

QCD Effects in Weak Decays

Lepton-Photon 2005

Weak Decays

$$b \to u e \bar{\nu}_e$$
, $b \to s \bar{s} s$...

• Test our understanding of QCD

 $V_{td} V_{tb}^*$

β

Unitary Triangle

(1, 0)

Measure weak flavor physics of quarks

QCD is a rich theory, the appropriate tools depend on the task Plan for this talk:

- $B \to X_s \gamma$, $B \to X_s \ell^+ \ell^-$
- spectra, α_s $D \rightarrow K \ell \bar{\nu}, D \rightarrow \pi \ell \bar{\nu}$ f_D, f_{D_s} f_B, f_{B_s}
- $B \to \pi \ell \bar{\nu}$
- $B \to D\pi$
 - $\begin{array}{ccc} B \to \rho \rho & B \to \pi \pi \\ & B \to K \pi \end{array}$
- $B \to K^* \gamma \quad B \to \rho \gamma$

test lattice QCD

test SM

 $\Delta m_d, \Delta m_s$ $|V_{ub}|$

test factorization

measure α, γ , & test SM

test SM

Operator Product Expansion & Perturbative QCD

Unquenched Lattice QCD

Factorization Theorems for Weak Decays

Kaon decays: \rightarrow talk by U. Nierste

Unquenched Lattice QCD

Unquenched !

 $\det(D + m) \neq 1$

• m_W Now:

 m_b

 m_c

 $\Lambda_{
m QCD}$

 m_s

 a^{-1}

 m_q

- Focus on "Gold Plated Observables" for high precision
 - matrix elements with at most one hadron in initial and final state
 at least 100MeV below threshold, or small widths
- Simulate "real QCD". Use nf=2+1 light flavors, quark masses m_q light enough for extrapolation with chiral perturbation theory (or PQChPT)
- Systematic/parametric estimates of uncertainties using effective field theory methods. eg. heavy quarks:
 m_Q ≫ Λ_{QCD} NRQCD, Fermilab action, RHQ action
- Results for a broad spectrum of observables are obtained using common inputs

tests, predictions, and impact

Factorization Theorems

Inclusive Rare Decays

 $\rightarrow X_s \gamma \& B \rightarrow X_s \ell^+ \ell^-$

- SM perturbative and nonperturbative effects are under control
- sensitive to new physics

3 steps

1) Matching $H_W = \frac{G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$ determine $C_i(m_W)$ 2) Running (operator mixing) $C_i(m_W) \to C_i(m_b)$ $\mathcal{L} = \mathcal{L}_{QCD} + \mathcal{L}_{QED}$

3) Matrix elements of $O_i(\mu)$ with OPE at $\mu \simeq m_b$

Progress on NNLL calculations, a few entries still missing

		$\sim 25\%$	$\sim 10\%$		
b	S S	LL	NLL	NNLL	
Matching	C_{1-6}	tree	1L	2L	
	$C_{7,8}$	1L	2L	3L	
Running	$\hat{\gamma}$	$\left(\begin{array}{cc} 1L & 2L \\ 0 & 1L \end{array}\right)$	$\left(\begin{array}{cc} 2\mathrm{L} & 3\mathrm{L} \\ 1\mathrm{L} & 2\mathrm{L} \end{array}\right)$	$\left(\begin{array}{cc} 3L & 4L \\ 2L & 3L \end{array}\right)$	
M.Elts. (C	$O_{1-6}\rangle$	1L	2L	3L	
\langle	$O_{7,8}\rangle$	tree	1L	2L	
	Gri Bur Ciu	nstein et al. as et al. chini, Franco,	Greub, Hurth, Wyler, Buras, M Czarnecki, Mu	Aisak, 1nz,	

Bobeth, Misiak, Urban

Misiak, Steinhauser

Haisch, Gorbahn, Gambinio Czakon et al.

