ(4S) results and “B±/B0/B0

s /b-baryon Admix-
ture” for results at higher energies. Most inclusive decay branching fractions and χb at high
energy are found in the Admixture sections. B0-B0 mixing data are found in the B0 section,
while B0

s -B
0
s mixing data and B-B mixing data for a B0/B0

s admixture are found in the B0
s

section. CP-violation data are found in the B±, B0, and B± B0 Admixture sections. b-baryons
are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle
sections and brackets indicate reviews.

•B±
mass, mean life, branching fractions CP violation

•B0

mass, mean life, branching fractions
polarization in B0 decay, B0-B0 mixing, CP violation

•B± B0 Admixtures
branching fractions, CP violation

•B±/B0/B0
s /b-baryon Admixtures

mean life, production fractions, branching fractions
χb at high energy,Vcb measurements

• B∗

mass

• B0
s

mass, mean life, branching fractions

polarization in B0
s decay, B0

s -B
0
s mixing

• B±
c

mass, mean life, branching fractions

At end of Baryon Listings:

• Λb

mass, mean life, branching fractions

• b-baryon Admixture

mean life, branching fractions
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B±B±B±B± I (JP ) = 1
2 (0−)

I , J, P need confirmation. Quantum numbers shown are quark-model
predictions.

Mass mB± = 5279.0 ± 0.5 MeV
Mean life τ B± = (1.671 ± 0.018) × 10−12 s

cτ = 501 µm

CP violationCP violationCP violationCP violation

ACP (B+ → J/ψ(1S)K+) = −0.007 ± 0.019
ACP (B+ → J/ψ(1S)π+) = −0.01 ± 0.13
ACP (B+ → ψ(2S)K+) = −0.037 ± 0.025
ACP (B+ → D0K+) = 0.04 ± 0.07
ACP (B+ → DCP(+1)K

+) = 0.06 ± 0.19

ACP (B+ → DCP(−1)K
+) = −0.19 ± 0.18

ACP (B+ → π+π0) = 0.05 ± 0.15
ACP (B+ → K+π0) = −0.10 ± 0.08
ACP (B+ → K0

S π+) = 0.03 ± 0.08 (S = 1.1)
ACP (B+ → π+π−π+) = −0.39 ± 0.35
ACP (B+ → ρ+ρ0) = −0.09 ± 0.16
ACP (B+ → K+π−π+) = 0.01 ± 0.08
ACP (B+ → K+K−K+) = 0.02 ± 0.08
ACP (B+ → K+η′) = 0.009 ± 0.035
ACP (B+ → ωπ+) = −0.21 ± 0.19
ACP (B+ → ωK+) = −0.21 ± 0.28
ACP (B+ → φK+) = 0.03 ± 0.07
ACP (B+ → φK∗(892)+) = 0.09 ± 0.15
ACP (B+ → ρ0K∗(892)+) = 0.20 ± 0.31

B− modes are charge conjugates of the modes below. Modes which do not
identify the charge state of the B are listed in the B±/B0 ADMIXTURE
section.

The branching fractions listed below assume 50% B0B0 and 50% B+ B−
production at the Υ(4S). We have attempted to bring older measurements
up to date by rescaling their assumed Υ(4S) production ratio to 50:50

and their assumed D, Ds , D∗, and ψ branching ratios to current values
whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All
resonant subchannels have been corrected for resonance branching frac-
tions to the final state so the sum of the subchannel branching fractions
can exceed that of the final state.
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For inclusive branching fractions, e.g., B → D± anything, the values
usually are multiplicities, not branching fractions. They can be greater
than one.

Scale factor/ p

B+ DECAY MODESB+ DECAY MODESB+ DECAY MODESB+ DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Semileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modes
!+ν! anything [a] (10.2 ±0.9 ) % –

D0 !+ν! [a] ( 2.15±0.22) % 2310

D∗(2007)0 !+ν! [a] ( 6.5 ±0.5 ) % 2258

D1(2420)0 !+ν! ( 5.6 ±1.6 ) × 10−3 2084

D∗
2(2460)0 !+ν! < 8 × 10−3 CL=90% 2067

π0 e+ νe ( 9.0 ±2.8 ) × 10−5 2638

η!+ν! ( 8 ±4 ) × 10−5 2611

ω!+ν! [a] < 2.1 × 10−4 CL=90% 2582

ρ0 !+ν! [a] ( 1.34+0.32
−0.35) × 10−4 2583

ppe+ νe < 5.2 × 10−3 CL=90% 2467

e+ νe < 1.5 × 10−5 CL=90% 2640

µ+ νµ < 2.1 × 10−5 CL=90% 2638

τ+ντ < 5.7 × 10−4 CL=90% 2340

e+ νe γ < 2.0 × 10−4 CL=90% 2640

µ+ νµ γ < 5.2 × 10−5 CL=90% 2638

D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modes
D0 π+ ( 4.98±0.29) × 10−3 2308

D0 ρ+ ( 1.34±0.18) % 2236

D0 K+ ( 3.7 ±0.6 ) × 10−4 S=1.1 2280

D0 K∗(892)+ ( 6.1 ±2.3 ) × 10−4 2213

D0 K+K0 ( 5.5 ±1.6 ) × 10−4 2189

D0 K+K∗(892)0 ( 7.5 ±1.7 ) × 10−4 2071

D0 π+π+π− ( 1.1 ±0.4 ) % 2289

D0 π+π+π−nonresonant ( 5 ±4 ) × 10−3 2289

D0 π+ρ0 ( 4.2 ±3.0 ) × 10−3 2207

D0 a1(1260)+ ( 5 ±4 ) × 10−3 2123

D0 ωπ+ ( 4.1 ±0.9 ) × 10−3 2206

D∗(2010)−π+π+ ( 2.1 ±0.6 ) × 10−3 2247

D−π+π+ < 1.4 × 10−3 CL=90% 2299

D∗(2007)0π+ ( 4.6 ±0.4 ) × 10−3 2256

D∗(2007)0ωπ+ ( 4.5 ±1.2 ) × 10−3 2149

D∗(2007)0ρ+ ( 9.8 ±1.7 ) × 10−3 2181

D∗(2007)0K+ ( 3.6 ±1.0 ) × 10−4 2227

D∗(2007)0K∗(892)+ ( 7.2 ±3.4 ) × 10−4 2156

D∗(2007)0K+K0 < 1.06 × 10−3 CL=90% 2132

D∗(2007)0K+K∗(892)0 ( 1.5 ±0.4 ) × 10−3 2008
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D∗(2007)0π+π+π− ( 9.4 ±2.6 ) × 10−3 2236

D∗(2007)0 a1(1260)+ ( 1.9 ±0.5 ) % 2062

D∗(2007)0π−π+π+π0 ( 1.8 ±0.4 ) % 2219

D∗(2010)+π0 < 1.7 × 10−4 CL=90% 2255

D∗(2010)+K0 < 9.5 × 10−5 CL=90% 2225

D∗(2010)−π+π+π0 ( 1.5 ±0.7 ) % 2235

D∗(2010)−π+π+π+π− < 1 % CL=90% 2217

D∗
1(2420)0π+ ( 1.5 ±0.6 ) × 10−3 S=1.3 2081

D∗
1(2420)0ρ+ < 1.4 × 10−3 CL=90% 1995

D∗
2(2460)0π+ < 1.3 × 10−3 CL=90% 2064

D∗
2(2460)0ρ+ < 4.7 × 10−3 CL=90% 1977

D0 D+
s ( 1.3 ±0.4 ) % 1815

D0 DsJ (2317)+ seen 1605

D0 DsJ (2457)+ seen –
D0 DsJ (2536)+ not seen 1447

D∗(2007)0DsJ (2536)+ not seen 1338

D0 DsJ (2573)+ not seen 1417

D∗(2007)0DsJ (2573)+ not seen 1306

D0 D∗+
s ( 9 ±4 ) × 10−3 1734

D∗(2007)0D+
s ( 1.2 ±0.5 ) % 1737

D∗(2007)0D∗+
s ( 2.7 ±1.0 ) % 1651

D
(∗)+
s D∗∗0 ( 2.7 ±1.2 ) % –

D∗(2007)0D∗(2010)+ < 1.1 % CL=90% 1713

D0 D∗(2010)+ +
D∗(2007)0D+

< 1.3 % CL=90% 1792

D0 D+ < 6.7 × 10−3 CL=90% 1866

D0 D+K0 < 2.8 × 10−3 CL=90% 1571

D∗(2007)0D+K0 < 6.1 × 10−3 CL=90% 1475

D0 D∗(2010)+K0 ( 5.2 ±1.2 ) × 10−3 1476

D∗(2007)0D∗(2010)+K0 ( 7.8 ±2.6 ) × 10−3 1362

D0 D0K+ ( 1.9 ±0.4 ) × 10−3 1577

D∗(2010)0D0K+ < 3.8 × 10−3 CL=90% –
D0 D∗(2007)0 K+ ( 4.7 ±1.0 ) × 10−3 1481

D∗(2007)0D∗(2007)0 K+ ( 5.3 ±1.6 ) × 10−3 1368

D−D+K+ < 4 × 10−4 CL=90% 1571

D−D∗(2010)+K+ < 7 × 10−4 CL=90% 1475

D∗(2010)−D+K+ ( 1.5 ±0.4 ) × 10−3 1475

D∗(2010)−D∗(2010)+K+ < 1.8 × 10−3 CL=90% 1363

(D +D∗ )(D +D∗ )K ( 3.5 ±0.6 ) % –
D+

s π0 < 2.0 × 10−4 CL=90% 2270

D∗+
s π0 < 3.3 × 10−4 CL=90% 2215

D+
s η < 5 × 10−4 CL=90% 2235

D∗+
s η < 8 × 10−4 CL=90% 2178
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D+
s ρ0 < 4 × 10−4 CL=90% 2197

D∗+
s ρ0 < 5 × 10−4 CL=90% 2138

D+
s ω < 5 × 10−4 CL=90% 2195

D∗+
s ω < 7 × 10−4 CL=90% 2136

D+
s a1(1260)0 < 2.2 × 10−3 CL=90% 2079

D∗+
s a1(1260)0 < 1.6 × 10−3 CL=90% 2014

D+
s φ < 3.2 × 10−4 CL=90% 2141

D∗+
s φ < 4 × 10−4 CL=90% 2079

D+
s K0 < 1.1 × 10−3 CL=90% 2241

D∗+
s K0 < 1.1 × 10−3 CL=90% 2184

D+
s K∗(892)0 < 5 × 10−4 CL=90% 2172

D∗+
s K∗(892)0 < 4 × 10−4 CL=90% 2112

D−
s π+K+ < 8 × 10−4 CL=90% 2222

D∗−
s π+K+ < 1.2 × 10−3 CL=90% 2164

D−
s π+K∗(892)+ < 6 × 10−3 CL=90% 2138

D∗−
s π+K∗(892)+ < 8 × 10−3 CL=90% 2076

Charmonium modesCharmonium modesCharmonium modesCharmonium modes
ηc K+ ( 9.0 ±2.7 ) × 10−4 1754

J/ψ(1S)K+ ( 1.00±0.04) × 10−3 1683

J/ψ(1S)K+π+π− ( 7.7 ±2.0 ) × 10−4 1612

X (3872)K+ seen –
J/ψ(1S)K∗(892)+ ( 1.35±0.10) × 10−3 1571

J/ψ(1S)K (1270)+ ( 1.8 ±0.5 ) × 10−3 1390

J/ψ(1S)K (1400)+ < 5 × 10−4 CL=90% 1308

J/ψ(1S)φK+ ( 5.2 ±1.7 ) × 10−5 S=1.2 1227

J/ψ(1S)π+ ( 4.0 ±0.5 ) × 10−5 1727

J/ψ(1S)ρ+ < 7.7 × 10−4 CL=90% 1611

J/ψ(1S)a1(1260)+ < 1.2 × 10−3 CL=90% 1414

J/ψ(1S)pΛ ( 1.2 +0.9
−0.6 ) × 10−5 567

ψ(2S)K+ ( 6.8 ±0.4 ) × 10−4 1284

ψ(2S)K∗(892)+ ( 9.2 ±2.2 ) × 10−4 1115

ψ(2S)K+π+π− ( 1.9 ±1.2 ) × 10−3 1178

χc0(1P)K+ ( 6.0 +2.4
−2.1 ) × 10−4 1478

χc1(1P)K+ ( 6.8 ±1.2 ) × 10−4 1411

χc1(1P)K∗(892)+ < 2.1 × 10−3 CL=90% 1265

K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modes
K0π+ ( 1.88±0.21) × 10−5 2614

K+π0 ( 1.29±0.12) × 10−5 2615

η′K+ ( 7.8 ±0.5 ) × 10−5 2528

η′K∗(892)+ < 3.5 × 10−5 CL=90% 2472
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ηK+ < 6.9 × 10−6 CL=90% 2588

ηK∗(892)+ ( 2.6 +1.0
−0.9 ) × 10−5 2534

ωK+ ( 9.2 +2.8
−2.5 ) × 10−6 2557

ωK∗(892)+ < 8.7 × 10−5 CL=90% 2503

K∗(892)0 π+ ( 1.9 +0.6
−0.8 ) × 10−5 2562

K∗(892)+π0 < 3.1 × 10−5 CL=90% 2562

K+π−π+ ( 5.7 ±0.4 ) × 10−5 2609

K+π−π+nonresonant < 2.8 × 10−5 CL=90% 2609

K+ρ0 < 1.2 × 10−5 CL=90% 2558

K∗
2(1430)0π+ < 6.8 × 10−4 CL=90% 2445

K−π+π+ < 1.8 × 10−6 CL=90% 2609

K−π+π+nonresonant < 5.6 × 10−5 CL=90% 2609

K1(1400)0 π+ < 2.6 × 10−3 CL=90% 2451

K0π+π0 < 6.6 × 10−5 CL=90% 2609

K0ρ+ < 4.8 × 10−5 CL=90% 2558

K∗(892)+π+π− < 1.1 × 10−3 CL=90% 2556

K∗(892)+ρ0 ( 1.1 ±0.4 ) × 10−5 2504

K∗(892)+K∗(892)0 < 7.1 × 10−5 CL=90% 2484

K1(1400)+ρ0 < 7.8 × 10−4 CL=90% 2387

K∗
2(1430)+ρ0 < 1.5 × 10−3 CL=90% 2381

K+K0 < 2.0 × 10−6 CL=90% 2593

K0K+π0 < 2.4 × 10−5 CL=90% 2578

K+K0
S K0

S ( 1.34±0.24) × 10−5 2521

K0
S K0

S π+ < 3.2 × 10−6 CL=90% 2577

K+K−π+ < 6.3 × 10−6 CL=90% 2578

K+K−π+nonresonant < 7.5 × 10−5 CL=90% 2578

K+K+π− < 1.3 × 10−6 CL=90% 2578

K+K+π−nonresonant < 8.79 × 10−5 CL=90% 2578

K+K∗(892)0 < 5.3 × 10−6 CL=90% 2540

K+K−K+ ( 3.08±0.21) × 10−5 2522

K+φ ( 9.3 ±1.0 ) × 10−6 S=1.3 2516

K+K−K+nonresonant < 3.8 × 10−5 CL=90% 2522

K∗(892)+K+K− < 1.6 × 10−3 CL=90% 2466

K∗(892)+φ ( 9.6 ±3.0 ) × 10−6 S=1.9 2460

K1(1400)+φ < 1.1 × 10−3 CL=90% 2339

K∗
2(1430)+φ < 3.4 × 10−3 CL=90% 2332

K+φφ ( 2.6 +1.1
−0.9 ) × 10−6 2306

K∗(892)+γ ( 3.8 ±0.5 ) × 10−5 2564

K1(1270)+γ < 9.9 × 10−5 CL=90% 2486

φK+γ ( 3.4 ±1.0 ) × 10−6 2516

K+π−π+γ ( 2.4 +0.6
−0.5 ) × 10−5 2609
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K∗(892)0π+γ ( 2.0 +0.7
−0.6 ) × 10−5 2562

