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Search for new physics•

• Measure weak flavor physics of quarks

• Test our understanding of QCD
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QCD is a rich theory, the appropriate tools 
depend on the task

Operator Product 
Expansion &

Perturbative QCD

Unquenched
Lattice QCD

Factorization 
Theorems for 
Weak Decays

B → Xsγ

B → Dπ

B → ππ

B → π"ν̄

B → K∗γ

spectra,  

Plan for this talk:

αs

D → K!ν̄ D → π"ν̄

B → ρρ

B → Kπ

B → ργ

Kaon decays:       talk by U. Nierste
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Operator Product Expansion (I)
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Decays like B → Xsγ & B → Kπ

have contributions from         operators  ∼ 12
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Operator Product Expansion (II)

•

 
b

B-meson

Γ = c(0)f (0) +
1

mb
c(1)f (1) + . . .

mb ! ΛQCD

Heavy Quark Effective Theory

Justifies free quark decay as leading 
approximation

Operator Product Expansion for Inclusive Decays
•

hv, q

αs(mb) ! 0.2Λ
mb
! 0.1,

•

subleading terms are crucial 
for precision phenomenology
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Unquenched Lattice QCD

Unquenched !

det(/D + m) != 1

Now:
• Focus on “Gold Plated Observables” for high precision 

- matrix elements with at most one hadron in initial and final state
- at least 100MeV  below threshold, or small widths

• Results for a broad spectrum of observables are 
obtained using common inputs

 tests, predictions, and impact

• Systematic/parametric estimates of uncertainties using 
effective field theory methods.  eg. heavy quarks:
-                             NRQCD,   Fermilab action, RHQ actionmQ ! ΛQCD

nonperturbative
QCD

• Simulate “real QCD”.  Use nf=2+1  light flavors, 
quark masses          light enough for extrapolation with 
chiral perturbation theory (or PQChPT)

mq

} ChPT ,
PQChPT
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Factorization Theorems
Energetic Hadrons

Soft-Collinear Effective Theory (SCET)

Eπ ! ΛQCD
B! !

eg.

Bauer, Pirjol, I.S.
Fleming, Luke

many other authors

Introduce fields for infrared d.o.f.
collinear: ξn,Aµ

n
n
µ

!

soft: B hv,qs,Aµ
s

Separate physics at different momentum scales •
• Model independent, systematically improvable

L = L(0) + L(1) + L(2) + . . .
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Factorization Theorems
Energetic Hadrons
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Inclusive Rare Decays



B → Xsγ

• SM  perturbative and nonperturbative effects are under control

& B → Xs!
+!−

• sensitive to new physics

3 steps

1) Matching determine HW =
GF√

2
V ∗

tsVtb

10∑
i=1

Ci(µ)Oi(µ) Ci(mW )

2)

3)

Running Ci(mW )→ Ci(mb)

Matrix elements 

(operator mixing)

with OPE at µ ! mbOi(µ)of

L = LQCD + LQED
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B → Xsγ

Matching

Running

M.Elts.

C1−6

C7,8

〈O1−6〉
〈O7,8〉

tree
1L 2L

1L

3L

2L

tree
1L 2L 3L

1L 2L

(
1L 2L
0 1L

) (
2L 3L
1L 2L

) (
3L 4L
2L 3L

)

LL NLL NNLL

γ̂

Grinstein et al.
Buras et al.
Ciuchini, Franco,
 Silverstrini et al.

Czarnecki, Munz,

Misiak, Steinhauser

Greub,Hurth,Asatrian

Greub, Hurth, 
Wyler, Buras, Misak,

Ali, Pott, Adel, Yao,... ...

Bobeth, Misiak, Urban

Haisch,Gorbahn,Gambinio
Czakon et al.

 Bieri, Greub, Steinhauser

Resummation of large logarithms
(
αs ln M2

W

m2

b

)n
in b → sγ amplitude

RGE for the Wilson coefficients µ d
dµ

Cj(µ) = Ci(µ)γij(µ)

• Renormalization constants =⇒ γij

June 7 & 8, 2005

Dubna-Helmholtz Summer School, Dubna
Radiative, Semileptonic and Leptonic Rare B-Decays (page 12) Ahmed Ali

DESY, Hamburg

Resummation of large logarithms
(
αs ln M2

W

m2

b

)n
in b → sγ amplitude

RGE for the Wilson coefficients µ d
dµ

Cj(µ) = Ci(µ)γij(µ)

• Renormalization constants =⇒ γij

June 7 & 8, 2005

Dubna-Helmholtz Summer School, Dubna
Radiative, Semileptonic and Leptonic Rare B-Decays (page 12) Ahmed Ali

DESY, Hamburg

Progress on NNLL calculations,  a few entries still missing

Gambina,Gorbahn,Haisch
Asatrian, Greub, Hurth
Misiak, Steinhauser

corrections: Voloshin, Khodjamirian, Ligeti, 
Randall, Wise, Grant, Morgan, 
Nussinov, Peccei, Buchalla, Isidor, Rey

The b → sγ matrix elements

Perturbative on-shell amplitudes

June 7 & 8, 2005

Dubna-Helmholtz Summer School, Dubna
Radiative, Semileptonic and Leptonic Rare B-Decays (page 13) Ahmed Ali

DESY, Hamburg

1
(mb)k

1
(mc)kFalk, Luke, Savage, Bauer :

∼ 25% ∼ 10%

Blockland et al., Melnikov, Mitov

b s



Photon energy cut: 

Kapustin, Ligeti, Politzer
Neubert, 
Bigi, Shifman, Uraltsev, Vainshtein, 
Falk, Jenkins, Manohar, Wise

                    to avoid corrections where gluon or quark fragments into a photon 

Eγ ≥ E0

E0 ≥ 1.2 GeV
E0 ≤ 2.0 GeV                    to keep it inclusive and avoid 

sensitivity to b-quark distribution function 
(region where standard OPE breaks down)

(b-quark distn. is useful for Vub,  
talks by U.Nierste, F.Forti)
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Figure 4: Efficiency-corrected photon energy spectrum for the extracted signal, shown only for the
originally-blinded range of reconstructed energy (note the range 2.7-2.9GeV is not used to measure
the branching fractions or moments). The small error bar is statistical only. The larger error bar
also includes BB and other systematic uncertainties and a model-dependence uncertainty, all in
quadrature. There are significant correlations amongst the non-statistical uncertainties for different
bins.

correction factor αcut for the KN and BBU models and find that it has minimal model-dependence.
Table 4 shows PBFs with corrections applied, along with the statistical, systematic and model-
dependent errors. For the corrected PBFs the latter includes two correlated contributions: the
model-dependent efficiency uncertainty noted above, already applied to the measured PBFs, and
the uncertainty on αcut.