Bieri, Greub, Steinhauser Greub, Hurth, Asatrian Blockland et al., Melnikov, Mitov Gambina, Gorbahn, Haisch Asatrian, Greub, Hurth Misiak, Steinhauser_

Falk, Luke, Savage, Bauer corrections:

Silverstrini et al.

 $B \to X_s \gamma$

Czarnecki, Munz,

Ali, Pott, Adel, Yao,

Voloshin, Khodjamirian, Ligeti, Randall, Wise, Grant, Morgan, Nussinov, Peccei, Buchalla, Isidor, Rey

Photon energy cut: $E_{\gamma} \ge E_0$

 $E_0 \ge 1.2 \,\text{GeV}$ to avoid corrections where gluon or quark fragments into a photon Kapustin, Ligeti, Politzer

 $E_0 \leq 2.0 \,\mathrm{GeV}$ to keep it inclusive and avoid sensitivity to b-quark distribution function (region where standard OPE breaks down)

Neubert, Bigi, Shifman, Uraltsev, Vainshtein, Falk, Jenkins, Manohar, Wise

> (b-quark distn. is useful for Vub, talks by U.Nierste, F.Forti)

Experiment:

Cut dependence can be systematized (uses SCET and OPE). Recently argued that $\alpha_s^2(m_b - 2E_0)$ terms give an added ~ 10% uncertainty. Neubert

a success story for QCD!

 $Br_{\rm avg}^{\rm expt} = (3.39^{+0.30}_{-0.27}) \times 10^{-4}$

eg. $\frac{\mathrm{Br}^{LL}}{\mathrm{Br}^{LO}} \simeq 3$

The errors will be decreased by ongoing computations

raik et al., All et al., Duchana, Isluoli,

 $Br_{\rm avg}^{\rm expt}(M_{\ell^+\ell^-} > 0.2 \,\text{GeV}) = (4.46^{+0.98}_{-0.96}) \times 10^{-6}$

NNLL: Ali, Greub, Hiller, Lunghi Br $(B \rightarrow X_s \ell^+ \ell^-) = 4.17 \pm 0.70$ 17% error

$B \to X_s \ell^+ \ell^-$ NNLL Spectrum

[computed dominant higher order e.w.]

Experiments remove backgrounds from $J/\Psi, \Psi'$

• Reduced theory uncertainty for: (1) $1 \,\mathrm{GeV}^2 \le q^2 \le 6 \,\mathrm{GeV}^2$ (2) 14.4 GeV² < q^2

sensitive to different Wilson coefficients for new physics tests

> NNLL spectrum in OPE Ghinculov, Hurth, Isidori, Yao

model for long-distance $c\bar{c}$ contributions Kruger, Sehgal

10% total theory error

 $\left[1.574 \pm_{0.100}^{0.106} |_{M_t} \pm_{0.067}^{0.072} |_{m_b} \pm_{0.075}^{0.059} |_{\text{scale}} \pm 0.045_C \pm 0.035_{\text{BR}_{sl}} \pm_{0.013}^{0.001} |_{m_c}\right] \times 10^{-6}$

$B \rightarrow X_s \ell^+ \ell^-$ NNLL Forward - Backward Asymmetry

Ghinculov, Hurth, Isidori, Yao

$$\overline{A}_{FB}(q^2) = \left[\frac{d\Gamma}{dq^2}\right]^{-1} \int_{-1}^{1} d\cos\theta \frac{d^2\Gamma}{dq^2d\cos\theta} \operatorname{sign}(\cos\theta)$$

Location of zero of the FB-Asymmetry tests the SM

 $q_0^2 = (3.90 \pm 0.25) \,\mathrm{GeV}^2$ (Ghinculov et al.) $q_0^2 = (3.76 \pm 0.22_{\mathrm{theory}} \pm 0.24_{\mathrm{m_b}}) \,\mathrm{GeV}^2$ (Bobeth et al.)