K+ρ0γ < 2.0 × 10−5 CL=90% 2558

K+π−π+γ nonresonant < 9.2 × 10−6 CL=90% 2609

K1(1400)+γ < 5.0 × 10−5 CL=90% 2453

K∗
2(1430)+γ < 1.4 × 10−3 CL=90% 2447

K∗(1680)+γ < 1.9 × 10−3 CL=90% 2360

K∗
3(1780)+γ < 5.5 × 10−3 CL=90% 2341

K∗
4(2045)+γ < 9.9 × 10−3 CL=90% 2243

Light unflavored meson modesLight unflavored meson modesLight unflavored meson modesLight unflavored meson modes
ρ+γ < 2.1 × 10−6 CL=90% 2583

π+π0 ( 5.6 +0.9
−1.1 ) × 10−6 2636

π+π+π− ( 1.1 ±0.4 ) × 10−5 2630

ρ0π+ ( 8.6 ±2.0 ) × 10−6 2581

π+ f0(980) < 1.4 × 10−4 CL=90% 2547

π+ f2(1270) < 2.4 × 10−4 CL=90% 2483

π+π−π+nonresonant < 4.1 × 10−5 CL=90% 2630

π+π0π0 < 8.9 × 10−4 CL=90% 2631

ρ+π0 < 4.3 × 10−5 CL=90% 2581

π+π−π+π0 < 4.0 × 10−3 CL=90% 2621

ρ+ρ0 ( 2.6 ±0.6 ) × 10−5 2523

a1(1260)+π0 < 1.7 × 10−3 CL=90% 2494

a1(1260)0π+ < 9.0 × 10−4 CL=90% 2494

ωπ+ ( 6.4 +1.8
−1.6 ) × 10−6 S=1.3 2580

ωρ+ < 6.1 × 10−5 CL=90% 2522

ηπ+ < 5.7 × 10−6 CL=90% 2609

η′π+ < 7.0 × 10−6 CL=90% 2551

η′ρ+ < 3.3 × 10−5 CL=90% 2492

ηρ+ < 1.5 × 10−5 CL=90% 2553

φπ+ < 4.1 × 10−7 CL=90% 2539

φρ+ < 1.6 × 10−5 2480

π+π+π+π−π− < 8.6 × 10−4 CL=90% 2608

ρ0 a1(1260)+ < 6.2 × 10−4 CL=90% 2433

ρ0 a2(1320)+ < 7.2 × 10−4 CL=90% 2410

π+π+π+π−π−π0 < 6.3 × 10−3 CL=90% 2592

a1(1260)+ a1(1260)0 < 1.3 % CL=90% 2335

Charged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modes

h± = K± or π±

h+π0 ( 1.6 +0.7
−0.6 ) × 10−5 2636

ωh+ ( 1.38+0.27
−0.24) × 10−5 2580

h+X0 (Familon) < 4.9 × 10−5 CL=90% –
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Baryon modesBaryon modesBaryon modesBaryon modes
ppπ+ < 3.7 × 10−6 CL=90% 2439

ppπ+nonresonant < 5.3 × 10−5 CL=90% 2439

ppπ+π+π− < 5.2 × 10−4 CL=90% 2369

ppK+ ( 4.3 +1.2
−1.0 ) × 10−6 2348

ppK+nonresonant < 8.9 × 10−5 CL=90% 2348

pΛ < 1.5 × 10−6 CL=90% 2430

pΛπ+π− < 2.0 × 10−4 CL=90% 2367

∆0p < 3.8 × 10−4 CL=90% 2402

∆++p < 1.5 × 10−4 CL=90% 2402

D+pp < 1.5 × 10−5 CL=90% 1860

D∗(2010)+pp < 1.5 × 10−5 CL=90% 1786

Λ−
c pπ+ ( 2.1 ±0.7 ) × 10−4 1981

Λ−
c pπ+π0 ( 1.8 ±0.6 ) × 10−3 1936

Λ−
c pπ+π+π− ( 2.3 ±0.7 ) × 10−3 1881

Λ−
c pπ+π+π−π0 < 1.34 % CL=90% 1823

Σ c(2455)0p < 8 × 10−5 CL=90% 1939

Σ c(2520)0p < 4.6 × 10−5 CL=90% 1905

Σ c(2455)0pπ0 ( 4.4 ±1.8 ) × 10−4 1897

Σ c(2455)0pπ−π+ ( 4.4 ±1.7 ) × 10−4 1845

Σ c(2455)−−pπ+π+ ( 2.8 ±1.2 ) × 10−4 1845

Λc(2593)− /Λc (2625)−pπ+ < 1.9 × 10−4 CL=90% –

Lepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, or
∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes

π+ e+ e− B1 < 3.9 × 10−3 CL=90% 2638

π+µ+µ− B1 < 9.1 × 10−3 CL=90% 2633

K+ e+ e− B1 ( 6.3 +1.9
−1.7 ) × 10−7 2616

K+µ+µ− B1 ( 4.5 +1.4
−1.2 ) × 10−7 2612

K+ "+ "− B1 [a] ( 5.3 ±1.1 ) × 10−7 2616

K+ ν ν B1 < 2.4 × 10−4 CL=90% 2616

K∗(892)+ e+ e− B1 < 4.6 × 10−6 CL=90% 2564

K∗(892)+µ+µ− B1 < 2.2 × 10−6 CL=90% 2560

K∗(892)+ "+ " B1 [a] < 2.2 × 10−6 CL=90% 2564

π+ e+µ− LF < 6.4 × 10−3 CL=90% 2637

π+ e−µ+ LF < 6.4 × 10−3 CL=90% 2637

K+ e+µ− LF < 8 × 10−7 CL=90% 2615

K+ e−µ+ LF < 6.4 × 10−3 CL=90% 2615

K∗(892)+ e±µ∓ LF < 7.9 × 10−6 CL=90% 2563

π− e+ e+ L < 1.6 × 10−6 CL=90% 2638

π−µ+µ+ L < 1.4 × 10−6 CL=90% 2633
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B decays - Motivation

• Probe the flavor sector of the SM

• Heavy Stable Hadrons lots of decays

V =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


W

b cVcb

:CP

CKM
 matrix



B decays - Motivation

• Probe the flavor sector of the SM; CKM matrix

• Look for new physics:

• Measure fundamental hadronic parameters & 
improve our understanding of QCD

• Heavy Stable Hadrons lots of decays

redundant measurements,

rare decays

CP

precision measurements,
γ

b

W

s

d-

d

b

W

s B → Kπ

B → Xsγ
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!

!
W

eak



Electroweak Hamiltonian

b u

d
u

W

b u

u

d

u
u

b

W

d

g

db

uu

db

uu

u,c

mW ,mt ! mb

trees
O1 = (ūb)V−A(d̄u)V−A

O2 = (ūibj)V−A(d̄jui)V−A

penguins

O3 = (d̄b)V−A

∑
q

(q̄q)V−A

O4,5,6 = . . .

O7γ,8G = . . .

Oew
7,...,10 = . . .

= CKM  factorsλi

λ1 = VubV
∗
ud λ3 = VtbV

∗
tdHweak =

GF√
2

∑
i

λiCi(µ)Oi(µ)



mW

?

mb

ΛQCD

mc√
ΛE

E

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

Energetic Hadrons Soft-Collinear  
Effective Theory

Need expansion parameters 
Λ

mb
! 0.1 Λ

EM
! 0.2αs(mb) ! 0.2

 

B-meson

b
ΛQCD ! mb

Heavy Quark 
Effective Theory

Isgur & Wise



Soft - Collinear Effective Theory
Bauer, Pirjol, Fleming, Stewart

E ! ΛQCD

Separate physics at different momentum scales 
Model independent, systematically improvable
Exploit symmetries 
power expansion, explore factorization beyond LO
Resum Sudakov logarithms

•
•
•
•

HW ,egs.           HQET,  ChPT

•

An effective field theory for energetic hadrons & jets



Soft Collinear Effective Theory

B D!eg.

Pion has: pµ
π = (2.3 GeV)nµ = Q nµ n2 = n̄2 = 0, (n·p = p−)

B

n
µ

!

pµ
s = (p+, p−, p⊥) ∼ (Λ,Λ,Λ)

Collinear constituents:
pµ

c = (p+, p−, p⊥) ∼
(Λ2

Q
,Q,Λ

)
∼ Q(λ2, 1,λ) λ =

Λ
Q

Soft constituents:



Introduce fields for infrared degrees of freedom (in operators)

modes pµ = (+,−,⊥) p2 fields
collinear Q(λ2, 1,λ) Q2λ2 ξn, Aµ

n

soft Q(λ,λ,λ) Q2λ2 qs, Aµ
s

usoft Q(λ2,λ2,λ2) Q2λ4 qus, Aµ
us

Degrees of freedom in SCET

SCETI

SCETII

usoft pµ ∼ Λ
collinear p2

c ∼ QΛ, λ =
√

Λ/Q

soft pµ ∼ Λ
collinear p2

c ∼ Λ2, λ = Λ/Q

Energetic jets

n
µ

X

Energetic hadrons
n
µ

!

Λ2 ! QΛ! Q2



Separate Momenta (multipole expansion)Separate Momenta

label residual

HQET P µ = mbvµ + kµ hv(x) (Georgi)

SCET P µ = pµ + kµ ξn,p(x)

(1, λ)

Collinear Quarks

# ψ(x)→∑
p e−ip·xξn,p(x)

# n/ ξn,p = 0

# ∂µ ξn,p ∼ (Qλ2) ξn,p

p

k

 Q

Q 
 

Q 

   !
2

 !

• But labels are changed

by SCET interactions p p!

q

Iain Stewart – p.8
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Q 

Q 
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2

 !

Separate Momenta

label residual
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# ψ(x)→∑
p e−ip·xξn,p(x)

# n/ ξn,p = 0

# ∂µ ξn,p ∼ (Qλ2) ξn,p
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 !
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Iain Stewart – p.8

Separate Momenta

label residual

HQET P µ = mbvµ + kµ hv(x) (Georgi)

SCET P µ = pµ + kµ ξn,p(x)

(1, λ)

Collinear Quarks

# ψ(x)→∑
p e−ip·xξn,p(x)

# n/ ξn,p = 0

# ∂µ ξn,p ∼ (Qλ2) ξn,p

p

k

 Q

Q 
 

Q 

   !
2

 !

• But labels are changed

by SCET interactions p p!

q

Iain Stewart – p.8

Separate Momenta

Introduce Label Operator

Pµ(
φ†

q1 · · ·φp1 · · ·
)

= (pµ
1 +. . .−qµ

1 −. . .)
(
φ†

q1 · · ·φp1 · · ·
)

• Can pull phases to front of operators

i∂µe−ip·x φp(x) = e−ip·x(Pµ + i∂µ)φp(x)

Iain Stewart – p.9

Separate Momenta

Introduce Label Operator

Pµ(
φ†

q1 · · ·φp1 · · ·
)

= (pµ
1 +. . .−qµ

1 −. . .)
(
φ†

q1 · · ·φp1 · · ·
)

• Can pull phases to front of operators

i∂µe−ip·x φp(x) = e−ip·x(Pµ + i∂µ)φp(x)

Iain Stewart – p.9



Power CountingPower Counting

Type (p+, p−, p⊥) Fields Field Scaling

collinear (λ2, 1, λ) ξn,p λ

(A+
n,p, A

−
n,p, A

⊥
n,p) (λ2, 1,λ)

soft (λ, λ, λ) qs,p λ3/2

Aµ
s,p λ

usoft (λ2, λ2, λ2) qus λ3

Aµ
us λ2

Make kinetic terms order λ0
∫

d4X ξ̄n,p′ n̄/
2

(
in·∂ + . . .

)
ξn,p

λ0 = λ−4 λ λ2 λ

• At leading power only λ0 interactions are required

• n̄ · An,q ∼ n̄ · qi ∼ λ0 operators are f(n̄·An,q, n̄·qi)

Iain Stewart – p.10

Power Counting

Type (p+, p−, p⊥) Fields Field Scaling

collinear (λ2, 1, λ) ξn,p λ

(A+
n,p, A

−
n,p, A

⊥
n,p) (λ2, 1,λ)

soft (λ, λ, λ) qs,p λ3/2

Aµ
s,p λ

usoft (λ2, λ2, λ2) qus λ3

Aµ
us λ2

Make kinetic terms order λ0
∫

d4X ξ̄n,p′ n̄/
2

(
in·∂ + . . .

)
ξn,p

λ0 = λ−4 λ λ2 λ

• At leading power only λ0 interactions are required

• n̄ · An,q ∼ n̄ · qi ∼ λ0 operators are f(n̄·An,q, n̄·qi)

Iain Stewart – p.10

LO: O(0) with L(0)

NLO: O(1) with L(0), & T{O(0),L(1)} with L(0)



LO SCET Lagrangian

• most general order       gauge invariant action

eikonal for usoft gluons interacting with collinear quark •

λ0

L(0)
c = ξ̄n

{
n · iDus + gn · An + i /Dc

⊥
1

in̄ · Dc
i /Dc
⊥

} /̄n

2
ξn

L(0)
cg = L(0)

cg (Aµ
n, n·Aus)• L(0)

us = q̄ i /D q,
Consider the following field redefinitions in SCET
ξn → Y ξn An → Y AnY †, Y (x) = P exp

(
ig

∫ 0

−∞
ds n·Aus(x+ns)

)

L = ξ̄n[in·Dus + . . .]ξn =⇒ ξ̄n[in·∂ + . . .]ξngives:

Factorization of Usoft Gluons

Consider the following field redefinitions in SCET

ξn,p = Yn ξ(0)
n,p , An,q = Yn A(0)

n,q Y †
n

where Yn = Pexp
(
ig

∫ x
−∞ ds n·Aus(ns)

)
, n·DYn = 0, and Y †

n Yn = 1

Find

• Lq = ξ̄n,p′
[
in·D + . . .