We studied many sources of systematic uncertainty, and here note the more significant. The
uncertainty on the BB background subtraction is shown in Table 3, and amounts to 5.5% for 2.0 to
2.7GeV. It comes mostly from the statistical uncertainties on the correction factors derived from
the π0(η) control sample. Other systematic effects total 6.4% in quadrature. Of this, 3.3% is the
uncertainty on photon selection, dominated by a 2.5% uncertainty on photon efficiency (determined
from π0s in τ decays) and 2% for the photon isolation cut. It also includes allowance for uncertainties
in photon energy scale and resolution, and in the photon lateral shape cut efficiency, derived mainly
from data from the BABAR B → K∗γ analysis and photons from virtual Compton scattering. The
efficiency of the event shape cuts was studied using a π0 control sample to compare distributions
of the Fisher discriminant between data and simulation, resulting in an uncertainty of 3.0%. A
small sensitivity to details of Xs fragmentation implies, for the adjustments determined in the
semi-inclusive analysis [10], an additional uncertainty of only 1.4%. A 2.2% uncertainty is assigned
for lepton identification, and 3.0% for the uncertainties on the semileptonic corrections.
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FIG. 1: Photon energy spectra in the Υ(4S) frame.

in OFF-subtracted ON data and MC using appropriate
control samples. We then scale the MC background sam-
ple according to the ratio of these efficiencies. The effi-
ciencies of the π0 and η vetoes for non-π0, non-η photons
are measured in data using one photon from a well re-
constructed π0 applying the veto without using the other
photon of the pair. The π0 veto efficiency is measured
using a sample of photons coming from measured π0

decays. We use partially reconstructed D∗+ → D0π+,
D0 → K−π+π0 decays where the π0 is replaced by the
candidate photon in the reconstruction. The η veto ef-
ficiency for photons from π0’s and event-shape criteria
efficiencies are measured using a π0 anti-veto sample. It
is made of photons passing all selection criteria except
the π0 veto, which are combined with another photon in
the event to give a π0-likelihood larger than 0.75. Other
efficiencies are measured using the signal sample.

The ratios of data and MC efficiencies versus E∗
γ are

fitted using first or second order polynomials, which are
used to scale the background MC. Most are found to be
statistically compatible with unity. An exception is the
efficiency of the requirement that 95% of the energy has
to be deposited in the central nine cells of the 5× 5 clus-
ter, which is found to be poorly modelled by our MC
for non-photon backgrounds. We estimate the efficiency
for data using a sample of candidate photons in OFF-
subtracted ON data by subtracting the known contri-
bution from real photons. This effectively increases the
yield of background (iv) by 50%.

The yield from the five background categories, after
having been properly scaled by the above described pro-
cedures, are subtracted from the OFF-subtracted spec-
trum. The result is shown in Fig. 1.

The spectrum contains 24350± 2140 ± 1260 events in

the 1.8–2.8 GeV energy range, where the two errors are
the statistical error of the OFF-subtracted ON data and
of the BB̄ background subtractions, and the systematic
error related to the data/MC efficiency ratio fits used in
the BB̄ background scaling. We correct this spectrum
for the signal selection efficiency function obtained from
signal MC, applying the same data/MC correction fac-
tors as for the generic photon background category (iii).
The average signal selection efficiency is 23%.

The efficiency-corrected spectrum is shown in Figure 2.
The two error bars for each point show the statistical
and the total error, including the systematic error which
is correlated among the points. As expected, the spec-
trum above the endpoint for decays of B mesons from
the Υ(4S) at about 3 GeV, is consistent with zero. Inte-
grating this spectrum from 1.8 to 2.8 GeV, we obtain a
partial branching fraction of

(
3.55 ± 0.32 + 0.29

− 0.30

)
× 10−4.

The systematic error contains the contribution from
the fits to data/MC efficiency ratios (±5.9%) to which we
add the following contributions in quadrature. The un-
certainty on the number of BB̄ events, which also affects
the weight applied to OFF events, contributes (+3.9

−4.5)%.
We estimate the error on the OFF data subtraction using
the result of the fit to the spectrum above the endpoint.
We integrate the resulting function in the 1.8–2.8 GeV
range and obtain a yield of +40 ± 160. We add ±200
to the systematic error (±0.8%). For the choice of the
polynomial functions in the data/MC efficiency ratio fits,
we perform the same fit increasing the polynomial or-
der by one. The contribution is ±1.3%. As we do not
measure the yields of photons from sources other than
π0’s and η’s in BB̄ events, we vary the expected yields
by ±20% to estimate the systematic error and obtain a
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FIG. 2: Efficiency-corrected photon energy spectrum. The
two error bars show the statistical and total errors.

E0 ≥ 1.9 GeV

Belle‘04

E0 ≥ 1.8 GeV

Experiment:
1850801-007
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FIG. 2. Observed laboratory frame photon energy spectrum (weights per 100 MeV) for On
minus scaled Off minus B backgrounds, the putative b → sγ plus b → dγ signal. No corrections have

been applied for resolution or efficiency. Also shown is the spectrum from Monte Carlo simulation
of the Ali-Greub spectator model with parameters 〈mb〉 = 4.690 GeV, PF = 410 MeV/c, a good
fit to the data.
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E0 ≥ 2.0 GeV

•

Usually argued that                       suffices  E0 = 1.6 GeV

Cut dependence can be systematized (uses SCET and OPE). Recently argued 
that                         terms give an added              uncertainty.α2

s(mb−2E0) ∼ 10% Neubert

experimental 
results extrapolated 

down

•



Compare to Data

E0 = 1.6 GeV(       )Theory Summary

a success story
for QCD!

Gambino, Misiak;  
                         Buras, Czarnecki, Misiak, Urban

= (3.47+0.46
−0.50)× 10−4[ Neubert ]

The errors will be 
decreased by ongoing 

computations

eg.            BrLL

BrLO ! 3

Updated for LP’05  by M.Misiak

Br(B → Xsγ)
∣∣∣
Eγ>1.6 GeV

= 3.57× 10−4
[
1± 0.055(mc/mb) ± 0.04(otherNNLO))± 0.02(C"ν)

±0.03αs(mZ) ± 0.02Brexpt
semi

± 0.01mt ± 0.01CKM

]
= (3.57± 0.28)× 10−4

Brexpt
avg = (3.39+0.30

−0.27)× 10−4

LP’05

Buras et. al. (update)

Neubert

NLL



B → Xs!
+!−

B̄ → Xsl+l−

• The NNLO calculation of B̄ → Xsl+l− corresponds to the NLO calculation of
B̄ → Xsγ, as far as the number of loops in the diagrams is concerned.

• Coefficients of the two additional operators

Oi =
e2

16π2
(s̄LγµbL)(l̄γµγ5l), i = 9,10

have the following perturbative expansion:

C9(µ) =
4π

αs(µ)
C(−1)

9 (µ) + C(0)
9 (µ) +

αs(µ)

4π
C(1)

9 (µ) + ...

C10 = C(0)
10 +

αs(MW )

4π
C(1)

10 + ...

• After an expansion in αs, the term C(−1)
9 (µ) reproduces (the dominant part of) the

electro-weak logarithm that originates from photonic penguins with charm quark loops:

b

!"

s4π

αs(mb)
C(−1)

9 (mb) =
4

9
ln

M2
W

m2
b

+ O(αs)

C(−1)
9 (mb) ! 0.033 " 1 ⇒ 4π

αs(mb)
C(−1)

9 (mb) ! 2

On the other hand: C(0)
9 (mb) ! 2.2

June 7 & 8, 2005

Dubna-Helmholtz Summer School, Dubna
Radiative, Semileptonic and Leptonic Rare B-Decays (page 26) Ahmed Ali

DESY, Hamburg

!!LL :
NLL :

NNLL :

∼ 25%

C9(µ) =
4
9

ln
m2

W

m2
b

+O(αs)

counting is like LL B → Xsγ

counting is like NLL B → Xsγ

comparable
uncertainty

Asatryan et al.,
Asatrian et al.,

Bobeth, Misiak, Urban
Gambinio,Gorbahn,
Haisch,

∼ 15%
Ghinculov, Hurth, Isidori, Yao

Br(B → Xs!
+!−) = 4.17± 0.70

NNLL: Ali, Greub, Hiller, Lunghi

Nonperturbative corrections: Falk et al., Ali et al., Buchalla, Isidori, Rey

numerically

Brexpt
avg (M!+!−> 0.2 GeV) = (4.46+0.98

−0.96)× 10−6

 0.0  5.0 10.0

PDG2004

BABAR
Belle

CLEO

New Avg.

