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Figure 3: The expected (dashed) and observed (solid) cross section limits for the individual search chan-

nels, normalised to the Standard Model Higgs boson cross section, as functions of the Higgs boson mass.

These results use the profile likelihood technique with 95% CL limits using the CLS construction.

The searches for the Standard Model Higgs boson can also be interpreted in the framework of a

Standard Model with a fourth generation of heavy fermions. The masses of the fourth-generation lep-

tons and down-type quark are set to a high value of 600 GeV. The mass difference between the fourth

generation up-type and down-type quarks is fixed to 50+ 10× ln(mH/115[GeV ]) for consistency with

the electroweak precision measurements [27]. The systematic uncertainties related to the QCD scale,

PDF and αS uncertainties are assumed to be the same as the Standard Model case for the gluon fusion

process. To account for the missing electroweak radiative corrections which can have a sizable impact

on the production cross section, an additional ±10% systematic uncertainty is added linearly to the over-

all theoretical uncertainty on the production cross section. The impact of a heavy fourth generation of

fermions on the signal production rates in the various channels are not homogeneous, for a reinterpre-

tation of the searches for the Standard Model Higgs boson in this framework a specific combination is

therefore necessary. The result of this combination is illustrated in Fig. 7. With the aforementioned set

of model parameters, Higgs boson mass hypotheses above 116 GeV are expected to be excluded at the

95% CL and a Higgs boson with mass in excess of 119 GeV and up to 593 GeV is excluded at the 95%

CL. Previous exclusion limits in this framework, set by TeVatron and LHC experiments, are reported

in [19, 28, 29].

Conclusion

The outstanding performance of the LHC, that allowed more than 1 fb−1 of integrated luminosity to be

accumulated by the end of June of this year, exceeding the objective of the LHC for 2011, has continued

throughout the summer, allowing for additional datasets corresponding to 0.6 and up to 1.1 fb−1 of

integrated luminosity to be added to the H →WW (∗) → !+ν!−ν and H → ZZ(∗) → !+!−!+!− channels

respectively extending the total dataset to up to 2.3 fb−1. The H →WW (∗) → !+ν!−ν channel has also
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Fig. 35: SM Higgs branching ratios as a function of the Higgs-boson mass.
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Figure 3: The expected (dashed) and observed (solid) cross section limits for the individual search chan-

nels, normalised to the Standard Model Higgs boson cross section, as functions of the Higgs boson mass.

These results use the profile likelihood technique with 95% CL limits using the CLS construction.

The searches for the Standard Model Higgs boson can also be interpreted in the framework of a

Standard Model with a fourth generation of heavy fermions. The masses of the fourth-generation lep-

tons and down-type quark are set to a high value of 600 GeV. The mass difference between the fourth

generation up-type and down-type quarks is fixed to 50+ 10× ln(mH/115[GeV ]) for consistency with

the electroweak precision measurements [27]. The systematic uncertainties related to the QCD scale,

PDF and αS uncertainties are assumed to be the same as the Standard Model case for the gluon fusion

process. To account for the missing electroweak radiative corrections which can have a sizable impact

on the production cross section, an additional ±10% systematic uncertainty is added linearly to the over-

all theoretical uncertainty on the production cross section. The impact of a heavy fourth generation of

fermions on the signal production rates in the various channels are not homogeneous, for a reinterpre-

tation of the searches for the Standard Model Higgs boson in this framework a specific combination is

therefore necessary. The result of this combination is illustrated in Fig. 7. With the aforementioned set

of model parameters, Higgs boson mass hypotheses above 116 GeV are expected to be excluded at the

95% CL and a Higgs boson with mass in excess of 119 GeV and up to 593 GeV is excluded at the 95%

CL. Previous exclusion limits in this framework, set by TeVatron and LHC experiments, are reported

in [19, 28, 29].

Conclusion

The outstanding performance of the LHC, that allowed more than 1 fb−1 of integrated luminosity to be

accumulated by the end of June of this year, exceeding the objective of the LHC for 2011, has continued

throughout the summer, allowing for additional datasets corresponding to 0.6 and up to 1.1 fb−1 of

integrated luminosity to be added to the H →WW (∗) → !+ν!−ν and H → ZZ(∗) → !+!−!+!− channels

respectively extending the total dataset to up to 2.3 fb−1. The H →WW (∗) → !+ν!−ν channel has also
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Factorization and SCET Higgs Jet Veto Calculation Results
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Use Jets bins:

backgrounds vary with # of jets•

H →WW → �ν�ν̄

H →WW → �νjj

H → ττ

H → γγ

(exclusive jet σ’s)
(σ’s with a particular # of jets)

• needed to improve sensitivity

Table 3: The expected numbers of background events after selecting two leptons with opposite charge
and m!! > 15 GeV (meµ > 10 GeV), after applying the Z boson mass veto and after applying the Emiss

T,rel
selections. The observed numbers of events in data are also given in the last column. The background
estimates are entirely from MC and they do not include the W+jets contribution which is fully data-
driven. The uncertainties shown are the combination of the statistical and all systematic uncertainties.