]
ξn,p =⇒ ξ̄(0)

n,p′

[
in·∂ + . . .

]
ξ(0)
n,p

• W = YnW (0)Y †
n

• L(ξn,p, Aµ
n,q, n·Aus) = L(ξ(0)

n,p, A
(0)µ
n,q , 0)

Moves all usoft gluons to operators, simplifies cancellations

eg1. J = ξ̄(0)
n W (0) Γ Y †

n hv

eg2. J = ξ̄nW Γ W †ξn = ξ̄(0)
n W (0) Γ W (0)†ξ(0)

n

Iain Stewart – p.15

• propagator i/n
2 n̄·p/[n·(k + p) n̄·p + p2

⊥ + iε]

n·DusY =0, Y †Y =1



Factorization

b

u

integrate out offshell quarks

eg. ū Γ b

Separation of scales
 and Decoupling

•

ξ̄nW Γ hv

W = P exp
(
ig

∫ y
−∞ ds n̄·An(sn̄µ)

)

usoft-collinear factorization (field redefn.)

hard-collinear factorization
ω ∼ p−c ∼ Q

• operators are gauge invariant, 
so factorization is too

(ξ̄nW )Γ (Y †hv)∫
dω C(ω)(ξ̄nW )ω Γ (Y †hv)

Y = P exp
(
ig

∫ 0
−∞ds n·Aus(x+ns)

)
S = P exp

(
ig

∫ 0
−∞ds n·As(x+ns)

)



• reparameterization invariance for n, n̄
relates Wilson coefficients of some 
leading leading & subleading operators

Chay & Kim
Manohar et al.

Subleading Lagrangians and Currents
examples

L(1)
ξq = (ξ̄nW )

( 1
P̄W †ig /B⊥c W

)
(Y †qus) + h.c.

Beneke et al.

L(2)
ξξ = (ξ̄nW )

(
Y †i /D⊥usi /D⊥usY

) /̄n

2
1
P̄ (W ξn)

J (1)
i (ω1,ω2) =

1
mb

(
ξ̄nW

)
ω1

Θα
i

( 1
P̄W †igB⊥c αW

)
ω2

(Y †hv)



Factorization  Example

B D

!

〈Dπ|(c̄b)(ūd)|B〉 = N ξ(v · v′)
∫ 1

0
dxT (x, µ) φπ(x, µ)

〈π|Oc(x)|0〉 = fπφπ(x)

Universal functions: Calculate T,  αs(Q)

Q = Eπ,mb,mc

corrections will be Λ/mc ∼ 30%

〈D(∗)|Os|B〉 = ξ(v ·v′)

B,D are soft, π collinear

LSCET = L(0)
s + L(0)

c

Factorization if O = Oc ×Os

Bauer, Pirjol, I.S. 

B̄0 → D+π− , B− → D0π−

O =
[
h̄(c)

v′ Γhh(b)
v

][
(ξ̄(d)

n W )ω1Γn(W †ξ(u)
n )

]



"Tree" "Color suppressed" "Exchange"

B D

b c

u , d

du DB

b c

u

d , u d B

D

b

d

c

u

u ,d

u, d

!!

!

B̄0 → D+π− B− → D0π− B̄0 → D+π−
B− → D0π− B̄0 → D0π0 B̄0 → D0π0

(Nc)0 1/Nc 1/Nc

Large       - not very predictiveNcNaive Factorization - too small
A(B̄0 → D0π0) ∼ a2〈π0|(d̄b)|B̄0〉〈D0|(c̄u)|0〉

Color Suppressed Decays

,D(∗)0ρ0,D(∗)0K0,D(∗)0K∗0,D(∗)
s K−,D(∗)

s K∗−B̄0 → D(∗)0π0

...
,



Color Suppressed Decays
Mantry, Pirjol, I.S.Factorization with SCET 

Q2 QΛ Λ2!!
QCD SCETI SCETII

+AD(∗)π
long

AD(∗)π
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

Single class of power suppressed SCETI operators T{O(0),L(1)
ξq ,L(1)

ξq }

Order λ2 =
(√

Λ/E
)2 = Λ/E

b

d

c

u

d

d

(a)

b
c

u

u

ud

(b)



S(i)(k+
1 , k+

2 ) is complex, new mechanism for rescattering[
(h̄(c)

v′ S)Γh{1, T a} (S†h(b)
v ) (d̄ S)k+

1
Γs{1, T a}(S†u)k+

2

]
O(0,8) =

with HQET for 〈D(∗)0π|(c̄ b)(d̄ u)|B̄0〉 pµ
π

mc
→ Eπ

mc
= 1.5get

not a convergent expansion

s

〈D(∗)0|O(0,8)
s |B̄0〉 → S(0,8)(k+

1 , k+
2 ) same for D and D∗1)

2)

O(0,8)[v, v′, n]=



 Note:  independent of the form of J (i)(z, x, k+
1 , k+

2 )

and  S(i)(k+
1 , k+

2 ) , φM (x)

Predict
equal strong phases δD = δD∗

equal amplitudes AD
00 = AD∗

00

corrections to this are αs(mb), Λ/Q



Tests and Predictions
Expt Average (Cleo, Belle, Babar):

D
0!0 0"

0 0
K

0"'

0#

D

D D

D

D
0$0

D
+!-

D
0!-

D
+
$-

D
0
$-D

+
%-

D
0 -
%

A(D*M)

A(D M)

0.0

0.5

1.0

1.5

2.0
color allowed

color suppressed

LO  SCET  prediction

*

* # + #

δ(Dπ) = 30.4± 4.8◦

δ(D∗π) = 31.0± 5.0◦

Extension to isosinglets:
Blechman, Mantry, I.S.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

! "

= D
*= D
#
#

RI
2

A003

A0_

isospin triangle



More Predictions

Relate π and ρ

If we expand J(z, x, k+
1 , k+

2 ) in αs(EΛ), we can make more predictions

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

= D
*= D

! "

RI
2

A003

A0_

#
#

• predict that φDρ = φDπ, not yet tested

if 〈x−1〉π # 〈x−1〉ρ then this implies δDπ # δDρ

isospin triangle

Br(B̄ → D(∗)η′)
Br(B̄ → D(∗)η)

= tan2(θ) = 0.67

FKS mixing angle

data = 0.61± 0.12(D), 0.51± 0.18(D∗)

+O(
αs

(√
EΛ

))•
• Recall data gives

|rDπ| =
|A(B̄0 → D+π−)|
|A(B− → D0π−)| = 0.77 ± 0.05 , |rDρ| = 0.80 ± 0.09

SCET predicts weak dependence on M through 〈x−1〉π # 〈x−1〉ρ :

rDM = 1 − 16παsmD

9(mB + mD)
〈x−1〉M
ξ(wmax)

seff

EM

no fρ = 1.6 fπ

natural parameters fit data, seff ! (430 MeV)ei 44◦



B →M1M2

PP = 21 + 13  decays
PV = 40 + 23 decays
VV = 21 + 13  decays 

B → ππ

B → πρ

B → πK

B → πK∗
B → ρK∗

B → KKB → ρρ

Bs → π0η Bs → K+K∗−

many of them observed

First we need to look at semileptonic decays



B M

Λ~p 22 Λ~p 22Λ~p2 Q

~p2 Q2

f(E) =
∫ 1

0
dz T (z,E,mb) ζBM

J (z,E)

+ C(E,mb) ζBM (QΛ,Λ2)

pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

B →
B →

Form Factors in SCET

}
}

“hard spectator”,
“factorizable”

“soft form factor”,
“non-factorizable”

result at LO in λ, all
orders in αs, where
Q = {mb, EM}

Λ/Q! 1

corrections are ∼ 20%
power

ζBM
J (z) = fMfB

∫ 1

0
dx

∫ ∞
0
dk+J(z, x, k+, E)φM (x)φB(k+)



One Loop 
Matching
Known:

Ck(E,mb) Bauer, Fleming, Pirjol, I.S.

Ti(z,E,mb) Beneke, Kiyo, Yang

J(z, x, r+, E) Becher, Hill, Lee, Neubert

Log Resummation: Lange, Neubert 

Sudakov suppression of “soft” relative to “hard” form factors
small for physical  b-quark mass

Form Factors in SCET

Which of ζBM , ζBM
J is bigger?

f(E) =
∫ 1

0
dz T (z,E,mb) ζBM

J (z,E)

+ C(E,mb) ζBM (QΛ,Λ2)



B →M1M2 Factorization in SCET
Λ2 ! EΛ! E2,m2

b

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

!s(q )2

c

c

b
d,s

q

q

....
q µ

!s (mv)

• hard spectator & form factor terms  same 

• long distance charming penguin amplitude

Bauer, Pirjol, Rothstein, I.S. 
Chay, Kim

Ciuchini et al,
Colangelo et al

(earlier work by B.B.N.S.)

= Acc̄

Same Jet function as B →M form factors



Operators

Decays of B mesons to two light mesons are important for the study of CP violation in the

standard model. In [1] it was suggested that since mb, EM ! Λ, mM the amplitudes should

factorize into simpler non-perturbative objects. Factorization has also been considered in

pQCD [2]. These factorization theorems require a perturbative expansion in αs(EMΛ).

B → ππ factorization was recently studied in [3] using the soft collinear effective theory

(SCET) [4]. In this paper we reduce the SCET operator basis to its minimal form and

extend it to allow for all B → M1M2 decays including two vectors. We give a form of the

factorization theorem which does not rely on a perturbative expansion in αs(EMΛ), and

show that the non-perturbative parameters are still the same as those in the B → M form

factors. We do not attempt to factorize long distance cc̄ effects.

The decays B → M1M2 are mediated in full QCD by the weak ∆B = 1 Hamiltonian,

which for ∆S = 0 reads

HW =
GF√

2

∑
p=u,c

λ(d)
p

(
C1O

p
1 + C2O

p
2 +

10,8g∑
i=3

CiOi

)
, (1)

where the CKM factor is defined as λ(d)
p = VpbV ∗

pd and the standard basis of operators are [6]

Op
1 =(pb)V−A(dp)V−A, Op

2 = (pβbα)V−A(dαpβ)V−A,

O3,5,4,6 =
{
(db)V−A(qq)V∓A , (dβbα)V−A(qαqβ)V∓A

}
,

O7,9,8,10 =
3eq

2

{
(db)V−A(qq)V±A , (dβbα)V−A(qαqβ)V±A

}
,

O8g =−mb

8π2
d σµν(gGa

µνT
a)(1+γ5)b . (2)

Here the sum over q = u, d, s, c, b is implicit, α, β are color indices and eq are electric charges.

The ∆S = 1 weak Hamiltonian responsible for transitions such as B̄ → Kπ, is obtained

by replacing d → s in the HW in Eq. (1). The coefficients of these operators are known

at NLL order [6]. In the NDR scheme taking αs(mZ) = 0.118 at µ = mb = 4.8 GeV gives

C8g(mb) = −0.149 and

C1−10(mb) = {1.080 ,−.177 , .011 ,−.033 , .010 ,−.040 ,

4.9×10−4 , 4.6×10−4 ,−9.8×10−3 , 1.9×10−3} . (3)

The relevant scales are mb, mc, the jet scale
√

EΛ ∼ 1.3 GeV, and Λ. Integrating out

2

QCD

SCETI Integrate out ∼ mb fluctuations

HW =
2GF√

2

{ 6∑
i=1

∫
dωjc

(f)
i (ωj)Q

(0)
if (ωj) +

8∑
i=1

∫
dωjb

(f)
i (ωj)Q

(1)
if (ωj) +Qcc̄ + . . .

}

αs(q )2

αs Λ )2( 
c

c

b
d,s

q
q

....
q µ

FIG. 1: An example of long distance charming penguins.

where c(f)
i are Wilson coefficients and the ellipses denote higher order terms, and Qcc̄ denotes

long distance charm effects as in Fig. 1. The offshellness of the cc̄ system depends on the

value of q2, and for q2 ∼ 4m2
c the charm quarks are moving non-relativistically. This

region corresponds to momentum fractions x " 4m2
c/m

2
b " 0.4 in the middle of the light-

cone distribution φM(x). These contributions have one αs(4m2
c), but can not be calculated

perturbatively [5], and may be comprable in size to other penguin terms. We do not derive

a factorization theorem for them here, and focus on observables that are independent of

Qcc̄. Penguin contractions with light quark loops can be included in matching onto Q(0,1)
if

since their long distance contributions are power suppressed [1], as are the long distance cc̄

contributions occuring for x→ 0.

In Eq. (4) the f = d, s (super)subscript distinguishes the ∆S = 0 and ∆S = 1 (coeffi-

cients) operators. The O(λ0) operators are [summing over q = u, d, s]

Q(0)
1d =

[
ūn,ω1n̄/PLbv

][
d̄n̄,ω2n/PLun̄,ω3

]
, (4)

Q(0)
2d,3d =

[
d̄n,ω1n̄/PLbv

][
ūn̄,ω2n/PL,Run̄,ω3

]
,

Q(0)
4d =

[
q̄n,ω1n̄/PLbv

][
d̄n̄,ω2n/PL qn̄,ω3

]
,

Q(0)
5d,6d =

[
d̄n,ω1n̄/PLbv

][
q̄n̄,ω2n/PL,Rqn̄,ω3

]
,

with Q(0)
is obtained by taking d̄→ s̄. In Eq. (4) the “quark” fields with subscripts n and n̄ are

products of collinear quark fields and Wilson lines with large momentum fractions ωi. For

example ūn,ω = [ξ̄(u)
n Wn δ(ω−n̄·P†)] , where ξn denotes a collinear quark moving along the n

direction. The bv field is the standard usoft HQET field with Lagrangian Lh = b̄viv·Dvv. For

a complete basis we also need operators with octet bilinears. We take these to be Q(0)
i with

TA ⊗ T A color structure, eg. Q(0)

1d
=

[
ūn,ω1n̄/PLTAbv

][
d̄n̄,ω2n/PLTAun̄,ω3

]
. These operators do

not contribute to the decays B → M1M2 at leading order. This basis of O(0)
i,d operators is

equivalent to the one derived in [3]. We observe that no new SCETI operators are required

to include the effects of electroweak penguins, so they are included in the c(f)
i ’s.