HFAG 

JULY 2005

Branching Ratio x 106

B → Xs!
+!−

17% error
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scale dependence

Reduced theory uncertainty for:  

1 GeV2 ≤ q2 ≤ 6 GeV2

14.4 GeV2 ≤ q2(2)
(1)

Bobeth, Gambino, Gorbahn, Haisch

model for long-distance cc̄
contributions Kruger, Sehgal

•
•

decay amplitude [32] have been included. If we had only rescaled the matching conditions
for Q9 and Q10 and for the penguin operators by a factor α(MW )/α(mb) as discussed in the
previous section, the shift would be close to +7%. This effect is overcompensated by other
electroweak corrections of around −7% and by the QED correction to the semileptonic
rate, which by itself amounts to around −1.5%. We would like to stress that this is an
unexpected accidental cancellation. The right plot of Figure 5 shows ∆[dBR!!(ŝ)/dŝ] —
the differential BR normalized to the partial NNLO result — where we have sequentially
included the corrections listed above.

Including the main parametric uncertainties, our final result reads

BR!! (0.05 ≤ ŝ ≤ 0.25) = (26)[
1.442 ±0.098

0.092 |Mt
±0.054

0.069 |scale ± 0.041C ± 0.032BRsl
±0.001

0.009 |mc
± 0.002mb

] × 10−6 .

Here the whole dependence on λ1 is absorbed into the factor C. As already in the case of
C, we neglect effects suppressed by three powers of the heavy quark masses in B̄ → Xs#+#−

[33], which in the low-ŝ region should not exceed 2% anyway. The uncertainty related to
the CKM matrix elements is below 1%. To be conservative, one could also consider an
additional 2% uncertainty due to unknown electroweak effects. Combining in quadrature
all uncertainties given in Eq. (26) with the latter three, the total error is about 9%, very
similar to the one for inclusive radiative decays [25].

Though useful for comparison with previous analyses [4], the BR integrated in the region
0.05 ≤ ŝ ≤ 0.25 is an idealization. A quantity closer to experiment is the BR integrated
in the region 1 GeV2 ≤ q2 ≤ 6 GeV2 [5]. The results for the integrated BR employing
this range are given in the second line of Table 2 together with their scale dependence.
Unfortunately, the choice of the integration variable introduces an enhanced dependence
on the bottom quark mass. In our calculation we have employed the b-quark pole mass,
which is subject to a much larger uncertainty than an appropriate short-distance b-quark
mass. For example the 1S or the kinetic low-energy b-quark mass [27] are known to better
than 50 MeV. Our final result is

BR!!

(
1 GeV2 ≤ q2 ≤ 6 GeV2

)
= (27)[

1.574 ±0.106
0.100 |Mt

±0.072
0.067 |mb

±0.059
0.075 |scale ± 0.045C ± 0.035BRsl

±0.001
0.013 |mc

] × 10−6 .

The total error is about 10% and is again dominated by the uncertainty on the top quark
mass, which will soon be reduced by a factor of two by CDF and D0 at the Tevatron.
Moreover, the substantial error from the b-quark mass is an artifact of the employed scheme,
which can be reduced by a factor of three or even more by changing the renormalization
scheme of the b-quark mass. Hence it should not be interpreted as a limitation.

For what concerns the FB asymmetry, we have investigated the impact of the choice of
normalization and of the electroweak corrections on the so-called unnormalized asymmetry
defined as in [4]

AFB(ŝ) =
BR[B̄ → Xc#ν]

Γ[B̄ → Xc#ν]

∫ 1

−1

d cos θ!

d2Γ[B̄ → Xs#+#−]

dŝ d cos θ!

sgn(cos θ!) , (28)

16

10% total theory erroreg.

sensitive to different Wilson coefficients 
for new physics tests

[computed dominant
 higher order e.w.]



NNLL Forward - Backward Asymmetry

0 5 10 15 20
! 0.5

! 0.3

! 0.1

0.1

0.3

0.5 Ghinculov, Hurth,
     Isidori, Yao

q2

B → Xs!
+!−

AFB(q2) =
[ dΓ
dq2

]−1
∫ 1

−1
dcos θ

d2Γ
dq2d cos θ

sign(cos θ)

AFB(q2)

Location of zero of the FB-Asymmetry tests the SM

q2
0 = (3.90± 0.25)GeV2

q2
0 = (3.76± 0.22theory ± 0.24mb)GeV2

(Ghinculov et al.)

(Bobeth et al.)

Not measured yet
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Unquenched Simulations

Domain-wall [ nf=2: RBC ] 
- most expensive, exact chiral symmetry

Wilson 

a→ 0

[ nf=2:  CP-PACS, JLQCD, QCDSF, UKQCD, qq+q, SPQcdR ] 
[ nf=2+1:  CP-PACS / JLQCD ]

- expensive, chiral symmetry only recovered as 

Sources of Uncertainty
action 

discretization
     chiral 

extrapolation
      finite 
volume

       perturbative
    matching in matching

1
mQ

a, corrections

Improved Staggered   [ nf=2+1:  MILC ]

- fast, residual chiral symmetry, 
  but 4 “tastes” for each flavor

} )
valence/sea        ‘s down to  mq 0.1 ms

mπ ! 260-320 MeV(

statistics from 
Monte Carlo

mq, a, L,

(αs)k,

( nf=2:     unquenched u=d, quenched s)
( nf=2+1:  unquenched u=d, & s)

• • • •

• •



“4-th root trick” for Staggered Fermions

I’ll assume that the fourth rooted staggered fermion is valid
This will be tested by other (nf=2+1) fermion formulations in the future

det(/D + m)→ det(/D + m)1/4 removes bad tastes, but
not an issue in pert. QCD; some eigenvalue spectrum checks

0.9 1.0 1.1

quenched/experiment
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Update: !– works too!

tested at 3% level by comparison 
with mass spectra & light meson
decay constants 

(HPQCD, UKQCD, MILC, Fermilab ‘03)
•

effect of unquenched calculation
is clear

•

common input parameters

mΥ −mΥ′ → αs(1/a)

•
mπ → mu = md,mK → ms,mDs → mc,

mΥ → mb,

Not Proven!
Follana et al.
Durr et al.warrants more serious attention 

from friends and foes

Focus on results submitted to me for Lepton Photon 2005



αs

αs(mZ)

nf = 2 ,  2-loop matching, Wilson

,  3-loop matching, Staggerednf = 2 + 1
nf = 2 + 1 ,  2-loop matching, Staggered

MS scheme

α(5)
s (mZ) = 0.1177(13)

recent 
results

Mason et al., hep-lat/0503005

α(5)
s (mZ) = 0.1187(20)

PDG 2004  World Avg. 

compare:

• nf = 2 + 1 sea quarks  
O(a2)             improved actions 

for both quarks and gluons
•

0.100 0.110 0.120 0.130

Aoki et al. (1995)

Davies et al. (1997)

SESAM (1999)

QCDSF-UKQCD (2001)

Boucaud et al. (2001)

HPQCD-UKQCD-MILC-Fermilab (2003)

update (2004)

PDG 2004 average

HPQCD-UKQCD (2005)

QCDSF-UKQCD(2005)

α(5)
s (mZ) = 0.1120(22)

QCDSF-UKQCD 

Gockeler et al.