WW Z/γ∗ + jets tt̄ tW/tb/tqb WZ/ZZ/Wγ Total Bkg. Observed
m!! > 15 GeV,
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Emiss
T,rel 660 ± 50 300 ± 200 2700 ± 300 310 ± 40 28 ± 4 4000 ± 500 4051
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Figure 5: Multiplicity of jets with pT > 25 GeV after the cut on Emiss
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the ratio between the data and the background expectation from MC, with the yellow band indicating
the total systematic uncertainty in the normalization (but not the shape) of the various components. The
signal is shown for mH = 150 GeV.
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Figure 2: Cut flow evolutions in the 0-jet bin for (a) mH = 140 GeV/c2 SM Higgs selection and
(b) mH = 160 GeV/c2 SM Higgs selection. The first step corresponds to the dilepton selection;
the second step corresponds to the projected Emiss

T requirements; the third step corresponds
to the Z veto; the fourth step corresponds to the jet veto; the fifth step corresponds to the top
veto. All cuts up to this point correspond to the W+W− common preselection. The last set of
requirements depends on the Higgs mass selection. The sixth and seventh steps correspond to
the p�,max

T and p�,min
T requirements, respectively; the eighth step corresponds to the m�� require-

ment, while the ninth step corresponds to the m��Emiss
T

T two-side requirement. Finally, the last
step corresponds to the ∆φ�� requirement. All the appropriate background normalizations and
scale factors from data are at every step included in the signal and background expectations.

tends to get narrower uncertainty bands. Results are reported in the following using only the
CLs approach. The systematic uncertainties are included as log-normal distributions.

The 95% C.L. observed and expected median upper limits are shown in Figure 3. The bands
represent the 1σ and 2σ probability intervals around the expected limit. The a-posteriori proba-
bility intervals on the cross section are constrained by the a-priori minimal assumption that the
signal and background cross sections are positive definite. We exclude the presence of a Higgs
boson with a mass in the range [147 - 194] GeV/c2 at 95% C.L., with an expected exclusion
sensitivity in the range [136 - 200] GeV/c2.

process Higgs qq → WW gg → WW VV top Z/γ∗ → �+�− W + jets ∑Bkg data
0-jet bin, SF 18.8 ± 4.2 31.5 ± 5.5 1.5 ± 0.8 0.8 ± 0.1 3.1 ± 1.1 0.1 ± 0.0 5.6 ± 2.3 44.0 ± 6.2 46
0-jet bin, OF 15.9 ± 3.6 29.1 ± 5.1 1.3 ± 0.7 0.5 ± 0.1 1.4 ± 0.5 3.1 ± 4.2 5.3 ± 2.2 40.6 ± 7.0 41
1-jet bin, SF 6.6 ± 2.2 8.3 ± 3.1 0.5 ± 0.3 0.5 ± 0.1 5.6 ± 1.2 0.2 ± 0.1 2.4 ± 1.1 17.8 ± 3.5 23
1-jet bin, OF 4.6 ± 1.5 5.8 ± 2.2 0.3 ± 0.2 0.3 ± 0.1 3.2 ± 0.8 1.2 ± 2.7 1.5 ± 0.9 12.6 ± 3.7 23
2-jet bin 0.5 ± 0.1 0.6 ± 0.2 0.1 ± 0.1 0.0 ± 0.0 2.6 ± 1.5 0.8 ± 0.6 1.0 ± 0.6 5.3 ± 1.7 7

Table 4: Summary of the yields for signal, main backgrounds and data for the mH = 140 GeV/c2

analysis. The total systematic uncertainties are also reported. Same-flavor (SF) and opposite-
flavor (OF) final states are shown separately for both 0-jet and 1-jet bins.
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Figure 6: Kinematic distributions relevant to the H + 0 jet analysis after the jet veto cut. The invariant
mass m!! distribution is shown in the top figure, the transverse momentum of the dilepton system p!!T is
shown in the middle figure and the azimuthal opening angle ∆φ!! of the two selected leptons is shown in
the bottom figure. The expected signal is shown for mH = 150 GeV. The lower part of each plot shows
the ratio between the data and the background expectation from MC, with the yellow band indicating the
total systematic uncertainty in the normalization (but not the shape) of the various components. The final
bin includes the overflow.
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Figure 2: Cut flow evolutions in the 0-jet bin for (a) mH = 140 GeV/c2 SM Higgs selection and
(b) mH = 160 GeV/c2 SM Higgs selection. The first step corresponds to the dilepton selection;
the second step corresponds to the projected Emiss

