Higgs Production with a Jet Veto at NNLL + NNLO

discussion with CMS arXiv:1012.4480 I. Stewart, with C.Berger, C.Marcantonini, F. Tackmann, W.Waalewijn

⇒ Veto events with central jets, measure $pp \rightarrow H(\rightarrow WW) + 0$ jets (Sensitivity dominated by 0-jet sample)

$$L = \ln \frac{p_T^{\text{cut}}}{m_H}$$
 or $L = \ln \frac{\mathcal{T}_{\text{cm}}^{\text{cut}}}{m_H}$

 $\Rightarrow T_{\rm cm}^{\rm cut} \simeq 10 \, {
m GeV}$ corresponds to $p_T^{\rm cut} \simeq 20 \, {
m GeV}$ in conventional jet veto

$$L = \ln \frac{p_T^{\text{cut}}}{m_H}$$
 or $L = \ln \frac{\mathcal{T}_{\text{cm}}^{\text{cut}}}{m_H}$

$$\sigma_{0\text{-jet}} = 1 + \alpha_s L^2 + \alpha_s^2 L^4 + \alpha_s^3 L^6 + \dots + \alpha_s L + \alpha_s^2 L^3 + \alpha_s^3 L^5 + \dots + \alpha_s + \alpha_s^2 L^2 + \alpha_s^3 L^4 + \dots + \alpha_s^2 L + \alpha_s^3 L^3 + \dots + \alpha_s^2 + \alpha_s^3 L^2 + \dots + \alpha_s^3 L + \dots + \alpha_s^3 L + \dots$$

7

$L = \ln \frac{p_T^{\text{cut}}}{m_H}$	or $L = 1$	$\ln \frac{\mathcal{T}_{\rm cm}^{\rm cut}}{m_H}$	7	50000⊗ - ≻ -
LO	NLO	NNLO		
$\sigma_{0 ext{-jet}} = 1$	$+ \alpha_s L^2$	$+ \alpha_s^2 L^4$	$+ \alpha_s^3 L^6$	$+\ldots$
	$+ \alpha_s L$	$+ \alpha_s^2 L^3$	$+ \alpha_s^3 L^5$	$+\ldots$
	$+ \alpha_s n_1(p_T^{\mathrm{cut}})$	$+ \alpha_s^2 L^2$	$+ \alpha_s^3 L^4$	$+\ldots$
		$+ \alpha_s^2 L$	$+ \alpha_s^3 L^3$	$+\ldots$
Fixed Order to		$+ \alpha_s^2 n_2 p_T^{\text{cut}}$	$)_{X \rightarrow WW} + \alpha^3 L^2_{e^+}$	$\nu e^{-\nu} + X^{\bullet}$
NNLO		300 MRST2001 LO,	$+ \alpha^3 L$	
		$M_{\rm h}/2 \leq \mu_{\rm R} = \frac{1}{250} \qquad M_{\rm h} = 165 \text{ GeV}$	$\stackrel{\mu_{\rm F} \leq 2 {\rm M}_{\rm h}}{+} \alpha_s^3$	NNLO
FEHiP, HNNLO: Numerical fully differential NNLO cross section for		[q] 200		
		ь		NLO
$gg \rightarrow \pi$	Orenziail			

100

20

40

60

Е

veto

[Anastasiou, Melnikov, Petriello; Grazzini]

8

100

LO

80

[CDF numbers from arXiv:1007.4587]

00000,00000

$= \ln \frac{\mathcal{T}_{\rm cm}^{\rm cut}}{m_H}$		~ - ≫00000	
$+ \alpha_s^2 L^4$	$+ \alpha_s^3 L^6$	$+\ldots$	LL
$+ \alpha_s^2 L^3$	$+ \alpha_s^3 L^5$	$+\ldots$	
$+ \alpha_s^2 L^2$	$+ \alpha_s^3 L^4$	$+\ldots$	
$+ \alpha_s^2 L$	$+ \alpha_s^3 L^3$	$+\ldots$	
$+ \alpha_s^2 n_2(p_T^{\text{cut}})$	$+ \alpha_s^3 L^2$	$+\ldots$	
	$+ \alpha_s^3 L$	$+\ldots$	
	$+ \alpha_s^3$	$+\ldots$	
	$= \ln \frac{T_{cm}^{cut}}{m_H}$ $+ \alpha_s^2 L^4$ $+ \alpha_s^2 L^3$ $+ \alpha_s^2 L^2$ $+ \alpha_s^2 L$ $+ \alpha_s^2 n_2 (p_T^{cut})$	$= \ln \frac{\mathcal{T}_{cm}^{cut}}{m_H}$ $+ \alpha_s^2 L^4 + \alpha_s^3 L^6$ $+ \alpha_s^2 L^3 + \alpha_s^3 L^5$ $+ \alpha_s^2 L^2 + \alpha_s^3 L^4$ $+ \alpha_s^2 L + \alpha_s^3 L^3$ $+ \alpha_s^2 n_2 (p_T^{cut}) + \alpha_s^3 L^2$ $+ \alpha_s^3 L$ $+ \alpha_s^3 L$	$= \ln \frac{\mathcal{T}_{cm}^{cut}}{m_H}$ $= \ln \frac{\mathcal{T}_{cm}^{cut}}{m_H}$ $= \frac{\alpha_s^2 L^4}{m_H} + \frac{\alpha_s^3 L^6}{m_H} + \dots$ $+ \frac{\alpha_s^2 L^3}{m_s^3 L^2} + \frac{\alpha_s^3 L^4}{m_s^3 L^3} + \dots$ $+ \frac{\alpha_s^2 L}{m_s^3 L^2} + \frac{\alpha_s^3 L^3}{m_s^3 L^2} + \dots$ $+ \frac{\alpha_s^3 L}{m_s^3 L^3} + \dots$ $+ \frac{\alpha_s^3 L}{m_s^3 L^3} + \dots$