Mason et al.

Gockeler et al., hep-ph/0502212

• nf = 2 sea quarks  

 HPQCD-UKQCD 

• down to a ! 0.07 fm

:
Lattice Quantified

Errors



D-decays D → K!ν̄ D → π"ν̄

•
〈K(pK)|V µ|D(pD)〉 = f+(q2)

(
pµ

D + pµ
K − m2

D − m2
K

q2
qµ

)
+ f0(q2)

m2
D − m2

K

q2
qµ

test of staggered fermion formalism

chiral extrapolation uses staggered 
chiral perturbation theory
(and compares Becirevic & Kaidalov 
model vs. quadratic parametrization 
for       )q2

Shape agrees
• FNAL / MILC / HPQCD  prediction prior to FOCUS result

Note: Data not yet precise enough to clearly favor lattice over fits to 1 or 2 poles

,
c→ s(d)



fD→π
+ (0)

fD→K
+ (0)

Lattice

CLEO-C

BES

FOCUS

fD→K
+ (0)

0.73(3)(7)

0.78(5)

0.87(3)(9)

Form Factor Normalization

<1%

2-3%

2%

9%

Total 10%

Fermilab/MILC/ 
HPQCD errors

matching
chiral 

extrapolation

finite a

q2 interp.

Systematics

0.93(20)

0.86(9)

0.85(6)

*Cleo
BES

Lattice

2.5 3.0 3.5 4.0 4.5 5.0 2.0 3.0 4.0 5.0

Br(D0 → K!ν)× 102 Br(D0 → π−"ν)× 103

*
* LP’05 update

Normalization
agrees!

* with PDG |Vcs|, |Vcd|
*



Lattice QCD   vs.    CLEO-C

fD+ The        Challenge !

L
a

q

g
vs.

CLEO-c Symposium Recent Physics Results and the CLEO-c Detector Karl Ecklund 3

CLEO-c Detector
State of Art Detector:
• Drift Chamber 

Tracking (1 Tesla)
• RICH Particle ID
• Crystal EM 

Calorimetry
• 93% of solid angle
• Only small changes 

from CLEO III
– B field 1.5 ! 1 T
– Silicon ! ZD



pre-LP’05 new at LP’05

CLEO-C 

Errors decreased
by factor of 3 

Fermilab/MILC/HPQCD (hep-lat/0506030) 24%
22%

∼
∼

8%
8%

13%CP-PACS (prelim.) ∼

D+ → µ+νµ

〈0|d̄γµγ5c|D+(p)〉 = fD+pµ

Γ(D+ → µ+ν) =
G2

F mD

8π
m2

µ

(
1− m2

µ

m2
D

)2
f2

D+ |Vcd|2

20%

fD+ The        Challenge !



fD+

A test for light quarks & 
the staggered formalism.

•

∆f
chiral
log

D = −3
4
(1 + 3g2)

m2
π

(4πf)2
ln

m2
π

µ2

Use staggered ChPT analog of

Fermilab/MILC/HPQCD

0.0 0.2 0.4 0.6 0.8 1.0 1.2
mq/ms

0.80

0.90

1.00

R q/
s =

 f D
m

D1/
2 /f D

sm
D

s
1/

2

a = 0.121 fm
staggered χPT fit (to 60 points)
taste violations removed

mq = ml

0.00 0.01 0.02 0.03 0.04

a2 (fm2)

0.30

0.35

0.40

0.45

0.50

φ s
 =

 f D
sm

D
s

1/
2  (G

eV
3/

2 )

only log taste violations removed
almost all taste violations removed
0.3493 ± 0.0049
3.9%

• Shift is caused by
including the O(a^2) terms 
in non-log part of the chiral 
extrapolation (main reason for 
decrease from prelim. to final)

nf = 2 + 1

• Largest uncertainty is from 
light quark discretization 
& ChPT  (but its only 6% !)



CP-PACS

Test of their heavy 
quark lattice formalism

•

0 0.05 0.1 0.15 0.2 0.25

a(r
0
) [fm]

0.2

0.25

0.3

0.35

f D
s [

G
eV

]

f
PS

(A
4
)

f
PS

(A
k
)

expt.

linear extr.

fD+

nf = 2

• Largest uncertainty is 
from discretization



Results

Also new:
fDs = 249± 3± 16 MeV
fDs = 238± 11+46

−27 MeV CP-PACS (prelim.)
FNAL / MILC / HPQCD

hep-lat/0506030

Good Agreement(MeV)

(LP’05)

(LP’05)

(LP’05)

nf = 2

nf = 2 + 1

fD+

fD+ = 223± 16+7
−9 MeV

fD+ = 201± 3± 17 MeV

fD+ = 202± 12+20
−25 MeV

hep-lat/0506030

100 150 200 250 300 350

Cleo  2005

Cleo  2004

FNAL/MILC/HPQCD  2005

FNAL/MILC/HPQCD  2004 (prelim.)

CP-PACS  2005 (prelim.)



fB = (218± 9± 21)MeV

fBs

fB
= 1.20± 0.02± 0.01

fB fBs,

new LP’05  HPQCD results (preliminary, nf=2+1):

120 160 200 240 280

f
B
s

 [MeV]

JLQCD (1998)
El-Khadra et al. (1998)
MILC (1998)
CP-PACS (2000)
MILC (2002)

Becirevic et al. (1998)
UKQCD (2000)
Lellouch-Lin (2000)
Becirevic et al. (2000)

de Divitiis et al. (2003)

CP-PACS (2000)
CP-PACS (2001)

Wingate et al. (2003)

Nf = 0

Nf = 2

Nf = 2+1

MILC (2002)

Ali Khan et al. (1998)
JLQCD (1999)
CP-PACS (2001)

ALPHA (2003)

Collins et al. (1999)

JLQCD (2003)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mq / ms

0.9

1

1.1

1.2

1.3

Coarse lattice, Partially Quenched

Coarse lattice, Full QCD

Fine lattice, Full QCD

Full QCD Stagg. ChPT

Physical Quark Mass

P revious  calculations

fB mB

fB

s s

mB

no direct measurement yet (would need Vub)
Br(B+ → τ+ντ ) < 2.6× 10−4(90%) Babar (LP’05)

Belle (LP’05)

consistent with 2003: fBs = (260± 7± 28)MeV

Br(B+ → τ+ντ ) < 1.8× 10−4(90%)

               is dominant systematic (9%),
next is chiral extrap. (4%)

α2
s

chiral extrap. + statistical + a



ξ = 1.21± 0.022+0.035
−0.014

fB

√
B̂d = (246± 11± 25)MeV

 Constraints with Unquenched  LQCD∆ms & ∆md

JLQCD (‘03)

fBs

√
B̂s = (296± 9± 33)MeV

∆md = CshortmBdf2
BB̂d |VtdV

∗
tb|2

∆md

∆ms
=

mBd

mBs

f2
B

f2
Bs

B̂d

B̂s

|Vtd|2
|Vts|2

ξ2

fBs

fB
& fBuse: (HPQCD’05, prelim.,stag.)