We also need the O(λ) operators. Defining ig B⊥µ
n,ω = (W †

n[in̄·Dc,n, iD
µ
n,⊥]Wn)ωδ(ω−P̄†)/ω

3

B M

Λ~� p 22 Λ~� p 22Λ~�p2 Q

�~� p2 Q2
�

Λ~�p 22M’

FIG. 2: Factorization of B →MM ′ in SCET.

they are:

Q(1)
1d =

−2

mb

[
ūn,ω1 ig /B⊥

n,ω4
PLbv

][
d̄n̄,ω2n/PLun̄,ω3

]
, (5)

Q(1)
2d,3d =

−2

mb

[
d̄n,ω1 ig /B⊥

n,ω4
PLbv

][
ūn̄,ω2n/PL,Run̄,ω3

]
,

Q(1)
4d =

−2

mb

[
q̄n,ω1 ig /B⊥

n,ω4
PLbv

][
d̄n̄,ω2n/PL qn̄,ω3

]
,

Q(1)
5d,6d =

−2

mb

[
d̄n,ω1 ig /B⊥

n,ω4
PLbv

][
q̄n̄,ω2n/PL,Rqn̄,ω3

]
,

Q(1)
7d =

−2

mb

[
ūn,ω1 ig B⊥µ

n,ω4
PLbv

][
d̄n̄,ω2n/γ

⊥
µ PRun̄,ω3

]
,

Q(1)
8d =

−2

mb

[
q̄n,ω1 ig B⊥µ

n,ω4
PLbv

][
d̄n̄,ω2n/γ

⊥
µ PRqn̄,ω3

]
.

Our basis in Eq.(5) is simpler than the one in [3] for several reasons. Terms with a B⊥
n or D⊥

n

in the n̄-bilinear can be reduced to Eq.(5) by a series of one or more Fierz transformations.

This shows that spectator and form factor contributions are related. Second, P/⊥Q(0)
if = 0, so

integration by parts allows a basis choice for Q(1)
if with no n-covariant derivatives, only field

strengths B⊥
n , plus [ūnγ

µ
⊥PLbv]Pµ

⊥[d̄n̄n/PLun̄] operators that give vanishing contributions. We

suppress Q(1)’s with octet bilinears that do not contribute at LO, while Q(0,1)
5,6 only contribute

to SU(3)n̄ singlet production and are dropped below.

Next we determine the most general structure of the p2 ∼ EΛ contributions in SCETI .

We first decouple the usoft modes by making the field redefinitions [4] ξn′ = Yn′ξn′, An′ =

Yn′A(0)
n′ Y †

n′, with Yn′ a wilson line of n′ ·Aus gluons and n′ = n or n̄. In Q(0,1)
if all Y ’s cancel

except for the combination (Y †
n bv) [3], and the operators factor into (n, v) and n̄ parts,

Qif = Q̃ifQn̄
if . In Fig. 2 this is indicated by the fact that the M ′ meson only connects to

the rest of the diagram at the scale p2 ∼ Q2. The shaded region in the figure is necessary
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New Nonperturbative Result in :

A(B →M1M2) = Acc̄ + N

{
fM2 ζBM1

∫ 1

0
du T2ζ(u)φM2(u) + fM1ζ

BM2

∫ 1

0
du T1ζ(u)φM1(u)

+fM2

∫ 1

0
du

∫ 1

0
dz T2J(u, z)ζBM1

J (z)φM2(u) + fM1

∫ 1

0
du

∫ 1

0
dz T1J(u, z)ζBM2

J (z)φM1(u)
}

where ζBM ∼ ζBM
J (z) ∼ (Λ/Q)3/2 and appear in B →M

αs(
√

EΛ)

BBNS:  Factorization similar, but does not separate 
             Phenomenological inputs gave ζBM

J ! ζBM

EΛ! E2,m2
b

• fit ζ’s , calculate T’s
Focus on model independent results at LO:

• strong phase only in Acc̄ and small pert. corrections



Hard Coefficients
3

M1M2 T1ζ(u) T2ζ(u) M1M2 T1ζ(u) T2ζ(u)

π−π+, ρ−π+, π−ρ+, ρ−‖ ρ+
‖ c(d)

1 + c(d)
4 0 π+K(∗)−, ρ+K−, ρ+

‖ K∗−
‖ 0 c(s)

1 + c(s)
4

π−π0, ρ−π0 1√
2
(c(d)

1 +c(d)
4 ) 1√

2
(c(d)

2 −c(d)
3 −c(d)

4 ) π0K(∗)− 1√
2
(c(s)

2 −c(s)
3 ) 1√

2
(c(s)

1 +c(s)
4 )

π−ρ0, ρ−‖ ρ0
‖

1√
2
(c(d)

1 +c(d)
4 ) 1√

2
(c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K−, ρ0
‖K

∗−
‖

1√
2
(c(s)

2 +c(s)
3 ) 1√

2
(c(s)

1 +c(s)
4 )

π0π0 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) π−K̄(∗)0, ρ−K̄0, ρ−‖ K̄∗0
‖ 0 −c(s)

4

ρ0π0 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) π0K̄(∗)0 1√
2
(c(s)

2 −c(s)
3 ) − 1√

2
c(s)
4

ρ0
‖ρ

0
‖

1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K̄0, ρ0
‖K̄

∗0
‖

1√
2
(c(s)

2 +c(s)
3 ) − 1√

2
c(s)
4

K(∗)0K(∗)−, K(∗)0K̄(∗)0 −c(d)
4 0 K(∗)−K(∗)+ 0 0

M⊥
1 M⊥

2 T2J (u) M⊥
1 M⊥

2 T2J (u) M⊥
1 M⊥

2 T2J (u)

ρ+
Lρ−L −b(d)

7 − b(d)
8 ρ+

LK∗−
L −b(s)

7 − b(s)
8 ρ−L K̄∗0

L −b(s)
8

ρ0
Lρ0

L
1
2 b(d)

8 ρ0
LK̄∗0

L
1√
2
b(s)
8 K̄0∗

L K∗0
L b(d)

8

ρ0
Lρ−L , ρ−Lρ0

L
1√
2
(b(d)

7 +b(d)
8 ), − 1√

2
b(d)
8 ρ0

LK̄∗−
L

1√
2
(b(s)

7 +b(s)
8 ) K̄∗−

L K∗0
L −b(d)

8

TABLE I: Combinations of Wilson coefficients appearing in the factorization formula. Note that these results do not assume
isospin symmetry. The coefficients T1J,2J (u, z) are identical to T1ζ,2ζ(u) with each c(f)

i (u) replaced by b(f)
i (u, z).

A00(B̄ →M1M2) = Acc̄
00 +

GF m2
B√

2

{
fM2 ζBM1

∫ 1

0
du T2ζ(u)φM2(u) + fM1 ζBM2

∫ 1

0
du T1ζ(u)φM1(u) (9)

+
fBfM1fM2

mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz

∫ ∞
0
dk+ J(z, x, k+)

[
T2J(u, z)φM1(x)φM2 (u) + T1J(u, z)φM2(x)φM1 (u)

]
φ+

B(k+)
}

,

A⊥⊥(B̄ →M⊥
1 M⊥

2 ) = Acc̄
⊥⊥ +

GF m2
B√

2
fBfT

M1
fT

M2

2mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz T2J(u, z)J⊥(z, x, k+)φM1

⊥ (x)φ+
B(k+)φM2

⊥ (u) .

where Acc̄ denote long distance charming penguin ampli-
tudes and φM

⊥ (u) is the chiral-odd twist 2 wave function.
For each decay mode there is a separate set of hard co-
efficients, T which we give in Table I. In Ref. [1] the full
theory form factor appear in the factorization theorem.
The analog of this in Eq. (9) is that the non-perturbative
parameters ζ, φM , φM

⊥ , and φB also appear in the fac-
torization formula for the form factor [7, 13].

What is new from our analysis is that the jet functions
J and J⊥ in Eq. (9) are also the same as those in the
B → M form factors. For example, f+ = Cζ ζB→M +
fBfM

mB

∫
dxdzdk+ J(x, z, k+)Ca

J (z)φM (x)φ+
B(k+). The jet

functions depends on physics at the intermediate scale,
their perturbative expansion in αs(

√
EΛ) is not as con-

vergent as for the Ti which are expanded in αs(Q). In
fact perturbation theory may fail for J , J⊥ all together.
Without expanding J and J⊥ perturbatively, we find

A00 = Acc̄
00 +

GF m2
B√

2

{
fM2ζ

BM1

∫ 1

0
du T2ζ(u)φM2(u)

+fM1ζ
BM2

∫ 1

0
du T1ζ(u)φM1 (u) (10)

+fM2

∫ 1

0
du

∫ 1

0
dz T2J(u, z)ζBM1

J (z)φM2(u)

+fM1

∫ 1

0
du

∫ 1

0
dz T1J(u, z)ζBM2

J (z)φM1(u)
}

.

A⊥⊥ = Acc̄
⊥⊥ +

GF m2
B

2
√

2
fT

M1

∫ 1

0
du

∫ 1

0
dz

×T2J(u, z)ζBM1
J⊥ (z)φM2

⊥ (u) . (11)

Here the non-perturbative parameters ζBM , ζBM
J,J⊥(z),

φM (u), and φM
⊥ (u) still all occur in the B →M semilep-

tonic and rare form factors. Note that it was possible to
derive Eqs. (10) and (11) because in Eq. (9) we seperated
the scales Q2 and EΛ into T and J ’s respectively.

The phenomenology of B → PP and B → PV de-
cays has been explored in Ref. [15] using a factoriza-
tion formula similar to Eq. (9) and in Ref. [16] using
a SU(3) analysis. The former relies on a perturbative
expansion in αs(

√
EΛ) $ 0.3 and requires some formally

power suppressed contributions for a reasonable fit to the
data, while the latter may have ∼ 30% corrections from
SU(3) violation. In the long term, Eqs. (10) and (11),
may be more useful phenomenologically since the correc-
tions are only from perturbative αs(mb) ∼ 0.2 corrections
and Λ/E ∼ 0.2 power corrections. A model independent
analysis requires knowledge of the ζ and φ parameters,
which can in principle be determined from the q2 depen-
dent B →M form factors and processes sensitive to the
light-cone distributions φM . Note that power counting
implies that ζBM ∼ ζBM

J,J⊥ ∼ (Λ/Q)3/2.
Eqs. (10) and (11) still require matching the full theory

Oi’s onto the Q(0,1)
if to determine the Wilson coefficients

the Wilson coefficients c(f)
i and b(f)

i . We find [f = d, s]

c(f)
1 = λ(f)

u

(
C1+

C2

Nc

)
− λ(f)

t

3

2

(
C10+

C9

Nc

)
+ ∆c(f)

1 ,

c(f)
2 = λ(f)

u

(
C2+

C1

Nc

)
− λ(f)

t

3

2

(
C9+

C10

Nc

)
+ ∆c(f)

2 ,

c(f)
3 =−λ(f)

t

3

2

(
C7 +

C8

Nc

)
+ ∆c(f)

3 , (11)

c(f)
4 =−λ(f)

t

(
C4 +

C3

Nc
− C10

2
− C9

2Nc

)
+ ∆c(f)

4 ,

b(f)
1 = λ(f)

u

[
C1 +

(
1−mb

ω3

)C2

Nc

]
(12)

−λ(f)
t

[3

2
C10 +

(
1−mb

ω3

)3C9

2Nc

]
+ ∆b(f)

1 ,

b(f)
2 = λ(f)

u

[
C2 +

(
1−mb

ω3

)C1

Nc

]
−λ(f)

t

[3

2
C9 +

(
1−mb

ω3

)3C10

2Nc

]
+ ∆b(f)

2 ,

b(f)
3 = −λ(f)

t

[3

2
C7 +

(
1−mb

ω2

)3C8

2Nc

]
+ ∆b(f)

3 ,

b(f)
4 = −λ(f)

t

[
C4−C10

2
+

(
1−mb

ω3

)(C3

Nc
− C9

2Nc

)]
+ ∆b(f)

4

b(f)
7 = −λ(d,s)

t

(mb

ω2
−mb

ω3

)3C9

2Nc
+∆b(d,s)

7 ,

b(f)
8 = −λ(d,s)

t

(2mb

ω2
−2mb

ω3

)(C5

Nc
− C9

2Nc

)
+∆b(d,s)

8 ,

The O(αs) contribution to the ∆c(f)
j (u) have been calculated in Ref [? ] and later in Ref. [?

]. A full αs(mb) analysis requires ∆b(f)
j (u, z), which are currently unknown.

There is a hierarchy in the c(f)
i and b(f)

i due to the CKM factors and the Ci’s which

have to be accounted for. For example, C1 is about a factor of 6 larger than any of the

other coefficients, making c(d)
1 and b(d)

1 large. Thus any f = d decay in Table ?? that is

independent of c(d)
1 and b(d)

1 could receive large corrections, and will be called “contaminated”.

There could be large perturbative corrections proportional to αs(mb)C1 which is ∼ C2 and

# Ci≥3. These effects have been computed for the c(f)
i ’s [? ], but not yet for the b(f)

i ’s.

A more serious problem are large power corrections proportional to C1Λ/E which is also

∼ C2 and # Ci≥3. Unless these can be accounted for or such terms are absent, one should

assign ∼ 100% uncertainty to predictions for contaminated decays. An example of this type

is Br(B̄0 → π0π0).

8

the Wilson coefficients c(f)
i and b(f)

i . We find [f = d, s]

c(f)
1 = λ(f)

u

(
C1+

C2

Nc

)
− λ(f)

t

3

2

(
C10+

C9

Nc

)
+ ∆c(f)

1 ,

c(f)
2 = λ(f)

u

(
C2+

C1

Nc

)
− λ(f)

t

3

2

(
C9+

C10

Nc

)
+ ∆c(f)

2 ,

c(f)
3 =−λ(f)

t

3

2

(
C7 +

C8

Nc

)
+ ∆c(f)

3 , (11)

c(f)
4 =−λ(f)

t

(
C4 +

C3

Nc
− C10

2
− C9

2Nc

)
+ ∆c(f)

4 ,

b(f)
1 = λ(f)

u

[
C1 +

(
1−mb

ω3

)C2

Nc

]
− λ(f)

t

[3

2
C10 +

(
1−mb

ω3

)3C9

2Nc

]
+ ∆b(f)

1 ,

b(f)
2 = λ(f)

u

[
C2 +

(
1−mb

ω3

)C1

Nc

]
−λ(f)

t

[3

2
C9 +

(
1−mb

ω3

)3C10

2Nc

]
+ ∆b(f)

2 ,

b(f)
3 = −λ(f)

t

[3

2
C7 +

(
1−mb

ω2

)3C8

2Nc

]
+ ∆b(f)

3 ,

b(f)
4 = −λ(f)

t

[
C4−C10

2
+

(
1−mb

ω3

)(C3

Nc
− C9

2Nc

)]
+ ∆b(f)

4

b(f)
7 = −λ(d,s)

t

(mb

ω2
−mb

ω3

)3C9

2Nc
+∆b(d,s)

7 ,

b(f)
8 = −λ(d,s)

t

(2mb

ω2
−2mb

ω3

)(C5

Nc
− C9

2Nc

)
+∆b(d,s)

8 ,

The O(αs) contribution to the ∆c(f)
j (u) have been calculated in Ref [1] and later in Ref. [3].