Not measured yet

Lattice QCD

Sources of Uncertainty

- statistics from m_q , chirala, actionL, finiteMonte Carloextrapolationdiscretizationvolume
 - $(\alpha_s)^k$, perturbative matching

 $\frac{1}{m_Q}$, *a* corrections in matching

Unquenched Simulations

Wilson [nf=2: CP-PACS, JLQCD, QCDSF, UKQCD, qq+q, SPQcdR] [nf=2+1: CP-PACS / JLQCD] - expensive, chiral symmetry only recovered as $a \rightarrow 0$ Domain-wall [nf=2: RBC] - most expensive, exact chiral symmetry Improved Staggered [nf=2+1: MILC] - fast, residual chiral symmetry, but 4 "tastes" for each flavor

 $\left. \begin{array}{l} \text{valence/sea } m_q \text{'s down to } 0.1 \, m_s \\ (m_\pi \simeq 260\text{-}320 \, \text{MeV}) \end{array} \right.$

(nf=2: unquenched u=d, quenched s) (nf=2+1: unquenched u=d, & s)

"4-th root trick" for Staggered Fermions

warrants more serious attention from friends and foes

(HPQCD, UKQCD, MILC, Fermilab '03)

- tested at 3% level by comparison with mass spectra & light meson decay constants
- common input parameters $m_{\pi} \rightarrow m_{u} = m_{d}, m_{K} \rightarrow m_{s}, m_{D_{s}} \rightarrow m_{c},$ $m_{\Upsilon} \rightarrow m_{b}, \quad m_{\Upsilon} - m_{\Upsilon'} \rightarrow \alpha_{s}(1/a)$
- effect of unquenched calculation is clear

I'll assume that the fourth rooted staggered fermion is valid This will be tested by other (nf=2+1) fermion formulations in the future Focus on results submitted to me for Lepton Photon 2005

recent results

$c \to s(d)$

D-decays

 $D \to K \ell \bar{\nu} , \quad D \to \pi \ell \bar{\nu}$

$$\langle K(p_K)|V^{\mu}|D(p_D)\rangle = f_+(q^2)\Big(p_D^{\mu} + p_K^{\mu} - \frac{m_D^2 - m_K^2}{q^2}q^{\mu}\Big) + f_0(q^2)\frac{m_D^2 - m_K^2}{q^2}q^{\mu}$$

- test of staggered fermion formalism
- FNAL / MILC / HPQCD prediction prior to FOCUS result

Shape agrees

chiral extrapolation uses staggered chiral perturbation theory (and compares Becirevic & Kaidalov model vs. quadratic parametrization for q^2)

Note: Data not yet precise enough to clearly favor lattice over fits to 1 or 2 poles

Form Factor Normalization

	$f_+^{D \to K}(0)$	$\frac{f_+^{D \to \pi}(0)}{f_+^{D \to K}(0)}$
Lattice	0.73(3)(7)	0.87(3)(9)
CLEO-C		0.86(9)
BES	0.78(5)	0.93(20)
FOCUS		0.85(6)

Systematics	Fermilab/MILC/ HPQCD errors	
matching	<1%	
chiral extrapolation	2-3%	
q^2 interp.	2%	
finite a	9%	
Total	10%	

* LP'o5 update * with PDG |Vcsl, |Vcdl Normalization agrees!

The f_D + Challenge !

Lattice QCD vs. CLEO-C

The f_D + Challenge !

$$D^{+} \to \mu^{+} \nu_{\mu} \qquad \Gamma(D^{+} \to \mu^{+} \nu) = \frac{G_{F}^{2} m_{D}}{8\pi} m_{\mu}^{2} \left(1 - \frac{m_{\mu}^{2}}{m_{D}^{2}}\right)^{2} f_{D^{+}}^{2} |V_{cd}|^{2}$$
$$\langle 0|\bar{d}\gamma^{\mu}\gamma_{5}c|D^{+}(p)\rangle = f_{D^{+}}p^{\mu}$$

CP-PACS (prelim.)	20%	~ 13%
Fermilab/MILC/HPQCD (hep-lat/0506030)	24%	$\sim 8\%$
CLEO-C	22%	$\sim 8\%$

Errors decreased by factor of 3

$$f_{D^+}$$

$$n_f = 2 + 1$$

Fermilab/MILC/HPQCD

• A test for light quarks & the staggered formalism.