T requirements; the third step corresponds
to the Z veto; the fourth step corresponds to the jet veto; the fifth step corresponds to the top
veto. All cuts up to this point correspond to the W+W− common preselection. The last set of
requirements depends on the Higgs mass selection. The sixth and seventh steps correspond to
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T and p�,min
T requirements, respectively; the eighth step corresponds to the m�� require-

ment, while the ninth step corresponds to the m��Emiss
T

T two-side requirement. Finally, the last
step corresponds to the ∆φ�� requirement. All the appropriate background normalizations and
scale factors from data are at every step included in the signal and background expectations.

tends to get narrower uncertainty bands. Results are reported in the following using only the
CLs approach. The systematic uncertainties are included as log-normal distributions.

The 95% C.L. observed and expected median upper limits are shown in Figure 3. The bands
represent the 1σ and 2σ probability intervals around the expected limit. The a-posteriori proba-
bility intervals on the cross section are constrained by the a-priori minimal assumption that the
signal and background cross sections are positive definite. We exclude the presence of a Higgs
boson with a mass in the range [147 - 194] GeV/c2 at 95% C.L., with an expected exclusion
sensitivity in the range [136 - 200] GeV/c2.

process Higgs qq → WW gg → WW VV top Z/γ∗ → �+�− W + jets ∑Bkg data
0-jet bin, SF 18.8 ± 4.2 31.5 ± 5.5 1.5 ± 0.8 0.8 ± 0.1 3.1 ± 1.1 0.1 ± 0.0 5.6 ± 2.3 44.0 ± 6.2 46
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Table 4: Summary of the yields for signal, main backgrounds and data for the mH = 140 GeV/c2

analysis. The total systematic uncertainties are also reported. Same-flavor (SF) and opposite-
flavor (OF) final states are shown separately for both 0-jet and 1-jet bins.
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Fixed-Order Calculations

Factorization for inclusive Higgs production [Collins, Soper, Sterman; Bodwin; ’80s]

dσFO =
√

2GF m2

H

576πE2
cm

�

i,j

� dξa

ξa

dξb

ξb

dσpartonic

ij

�xa

ξa

,
xb

ξb

�
fi(ξa) fj(ξb)

Partonic cross section computed in QCD fixed-order perturbation theory

dσpartonic

gg
= + + · · · +

�
+ · · ·

⇒ Two main complications
1 Evaluation of virtual diagrams
2 Integration over real emissions → cancellation of IR divergences
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Higgs Production at NNLO

Gluon fusion: gg → H

Total cross section at NNLO including top-mass effects
[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]
[Pak, Rogal, Steinhauser; Harlander, Mantler, Marzani, Ozeren]

Electroweak corrections to O(αemαs)
[Aglietti, Bonciani, Degrassi, Vicini; Actis, Passarino, Sturm, Uccirati; Anastasiou, Boughezal, Petriello]

Summation of higher-order threshold and constant terms to N3LL
[de Florian, Grazzini; Ahrens, Becher, Neubert, Yang]

⇒ Uncertainties: perturbative ∼ 3%, PDFs ∼ 7%

FEHiP, HNNLO: Numerical fully differential cross section at NNLO
[Anastasiou, Melnikov, Petriello; Grazzini]

Vector-boson fusion: qq → qqH

Total cross section at NNLO∗ [Bolzoni, Maltoni, Moch, Zaro]

⇒ Uncertainties: perturbative � 2%, PDFs ∼ 3%

HAWK: Numerical fully differential cross section at NLO (QCD+EW)
[Ciccolini, Denner, Dittmaier, Mück]
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Fig. 2: Comparison of ABPS [30] and dFG [38] results, including scale uncertainty bands.

2.3 Uncertainties
We now discuss the various sources of uncertainty affecting the cross sections presented in Tables 1–4.
The uncertainty has two primary origins: From missing terms in the partonic cross sections and from our
limited knowledge of the PDFs.