A full αs(mb) analysis requires ∆b(f)
j (u, z), which are currently unknown.

There is a hierarchy in the c(f)
i and b(f)

i due to the CKM factors and the Ci’s which have

to be accounted for. For example, C1 is about a factor of 6 larger than any of the other

coefficients, making c(d)
1 and b(d)

1 large. Thus any f = d decay in Table I that is independent of

c(d)
1 and b(d)

1 could receive large corrections, and will be called “contaminated”. There could

be large perturbative corrections proportional to αs(mb)C1 which is ∼ C2 and # Ci≥3.

These effects have been computed for the c(f)
i ’s [1], but not yet for the b(f)

i ’s. A more

serious problem are large power corrections proportional to C1Λ/E which is also ∼ C2 and

# Ci≥3. Unless these can be accounted for or such terms are absent, one should assign

∼ 100% uncertainty to predictions for contaminated decays. An example of this type is

Br(B̄0 → π0π0).

At leading order in Λ/E only the one-loop ∆ci, ∆bi are imaginary, producing calculable

strong phases [1]. Imaginary Λ/E corrections can compete with these. It is known from

8

similar for TJ ’s in terms of b(f)
i ’s

Matching

Note:  have not 
used isospin yet
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Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number
of hadronic parameters in an isospin analysis of B → ππ decays by one. This gives a theoretically
precise method for determining the CP violating phase γ by fitting to the B → ππ data without
Cπ0π0 . SCET predicts that γ lies close to the isospin bounds. With the current world averages we
find γ = 75◦ ± 2◦+9◦

−13◦ , where the uncertainties are theoretical, then experimental. The estimated
theory error shown here is obtained from assuming ΛQCD/Eπ ∼ 0.2 power corrections to our analysis.

I. INTRODUCTION

The standard model (SM) successfully explains all of
the CP violation observed to date in laboratory decays.
Possible hints for physics beyond the SM include the
amount of CP violation required for (non-lepto) baryo-
genesis, and observations in b → sqq̄ channels like B →
η′KS [1]. Standard model measurements of CP violation
in B-decays are usually expressed in terms of the angles
α, β, γ. It is important to remember that the goal is
not just to have a single accurate measurement of these
angles, but rather to test the SM picture of CP violation
and look for inconsistencies by making measurements of
the parameters in as many decay channels as possible.

Important observables for measuring γ (or α) are
the CP asymmetries and branching fractions in B →
ππ decays. Unfortunately, hadronic uncertainties and
“penguin-pollution” make the data difficult to interpret.
Gronau and London (GL) [2] have shown that using
isospin, Br(B̄ → π+π−), Br(B+ → π+π0), Br(B̄ →
π0π0), and the CP asymmetries Cπ+π−, Sπ+π−, Cπ0π0 ,
one can eliminate the hadronic uncertainty and deter-
mine γ. Thus data is used to determine the 5 hadronic
isospin parameters. This year Babar and Belle [3] re-
ported a first observation of Cπ0π0 bringing the GL anal-
ysis from the drawing board to reality. Unfortunately,
the uncertainties in Cπ0π0 and Br(B → π0π0) are still
too large to give strong constraints, leaving a four-fold
discrete ambiguity and a ±29◦ window of uncertainty in
γ (at 1-σ) near the SM preferred value.

In this letter we observe that the soft-collinear effec-
tive theory (SCET) [5] predicts that one hadronic pa-
rameter vanishes at leading order in a power expansion
in ΛQCD/Eπ, and that this provides a robust new method
for determining γ. The parameter is ε = Im(C/T ), where
T and C are ”tree” and ”color suppressed” amplitudes
(defined below). From the SCET analysis of B → ππ [6]
we know that ε vanishes to all orders in αs(

√
EπΛQCD)

since the “jet-function” does not involve a strong phase,
and so ε receives corrections suppressed by ΛQCD/Eπ or
αs(mb). Our method does not rely on a power expan-
sion for any of the other isospin parameters. Thus, is-

sues like the size of charm penguins and whether “hard-
scattering” or “soft” contributions dominate the B → π
form factors [6–10, 12] are irrelevant here. Our analy-
sis also remains robust if so-called “chirally enhanced”
power corrections [8] are included. It differs from the
QCDF [8] and pQCD [12] analyses; for example we work
to all orders in ΛQCD/mb for most quantities and do not
use QCD sum rules to obtain hadronic parameters.

The world averages for the CP averaged branching ra-
tios and the CP asymmetries are currently [3, 4]

Br× 106 Cππ Sππ

π+π− 4.6 ± 0.4 −0.37± 0.11 −0.61± 0.13
π0π0 1.51± 0.28 −0.28± 0.39
π+π0 5.61± 0.63

(1)

For later convenience we define the ratios

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0
= 0.446± 0.064 ,

Rn =
Br(B0 → π0π0)τB−

Br(B− → π0π−)τB0
= 0.293± 0.064 , (2)

and quote the product Rn Cπ0π0 = 0.082± 0.116.
To obtain general expressions for these observables, we

use isospin and unitarity of the CKM matrix to write

A(B̄0 → π+π−) = e−iγ |λu|T − |λc|P
+

(
e−iγ |λu|−|λc|

)
P 1

ew ,

A(B̄0 → π0π0) = e−iγ |λu|C + |λc|P
+

(
e−iγ |λu|−|λc|

)
(P 2

ew−P 1
ew) ,√

2A(B− → π0π−) = e−iγ |λu| (T + C)
+

(
e−iγ |λu|−|λc|

)
P 2

ew . (3)

Here λu = VubV
∗
ud, λc = VcbV

∗
cd. The CP conjugate am-

plitudes are obtained from (3) with γ → −γ. With our
convention for the π0π0 amplitude one includes a 1/2 for
identical particles in the rate. The amplitudes T , C, P
are complex, as are the electroweak penguin amplitudes
P 1

ew and P 2
ew.

Warning: The BaBar and Belle asymmetries do not agree.

Cπ+π− Sπ+π−

Babar −0.09± 0.15 −0.30± 0.17
Belle −0.58± 0.17 −1.00± 0.22

ICHEP ’04  Aspen’05 (Belle)

−0.56± 0.13 − 0.67± 0.17
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2

The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and
αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s

,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓

√
1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from

T+C

a)
T

C(0,0)

apex
1 tc

!

!
b)

>0

<0

1-

tc
1-

FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and
Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and
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Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number
of hadronic parameters in an isospin analysis of B → ππ decays by one. This gives a theoretically
precise method for determining the CP violating phase γ by fitting to the B → ππ data without
Cπ0π0 . SCET predicts that γ lies close to the isospin bounds. With the current world averages we
find γ = 75◦ ± 2◦+9◦

−13◦ , where the uncertainties are theoretical, then experimental. The estimated
theory error shown here is obtained from assuming ΛQCD/Eπ ∼ 0.2 power corrections to our analysis.

I. INTRODUCTION

The standard model (SM) successfully explains all of
the CP violation observed to date in laboratory decays.
Possible hints for physics beyond the SM include the
amount of CP violation required for (non-lepto) baryo-
genesis, and observations in b → sqq̄ channels like B →
η′KS [1]. Standard model measurements of CP violation
in B-decays are usually expressed in terms of the angles
α, β, γ. It is important to remember that the goal is
not just to have a single accurate measurement of these
angles, but rather to test the SM picture of CP violation
and look for inconsistencies by making measurements of
the parameters in as many decay channels as possible.

Important observables for measuring γ (or α) are
the CP asymmetries and branching fractions in B →
ππ decays. Unfortunately, hadronic uncertainties and
“penguin-pollution” make the data difficult to interpret.
Gronau and London (GL) [2] have shown that using
isospin, Br(B̄ → π+π−), Br(B+ → π+π0), Br(B̄ →
π0π0), and the CP asymmetries Cπ+π−, Sπ+π−, Cπ0π0 ,
one can eliminate the hadronic uncertainty and deter-
mine γ. Thus data is used to determine the 5 hadronic
isospin parameters. This year Babar and Belle [3] re-
ported a first observation of Cπ0π0 bringing the GL anal-
ysis from the drawing board to reality. Unfortunately,
the uncertainties in Cπ0π0 and Br(B → π0π0) are still
too large to give strong constraints, leaving a four-fold
discrete ambiguity and a ±29◦ window of uncertainty in
γ (at 1-σ) near the SM preferred value.

In this letter we observe that the soft-collinear effec-
tive theory (SCET) [5] predicts that one hadronic pa-
rameter vanishes at leading order in a power expansion
in ΛQCD/Eπ, and that this provides a robust new method
for determining γ. The parameter is ε = Im(C/T ), where
T and C are ”tree” and ”color suppressed” amplitudes
(defined below). From the SCET analysis of B → ππ [6]
we know that ε vanishes to all orders in αs(

√
EπΛQCD)

since the “jet-function” does not involve a strong phase,
and so ε receives corrections suppressed by ΛQCD/Eπ or
αs(mb). Our method does not rely on a power expan-
sion for any of the other isospin parameters. Thus, is-

sues like the size of charm penguins and whether “hard-
scattering” or “soft” contributions dominate the B → π
form factors [6–10, 12] are irrelevant here. Our analy-
sis also remains robust if so-called “chirally enhanced”
power corrections [8] are included. It differs from the
QCDF [8] and pQCD [12] analyses; for example we work
to all orders in ΛQCD/mb for most quantities and do not
use QCD sum rules to obtain hadronic parameters.

The world averages for the CP averaged branching ra-
tios and the CP asymmetries are currently [3, 4]

Br× 106 Cππ Sππ

π+π− 4.6 ± 0.4 −0.37± 0.11 −0.61± 0.13
π0π0 1.51± 0.28 −0.28± 0.39
π+π0 5.61± 0.63

(1)

For later convenience we define the ratios

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0
= 0.446± 0.064 ,

Rn =
Br(B0 → π0π0)τB−

Br(B− → π0π−)τB0
= 0.293± 0.064 , (2)

and quote the product Rn Cπ0π0 = 0.082± 0.116.
To obtain general expressions for these observables, we

use isospin and unitarity of the CKM matrix to write

A(B̄0 → π+π−) = e−iγ |λu|T − |λc|P
A(B̄0 → π0π0) = e−iγ |λu|C + |λc|P√

2A(B− → π0π−) = e−iγ |λu| (T + C)
(3)

Here λu = VubV
∗
ud, λc = VcbV

∗
cd. The CP conjugate am-

plitudes are obtained from (3) with γ → −γ. With our
convention for the π0π0 amplitude one includes a 1/2 for
identical particles in the rate. The amplitudes T , C, P
are complex, as are the electroweak penguin amplitudes
P 1

ew and P 2
ew.

The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and

Parameters:   Data:β known

Sπ+π− , Cπ+π− ⇒ pc, ps

Br(π+π−)
Br(π0π−)

⇒ tc

Br(π0π0)
Br(π0π−)

⇒ ε1,2

Cπ0π0 ⇒ ε3,4

γ  +5 hadronicisospin:

one, say T, just sets Br scale

|λc,u| = CKM factors

determined as functions of γ
(SCET:

Re(Acc̄), Im(Acc̄), ζBπ, ζBπ
J )

ε = 0
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FIG. 2: Isospin analysis showing the hadronic parameters
{pc, ps, tc, ε} versus γ using current central values of the
B → ππ data. Solutions for γ occur at crossings of the εi

curves. Experimental uncertainties are not shown, and are
especially large for ε3,4. This plots shows only one of two al-
lowed (pc, ps) solutions and one of the two allowed γ-regions.

Neglecting EW-penguins, ε is an RGE invariant quantity
since Eq. (6) fixes it in terms of observables. Eq. (9)
makes an extraction of γ from B → ππ possible without
needing precision data on Cπ0π0 . In this method the
central values for γ are determined by finding the places
where the ε1 and/or ε2 curves cross the x-axis, meaning
we solve ε1,2(γ) = 0. The other hadronic parameters,
pc, ps, and tc are determined in the same way as in the
isospin analysis. This proposal for determining γ using
Eq. (9) is the main result of this letter.

Using the central values for all the data besides Cπ0π0

and solving ε1,2(γ) = 0 gives the solutions

γ = −159◦ , −105◦ , 21.5◦ , 74.9◦ . (10)

We have four solutions rather than the eight of the isospin
analysis (which occur within the first and third isospin
bounds in (8)), because factorization for the B → ππ
amplitudes resolves the discrete ambiguity in ps and pc

in favor of |P/T | < 1 solutions (this follows from the
factorization for light-quark penguins, the size of Wilson
coefficients, charm velocity power counting, and factors
of αs(mc) [6, 8]). Next we analyze the theoretical and
experimental uncertainties in our method for γ, and con-
trast these with the isospin analysis, focusing on the two
solutions which can occur in the 17.1◦ ≤ γ ≤ 75.2◦ region
preferred by global fits for the unitarity triangle [16].

To estimate the theoretical uncertainty we take

−0.2 ≤ ε ≤ 0.2 , (11)

which corresponds to roughly a 20% effect from pertur-
bative or power corrections. We also consider a much
more pessimistic scenario where this range is doubled to
ε = ±0.4. Note that |ε| < 0.2 can accommodate the
so-called “chirally enhanced” power corrections, which
have been argued to dominate [8]. Using the results
from Ref. [8], including the known αs(mb) corrections
and their power corrections which involve randomly scan-
ning two complex parameters XA and XH , gives ε =
arg

(
C/T

)|QCDF $ −0.08, with rare points out to −0.17.

FIG. 3: Regions of γ preferred by the SCET analysis. The
shaded bands show our best estimate of the theoretical un-
certainty from power corrections, −0.2 ≤ ε ≤ 0.2 as well as
the pessimistic estimate −0.4 ≤ ε ≤ 0.4. Experimental un-
certainties are not shown.

This is below the uncertainty assigned to our analysis,
and so is consistent with our error estimate.

In Fig. 3 we show ε1,2 for the region 65◦ < γ < 78◦.
Here the solution is γ = 74.9◦, and the different shading
corresponds to the theory uncertainty with |ε| < 0.2(0.4).
The solution for γ is very close to the isospin bound,
so the upward uncertainty on γ is very small. For the
downward uncertainty we consider the overlap with the
shaded region. For |ε| < 0.2 we find ∆γ theo =+0.3◦

−1.5◦ , while
for |ε| < 0.4 we find ∆γ theo =+0.3◦

−5.2◦ . On top of that there
are uncertainties from isospin violation, which we take to
be ±2◦. Thus, with perfect data at the current central
values we arrive at a theory uncertainty with |ε| < 0.2
as ∆γ theo = ±2◦. Repeating for the smaller solution at
γ = 21.5◦, we find a larger theory uncertainty, ∆γ theo =
+8.7◦
−4.4◦ , since the ε1,2 curves are flatter near this solution.