Use staggered ChPT analog of $\Delta f_D^{\text{chiral}} = -\frac{3}{4}(1+3g^2)\frac{m_\pi^2}{(4\pi f)^2}\ln\frac{m_\pi^2}{\mu^2}$

- Shift is caused by including the O(a²) terms
 in non-log part of the chiral extrapolation (main reason for decrease from prelim. to final)
- Largest uncertainty is from light quark discretization & ChPT (but its only 6% !)

- CP-PACS $n_f = 2$
- Test of their heavy quark lattice formalism

• Largest uncertainty is from discretization

Results

Also new: $f_{D_s} = 238 \pm 11^{+46}_{-27} \text{ MeV}$ CP-PACS (prelim.) $f_{D_s} = 249 \pm 3 \pm 16 \text{ MeV}$ FNAL / MILC / HPQCD hep-lat/0506030

 f_B, f_{B_s}

no direct measurement yet (would need Vub) $Br(B^+ \rightarrow \tau^+ \nu_{\tau}) < 2.6 \times 10^{-4} (90\%)$ Babar (LP'05) $Br(B^+ \rightarrow \tau^+ \nu_{\tau}) < 1.8 \times 10^{-4} (90\%)$ Belle (LP'05)

new LP'05 HPQCD results (preliminary, nf=2+1):

 $\frac{f_{B_s}}{f_B} = 1.20 \pm 0.02 \pm 0.01$ $f_B = (218 \pm 9 \pm 21) \,\text{MeV}$

chiral extrap. + statistical + a α_s^2 is dominant systematic (9%), next is chiral extrap. (4%)

consistent with 2003: $f_{B_s} = (260 \pm 7 \pm 28) \,\text{MeV}$

$\Delta m_s \& \Delta m_d$ Constraints with Unquenched LQCD

ise: $\frac{f_{B_s}}{f_B} \& f_B$ (HPQCD'05, prelim., stag.) with JLQCD ('03) $\hat{B}_d = 1.271(41)(^{+85}_{-94})$ $n_f = 2$ $\frac{\hat{B}_d}{\hat{B}_s} = 1.017(16)(^{+56}_{-17})$ Wilson $\xi = 1.21 \pm 0.022^{+0.035}_{-0.014}$ $f_B \sqrt{\hat{B}_d} = (246 \pm 11 \pm 25) \text{ MeV}$

> Δm_d : Improvement is from increased central value and decreased statistical error

 $f_{B_s} \sqrt{\hat{B}_s} = (296 \pm 9 \pm 33) \,\mathrm{MeV}$

$$|V_{td}|^2 \propto \frac{1}{f_B^2}$$

good topic for further discussion at Lattice 2005

$\Delta m_s \& \Delta m_d$ Constraints with Unquenched LQCD

$$\Delta m_d = C_{\text{short}} m_{B_d} f_B^2 \hat{B}_d |V_{td} V_{tb}^*|^2$$
$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d}}{m_{B_s}} \frac{f_B^2}{f_{B_s}^2} \frac{\hat{B}_d}{\hat{B}_s} \frac{|V_{td}|^2}{|V_{ts}|^2} \sum_{\propto [(1-\bar{\rho})^2 + \bar{\eta}^2]}$$

use $\frac{f_{B_s}}{f_B}$ & f_B with JLQCD ('03) $\hat{B}_d = 1.271(41)(^{+85}_{-94})$ $n_f = 2$ $\frac{\hat{B}_d}{\hat{B}_s} = 1.017(16)(^{+56}_{-17})$

 $\xi = 1.21 \pm 0.022^{+0.035}_{-0.014}$ $f_B \sqrt{\hat{B}_d} = (246 \pm 11 \pm 25) \text{ MeV}$ $f_{B_s} \sqrt{\hat{B}_s} = (296 \pm 9 \pm 33) \text{ MeV}$

Assume Δm_s was measured.