• Uncalculated higher-order QCD radiative corrections are one of the most important sources of
uncertainty on the partonic cross section. The customary method used in perturbative QCD calcu-
lations to estimate their size is to vary the renormalization and factorization scales around a central
value µ0, which is chosen to be of the order of the hard scale of the process. The uncertainty of the
ABPS and dFG calculations is quantified in this way. The factorization and renormalization scales
µF and µR are varied in the range 0.5µ0 < µF , µR < 2µ0, with the constraint 0.5 < µF/µR < 2.
The choice of the central scale µ0 is instead different: dFG choose µ0 = MH, whereas ABPS
choose µ0 = MH/2. The structure of the scale dependent logarithmic contributions in the fixed-
order calculation of ABPS suggests that the central value of the scale should be chosen paramet-
rically smaller thanMH. This is supported by the better convergence of the cross section through
NNLO and also after including the leading N3LO terms [19]. The resummation implemented in
the NNLL result of dFG minimizes the sensitivity to the choice of central scale. This is clearly
shown in Fig. 3, where the scale dependent bands for different values of the reference scale µ0 are
shown. The results of dFG show a remarkable stability with respect to the choice of µ0 both at
7 TeV and at 14 TeV.
In principle, the uncertainty obtained through scale variations can only give a lower limit on the
true uncertainty. Nonetheless, we point out that the results of ABPS and dFG are consistent with
those obtained at the previous order (i.e., dFG NNLL bands overlap with the NNLO band, and
ABPS NNLO band overlap with the NLO band), thus suggesting that the uncertainty obtained
with this procedure provides a reasonable estimate of the true perturbative uncertainty. At

√
s = 7

(14) TeV the scale uncertainty of the ABPS result is about ±9−10% (±8−13%) in the range
MH = 100−300 GeV, and it decreases to about ±7% (±5%) as MH increases. At

√
s = 7

(14) TeV the scale uncertainty of the dFG result is about ±6−8% (±6−9%) in the range MH =
100−300 GeV, and it decreases slightly to about ±5−7% (±5%) asMH increases.

• Another source of perturbative uncertainty on the partonic cross sections comes from the im-
plementation of the EW corrections. Both ABPS and dFG results are obtained in the complete
factorization scheme discussed above. The partial factorization scheme would lead to a change
of the results ranging from about −3% (MH = 110 GeV) to +1% (MH = 300 GeV). We note
that the effective-theory calculation of Ref. [30] supports the use of the complete factorization
scheme. When the three-loop mixed QCD–EW correction derived there is normalized with the

10
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Multiple Particle Final States
Introduction More Introduction Fixed Order Resummation Monte Carlo Summary

NLO Calculations with Multiple Final-State Particles

Number of NLO Feynman diagrams explodes with increasing number of
particles in the final state

Unitarity-based methods allow to circumvent Feynman diagrams
Directly construct NLO helicity amplitudes from “sewing together”
lower-point tree amplitudes
Several NLO programs/libraries

� MCFM [Campbell, K. Ellis, and others]

� Blackhat [Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

� Rocket [K. Ellis, Melnikov, Zanderighi]

� HelacNLO [Bevilacqua, Czakon, Papadopoulos, Pittau, Worek]

� Samurai [Mastrolia, Ossola, Reiter, Tramontano]

More differential and more realistic final states

gg → H + 2 jets fully differential including Higgs decays

tt̄ → WWbb̄ fully differential including top spin correlations and decay

Frank Tackmann (MIT) Better Theory Predictions for the LHC 2010-11-22 15 / 34

[Campbell, K.Ellis, Williams]

Introduction More Introduction Fixed Order Resummation Monte Carlo Summary

Higgs + 2 Jets at NLO

All NLO amplitudes for gg → H +2 jets known analytically by now [many papers]

MCFM: Fully differential implementation fast enough to include Higgs
decays [Campbell, K. Ellis, Williams]

maximum rapidity difference between two jets

dashed: LO
solid: NLO

We will of course be happy to have this “problem” ...
Frank Tackmann (MIT) Better Theory Predictions for the LHC 2010-11-22 16 / 34

eg. , . . .
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Fig. 31: The gg luminosity functions and uncertainties at 7 TeV, normalized to the MSTW08 result. (Plots by
G. Watt [257].)

and NNPDF, while the agreement with ABKM, HERAPDF, and GJR is less good at higher masses. It
is notable that the PDF luminosities tend to differ at low x and high x. The CTEQ6.6 distributions, for
example, may be larger at low x than MSTW2008, due to the positive-definite parametrization of the
gluon distribution; the MSTW gluon starts off as negative at low x and Q2, and this results in an impact
for both the gluon and sea-quark distributions at larger Q2 values. The NNPDF2.0 qq luminosity tends
to be somewhat lower, in theW,Z region for example. Part of this effect might come from the use of a
zero-mass heavy-quark scheme, although other differences might be relevant. However, there are other
discrepancies of more than 20% at high or low invariant masses.