To determine the experimental errors, we use the pro-
gram Minuit. Taking ε = 0 and fitting to γ and the four
hadronic parameters we find

γ = 21.5◦+9.4◦
−7.9◦ , γ = 74.9◦+8.1◦

−10.6◦ . (12)

These uncertainties are purely experimental and are
propagated with the assumption that the original input
data are uncorrelated. If we instead set ε = 0.2 then we
find γ = 73.3◦+8.8◦

−13.3◦ and γ = 30.7◦+11.1◦
−7.2◦ , whereas fix-

ing ε = −0.2 gives γ = 75.2◦+7.6◦
−9.5◦ and γ = 17.2◦+8.7◦

−6.9◦ .
Combining these numbers we obtain our final result for
γ including all sources of uncertainty

γ = 74.9◦ ± 2◦+9.4◦
−13.3◦ . (13)

Here the first error is theoretical, and the last errors are
experimental where we picked the largest range obtained
in varying ε = ±0.2. The theory error increases to ∆γ =
+2◦
−5.2◦ for the more pessimistic case. The analog for the
lower solution is γ = 21.5◦+8.7◦

−4.4◦
+11.1◦
−7.9◦ .

The analysis presented here relies on the fact that a
small value of |ε| is allowed only for a narrow range of
γ. While this is certainly true given the current central
values of the data, it is instructive to investigate how the

0

0.2

0.4

0.6

0.8

1

1.2

-80 -60 -40 -20 0 20 40 60 80

B ! "" (no C00)
B ! "" (with C00)

# – #eff    (deg)

Co
nf

id
en

ce
 le

ve
l

C K M
f i t t e r

ICHEP 2004

large penguin
large C amplitude

an extra term C1

Nc
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αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s
,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓√

1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from
parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and

T+C
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!
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FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and
ΛQCD/mb we have ε = 0 [6], which corresponds to flat
isospin triangles in Fig. 1. Equivalently

ε ∼ O
(ΛQCD

mb
, αs(mb)

)
. (9)Factorization from SCET:
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FIG. 2: Isospin analysis showing the hadronic parameters
{pc, ps, tc, ε} versus γ using current central values of the
B → ππ data. Solutions for γ occur at crossings of the εi

curves. Experimental uncertainties are not shown, and are
especially large for ε3,4. This plots shows only one of two al-
lowed (pc, ps) solutions and one of the two allowed γ-regions.

Neglecting EW-penguins, ε is an RGE invariant quantity
since Eq. (6) fixes it in terms of observables. Eq. (9)
makes an extraction of γ from B → ππ possible without
needing precision data on Cπ0π0 . In this method the
central values for γ are determined by finding the places
where the ε1 and/or ε2 curves cross the x-axis, meaning
we solve ε1,2(γ) = 0. The other hadronic parameters,
pc, ps, and tc are determined in the same way as in the
isospin analysis. This proposal for determining γ using
Eq. (9) is the main result of this letter.

Using the central values for all the data besides Cπ0π0

and solving ε1,2(γ) = 0 gives the solutions

γ = −159◦ , −105◦ , 21.5◦ , 74.9◦ . (10)

We have four solutions rather than the eight of the isospin
analysis (which occur within the first and third isospin
bounds in (8)), because factorization for the B → ππ
amplitudes resolves the discrete ambiguity in ps and pc

in favor of |P/T | < 1 solutions (this follows from the
factorization for light-quark penguins, the size of Wilson
coefficients, charm velocity power counting, and factors
of αs(mc) [6, 8]). Next we analyze the theoretical and
experimental uncertainties in our method for γ, and con-
trast these with the isospin analysis, focusing on the two
solutions which can occur in the 17.1◦ ≤ γ ≤ 75.2◦ region
preferred by global fits for the unitarity triangle [16].

To estimate the theoretical uncertainty we take

−0.2 ≤ ε ≤ 0.2 , (11)

which corresponds to roughly a 20% effect from pertur-
bative or power corrections. We also consider a much
more pessimistic scenario where this range is doubled to
ε = ±0.4. Note that |ε| < 0.2 can accommodate the
so-called “chirally enhanced” power corrections, which
have been argued to dominate [8]. Using the results
from Ref. [8], including the known αs(mb) corrections
and their power corrections which involve randomly scan-
ning two complex parameters XA and XH , gives ε =
arg

(
C/T

)|QCDF $ −0.08, with rare points out to −0.17.

FIG. 3: Regions of γ preferred by the SCET analysis. The
shaded bands show our best estimate of the theoretical un-
certainty from power corrections, −0.2 ≤ ε ≤ 0.2 as well as
the pessimistic estimate −0.4 ≤ ε ≤ 0.4. Experimental un-
certainties are not shown.

This is below the uncertainty assigned to our analysis,
and so is consistent with our error estimate.

In Fig. 3 we show ε1,2 for the region 65◦ < γ < 78◦.
Here the solution is γ = 74.9◦, and the different shading
corresponds to the theory uncertainty with |ε| < 0.2(0.4).
The solution for γ is very close to the isospin bound,
so the upward uncertainty on γ is very small. For the
downward uncertainty we consider the overlap with the
shaded region. For |ε| < 0.2 we find ∆γ theo =+0.3◦

−1.5◦ , while
for |ε| < 0.4 we find ∆γ theo =+0.3◦

−5.2◦ . On top of that there
are uncertainties from isospin violation, which we take to
be ±2◦. Thus, with perfect data at the current central
values we arrive at a theory uncertainty with |ε| < 0.2
as ∆γ theo = ±2◦. Repeating for the smaller solution at
γ = 21.5◦, we find a larger theory uncertainty, ∆γ theo =
+8.7◦
−4.4◦ , since the ε1,2 curves are flatter near this solution.

To determine the experimental errors, we use the pro-
gram Minuit. Taking ε = 0 and fitting to γ and the four
hadronic parameters we find

γ = 21.5◦+9.4◦
−7.9◦ , γ = 74.9◦+8.1◦

−10.6◦ . (12)

These uncertainties are purely experimental and are
propagated with the assumption that the original input
data are uncorrelated. If we instead set ε = 0.2 then we
find γ = 73.3◦+8.8◦

−13.3◦ and γ = 30.7◦+11.1◦
−7.2◦ , whereas fix-

ing ε = −0.2 gives γ = 75.2◦+7.6◦
−9.5◦ and γ = 17.2◦+8.7◦

−6.9◦ .
Combining these numbers we obtain our final result for
γ including all sources of uncertainty

γ = 74.9◦ ± 2◦+9.4◦
−13.3◦ . (13)

Here the first error is theoretical, and the last errors are
experimental where we picked the largest range obtained
in varying ε = ±0.2. The theory error increases to ∆γ =
+2◦
−5.2◦ for the more pessimistic case. The analog for the
lower solution is γ = 21.5◦+8.7◦

−4.4◦
+11.1◦
−7.9◦ .

The analysis presented here relies on the fact that a
small value of |ε| is allowed only for a narrow range of
γ. While this is certainly true given the current central
values of the data, it is instructive to investigate how the
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Here the first error is theoretical, and the last errors are
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FIG. 5: Model independent results for ζBπ , ζBπ
J , and the

B → π form factor f+(q2 = 0) as a function of γ. The shaded
bands show the 1-σ errors propagated from the B → ππ data.

non-perturbative parameters ζBπ , ζBπ
J ,

T = Nπ
1
3
(C1 + C2)

[
4ζBπ + (4 + 〈ū−1〉π)ζBπ

J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
C2 + C3

3

)
ζBπ
J

]
,

where 〈ū−1〉π =
∫ 1
0 φπ(u)/(1−u), and ζBπ

J =
∫

dz ζBπ
J (z).

The penguin amplitude also gets a contribution from the
complex Aππ

cc̄ amplitude, so

P ≡ −
∣∣∣λ(d)

u

λ(d)
c

∣∣∣ Tc rc eiδc = Nπ

[(
C4 +

C3

3

)
ζBπ

+
(

C4+(1+〈ū−1〉π)
C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=64◦ =

(
0.05± 0.05

)(3.9× 10−3

|Vub|
)

, (40)

ζBπ
J

∣∣
γ=64◦ =

(
0.11± 0.03

)(3.9× 10−3

|Vub|
)

,

where the quoted errors are propagated from the exper-
imental errors from |T | and |t| in Eq. (35). Using the
results for rc and δc in Eq. (34) and |Vcb| = 0.041 the
penguin amplitude is

P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦ =

(
0.17± 0.02

)(3.9× 10−3

|Vub|
)

. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).

Use nonleptonic data: B → ππ

hard scattering bigger than 
soft form factor

determines the parameters
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Here the first errors are experimental and our
best estimate for incorporating the asymmetry
observed in Eqs. (20,21,22). The last errors are
theoretical. The small upper uncertainty +2◦ is a
direct consequence of the isospin bound, and the
2◦ uncertainty is a reflection of uncertainty due
to isospin symmetry. There is some uncertainty
in the location of this bound (±8.3◦) however this
is an experimental rather than theoretical uncer-
tainty and so is reflected in that number. The
larger lower uncertainty is a consequence of the
fact that the SCET prediction is not bounded be-
low and so this estimate relies on our variation of
the parameter ε and the steepness of the ε curves
in figure 3. Note that a more optimistic estimate
of the size of power corrections could be obtained
by taking ε " ±0.12 corresponding to power cor-
rections of order 2ΛQCD/mb " 0.2, rather than
the range considered here.

The corresponding lower solution result is

γ = 21.5◦+8.3◦
−15.4◦

+14.7◦
−4.3◦ . (24)

In this case it is the lower theoretical uncertainty
which is greatly reduced by the presence of the
isospin bound.

Currently the values of Sπ+π− and Cπ+π− dif-
fer from BaBar and Belle, so the values used in
our analysis along with the central values deter-
mined for γ might shift in the future. The impor-
tant point is that the results in Eq. (23) and (24)
demonstrate that using the ε = 0 result allows the
B → ππ data to be used to give a precision deter-
mination of γ where the theoretical uncertainties
are under control.

5. Predictions for the B → π$ν̄ form factor
f+(0)

In this section we go beyond the isospin anal-
ysis with small ε and assume that the power ex-
pansion also converges for the amplitudes T and
C. In SCET at lowest order we have

T = Nπ

{[
C1 +

C2

3
+ C4 +

C3

3

]
ζBπ (25)

+
[
C1 + C4 + (C2 + C3)

1+〈ū−1〉π
3

]
ζBπ
J

}
,

C = Nπ

{[C1

3
+ C2 − C4 − C3

3

]
ζBπ

Figure 4. Model independent results for ζBπ ,
ζBπ
J , and the B → π form factor f+(q2 = 0) as

a function of γ. The shaded bands show the 1-σ
errors propagated from the B → ππ data.

+
[
(C1 − C3)

1+〈ū−1〉π
3

+ C2 − C4

]
ζBπ
J

}
,

where the Ci are Wilson coefficients from the elec-
troweak Hamiltonian and we have dependence on
a moment of the pion light-cone distribution func-
tion 〈ū−1〉π =

∫ 1
0 φπ(u)/(1 − u), as well as the

hadronic parameters ζBπ and ζBπ
J . These same

hadronic parameters also determine the B → π$ν̄
form factor at q2 = 0

f+(0) = ζBπ + ζBπ
J . (26)

Using the numbers in Eq. (18) for |T | and |t|
we can extract ζ, ζJ and then predict |Vub|f+(0).
Taking LL order for the coefficients (C1 =
1.107, C2 = −0.248, C3 = 0.011, C4 = −0.025 at
µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=75◦ =

(
0.052± 0.023

)(4.7× 10−3

|Vub|
)

,

ζBπ
J

∣∣
γ=75◦ =

(
0.095± 0.017

)(4.7× 10−3

|Vub|
)

, (27)

where the errors are from from |T | and |t| in
Eq. (18). Including the correlation in the experi-
mental errors this gives

f+(0) = (0.15± 0.01± 0.04)
(4.7× 10−3

|Vub|
)

(28)

where the first error is experimental and the sec-
ond is our estimate of the theoretical uncertainty.
In Fig. 4 we show results for ζBπ, ζBπ

J , and f+(0)
for other values of γ, generalizing these results.
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ond is our estimate of the theoretical uncertainty.
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for other values of γ, generalizing these results.

theory
estimate

∫
dx

φπ(x)
x

= 3

∫
dx

φπ(x)
x

= 2.25∫
dx

φπ(x)
x

= 3.75

ζBπ
J |γ=75◦ = 0.13

ζBπ
J |γ=75◦ = 0.08

ζBπ|γ=75◦ = 0.02

ζBπ|γ=75◦ = 0.07

smaller than models 
 f+(0) ∼ 0.25
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FIG. 1: Comparison of the ratio of annihilation contributions to the lowest-order result. In the
total decay rate, b) is ∼ 16π2(Λ3/m3

b)∆B " 0.02, while c) is ∼ 4παs(mb)(Λ3/m3
b) " 0.003 when

compared to a). In the endpoint region, b) is ∼ 16π2(Λ2/m2
b)∆B " 0.16, a large correction, while

c) becomes ∼ 4παs(µJ)(Λ/mb) " 0.6, a huge correction.