New lattice errors on ξ reduced the width of the green band by ~ 50%

HFAG LP'05 expt. theory $10^{3} \times |V_{ub}| = 3.75 \pm 0.27^{+0.64}_{-0.42}$ $10^{3} \times |V_{ub}| = 4.45 \pm 0.32^{+0.69}_{-0.47}$

My Average for this method: $10^3 \times |V_{ub}| = 4.1 \pm 0.32^{+0.69}_{-0.42}$

Braun et al. Colangelo, Khodjamirian, Ball, Zwicky

Method III: Lattice & QCD Dispersion Relations i) Lattice qcd results at large q^2 ii) expt. spectra for information at low q^2 (Babar updated at LP'05)

iii) QCD dispersion relations to constrain the form factors shape

 $t = q^2$

z = z(t)

 $\sum a_n^2 \leq 1$

n

 $-0.34 \le z \le 0.22$

Model Independent

Bourrely et al., Boyd, Grinstein, Lebed, Savage; Lellouch; Fukunaga, Onogi;

Ball'01

Arnesen, Grinstein, Rothstein, I.S.

Belle

 Dispersion relations show there is a lot of freedom for a pure extrapolation of lattice data

 χ^2 fits to data & lattice with dispersion relations

 $\chi^2/(dof) \sim 1.0$ expt. & theory $10^3 \times |V_{ub}| = 3.72 \pm 0.52$ FNAL

 $10^3 \times |V_{ub}| = 4.11 \pm 0.52$ HPQCD

My Average for this method:

$$10^3 \times |V_{ub}| = 3.92 \pm 0.52$$

Arnesen et al.

Type of Error	Variation From	$\delta V_{ub} ^{q^2}$
Input Points	1- σ correlated errors	$\pm 13\%$
Bounds	F_+ versus F	< 1%
$m_b^{ m pole}$	4.88 ± 0.40	< 1%
OPE order	$2 \operatorname{loop} \to 1 \operatorname{loop}$	< 1%

fit also gives: $f_+(0) = 0.25 \pm 0.06$ like sum-rules

 $|V_{ub}|^{\text{incl}} = (4.39 \pm 0.34) \times 10^{-3}$ (HFAG LP'05) $|V_{ub}|^{\text{treated as output}}_{\text{in global CKM}} = (3.53^{+0.22}_{-0.21}) \times 10^{-3}$ (CKMfitter LP'05)

Note that this includes the information in the pure lattice method

13%

total error

(4% expt.)

Nonleptonic Decays

Motivation Going Forward

- So far we've been talking about precision theory $\lesssim 10\%$
- Now we will turn to cases where the expansion is worse, $\sim 20\%(?)$
- But the odds are higher ! We can look for new physics in many channels, where the sensitivity appears in different ways.
- Need to know what the SM expectation is for Br and CP-Asymmetries

 $+A_{\text{long}}^{D^{(*)}\pi}$

Testing Factorization and SCET Mantry, Pirjol, I.S.