B̂d

B̂s

= 1.017(16)(+56
−17)

B̂d = 1.271(41)(+85
−94)

nf = 2

       :  Improvement is from 
increased central value and 
decreased statistical error

∆md

∝ [(1− ρ̄)2 + η̄2]

|Vtd|2 ∝ 1
f2

B

}
-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

Δmd
Δms & Δmd

α

βγ

ρ

η

excluded area has CL > 0.95

C K M
f i t t e r

Test 2005

Improvement from Lattice QCD
using staggered fermions

P R E L I M I N A R Y

with

Wilson

good topic for further
discussion at Lattice 2005



 Constraints with Unquenched  LQCD∆ms & ∆md

Assume            was measured.∆ms

ξ = 1.21± 0.022+0.035
−0.014

fB

√
B̂d = (246± 11± 25)MeV

JLQCD (‘03)

fBs

√
B̂s = (296± 9± 33)MeV

∆md = CshortmBdf2
BB̂d |VtdV

∗
tb|2

∆md

∆ms
=

mBd

mBs

f2
B

f2
Bs

B̂d

B̂s

|Vtd|2
|Vts|2

ξ2

fBs

fB
& fBuse with

B̂d

B̂s

= 1.017(16)(+56
−17)

B̂d = 1.271(41)(+85
−94)

nf = 2
∝ [(1− ρ̄)2 + η̄2]

}

New lattice errors on  
reduced the width of the 
green band by 

ξ

∼ 50%

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

Δmd
Δms & Δmd

α

βγ

ρ

η

excluded area has CL > 0.95

C K M
f i t t e r

Test 2005

Improvement from Lattice QCD
using staggered fermions

assumed
Δms=

 (18.3 ± 0.3) ps–1

P R E L I M I N A R Y



Vub

2520151050

q2

f+( )q2

( )GeV2

SCET (Large Recoil) HQET (Small Recoil)  

ChPT

   Precision 

Lattice QCD

B → π"ν̄

dΓ(B̄0 → π+"ν̄)
dq2

=
G2

F |$pπ|3
24π3

|Vub|2
∣∣f+(q2)

∣∣2

need 
|!pπ| ! 1/a

|Vub| to 4% !?!

Uncertainty from theory 
dominates.

Rate is smaller 
at large  

d!

dq2

2520151050 q2

0.4

0.0

0.8

1.2

1.6

q2

Br(B → π"ν̄)

]-4 10× ) [ν + l-π → 0B(B
0 2

]-4 10× ) [ν + l-π → 0B(B
0 2

+τ/0τ 2× ν + l0π → +BABAR SL tag: B 
 0.42± 0.68 ±3.31 

+τ/0τ 2× ν + l0π → +BABAR Breco tag: B 
 0.24± 0.52 ±1.68 

ν + l-π → 0BABAR SL tag: B 
 0.13± 0.25 ±1.02 

ν + l-π → 0Belle SL tag: B 
 0.20± 0.28 ±1.79 

ν + l-π → 0BABAR Breco tag: B 
 0.12± 0.34 ±0.89 

ν + lπ →CLEO untagged: B   
 0.11± 0.18 ±1.32 

ν + lπ →BABAR untagged: B   
 0.18± 0.10 ±1.38 

ν + l-π → 0Average: B 
 0.11±1.36 

HFAG
LP-2005

/dof = 11.2/ 6 (CL = 8.3%)2χ

Average from Cleo, Belle, Babar:

to 8%
Br



9%

4%

2%

5%

Total 11%

Systematics HPQCD
errors

perturbative
matching

chiral 
extrapolation

matching

action
discretization

1%

4%

4%

9%

Total 11%

Fermilab/
MILC errors

matching

chiral 
extrapolation

finite a

q2 interp.

Systematics

a, 1/mQ

Method 1: 

q2 ≥ 16 GeV2

Model Independent
Pure Lattice QCD

statistics
4-6%

statistics



Comparison of lattice calculations

f+

f0

Preliminary: HPQCD (hep-lat/0408019) and Fermilab/MILC (hep-lat/0409116)

9%

4%

2%

5%

Total 11%

Systematics HPQCD
errors

perturbative
matching

chiral 
extrapolation

matching

action
discretization

1%

4%

4%

9%

Total 11%

Fermilab/
MILC errors

matching

chiral 
extrapolation

finite a

q2 interp.

Systematics

a, 1/mQ

q2 ≥ 16 GeV2

|Vub| = 3.75 ± 0.27+0.64
−0.42

HPQCD
FNAL

expt. theory

My Average for this method:

HFAG LP’05

|Vub| = 4.45 ± 0.32+0.69
−0.47

|Vub| = 4.1 ± 0.32+0.69
−0.42 total error

16%

statistics
4-6%

statistics
∼ 8%

103×
103×

103×



Method II:  
Light-cone QCD sum-rules Ball, Zwicky

f+(0) = 0.258± 0.031

Colangelo, Khodjamirian,
Braun et al.

compute form factors for small  q2

Error Analysis for             f+(0)
3 4 5 6 7
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Figure 6: Dependence of fπ
+(0) on (a) the Borel parameter M2 and (b) the continuum

threshold s0. Input parameters: set 2 in Tab. 1.
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Figure 7: Dependence of fπ
+(0) on the factorization scale µIR. Same input parameters as

in Fig. 6.

all higher-twist effects from three-particle quark-quark-gluon matrix elements. Explicit
expressions for the functions fas,a1,a2,a4 can be obtained from Tab. C in App. A; in par-
ticular fai(0) is just given by the parameters a in that table. We calculate separately the
uncertainties ∆as,a1 of the first and second term and the combined uncertainty ∆a2,a4 of
the term in curly brackets. We start with ∆as. To estimate its value we vary the following
quantities:

• the threshold s0 by ±0.5 GeV2;

• the Borel parameter M2 in Eq. (19) by ±1.2 GeV2;

• the infrared factorization scale µ2
IR = m2

B − m2
b by ±2 GeV2;

• the quark condensate and the mixed condensate as indicated in Eq. (18);

• the twist-3 matrix-element η3 by ±50%.

mb is kept fixed and we calculate the uncertainty separately for each parameter set; for
a given formfactor, ∆as is then the largest uncertainty of the 4 sets. The errors are
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uncertainties ∆as,a1 of the first and second term and the combined uncertainty ∆a2,a4 of
the term in curly brackets. We start with ∆as. To estimate its value we vary the following
quantities:

• the threshold s0 by ±0.5 GeV2;

• the Borel parameter M2 in Eq. (19) by ±1.2 GeV2;

• the infrared factorization scale µ2
IR = m2

B − m2
b by ±2 GeV2;

• the quark condensate and the mixed condensate as indicated in Eq. (18);

• the twist-3 matrix-element η3 by ±50%.