〈Bv| · · · |Bv〉. For example, the set of local operators up to dimension 6 is

O3 = hv hv , O5a = hv(iDT )2hv , O5b = g hvσαβGαβhv , (4)

O6a = hv(iD
T
α )(iv ·D)(iDα

T )hv , O6b = iεαβγδvδ hv(iDα)(iv ·D)(iDβ)γγγ5 hv ,

O6c = (hvγ
αqL) (qLγαhv) , O6d = (hv qL) (qL hv) ,

O6e = (hvT
aγαqL) (qLT aγαhv) , O6f = (hvT

aqL) (qL T a hv) ,

where dimensions are shown as superscripts, a superscript/subscript T means transverse
to the HQET velocity parameter vµ, and an L means left-handed.4 Dimension-4 oper-
ators are absent so there are no 1/mb corrections, except the trivial ones that may be
induced by switching to hadronic variables. For dimension-5 and 6 operators there are two
naming conventions in common use. For 〈B̄v|{O5a, O5b, O6a, O6b}|B̄v〉, the parameters are
{λ1, λ2, ρ1, ρ2} or {µπ, µG, ρ3

D, ρ3
LS}. These operators are generated by connected graphs from

the time-ordered product of two currents, as in Fig. 1a. On the other hand, the four-quark
operators O6c,6d give parameters f 2

BB1,2 and are disconnected (or rather connected by leptons
or photons only), as shown in Fig. 1b, and thus exhibit a phase-space enhancement relative
to Fig. 1a. The simplest way to see this is to note that for the total rate to B → Xsγ,
we would cut a one-loop graph for Fig. 1a, while Fig. 1b would be at tree level. For later
convenience, we also consider the perturbative correction to the four-quark operators shown
in Fig. 1c, which is suppressed by αs/(4π) relative to Fig. 1b, and gives the operators O6e,6f .
In the total decay rate, if we normalize so that Fig. 1a ∼ 1 then

Fig. 1b ∼ 16π2 Λ3

m3
b

∆B ∼ 0.02 , Fig. 1c ∼ 4παs(mb)
Λ3

m3
b

∼ 0.003 . (5)

Here ∆B = B2 − B1 ∼ 0.1 accounts for the fact that the matrix elements of the operators
generated by Fig. 1b vanish in the factorization approximation. The definitions of B1,2 are〈

Bv

∣∣[h̄vγσqL

][
q̄Lγτhv

]∣∣Bv

〉
=

f 2
BmB

12

[
(B1 − B2)gστ + (4B2 −B1)vσvτ

]
. (6)

Without the ∆B suppression factor, Fig. 1b would dominate over other 1/m2
b operators

rather than just competing with them. The O(αs) corrections to annihilation are still

4 We write O3 in terms of HQET fields, although strictly speaking at lowest order this is not necessary.
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FIG. 1: Photon energy spectra in the Υ(4S) frame.

in OFF-subtracted ON data and MC using appropriate
control samples. We then scale the MC background sam-
ple according to the ratio of these efficiencies. The effi-
ciencies of the π0 and η vetoes for non-π0, non-η photons
are measured in data using one photon from a well re-
constructed π0 applying the veto without using the other
photon of the pair. The π0 veto efficiency is measured
using a sample of photons coming from measured π0

decays. We use partially reconstructed D∗+ → D0π+,
D0 → K−π+π0 decays where the π0 is replaced by the
candidate photon in the reconstruction. The η veto ef-
ficiency for photons from π0’s and event-shape criteria
efficiencies are measured using a π0 anti-veto sample. It
is made of photons passing all selection criteria except
the π0 veto, which are combined with another photon in
the event to give a π0-likelihood larger than 0.75. Other
efficiencies are measured using the signal sample.

The ratios of data and MC efficiencies versus E∗
γ are

fitted using first or second order polynomials, which are
used to scale the background MC. Most are found to be
statistically compatible with unity. An exception is the
efficiency of the requirement that 95% of the energy has
to be deposited in the central nine cells of the 5× 5 clus-
ter, which is found to be poorly modelled by our MC
for non-photon backgrounds. We estimate the efficiency
for data using a sample of candidate photons in OFF-
subtracted ON data by subtracting the known contri-
bution from real photons. This effectively increases the
yield of background (iv) by 50%.

The yield from the five background categories, after
having been properly scaled by the above described pro-
cedures, are subtracted from the OFF-subtracted spec-
trum. The result is shown in Fig. 1.

The spectrum contains 24350± 2140 ± 1260 events in

the 1.8–2.8 GeV energy range, where the two errors are
the statistical error of the OFF-subtracted ON data and
of the BB̄ background subtractions, and the systematic
error related to the data/MC efficiency ratio fits used in
the BB̄ background scaling. We correct this spectrum
for the signal selection efficiency function obtained from
signal MC, applying the same data/MC correction fac-
tors as for the generic photon background category (iii).
The average signal selection efficiency is 23%.

The efficiency-corrected spectrum is shown in Figure 2.
The two error bars for each point show the statistical
and the total error, including the systematic error which
is correlated among the points. As expected, the spec-
trum above the endpoint for decays of B mesons from
the Υ(4S) at about 3 GeV, is consistent with zero. Inte-
grating this spectrum from 1.8 to 2.8 GeV, we obtain a
partial branching fraction of

(
3.55 ± 0.32 + 0.29

− 0.30

)
× 10−4.

The systematic error contains the contribution from
the fits to data/MC efficiency ratios (±5.9%) to which we
add the following contributions in quadrature. The un-
certainty on the number of BB̄ events, which also affects
the weight applied to OFF events, contributes (+3.9

−4.5)%.
We estimate the error on the OFF data subtraction using
the result of the fit to the spectrum above the endpoint.
We integrate the resulting function in the 1.8–2.8 GeV
range and obtain a yield of +40 ± 160. We add ±200
to the systematic error (±0.8%). For the choice of the
polynomial functions in the data/MC efficiency ratio fits,
we perform the same fit increasing the polynomial or-
der by one. The contribution is ±1.3%. As we do not
measure the yields of photons from sources other than
π0’s and η’s in BB̄ events, we vary the expected yields
by ±20% to estimate the systematic error and obtain a
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FIG. 2: Efficiency-corrected photon energy spectrum. The
two error bars show the statistical and total errors.

SCET gives systematic 
expansion in this region

B → Xsγ

shape function     can be measured in 

dΓ = H(mb, p
−
X)

∫
dk+ J(p−Xk+) f(k+ + Λ− p+

X)

Korchemsky, Sterman

λ2 = Λ
mb

Belle f

, then used to measure
B → Xu!ν̄Vub with

B → Xsγ



T-product Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

T (0) ( )0
J

( )0
J

0 x

h[0] J (0) f (0) h̄v(x)hv(0)

TABLE III: Lowest-order insertion of SCET currents. The double lines are heavy quarks and the
dashed line is a collinear light quark.

where n̄·pX is the large momentum in the jet X. Then the remaining momentum rµ ∼ Λ
since n̄ · r = n̄·q + P̄ −mb = 0 and

n · r = n·q −mb = mB −mb − n·pX . (76)

At lowest order

n̄·p = n̄ · pX , n · r = Λ− n·pX , (77)

where both Λ, n · pX ∼ Λ (and higher-order terms in mB −mb will be needed only when we
go beyond LO). For the time being we stick to the partonic variables n̄·p and n·r; later, we
shall perform the expansion involved in switching to hadronic variables. Using the states
defined with HQET, we get

W (0)
µν =

(−1)

π
Im

1

2
〈B̄v|T̂ (0)

µν |B̄v〉 , (78)

T̂ (0)
µν = −i

∫
d4x e−ir·x T J (0)†

j′ µ (x) J (0)
j ν (0) .

Separating out the hard Wilson coefficients, we have

T̂ (0)
µν =

∑
j,j′

∫
dωdω′ Cj′(ω′)Cj(ω)δ(ω′−n̄·p)(−i)

∫
d4x e−ir·x T J (0)†

j′ µ (ω′, x) J (0)
j ν (ω, 0). (79)

The effective-theory currents in the remaining time-ordered product depend only on collinear
and usoft fields describing momenta p2 % m2

b , i.e.

T J (0)†
j′ µ (ω′, x) J (0)

j ν (ω, 0) =
[H̄vΓ

(0)
j′µχn,ω′

]
(x)

[
χ̄n,ωΓ(0)

jν Hv

]
(0) , (80)

where Γ̄ ≡ γ0Γ†γ0. It is useful to group the collinear and usoft fields into common brackets
by using a Fierz rearrangement. For spin and color we can use

1⊗ 1 =
1

2

6∑
k=1

F n̄
k ⊗ F n

k (81)

=
1

2

[( n̄/

2Nc

)⊗(n/

2

)
+

(−n̄/γ5

2Nc

)⊗(n/γ5

2

)
+

(−n̄/γα
⊥

2Nc

)⊗(n/γ⊥α
2

)
+

(
n̄/T a

)⊗(n/T a

2

)
+

(−n̄/γ5T
a
)⊗(n/γ5T a

2

)
+

(−n̄/γα
⊥T a

)⊗(n/γ⊥α T a

2

)]
.

22

Leading Order Factorization in SCET

∫
dω C(ω)(ξ̄nW )ω Γ (Y †hv)J (0) =

dΓ = H(mb, p
−
X)

∫
dk+ J(p−Xk+) f(k+ + Λ− p+

X)
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• all orders in αs
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• derive factorization theorems at subleading order
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J = J (0) + J (1) + J (2) + . . .

L = L(0)
c + L(0)

us + L(1)
ξq + L(1)

j + L(2)
j + . . .



T-product Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

T̂ (2H)

h

(2 )

( )0
J ( )0

J

0 x

y

L
h0J (0) f (2)

0 h̄v(x)hv(0)iL(2)
h (y)

T̂ (2a)
( )0

J ( )2
J

( )2
J

( )
J

0

0 x

h1,2J (0) f (2)
1,2

h̄v(x)(DT,⊥hv)(0)
(h̄vDT,⊥)(x)hv(0)

T̂ (2L)
!!

(2   )( )0
J

( )0
J

0 x

y

L
a h3,4 J (−2)

1,2 f (4)
3,4

h3,4 J (−2)
3,4 g(4)

3,4

h̄v(x)(D⊥D⊥)(y)hv(0)

T̂ (2q)

bb
qq

( )0
J

( )0
J

!q
(1 )

!q
(1 )

L L

0 xyz h5,6 J (−4)
1 f (6)

5,6

h5−8 J (−4)
2−4 g(6)

5−10

h̄v(x)q(y)q̄(z)hv(0)

TABLE IV: Time-ordered products that are of order λ2 = Λ/mb overall, and that are non-zero
at tree level. The power of λ2 is obtained by multiplying the powers from the jet functions J
by those from the shape functions f or g. We suppress color and Dirac structure in the usoft
operators listed, which can be found in the text. The time-ordered product in the last row has not
been considered in the literature and is enhanced relative to the others entries by a prefactor of
4παs(EXΛ) ∼ 5.

for example, the product J (1b)†J (1b) has a jet function that starts at one-loop order since
we must contract both the collinear quark and gluon lines. A second example consists of
time-ordered products that involve a L(1)

ξξ insertion, which involves a Dc
⊥ since neither its

P⊥ or A⊥n parts can contribute at tree level.
The category that appears already at tree level will be most important phenomenologi-
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T-product Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

T̂ (2b)
( )1

J
( )1

J

0 x
h[2b] J (2)

1,2 f (0) h̄v(x)hv(0)

T̂ (2c) ( )2
J

( )0
J

0 x

h[2c] J (2)
3−10 f (0) h̄v(x)hv(0)

T̂ (2La) ( )1
J

( )0
J

0 x

!

(1 )
L !

y

h[2La] J (0)
j′ g(2)

11,12 h̄v(x)D⊥(y)hv(0)

T̂ (2Lb)

( )0
J

( )0
J

0 x

!

(2   )
L !

y

b h[2Lb] J (0)
j′ g(2)

13,14 h̄v(x)n̄·D(y)hv(0)

T̂ (2LL)

( )0
J

( )0
J

0 x

!

(1 )
L !

y z

h[2LL] J (−2)
j′ g(4)

15−26 h̄v(x)D⊥(y)D⊥(z)hv(0)

TABLE V: Time-ordered products that are of order Λ/mb, but have jet functions that start at
one-loop order. The last three rows introduce new shape functions that were not present at tree
level. Vertices that are not labeled are from L(0)

ξξ .
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h0f
i (n̄·p)
2mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) f (2)

0

(
k+ + r+, µ

)
+

2∑
r=1

hrf
i (n̄·p)
mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) f (2)

r

(
k+ + r+, µ

)
+

4∑
r=3

hrf
i (n̄·p)
mb

∫
dk+

1 dk+
2 J (−2)

1±2 (n̄·p k+
j , µ) f (4)

r

(
k+

j + r+, µ
)

+
6∑

r=5

hrf
i (n̄·p)
n̄·p

∫
dk+

1 dk+
2 dk+

3 J (−4)
1 (n̄·p k+

j′ , µ) f (6)
r

(
k+

j′ + r+, µ
)

+
h00f

i (n̄·p)
mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) g(2)

0

(
k+ + r+, µ

)
+

4∑
r=3

hrf
i (n̄·p)
mb

∫
dk+

1 dk+
2 J (−2)

3±4 (n̄·p k+
j , µ) g(4)

r

(
k+

j + r+, µ
)

+
6∑

r=5

hrf
i (n̄·p)
n̄·p

∫
dk+

1 dk+
2 dk+

3 J (−4)
2 (n̄·p k+

j′ , µ) g(6)
r

(
k+

j′ + r+, µ
)

+
8∑

r=7

hrf
i (n̄·p)
n̄·p

∫
dk+

1 dk+
2 dk+

3

[J (−4)
3 (n̄·p k+

j′ , µ) g(6)
r

(
k+

j′ + r+, µ
)

+J (−4)
4 (n̄·p k+

j′ , µ) g(6)
r+2

(
k+

j′ + r+, µ
)]

+
∑

m=1,2

∫
dz1dz2

h[2b]m+8
i (z1, z2, n̄·p)

mb

∫ p+
X

0
dk+ J (2)

m (z1, z2, p
−
X k+) f (0)(k++Λ−p+

X)

+
∑

m=3,4

h[2c]m+8
i (n̄·p)

mb

∫ p+
X

0
dk+ J (2)

m (p−X k+) f (0)(k++Λ−p+
X)

+
10∑

m=5

∫
dz1

h[2c]m+8
i (z1, n̄·p)

mb

∫ p+
X

0
dk+ J (2)

m (z1, p
−
X k+) f (0)(k++Λ−p+

X)

+ W [2La]f
i [ g(2)

11,12 ] + W [2Lb]f
i [ g(2)

13,14 ] + W [2LL]f
i [ g(4)

15−26 ] + W [2Ga]f
i [ f (4)

3,4 ]

+ phase space & kinematic corrections

• drop 

αs(m2
b)

αs(m2
X) ∼ αs(mbΛ)

hi(n̄·p) :

J (n̄·pk+
j ) :

• keep Λ
mb

and 4παs
Λ
mb

αs
Λ
mb



+ phase space & kinematic corrections

h0f
i (n̄·p)
2mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) f (2)

0

(
k+ + r+, µ

)
+

2∑
r=1

hrf
i (n̄·p)
mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) f (2)

r

(
k+ + r+, µ

)
+

4∑
r=3

hrf
i (n̄·p)
mb

∫
dk+

1 dk+
2 J (−2)

1±2 (n̄·p k+
j , µ) f (4)

r

(
k+

j + r+, µ
)

+
6∑

r=5

hrf
i (n̄·p)
n̄·p

∫
dk+

1 dk+
2 dk+

3 J (−4)
1 (n̄·p k+

j′ , µ) f (6)
r

(
k+

j′ + r+, µ
)

bb

a)

bb qq

b)

bb
qq

c)

FIG. 1: Comparison of the ratio of annihilation contributions to the lowest-order result. In the
total decay rate, b) is ∼ 16π2(Λ3/m3

b)∆B " 0.02, while c) is ∼ 4παs(mb)(Λ3/m3
b) " 0.003 when

compared to a). In the endpoint region, b) is ∼ 16π2(Λ2/m2
b)∆B " 0.16, a large correction, while

c) becomes ∼ 4παs(µJ)(Λ/mb) " 0.6, a huge correction.