 $\frac{A(D^*M)}{A(D M)}$

1.0

0.5

0.0

and

"Color suppressed"

Predict

equal strong phases $\delta(DM) = \delta(D^*M)$ equal amplitudes $A(D^*M) = A(DM)$

Find $\delta(D\pi) = 30.4 \pm 4.8^{\circ}$ $\delta(D^*\pi) = 31.0 \pm 5.0^{\circ}$

Without factorization predictions spoiled by $\mathcal{O}\left(\frac{E_M}{m}\right) = \mathcal{O}(1)$ effects

$B \to M_1 M_2$

$C_1 > C_2, C_{7\gamma}, C_{8g} \gg C_{4,6} > C_{3,5,9,10} > C_{7,8}$

Methods

- SU(2), isospin symmetry
- SU(3), isospin symmetry

 $\frac{m_{u,d}}{\Lambda} \simeq 0.02$

 $\frac{m_s}{\Lambda} \simeq 0.3$

many authors classic: Gronau, London

many authors Rosner, Lipkin, ...

• Factorization $\Lambda^2 \ll E\Lambda \ll E^2, m_b^2$ corrections ~ 20% Beneke, Buchalla, Neubert, Sachrajda

not great precision, but sufficient for large new physics signals (and improvable) Chay, Kim Bauer, Pirjol, Rothstein, I.S.

sizeable charm loops? Ciuchini et al, Colangelo et al $C_1 \frac{\Lambda}{F}$ competes

 k_{\perp} Factorization

Keum, Li, Sanda, Lu et al. (appears to be a good model for soft physics)

$p^2 \sim \Lambda^2$ Factorization (with SCET) $p^2 \sim Q$ Bauer, Pirjol, Factorization at m_b Rothstein, I.S. $B \rightarrow M_1 M_2$ Nonleptonic $p^2 \sim \Lambda^2$ $p^2 \sim \Lambda^2$ ON $A(B \to M_1 M_2) = A^{c\bar{c}} + N \left\{ f_{M_2} \zeta^{BM_1} \int du T_{2\zeta}(u) \phi^{M_2}(u) + f_{M_2} \int du dz \right\}$ $\left\{ \zeta_J^{BM_1}(z)\phi^{M_2}(u) + (1\leftrightarrow 2) \right\}$ $B \rightarrow \text{pseudoscalar:} f_+, f_0, f_T$ Form Factors $B \rightarrow$ vector: $V, A_0, A_1, A_2, T_1, T_2, T_3$ $f(E) = \int dz \, T(z, E) \, \zeta_J^{BM}(z, E)$ } "hard spectator", "factorizable" universality at { "soft form factor", $E\Lambda$ $+ C(E) \zeta^{BM}(E)$ "non-factorizable" Factorization at $\sqrt{E\Lambda}$ expansion in $\alpha_s(\sqrt{E\Lambda})$ $\zeta_J^{BM}(z) = f_M f_B \int_0^1 dx \int_0^\infty dk^+ J(z, x, k^+, E) \phi_M(x) \phi_B(k^+)$ Beneke, Feldmann

 $\zeta^{BM} = ?$ (left as a form factor)

Bauer, Pirjol, I.S. Becher, Hill, Lange, Neubert Choose some reasonable values for hadronic parameters.
 Test Qualitative Agreement with Factorization

QCDF: Buchalla et al.; Neubert, Beneke pQCD: Keum, Li, Sanda (k_{\perp})

(NOTE: some power suppressed terms included as well) $\mathcal{B}(B \to K\pi, \pi\pi, KK)$

A Few Channels

Redundant measurements in different channels allow us to probe for new physics

Isospin Analysis

Babar '04, Belle LP'05

 $B \to \rho \rho$

 $(\rho \| \rho \|$ dominates as factorization predicts A. Kagan) Parameters = 6 Observables = 6

 γ +5 hadronic

 $B \rightarrow \rho^0 \rho^0$ channel is not measured, but strong experimental bound forbids sizeable penguins

 $\alpha_{\rho\rho} = 96^{\circ} \pm 13^{\circ}$ (see talk by F.Forti)

$B \to \pi\pi$] Isospin Analysis

Known strong isospin breaking effects are small $\delta \alpha \sim 2^\circ \quad {\rm Gardner;\ Gronau, Zupan}$