At small x details of heavy-flavour treatment cause some deviation, and there is also an anticorre-
lation with the value of αs which varies between groups (with the GJR value differing most). At high x
Tevatron jet data gives a constraint on the gluon (though there is some variation depending on the data
set) and this data is not used in ABKM09 (investigations by ABM may be found at Refs. [258, 259])
and HERAPDF1.0 fits. At high x,W production data (not used by ABKM, GJR, and HERAPDF) con-
strain the light-quark distributions, which are then correlated to the gluon by the momentum sum rule.
The high and low-x gluon distributions are also anti-correlated by the momentum sum rule. All these
factors, amongst others, may influence the forms of the gluon luminosities and be responsible for the
discrepancies observed.

Benchmark computations of LHC total cross sections and rapidity distributions from various PDF
groups can be found in Ref. [260] (see also Ref. [261]); the degree of agreement and discrepancy between
the groups is commensurate with the luminosity plots shown here. Differences between the luminosities
and predictions for those sets which exist at NNLO are similar to NLO, showing that they are most
likely due to choices of data sets in the fit or other assumptions rather than theoretical procedures, such
as different schemes for the treatment heavy flavours, for which differences should become smaller at
higher orders.

It is also very useful to show the cross sections as a function of αs. The predictions for Higgs
production from gg fusion (shown for MSTW08 and NNPDF2.0 in the top left and right plots of Fig. 32,
respectively) depend strongly on the value of αs: the anticorrelation (or correlation for the Tevatron)
between the gluon distribution and the value of αs is not sufficient to offset the growth of the cross
section as seen from the top-left plot. In the bottom plot one sees that CTEQ, MSTW, and NNPDF
predictions are in moderate agreement but CTEQ lies somewhat lower, to some extent due to the lower
choice of αs. Compared at the common value of αs(M2

Z) = 0.119, the CTEQ prediction and those from
others have one-sigma PDF uncertainties which just about overlap for MH = 120 GeV. This trend is
similar up to about MH = 180 GeV, and the agreement improves for higher masses, as seen in Fig. 33
below. Hence, both the difference in PDFs and in the dependence of the cross section on the value of

67

PDF’s

from G.Watt

PDF4LHC recommendation:
Compute MSTW 68% PDF+      errors at NNLO.
Take envelope of CTEQ, MSTW, NNPDF errors at NLO,
    and divide by MSTW error at NLO. Multiply NNLO 
    errors by this ratio (roughly 2).

αs
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AARON ARMBRUSTER

Theory Systematics

Group Source Typical Uncertainty

PDFs+αs gg → H, tt̄H, gg → V V (gg) 8%

(cross sections) VBF H, V H, V V @NLO (qq̄) 4%

QCD scale total inclusive gg → H +12%
−7%

inclusive gg → H + ≥ 1 jets 20%

inclusive gg → H + ≥ 2 jets 20% (NLO), 70% (LO)

VBF H 1%

associated V H 1%

tt̄H +4%
−10%

WW, WZ, and ZZ up to NLO 5%

gg → WW and gg → ZZ 30%

tt̄, incl. single top +3% − 6%

• Theory uncertainties on cross section split into PDF and Q2

• This is to ensure proper correlation among channels in ATLAS and

with CMS

THEORY SYSTEMATICS 15. AUGUST 19, 2011

taken from ATLAS & CMS Higgs combination group
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Lets focus on perturbative uncertainties for exclusive σ’s

perturbative 

∆total ∼ 8%

uncertainties 

∼ 2%

pp→ H + 0 jets
pp→ H + 1 jet
pp→ H + 2 jets

sum is

···

exclusive jet cross sections

σ0 ±∆0

σ1 ±∆1
σ2 ±∆2

σtotal ±∆total

∆i =?
correlations=?