mb is kept fixed and we calculate the uncertainty separately for each parameter set; for
a given formfactor, ∆as is then the largest uncertainty of the 4 sets. The errors are
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all higher-twist effects from three-particle quark-quark-gluon matrix elements. Explicit
expressions for the functions fas,a1,a2,a4 can be obtained from Tab. C in App. A; in par-
ticular fai(0) is just given by the parameters a in that table. We calculate separately the
uncertainties ∆as,a1 of the first and second term and the combined uncertainty ∆a2,a4 of
the term in curly brackets. We start with ∆as. To estimate its value we vary the following
quantities:

• the threshold s0 by ±0.5 GeV2;

• the Borel parameter M2 in Eq. (19) by ±1.2 GeV2;

• the infrared factorization scale µ2
IR = m2

B − m2
b by ±2 GeV2;

• the quark condensate and the mixed condensate as indicated in Eq. (18);

• the twist-3 matrix-element η3 by ±50%.

mb is kept fixed and we calculate the uncertainty separately for each parameter set; for
a given formfactor, ∆as is then the largest uncertainty of the 4 sets. The errors are

16

vs. Borel 
parameter

vs. continuum
threshold

vs. factorization
scale

Ball, Zwicky

Babar (LP’05)
expt. theory

|Vub| = 3.27 ± 0.25+0.54
−0.37

16%  total error

q2 < 16 GeV2

f+(0)

f+(0)

f+(0)
103×



Method III:
Lattice & QCD  Dispersion Relations
i)  Lattice qcd results at large 

ii) 

q2

iii)  QCD dispersion relations to constrain the 
form factors shape

   expt. spectra for information at low 

Bourrely et al.,
Boyd, Grinstein, Lebed, Savage;
Lellouch; Fukunaga, Onogi;  

Arnesen, Grinstein, Rothstein, I.S. 

Model Independent

* *

t z

B → π"ν̄
vac→ B̄π("ν)

B∗ pole

t− t+

Form factor for

−0.34 ≤ z ≤ 0.22

f+(t) =
1

P (t)φ(t)

∞∑
n=0

an zn

t = q2

∑
n

a2
n ≤ 1

convergent

Figure 5 presents the obtained q2 distributions for the two decay modes, overlaid with the
best fits of FF shapes to the data. To be self-consistent, the shape of a particular FF model
is fit to the q2 distribution extracted with that FF model. The quality of the fit in terms of
χ2 and the probability of χ2, shown in Table I and II, may provide one way to discriminate
among the models. At the present accuracy, we are unable to draw any conclusion on this
point.
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FIG. 5: Extracted q2 distrubution for the B0 → π−"+ν(left) and B0 → ρ−"+ν(right) decays. Data

points are shown for different FF models used to estimate the detection efficiency. Lines are for
the best fit of the FF shapes to the obtained q2 distribution.

We extract |Vub| using the relation,

|Vub| =

√√√√B(B0 → π−(ρ−)$+ν)

Γ̃thy τB0

, (4)

where Γ̃thy is the form-factor normalization, predicted from theories. In this paper, our
major focus is on the |Vub| determination based on the π−$+ν data and the form factor
predicted by LQCD calculations. Since the current LQCD calculations are available only in
the region q2 ≥ 16 GeV2/c2, we use the branching fraction in the high q2 bin extracted with
UKQCD; B≥16 = (0.45 ± 0.16) × 10−4. We use τB0 = 1.536 ± 0.014 ps for the B0 lifetime
[20].

We apply Γ̃thy predicted by the FNAL [23], JLQCD [24], APE [6] as well as UKQCD
calculations, as quoted by the CLEO analysis in 2003 [6]. For the average of these results,
the combined Γ̃thy = 1.92+0.32

−0.12 ± 0.47 ps−1 calculated by CLEO work is used. Here the
errors are the statistical and the systematic in LQCD calculations, the latter including the
quenching error of 15%. We obtain

|Vub|
π"ν
(q2≥16) = (3.90 ± 0.71 ± 0.23+0.62

−0.48) × 10−3, (5)

11
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! >+)+,?8@A5-8B,28@5C>8)B1)D1B?.(,;8B/3++8E+118E.?*82B?B

! FCG9=8;*(E;8HB3/.,B18B/3++H+,?80(38!1"
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Belle

Babar

q2

(Babar updated at LP’05)

unknowns

z = z(t)



3

the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
1+O

(Eπ

∆

)]
, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)

0.8

0.6

0.4

0.2

0.0
2520151050

q2

1- q2( ) f (q2)

f = f0

f = f+

FIG. 1: Upper and lower bounds on the form factors from
dispersion relations, where q̂2 = q2/m2

B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.

Type of Error Variation From δ|Vub|Br δ|Vub|q2

Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop→ 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit

f+(0) = 0.25± 0.06

χ2     fits to data & lattice 
with dispersion relations Arnesen et al.

Dispersion relations show there 
is a lot of freedom for a pure 
extrapolation of lattice data

•

HPQCD
FNAL

expt. &
theory

My Average for this method:

|Vub| = 3.72 ± 0.52
|Vub| = 4.11 ± 0.52

Type of Error Variation From δ|Vub|q2

Input Points 1-σ correlated errors ±13%
Bounds F+ versus F− < 1%
mpole

b 4.88 ± 0.40 < 1%
OPE order 2 loop → 1 loop < 1%

fit also gives:
like sum-rules

|Vub| = 3.92 ± 0.52 total error
(4% expt.)

13%

χ2/(dof) ∼ 1.0

Note that this includes the information in the pure lattice method

|Vub|incl = (4.39 ± 0.34)× 10−3

(HFAG LP‘05)

(CKMfitter LP‘05)

103×

103×
103×

|Vub|treated as output
in global CKM = (3.53+0.22

−0.21)× 10−3



Nonleptonic Decays



Motivation Going Forward

<∼ 10%

Now we will turn to cases where the expansion is worse,•
So far we’ve been talking about precision theory•

∼ 20%(?)

But the odds are higher !   We can look for new physics •
in many channels, where the sensitivity appears in 

 different ways.
Need to know what the SM expectation is for Br and CP-Asymmetries •



B̄0 → D0M0

1
Nc

Λ
EM

&

Mantry, Pirjol, I.S.

suppressed

"Color suppressed"

"Exchange"

DB

b c

u

d , u d

B

D

b

d

c

u

u ,d

u, d

!

!

+AD(∗)π
long

AD(∗)π
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

Blechman et al.

Testing Factorization
and SCET

Without factorization
O

(EM

mc

)
= O(1)predictions spoiled by effects

D
0!0 0"

0 0
K

0"'

0#

D

D D

D

D
0$0

D
+!-

D
0!-

D
+
$-

D
0
$-D

+
%-

D
0 -
%

A(D*M)

A(D M)

0.0

0.5

1.0

1.5

2.0
color allowed

color suppressed

LO  SCET  prediction

*

* # + #

δ(Dπ) = 30.4± 4.8◦

δ(D∗π) = 31.0± 5.0◦
Find

and

Predict
equal strong phases δ(DM) = δ(D∗M)
equal amplitudes A(D∗M) = A(DM)



Λ2 ! EΛ! E2,m2
b

!s(q )2

c

c

b
d,s

q

q

....
q µ

!s (mv)

Bauer, Pirjol, Rothstein, I.S. 
Chay, Kim

Ciuchini et al,
Colangelo et al

Beneke, Buchalla, Neubert, Sachrajda corrections ∼ 20%

B →M1M2

SU(2),  isospin symmetry

SU(3),  isospin symmetry

•
•

classic: Gronau, London
many authors

many authors
              Rosner, Lipkin, ... 

sizeable
charm loops? k⊥ Factorization

Keum, Li, Sanda,
Lu et al.