eg. MC@NLO is NLO+LL

p_T^{cut} or I –	$-\ln T_{\rm cm}^{\rm cut}$		~ ←
$L = m \frac{1}{m_H}$ or $L = m_H$	$-\frac{111}{m_H}$		
LO NLO	NNLO		
$\sigma_{0 ext{-jet}} = \ 1 \ + lpha_s L^2$	$+ \alpha_s^2 L^4$	$+ \alpha_s^3 L^6$	$+\ldots$ LL
$+ \alpha_s L$	$+ \alpha_s^2 L^3$	$+ \alpha_s^3 L^5$	$+\cdots$ NLL
$+ \alpha_s n_1(p_T^{\mathrm{cut}})$	$+ \alpha_s^2 L^2$	$+ \alpha_s^3 L^4$	+
	$+ \alpha_s^2 L$	$+ \alpha_s^3 L^3$	$+ \dots NNLL$
	$+ \alpha_s^2 n_2(p_T^{\mathrm{cut}})$	$+ \alpha_s^3 L^2$	$+\ldots$
calculation:		$+ \alpha_s^3 L$	$+\ldots$
NNLL + NNLO		$+ \alpha_s^3$	$+\ldots$

two orders of summation beyond LL shower programs

Our

Our calculation: NNLL + NNLO

Function	describes	at the scale		
Hard H_{gg}	hard virtual radiation	$ \mu_H \simeq m_H$		logs give
Beam B_g	virtual & real energetic ISR	$\mu_B\simeq \sqrt{\mathcal{T}_{ m cm}m_H}$	}	sensitivity
Soft S_B^{gg}	virtual & real soft radiation	$\mu_S \simeq \mathcal{T}_{ m cm}$	J	scales

Perturbation theory at each scale contributes to uncertainties

- large K factors (~2-3) in fixed order results are reduced by log + π^2 resummation
- theory error bands overlap, come from varying μ_H, μ_B, μ_S

- NNLO not reliable for small $\,\mathcal{T}_{
 m cm}^{
 m cut}$
- logs are large, NNLL central value lower than NNLO (partly accounted for PS)

scale uncertainty at NNLL+NNLO is 10-20%

> (Tevatron uncertainty slightly larger, and greater than 7% that is currently used)

Friday, February 4, 2011

individual scale variations

- all previous plots show envelope of the three separate scale variations
- μ_B and μ_S dominate for small \mathcal{T}_{cm}^{cut}

• Reweigh the partonic beam thrust spectrum in Monte Carlo to NNLL+NNLO. Then use it to analyze jets with a standard $p_{\rm T}^{\rm cut}$ method.

(add hadronization, underlying event, ...)

- Use MC to translate the NNLL+NNLO error band into an error for the 0-jet $p_{\rm T}^{\rm cut}$ sample.
- When sample is divided into jet bins, theory errors are a matrix

eg.
$$0, \geq 1$$
 jets $\begin{pmatrix} \sigma_0^2 & \sigma_{0,\geq 1}^2 \\ \sigma_{0,\geq 1}^2 & \sigma_{\geq 1}^2 \end{pmatrix} \simeq \begin{pmatrix} \sigma_0^2 & -\sigma_0^2 \\ -\sigma_0^2 & \sigma_0^2 + \sigma_{\text{incl}}^2 \end{pmatrix}$ smaller incl.
uncertainty constraints sum of all entries eg. $0, 1, \geq 2$ jets $\begin{pmatrix} \sigma_0^2 & \sigma_{01}^2 & \sigma_{0,\geq 2}^2 \\ \sigma_{01}^2 & \sigma_1^2 & \sigma_{1,\geq 2}^2 \\ \sigma_{0,\geq 2}^2 & \sigma_{1,\geq 2}^2 & \sigma_{\geq 2}^2 \end{pmatrix}$

Validation? Other options?
Drell-Yan pairs from \(\gamma^*, Z^*\) with a jet veto should be used for validation?
Drectly measure beam thrust

(important on its own).

Soft

Theory Plans:

- A calculation of the Higgs + 0-jet cross section at one higher order (N3LL) is feasible. "Only" a missing 2 loop calculation. This will help reduce the perturbative uncertainty.
- Similar calculations can be carried out for Higgs + I jet. This work is already in progress.
- What do you need? Wish list?

Tables with results for a large number of mH values? Stand alone code that can be run on demand?

Backup

Signal and Background

Expected	WW	$\rightarrow e \nu \mu \nu$	events	in 1 fb $^{-1}$	L

[ATLAS arXiv:0901.0512]

Cut	H ightarrow WW	$t\bar{t} \rightarrow WWb\bar{b}$	WW	Z ightarrow au au	W+ jets
Lepton selection	166	6501	718	4171	209
$p_T^{ m miss} > 30{ m GeV}$	148	5617	505	526	182
Z ightarrow au au rejection	146	5215	485	164	150
Central jet veto	62	15	238	32	76
b-jet veto	62	7	238	31	76
$M_T < 600{ m GeV}\ \Delta \phi_{\ell\ell} < \pi/2$	50.6 ± 2.5	2.3 ± 1.6	85.4 ± 2.7	< 1.7	38 ± 38

- Central jet veto essential to eliminate huge $t\bar{t} \rightarrow WWb\bar{b}$ background
- Main irreducible background from $pp \rightarrow WW$