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Inclusive Higgs Production Cross Section
Gluon fusion: gg → H

Total cross section to NNLO including mass effects
[Dawson; Djouadi, Graudenz, Spira, Zerwas]
[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]
[Pak, Rogal, Steinhauser; Harlander, Mantler, Marzani, Ozeren]

Electroweak corrections to O(αemαs)
[Aglietti, Bonciani, Degrassi, Vicini; Actis, Passarino, Sturm, Uccirati; Anastasiou, Boughezal, Petriello]

Higher-order soft and constant terms
[Catani, de Florian, Grazzini, Nason; Moch, Vogt; Laenen, Magnea; Ahrens, Becher, Neubert, Yang]

FEHiP, HNNLO: Numerical fully differential cross section at NNLO
[Anastasiou, Melnikov, Petriello; Grazzini]

⇒ Perturbative uncertainties ∼ 8%

Vector-boson fusion: qq → qqH

Total cross section at NNLO∗ [Bolzoni, Maltoni, Moch, Zaro]

VBFNLO, HAWK: Numerical fully differential cross section
at NLO (QCD+EW) [Arnold et al.; Ciccolini, Denner, Dittmaier, Mück]

⇒ Perturbative uncertainties � 2%
Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-07-26 2 / 16
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8 7 Results

two components, which are assumed to be independent. The first component is the uncertainty

on the fraction of events categorized into the different jet bins and the effect of migrations across

jet bins. The second component is the uncertainty on the lepton acceptance and the selection

efficiency of all other cuts. The effect of parton distribution function variation and the value

of αs [51, 52], and the effect of higher order corrections are considered for both components.

For the jet categorization, we also consider the effect of higher order log terms via the uncer-

tainty in the parton shower model and the underlying event. The uncertainties related to the

diboson cross sections are calculated using the MCFM program [53]. These uncertainties are

summarized in Table 3.

Table 3: Summary of all systematic uncertainties (relative). This is just an indicative table, since

the precise values depend on the final state and jet-bin.

Source
H → qq → gg → non-Z resonant top DY W + jets V(W/Z)

W
+

W
−

W
+

W
−

W
+

W
−

WZ/ZZ +γ

Luminosity 4.5 — — 4.5 — — — 4.5

Trigger efficiencies 1.5 1.5 1.5 1.5 — — — 1.5

Muon efficiency 1.5 1.5 1.5 1.5 — — — 1.5

Electron id efficiency 2.5 2.5 2.5 2.5 — — — 2.5

Momentum scale 1.5 1.5 1.5 1.5 — — — 1.5

Emiss

T
resolution 2.0 2.0 2.0 2.0 2.0 3.0 — 1.0

Jet counting 7-20 — 5.5 5.5 — — — 5.5

Higgs cross section 5-15 — — — — — — —

WZ/ZZ cross section — — — 3.0 — — — —

qq → WW norm. — 15 — — — — — —

gg → WW norm. — — 50 — — — — —

W + jets norm. — — — — — — 36 —

top norm. — — — — 25 — — —

Z/γ∗ → �+�− norm. — — — — — 60 — —

Monte Carlo statistics 1.0 1.0 1.0 4.0 6.0 20.0 20.0 10.0

The uncertainty on the signal efficiency is estimated to be ∼ 20% and is dominated by the theo-

retical uncertainty in the jet veto efficiency determination. The uncertainty on the background

estimations in the H → W
+

W
−

signal region is ∼ 15%, which is dominated by the statistical

uncertainties of the background control regions in data.

7 Results
After applying the Higgs mass-dependent selections, no significant excess is found with re-

spect to the expected Standard Model backgrounds. The cut flow evolutions for two SM Higgs

selections in the 0-jet bin, mH = 140 GeV/c2
and mH = 160 GeV/c2

, are shown in Figure 2. A

reasonable good agreement between the data and the predicted background is seen at all steps

of the analyses. As an example, the summary of the yields for signal, main backgrounds and

data for the mH = 140 GeV/c2
analysis is shown in Table 4..

Upper limits are derived on the product of the Higgs boson production cross section and the

H→ W
+

W
−

branching fraction, σH×BR(H → W
+

W
− → 2�2ν), with respect to the SM expec-

tation, (σ95%
/σSM

). Two different statistical methods are used, both using the same likelihood

function from the expected number of observed events modeled as a Poisson random variable

whose mean value is the sum of the contributions from signal and background processes. The

first method, known as CLs, is based on the hybrid Frequentist-Bayesian approach [54], while

the second one is based on Bayesian inference [55]. Both methods account for systematic uncer-

tainties. The upper limits obtained from both methods are similar, although the CLs approach

From CMS  H   WW analysis:
Available on the CERN CDS information server CMS PAS HIG-11-014

CMS Physics Analysis Summary

Contact: cms-pag-conveners-higgs@cern.ch 2011/08/22

Search for the Higgs Boson Decaying to W+W−
in the Fully

Leptonic Final State

The CMS Collaboration

Abstract

This note reports a search for the Higgs boson decaying to W+W−
in pp collisions

at
√

s = 7 TeV. The analysis is performed using LHC data recorded with the CMS

detector, corresponding to an integrated luminosity of 1.5 fb
−1

. W+W−
candidates

are selected in events with two leptons, electrons or muons. No significant excess

above the Standard Model background expectation is observed, and upper limits on

Higgs boson production are derived, excluding the presence of a Higgs boson with a

mass in the range [147 - 194] GeV/c2
at 95% C.L. using the CLs approach.