Problem is precision of direct CP - Asymmetry for neutral pions

 $C_{\pi^0\pi^0} = -0.28 \pm 0.39$ (Belle & Babar) Add "mild" input from factorization (use data to fix nonperturbative parameters)

My Language

Strategies for α vs. Methods for α like PRL: Evidence vs. Observation

Worth remembering: more input/less fit parameters means more ways to test for new physics eg. can't see new physics in I = 0

eg. Can't see new physics in T = 0amplitudes with the isospin analysis Baek, Botella, London, Silva

Definitions:

$$A(\bar{B}^0 \to \pi^+ \pi^-) = e^{-i\gamma} |\lambda_u| T - |\lambda_c| P$$
$$A(\bar{B}^0 \to \pi^0 \pi^0) = e^{-i\gamma} |\lambda_u| C + |\lambda_c| P$$
$$\sqrt{2}A(B^- \to \pi^0 \pi^-) = e^{-i\gamma} |\lambda_u| (T + C)$$

 $|\lambda_{c,u}| = \text{CKM factors}$, take β known

Data — Significant P, "penguins", Large C, "color suppressed amplitude" (see A.Ali, ICHEP'04) $Br(B \to \pi^0 \pi^0) = 1.45 \pm 0.29$ is large

(a LP'03 hot topic) expected ~ 0.3

NOT a contradiction with factorization.

Why? • if $\zeta_J^{B\pi} \sim \zeta^{B\pi}$, then a term $\frac{C_1}{N_c} \langle \bar{u}^{-1} \rangle_{\pi} \zeta_J^{B\pi}$ in the factorization theorem ruins color suppression and explains the rate

if $\zeta^{B\pi} \gg \zeta_J^{B\pi}$ this Br is sensitive to power corrections (small wilson coeffs. at LO could compete with larger ones at subleading order).

• In the future: determine parameters using improved data on the $B \to \pi \ell \bar{\nu}$ form factor at low q^2 to provide a check.

 $B \to \pi \pi$

Buchalla, Safir Lunghi, Gronau, Wyler

 Power counting says Penguins can't be TOO big and their strong phase should not be TOO large (assume factorization gets the sign right)

Removes discrete ambiguities

Factorization predicts a Flat Tree Triangle $\epsilon \sim 0, \tau^{(t)} \sim 0$

Use this to get lpha without $C_{\pi^0\pi^0}$.

Bauer, Rothstein, I.S.

$$\epsilon = \operatorname{Im}\left(\frac{C}{T}\right) = \mathcal{O}\left(\alpha_s(m_b), \frac{\Lambda}{E}\right) \lesssim 0.2$$

Grossman, Hoecker, Ligeti, Pirjol for $\alpha \sim 90^{\circ}$ $\epsilon = 0.2 \leftrightarrow \tau^{(t)} \sim 5^{\circ}$ $\epsilon = 0.4 \leftrightarrow \tau^{(t)} \sim 10^{\circ}$

conservative?

New observation from Belle (Lp'o5, Forti) ${\rm Br}(B\to\rho^0\gamma)$

 $\sigma(\xi) = 0.2$ curve doubles error estimate

> Currently agrees with global fit

Executive Summary

- Radiative Decays
 - progress on understanding and reducing the QCD uncertainites
- Lattice QCD
 - new fD! agrees with new Cleo-C result
 - \rightarrow new staggered fB, fBs/fB! improves the Δm_d constraint smaller uncertainty for Δm_s constraint
- Lattice QCD & Continuum methods
 - → 2005 yields precise exclusive determinations of Vub
- Factorization Theorems
 - New tools developed, progress in understanding Nonleptonic B-Decays, new "strategies" for α

Places to watch for "puzzles"!

Thanks:

M. Misiak, C. Bauer, Z. Ligeti, U. Nierste T. Browder, C. Hearty, I. Shipsey S. Aoki, M. Wingate, A. Kronfeld,

and a special thanks to A. Höcker