〈Bv| · · · |Bv〉. For example, the set of local operators up to dimension 6 is

O3 = hv hv , O5a = hv(iDT )2hv , O5b = g hvσαβGαβhv , (4)

O6a = hv(iD
T
α )(iv ·D)(iDα

T )hv , O6b = iεαβγδvδ hv(iDα)(iv ·D)(iDβ)γγγ5 hv ,

O6c = (hvγ
αqL) (qLγαhv) , O6d = (hv qL) (qL hv) ,

O6e = (hvT
aγαqL) (qLT aγαhv) , O6f = (hvT

aqL) (qL T a hv) ,

where dimensions are shown as superscripts, a superscript/subscript T means transverse
to the HQET velocity parameter vµ, and an L means left-handed.4 Dimension-4 oper-
ators are absent so there are no 1/mb corrections, except the trivial ones that may be
induced by switching to hadronic variables. For dimension-5 and 6 operators there are two
naming conventions in common use. For 〈B̄v|{O5a, O5b, O6a, O6b}|B̄v〉, the parameters are
{λ1, λ2, ρ1, ρ2} or {µπ, µG, ρ3

D, ρ3
LS}. These operators are generated by connected graphs from

the time-ordered product of two currents, as in Fig. 1a. On the other hand, the four-quark
operators O6c,6d give parameters f 2

BB1,2 and are disconnected (or rather connected by leptons
or photons only), as shown in Fig. 1b, and thus exhibit a phase-space enhancement relative
to Fig. 1a. The simplest way to see this is to note that for the total rate to B → Xsγ,
we would cut a one-loop graph for Fig. 1a, while Fig. 1b would be at tree level. For later
convenience, we also consider the perturbative correction to the four-quark operators shown
in Fig. 1c, which is suppressed by αs/(4π) relative to Fig. 1b, and gives the operators O6e,6f .
In the total decay rate, if we normalize so that Fig. 1a ∼ 1 then

Fig. 1b ∼ 16π2 Λ3

m3
b

∆B ∼ 0.02 , Fig. 1c ∼ 4παs(mb)
Λ3

m3
b

∼ 0.003 . (5)

Here ∆B = B2 − B1 ∼ 0.1 accounts for the fact that the matrix elements of the operators
generated by Fig. 1b vanish in the factorization approximation. The definitions of B1,2 are〈

Bv

∣∣[h̄vγσqL

][
q̄Lγτhv

]∣∣Bv

〉
=

f 2
BmB

12

[
(B1 − B2)gστ + (4B2 −B1)vσvτ

]
. (6)

Without the ∆B suppression factor, Fig. 1b would dominate over other 1/m2
b operators

rather than just competing with them. The O(αs) corrections to annihilation are still

4 We write O3 in terms of HQET fields, although strictly speaking at lowest order this is not necessary.
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aγαqL) (qLT aγαhv) , O6f = (hvT
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where dimensions are shown as superscripts, a superscript/subscript T means transverse
to the HQET velocity parameter vµ, and an L means left-handed.4 Dimension-4 oper-
ators are absent so there are no 1/mb corrections, except the trivial ones that may be
induced by switching to hadronic variables. For dimension-5 and 6 operators there are two
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LS}. These operators are generated by connected graphs from

the time-ordered product of two currents, as in Fig. 1a. On the other hand, the four-quark
operators O6c,6d give parameters f 2

BB1,2 and are disconnected (or rather connected by leptons
or photons only), as shown in Fig. 1b, and thus exhibit a phase-space enhancement relative
to Fig. 1a. The simplest way to see this is to note that for the total rate to B → Xsγ,
we would cut a one-loop graph for Fig. 1a, while Fig. 1b would be at tree level. For later
convenience, we also consider the perturbative correction to the four-quark operators shown
in Fig. 1c, which is suppressed by αs/(4π) relative to Fig. 1b, and gives the operators O6e,6f .
In the total decay rate, if we normalize so that Fig. 1a ∼ 1 then

Fig. 1b ∼ 16π2 Λ3
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∆B ∼ 0.02 , Fig. 1c ∼ 4παs(mb)
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Here ∆B = B2 − B1 ∼ 0.1 accounts for the fact that the matrix elements of the operators
generated by Fig. 1b vanish in the factorization approximation. The definitions of B1,2 are〈
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][
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]∣∣Bv
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=
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. (6)
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〈Bv| · · · |Bv〉. For example, the set of local operators up to dimension 6 is

O3 = hv hv , O5a = hv(iDT )2hv , O5b = g hvσαβGαβhv , (4)

O6a = hv(iD
T
α )(iv ·D)(iDα

T )hv , O6b = iεαβγδvδ hv(iDα)(iv ·D)(iDβ)γγγ5 hv ,

O6c = (hvγ
αqL) (qLγαhv) , O6d = (hv qL) (qL hv) ,

O6e = (hvT
aγαqL) (qLT aγαhv) , O6f = (hvT

aqL) (qL T a hv) ,

where dimensions are shown as superscripts, a superscript/subscript T means transverse
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LS}. These operators are generated by connected graphs from

the time-ordered product of two currents, as in Fig. 1a. On the other hand, the four-quark
operators O6c,6d give parameters f 2

BB1,2 and are disconnected (or rather connected by leptons
or photons only), as shown in Fig. 1b, and thus exhibit a phase-space enhancement relative
to Fig. 1a. The simplest way to see this is to note that for the total rate to B → Xsγ,
we would cut a one-loop graph for Fig. 1a, while Fig. 1b would be at tree level. For later
convenience, we also consider the perturbative correction to the four-quark operators shown
in Fig. 1c, which is suppressed by αs/(4π) relative to Fig. 1b, and gives the operators O6e,6f .
In the total decay rate, if we normalize so that Fig. 1a ∼ 1 then
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b

∆B ∼ 0.02 , Fig. 1c ∼ 4παs(mb)
Λ3
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Here ∆B = B2 − B1 ∼ 0.1 accounts for the fact that the matrix elements of the operators
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Without the ∆B suppression factor, Fig. 1b would dominate over other 1/m2
b operators

rather than just competing with them. The O(αs) corrections to annihilation are still

4 We write O3 in terms of HQET fields, although strictly speaking at lowest order this is not necessary.
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a small contribution in the local OPE, and in particular possible enhancements of these
contributions have been shown to cancel for the total b→ u decay rate [58]. We emphasize,
however, that these O(αs) corrections in Fig. 1c do not exhibit the same ∆B suppression
factor.

In the endpoint region there are extra enhancement factors and the dimensions of the
operators no longer determine the size of their contributions. The fact that annihilation
effects are larger in the endpoint was first pointed out in Ref. [58]. The power counting
in SCET organizes these contributions in a systematic fashion and allows us to be more
quantitative about how large these contributions are. Since some background material is
required, we postpone this power counting until Sec. III. The derivation given here is more
heuristic, but leads to the same results. For Fig. 1a the intermediate quark propagator
becomes collinear, giving an mb/Λ enhancement. This explains why a larger portion of the
decay rate is concentrated in the endpoint region. For Fig. 1b there is no quark propagator
enhancement but also no reduction from the phase space; a numerical estimate for this
contribution was made in Ref. [57]. Finally, for Fig. 1c in the endpoint region there can be
three collinear propagators, giving a huge m3

b/Λ3 enhancement to this diagram. In Sec. VI
we show that this graph contains the maximum possible enhancement. In summary, if we
consider the rate integrated only over the endpoint region then Fig. 1a ∼ 1 and

Fig. 1b ∼ 16π2 Λ2

m2
b

∆B ∼ 0.2 , Fig. 1c ∼ 4παs(1.4 GeV)
Λ

mb
∼ 0.6 . (7)

Thus we conclude that the contribution from Fig. 1c may actually give the largest uncer-
tainty in extracting Vub with methods such as E! or m2

X cuts that depend on the endpoint
region. It has not been considered in recent error estimates in the literature. The main phe-
nomenological outcome of our analysis is a proper consideration of this term for endpoint
spectra.

Theoretically, the main result of our analysis is a complete theoretical description for the
NLO term, Γ(2), in the power expansion of decay spectra in the endpoint region,

dΓ

dZi

∣∣∣∣
endpoint

=
dΓ(0)

dZi
+

dΓ(2)

dZi
+ . . . . (8)

Here Zi denotes a generic choice of the possible spectrum variables,
{P +, P−, Eγ , q2, sH , mb, . . .}. At NLO we use SCET to determine the contributions
to the spectra. These contributions are tabulated in the body of the paper, but the generic
structure of a term in (1/Γ0)dΓ(2)/dZi is∫

[dzn′ ]H(j1)(zn′ , mb, Zi)

∫
[dk+

n ] J (j2)(zn′, k+
n , P±) f (j3)(k+

n ) , (9)

where the number of convolution parameters varies from n = 1 to n = 3 and n′ = 1 or 2, and
for n = 2 [dk+

n ] = dk+
1 dk+

2 etc. The dependence on the zn′ parameters appears only in jet
functions that vanish at tree level. In Eq. (9) the (j1), (j2), (j3) powers indicate whether the
power suppression occurs in the hard, jet or soft regions respectively. The power corrections
start at O(λ2), which is ∼ 1/mb, and so j1 + j2 + j3 = 2. Here j1,3 ≥ 0 while j2 can be
negative. Phase-space and kinematic corrections give an H (2) with the same jet and shape

6

a small contribution in the local OPE, and in particular possible enhancements of these
contributions have been shown to cancel for the total b→ u decay rate [58]. We emphasize,
however, that these O(αs) corrections in Fig. 1c do not exhibit the same ∆B suppression
factor.

In the endpoint region there are extra enhancement factors and the dimensions of the
operators no longer determine the size of their contributions. The fact that annihilation
effects are larger in the endpoint was first pointed out in Ref. [58]. The power counting
in SCET organizes these contributions in a systematic fashion and allows us to be more
quantitative about how large these contributions are. Since some background material is
required, we postpone this power counting until Sec. III. The derivation given here is more
heuristic, but leads to the same results. For Fig. 1a the intermediate quark propagator
becomes collinear, giving an mb/Λ enhancement. This explains why a larger portion of the
decay rate is concentrated in the endpoint region. For Fig. 1b there is no quark propagator
enhancement but also no reduction from the phase space; a numerical estimate for this
contribution was made in Ref. [57]. Finally, for Fig. 1c in the endpoint region there can be
three collinear propagators, giving a huge m3

b/Λ3 enhancement to this diagram. In Sec. VI
we show that this graph contains the maximum possible enhancement. In summary, if we
consider the rate integrated only over the endpoint region then Fig. 1a ∼ 1 and

Fig. 1b ∼ 16π2 Λ2

m2
b

∆B ∼ 0.2 , Fig. 1c ∼ 4παs(1.4 GeV)
Λ

mb
∼ 0.6 . (7)

Thus we conclude that the contribution from Fig. 1c may actually give the largest uncer-
tainty in extracting Vub with methods such as E! or m2

X cuts that depend on the endpoint
region. It has not been considered in recent error estimates in the literature. The main phe-
nomenological outcome of our analysis is a proper consideration of this term for endpoint
spectra.

Theoretically, the main result of our analysis is a complete theoretical description for the
NLO term, Γ(2), in the power expansion of decay spectra in the endpoint region,

dΓ

dZi

∣∣∣∣
endpoint

=
dΓ(0)

dZi
+

dΓ(2)

dZi
+ . . . . (8)

Here Zi denotes a generic choice of the possible spectrum variables,
{P +, P−, Eγ , q2, sH , mb, . . .}. At NLO we use SCET to determine the contributions
to the spectra. These contributions are tabulated in the body of the paper, but the generic
structure of a term in (1/Γ0)dΓ(2)/dZi is∫

[dzn′ ]H(j1)(zn′ , mb, Zi)

∫
[dk+

n ] J (j2)(zn′, k+
n , P±) f (j3)(k+

n ) , (9)

where the number of convolution parameters varies from n = 1 to n = 3 and n′ = 1 or 2, and
for n = 2 [dk+

n ] = dk+
1 dk+

2 etc. The dependence on the zn′ parameters appears only in jet
functions that vanish at tree level. In Eq. (9) the (j1), (j2), (j3) powers indicate whether the
power suppression occurs in the hard, jet or soft regions respectively. The power corrections
start at O(λ2), which is ∼ 1/mb, and so j1 + j2 + j3 = 2. Here j1,3 ≥ 0 while j2 can be
negative. Phase-space and kinematic corrections give an H (2) with the same jet and shape

6

times 
additional
dynamical

suppression

4-quark operators
enhanced by   

bb
qq

( )0
J

( )0
J

!q
(1 )

!q
(1 )

L L

0 xyz

m2
b

Λ2

(dim 6  = Λ3

m3
b

)



Inclusive Vub Results:

• a detailed study of the subleading shape functions is needed to 
reduce the theoretical uncertainty in the endpoint region

|Vub|endpoint = 4.5× 10−3

|Vub|other incl. = 5.1× 10−3

]-3 10×|  [ub|V
2 4 6

]-3 10×|  [ub|V
2 4 6

ALEPH 
 0.71± 0.67 ±4.12 

L3
 1.40± 1.00 ±5.70 

DELPHI 
 0.61± 0.65 ±4.07 

OPAL 
 0.71± 0.71 ±4.00 

CLEO (endpoint) 
 0.63± 0.23 ±4.69 

) 2, QXBELLE  sim. ann. (m
 0.46± 0.46 ±4.75 

BELLE (endpoint) 
 0.61± 0.23 ±4.46 

BABAR (endpoint) 
 0.44± 0.15 ±4.40 
 XBABAR m
 0.43± 0.30 ±5.22 

) 2, QXBABAR (m
 0.42± 0.52 ±5.18 

) 2, QlBABAR (E
 0.51± 0.34 ±4.99 

) 2, QX (mrecoBELLE  B
 0.54± 0.65 ±5.54 

Average  
 0.44±4.70 

HFAG
2004

/dof = 6.7/ 7 (CL = 46.5%)2!

endpoint  analysis



Outlook

• The SCET can be applied to:

• A lot of theory and phenomenology left to study ...

Nonleptonic decays, Other B decays
Jet physics, Exclusive form factors
Charmonium, Upsilon physics
... others ?

• There is a theory for B-decays with energetic hadrons 

• We now have the tools to systematically study power corrections

universal hadronic parameters, strong phases
γ (or α) from individual B →M1M2 channels

predictions for the size of amplitudes

color suppressed decays,  inclusive decays