Available on the CERN CDS information server CMS PAS HIG-11-014

CMS Physics Analysis Summary

Contact: cms-pag-conveners-higgs@cern.ch 2011/08/22

Search for the Higgs Boson Decaying to W+W−
in the Fully

Leptonic Final State

The CMS Collaboration

Abstract

This note reports a search for the Higgs boson decaying to W+W−
in pp collisions

at
√
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detector, corresponding to an integrated luminosity of 1.5 fb
−1

. W+W−
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are selected in events with two leptons, electrons or muons. No significant excess

above the Standard Model background expectation is observed, and upper limits on

Higgs boson production are derived, excluding the presence of a Higgs boson with a

mass in the range [147 - 194] GeV/c2
at 95% C.L. using the CLs approach.
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Vetoing  Jets :

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Large Logarithms from Jet Veto

Vetoing jets

Search for jets and require p
jet
T

< p
cut
T

Tevatron: p
cut
T

� 20 GeV

LHC: p
cut
T

� 25 GeV �

�

p p

Soft

Jet Jet

Jet

Jet
pT

Even if hard signal process gg → H contains no jets,
jet veto affects cross section by restricting ISR

t-channel singularities produce Sudakov double logarithms

σ(pcut
T

) = σB

�
1 −

3αs

π
2 ln2 p

cut
T

mH

+ · · ·
�

⇒ Perturbative corrections get large at small p
cut
T

� mH

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-07-26 5 / 16
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Jet Veto changes form of perturbation theory 

eg. H →WW + 0 jets
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eg. H →WW + 0 jets

L = ln
pcut

T

mH

Jet Veto changes form of perturbation theory 

σ0 ∼ 1 + αsL
2 + α2

sL
4 + . . .

+ αsL + α2
sL

3 + . . .

+ αs + α2
sL

2 + . . .

+ α2
sL + . . .

+ α2
s + . . .
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Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Perturbative Structure of Jet Cross Sections
[Stewart, FT, arXiv:1107.2117]

σtotal =
�

p
cut
T

0
dpT

dσ

dpT� �� �
+

� ∞

p
cut
T

dpT

dσ

dpT� �� �
σ0(pcut

T
) + σ≥1(pcut

T
)

σtotal � σB

�
1 + αs + α2

s
+ O(α3

s
)
�

σ≥1(pcut
T

) � σB

�
αs(L2+L+1) + α2

s
(L4+L3+L2+L+1) + O(α3

s
L6)

�

where L = ln(pcut
T

/mH)

⇒ σ0(pcut
T

) = σtotal − σ≥1(pcut
T

)

Perturbative series in σtotal and σ≥1(pcut
T

) are largely independent
To estimate pcut

T
effects in σ0 can use independent scale variations for

inclusive jet cross sections σtotal, σ≥1

⇒ ∆2
0 = ∆2

total + ∆2
≥1

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-07-26 7 / 16

• Added uncertainty            from our ability to predict          dependence ∆cut pcut
T

•

inclusive jet cross section
pp→ H +≥ 1 jet

Cancels when adding σ0 and σ≥1

2

counts for its more complicated perturbative structure.
Equation (2) also leads to an anti-correlation between the
cross sections in neighboring jet bins. When neighboring
bins are added the sensitivity to the boundary between
them cancels and the uncertainty reduces accordingly.
For example, for the 0-jet bin in H → WW ∗ discussed

above, we have σ0 = σtotal − σ≥1. Here, σ≥1 contains
double logarithms of the jet pT cut, whereas σtotal does
not involve any jet definition, so their perturbative series
can be considered largely independent. Therefore, tak-
ing their perturbative uncertainties ∆total and ∆≥1 as
uncorrelated, the covariance matrix for {σ0,σ≥1} is1

(
∆2

total +∆2
≥1 −∆2

≥1

−∆2
≥1 ∆2

≥1

)
. (4)