• Factorization

mu,d

Λ ! 0.02

ms
Λ ! 0.3

C1 > C2, C7γ , C8g ! C4,6 > C3,5,9,10 > C7,8

Methods

not great precision, but sufficient for large 
new physics signals (and improvable)

Large Annihilation

C1
Λ
E

competes
(appears to be a good 

model for soft physics)



pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

B →
B →

} “hard spectator”,
“factorizable”
“soft form factor”,
“non-factorizable”

Form Factors

Nonleptonic

Factorization at

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}B →M1M2

mb

}
f(E) =

∫
dz T (z,E) ζBM

J (z,E)

+ C(E) ζBM (E)

ζBM
J (z) = fMfB

∫ 1

0
dx

∫ ∞
0
dk+J(z, x, k+, E)φM (x)φB(k+)

Factorization at √EΛ

ζBM = ?

Beneke, Feldmann
Bauer, Pirjol, I.S.

Becher, Hill, Lange, Neubert

expansion in αs(
√

EΛ)

(left as a form factor)

universality at 
EΛ

Bauer, Pirjol, 
Rothstein, I.S. 

 Factorization (with SCET)

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'



Choose some reasonable values for hadronic parameters.
Test Qualitative Agreement with Factorization

QCDF:    Buchalla et al.; Neubert, Beneke 
pQCD:    Keum, Li, Sanda   (      )k⊥

•

(NOTE: some power 
  suppressed terms
  included as well)
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Br a n c h i n g  Ra t i o  x  106

B(B → Kπ, ππ, KK )

PDG2004

BABAR
Be l l e
CL EO

New Av g.

CDF

K0π+

K+π−

K+π0

K0π0

π+π0

π+π−

π0π0

K+K0

K+K−
K0K0

pQCD

QCDF (S4)
QCDF (default)

Note:
I did not add 
theory error 

estimates here

Pattern  is 
reproduced

new
data



A  Few  Channels

Redundant measurements
in different channels 

allow us to probe for new physics



Isospin Analysis
B → ρρ

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180

CKM fit
no ! meas. in fit

B " ## (WA)
WA & B0 " #+#– (BABAR)
WA & S/Clong(#

+#– ) (Belle)

!   (deg)

1 
– 

CL

CK M
f i t t e r

LP 2005

channel is not measured, but strong experimental 
bound forbids sizeable penguins

Parameters = 6   
γ  +5 hadronic

Observables = 6

1σ

2σ

Babar ‘04 , Belle  LP’05

B → ρ0ρ0

αρρ = 96◦ ± 13◦

(            dominates as factorization predicts   A. Kagan)        ρ‖ρ‖

(see talk by F.Forti)



B → ππ

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180

B → ππ (S/C+– from BABAR)
B → ππ (S/A+– from Belle)
Combined no C/A00

CKM fit
no α meas. in fit

α    (deg)

1 
– 

CL

CK M
f i t t e r

Moriond 05
Isospin Analysis

Cπ0π0 = −0.28± 0.39

(Belle & Babar)

Problem is precision of direct
CP - Asymmetry for neutral pions

Worth remembering:  
   more input/less fit parameters means
   more ways to test for new physics

eg.  can’t see new physics in 
               amplitudes with the isospin analysis

I = 0

Baek, Botella, London, Silva

Known strong isospin breaking effects are small

Gardner;  Gronau, Zupanδα ∼ 2◦

Add “mild” input from 
factorization (use data to fix 
nonperturbative parameters)

Strategies for 

My Language
α vs. Methods for α

like PRL: Evidence vs. Observation
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A New Method for Determining γ from B → ππ Decays

Christian W. Bauer,1 Ira Z. Rothstein,2 and Iain W. Stewart3

1California Institute of Technology, Pasadena, CA 91125
2Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213

3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number
of hadronic parameters in an isospin analysis of B → ππ decays by one. This gives a theoretically
precise method for determining the CP violating phase γ by fitting to the B → ππ data without
Cπ0π0 . SCET predicts that γ lies close to the isospin bounds. With the current world averages we
find γ = 75◦ ± 2◦+9◦

−13◦ , where the uncertainties are theoretical, then experimental. The estimated
theory error shown here is obtained from assuming ΛQCD/Eπ ∼ 0.2 power corrections to our analysis.

I. INTRODUCTION

The standard model (SM) successfully explains all of
the CP violation observed to date in laboratory decays.
Possible hints for physics beyond the SM include the
amount of CP violation required for (non-lepto) baryo-
genesis, and observations in b → sqq̄ channels like B →
η′KS [1]. Standard model measurements of CP violation
in B-decays are usually expressed in terms of the angles
α, β, γ. It is important to remember that the goal is
not just to have a single accurate measurement of these
angles, but rather to test the SM picture of CP violation
and look for inconsistencies by making measurements of
the parameters in as many decay channels as possible.

Important observables for measuring γ (or α) are
the CP asymmetries and branching fractions in B →
ππ decays. Unfortunately, hadronic uncertainties and
“penguin-pollution” make the data difficult to interpret.
Gronau and London (GL) [2] have shown that using
isospin, Br(B̄ → π+π−), Br(B+ → π+π0), Br(B̄ →
π0π0), and the CP asymmetries Cπ+π−, Sπ+π−, Cπ0π0 ,
one can eliminate the hadronic uncertainty and deter-
mine γ. Thus data is used to determine the 5 hadronic
isospin parameters. This year Babar and Belle [3] re-
ported a first observation of Cπ0π0 bringing the GL anal-
ysis from the drawing board to reality. Unfortunately,
the uncertainties in Cπ0π0 and Br(B → π0π0) are still
too large to give strong constraints, leaving a four-fold
discrete ambiguity and a ±29◦ window of uncertainty in
γ (at 1-σ) near the SM preferred value.

In this letter we observe that the soft-collinear effec-
tive theory (SCET) [5] predicts that one hadronic pa-
rameter vanishes at leading order in a power expansion
in ΛQCD/Eπ, and that this provides a robust new method
for determining γ. The parameter is ε = Im(C/T ), where
T and C are ”tree” and ”color suppressed” amplitudes
(defined below). From the SCET analysis of B → ππ [6]
we know that ε vanishes to all orders in αs(

√
EπΛQCD)

since the “jet-function” does not involve a strong phase,
and so ε receives corrections suppressed by ΛQCD/Eπ or
αs(mb). Our method does not rely on a power expan-
sion for any of the other isospin parameters. Thus, is-

sues like the size of charm penguins and whether “hard-
scattering” or “soft” contributions dominate the B → π
form factors [6–10, 12] are irrelevant here. Our analy-
sis also remains robust if so-called “chirally enhanced”
power corrections [8] are included. It differs from the
QCDF [8] and pQCD [12] analyses; for example we work
to all orders in ΛQCD/mb for most quantities and do not
use QCD sum rules to obtain hadronic parameters.

The world averages for the CP averaged branching ra-
tios and the CP asymmetries are currently [3, 4]

Br× 106 Cππ Sππ

π+π− 4.6 ± 0.4 −0.37± 0.11 −0.61± 0.13
π0π0 1.51± 0.28 −0.28± 0.39
π+π0 5.61± 0.63

(1)

For later convenience we define the ratios

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0
= 0.446± 0.064 ,

Rn =
Br(B0 → π0π0)τB−

Br(B− → π0π−)τB0
= 0.293± 0.064 , (2)

and quote the product Rn Cπ0π0 = 0.082± 0.116.
To obtain general expressions for these observables, we

use isospin and unitarity of the CKM matrix to write

A(B̄0 → π+π−) = e−iγ |λu|T − |λc|P
A(B̄0 → π0π0) = e−iγ |λu|C + |λc|P√

2A(B− → π0π−) = e−iγ |λu| (T + C)
(3)

Here λu = VubV
∗
ud, λc = VcbV

∗
cd. The CP conjugate am-

plitudes are obtained from (3) with γ → −γ. With our
convention for the π0π0 amplitude one includes a 1/2 for
identical particles in the rate. The amplitudes T , C, P
are complex, as are the electroweak penguin amplitudes
P 1

ew and P 2
ew.

The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and

β known|λc,u| = CKM factors , take

Data               Significant P,  “penguins”, 
               
                        Large C,  “color suppressed amplitude”

(see A.Ali, ICHEP’04)



NOT  a contradiction with factorization.

Br(B → π0π0)

ζBπ
J ∼ ζBπ if                    , then a term 

theorem ruins color suppression and explains the rate
• C1

Nc
〈ū−1〉π ζBπ

J

! 3

in the factorization 

   if                        this Br is sensitive to power corrections
 (small wilson coeffs. at LO could compete with  larger ones at   
   subleading order) .

= 1.45± 0.29

ζBπ ! ζBπ
J

is large (a LP’03  hot  topic)

• In the future: determine parameters using improved data on the

expected ∼ 0.3

q2B → π"ν̄

Why?

form factor at low       to provide a check. 



• Power counting says Penguins can’t be TOO big

Lunghi, Gronau, Wyler

|P |
|T | ≤ 1Impose:

B → ππ

and their strong phase should not be TOO large 
(assume factorization gets the sign right)

Buchalla, Safir

−π

2
≤ arg

(P

T

)
≤ π

2

Removes discrete 
ambiguities
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B → ππ
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Bauer, Rothstein, I.S.

Factorization predicts a
Flat Tree Triangle

Grossman, Hoecker, Ligeti, Pirjol
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ε = Im
(C

T

)
= O

(
αs(mb),

Λ
E

)
<∼ 0.2 ε

γ

1

•
εC/T)

τ (t)

Use this to get     without            . α Cπ0π0

γ = π − βexpt − α

for α ∼ 90◦ ε = 0.2 ↔ τ (t) ∼ 5◦

ε = 0.4 ↔ τ (t) ∼ 10◦

ε ∼ 0, τ (t) ∼ 0



B → Kπ Is there a  K-pi  CP Puzzle ?
• Direct-CP sum rule:

Gronau, Rosner

Expand in

SU(3),  global fits to data •
Chiang, Gronau, Luo, 

Rosner, Suprun 

(Neglect E, A, PA amplitudes)

0 25 50 75 100 125 150 175

30

40

50

60

70

Global PP fit

!

"2

Updated by Suprun
(pre-LP’05 data)

12 parameters, 18 predictions
ππ,KK, πη, πη′Kπ,Kη,Kη′

γ = 61◦ ± 11◦
agrees with

global fit

Br(K+π−), Br(K0π0), ACP(K0π0) give ∆χ2 = (2.7, 5.9, 2.9)

∣∣∣∣V ∗
usVub

V ∗
csVcb

∣∣∣∣ T

P

∣∣∣∣V ∗
usVub

V ∗
csVcb

∣∣∣∣ C

P
, , P (c)

ew

P{0.02

∆(f) = ACP (f)ΓCP
avg(f)

ΓCP
avg(π

−K̄0)

∆(K̄0π0)− 1
2
∆(K+π−) + ∆(K+π0) = O(ε2)

0.077± 0.070 = O(ε2)

no puzzle here yet

account for fact that
color-suppressed terms 

can be large

uses LP’05 Belle          data ACP

hints of a puzzle?

ε =

see also Buras, Fleischer, Recksiegel, Schwab;
Kim, Oh, Yu



B → K∗γ B → ργ&
Beneke, Feldmann, Seidel 
Ali, Lunghi, Parkhomenko
Bosch, Buchalla 

SCET (K*    )
Chay, Kim; 
Becher, Hill, Neubert

Theory based on Factorization Formula:

Factorization & Phenomenology

〈V γ|Qi|B〉 = T I
i FV +

∫
dx dk T II

i (x, k) φB(k)φV (x) + O
(
C1

Λ
mb

) γ

CKM2005 WG3: CKM Constraints from                            ! Stefan W. Boschb → dγ/b → sγ

NLO QCD Corrections

• Hard vertex contributions:

• Hard spectator contributions:

• Annihilation contributions:
    isospin breaking

Q8Q1...6 Q1...6 Q8

Q8Q1...6

Greub, Hurth, Wyler
Buras, Czarnecki, Misiak, Urban

Beneke, Feldmann, Seidel
Ali, Parkhomenko

SWB, Buchalla

x = photon attachment

→
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CKM2005 WG3: CKM Constraints from                            ! Stefan W. Boschb → dγ/b → sγ

NLO QCD Corrections

• Hard vertex contributions:

• Hard spectator contributions:

• Annihilation contributions:
    isospin breaking

Q8Q1...6 Q1...6 Q8

Q8Q1...6

Greub, Hurth, Wyler
Buras, Czarnecki, Misiak, Urban

Beneke, Feldmann, Seidel
Ali, Parkhomenko

SWB, Buchalla

x = photon attachment

→

from Bosch,Buchalla

annihilation

small for ρ0

Br(B → ρ0γ)
Br(B → K∗γ)

=
1.023

2

∣∣∣∣Vtd

Vts

∣∣∣∣2 ξ−2
[
1 + 2(ckm)δa

] ∣∣∣∣ ac
7(ρ)

ac
7(K∗)

∣∣∣∣2

ξ =
FK∗

Fρ

SU(3)
violation

ξ = 1.25± 0.20
ξ = 1.1± 0.1

(Ball, Zwicky; sum-rules)
(Becirevic, Mescia; 

                    lattice+extrapolation to small        )q2

{small CKM’05
1.2± 0.1

 is this  
conservative ?
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Executive Summary
•

•

Radiative Decays

Lattice QCD 
new fD! agrees with new Cleo-C result
new staggered fB, fBs/fB!  improves the            constraint∆md

• Factorization Theorems

smaller uncertainty for            constraint∆ms

progress on understanding and reducing the 
QCD uncertainites

• Lattice QCD & Continuum methods 
2005 yields precise exclusive determinations of Vub

New tools developed, progress in understanding 
Nonleptonic B-Decays, new “strategies” for       α

Places to watch for “puzzles”!



Thanks:

S. Aoki, M.Wingate, A. Kronfeld,                  
T. Browder, C. Hearty, I. Shipsey
M. Misiak, C. Bauer, Z. Ligeti, U. Nierste

and a special thanks to A. Hocker..