Using this matrix to compute the uncertainty in σ0+σ≥1

reproduces ∆total as it should.
We should mention that we are only discussing here the

uncertainties due to unknown higher-order perturbative
corrections, which are commonly estimated using scale
variations. We do not discuss parametric uncertainties,
such as PDF and αs uncertainties, which have been ex-
tensively discussed, recently for example in Refs. [7–14].
In the next section we present the arguments leading to

our proposal for evaluating the perturbative uncertainties
for exclusive jet bins, and discuss the structure of the
perturbative series. In Sec. III, we apply our method to
a variety of processes. We start in Secs. III A and III B
with discussion and numerical results for gg → H+0 jets
and gg → H + 1 jets. In Sec. III C, we consider pp →
WW+0 jets, which is an important background for Higgs
production. In Secs. III D, III E, and III F we consider
W + 0, 1, 2 jets, which are important backgrounds for
missing-energy searches. In Sec. IV, we consider again
gg → H + 0 jets and test our method for the fixed-order
uncertainties against a case where the resummation of
the large logarithms induced by the jet binning is known
to next-to-next-to-leading logarithmic (NNLL) accuracy.
We conclude in Sec. V. In App. A, we give expressions
for the uncertainties and correlations for the case where
one considers 0, 1, and (≥ 2)-jet bins as in Eq. (1).

II. JET BIN UNCERTAINTIES

To examine in more detail the modification of the per-
turbative series that takes place for exclusive jet bins,
we will consider the example of the 0-jet bin and (≥ 1)-
jet bin. The total cross section, σtotal, is divided into a
0-jet exclusive cross section, σ0(pcut), and the (≥ 1)-jet

1 Since these are theory uncertainties, there is no strict reason to
combine them in a particular way. We add them in quadrature
since this is the most convenient for discussing correlations and
error propagation.

inclusive cross section, σ≥1(pcut),

σtotal =

∫ pcut

0
dp

dσ

dp
+

∫

pcut

dp
dσ

dp

≡ σ0(p
cut) + σ≥1(p

cut) . (5)

Here, p denotes the kinematic variable which is used to
divide the cross section into jet bins. For most of our
analysis we take p ≡ pjetT , which for Eq. (5) is the largest
pT of any jet in the event. In this case, σ0(pcutT ) only
contains events with jets having pT ≤ pcutT , and σ≥1(pcutT )
contains events with at least one jet with pT ≥ pcutT .
In Eq. (5) both σ0 and σ≥1 depend on the phase space

cut, pcut, and by construction this dependence cancels
in their sum. This means that the additional perturba-
tive uncertainty induced by this cut, call it ∆cut, must
be 100% anti-correlated between σ0(pcut) and σ≥1(pcut).
That is, the contribution of∆cut to the covariance matrix
for {σ0,σ≥1} must be of the form

Ccut =

(
∆2

cut −∆2
cut

−∆2
cut ∆2

cut

)
. (6)

The questions then are: (1) How can we estimate ∆cut,
and (2) how is the overall perturbative uncertainty ∆total

of σtotal related to the uncertainty for σ0 and σ≥1.
To answer these questions, we discuss the perturba-

tive structure of the cross sections in more detail. By
restricting the cross section to the 0-jet region, one re-
stricts the collinear initial-state radiation from the collid-
ing hard partons as well as the overall soft radiation in
the event. This restriction on additional emissions leads
to the appearance of Sudakov double logarithms of the
form L2 = ln2(pcut/Q) at each order in a perturbative
expansion in the strong coupling constant αs, where Q is
the hard scale of the process. For Higgs production from
gluon fusion, Q = mH , and the leading double logarithms
appearing at O(αs) are

σ0(p
cut
T ) = σB

(
1− 3αs

π
2 ln2

pcutT

mH
+ · · ·

)
, (7)

where σB is the Born (tree-level) cross section.
The total cross section just depends on the hard scale

Q, which means by choosing the scale µ & Q, the fixed-
order expansion does not contain large logarithms and
has the structure2

σtotal & σB

[
1 + αs + α2

s +O(α3
s)
]
. (8)

2 These expressions for the perturbative series are schematic. They
do not show the convolution with the parton distribution func-
tions (PDFs) contained in σB , nor do they display µ dependent
logarithms. In particular, the single logarithms related to the
PDF evolution are not displayed, since they are not the loga-
rithms we are most interested in discussing.

anti-correlated

• Extension to multiple exclusive jet bins:

σ0(pcut
T ), σ1(pcut

T , pcut
T2 ), σ2(pcut

T2 , pcut
T3 ), . . .

(“large logs” or “particle migration between bins”)

How do we compute ∆cut ?

∆cut ∆cut2 pcut
Tj is cut on

j’th largest jet pT
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We will explore three methods
(A) (B) (C)

Friday, October 28, 2011



“Direct Exclusive Scale Variation?”

consider σ0(µ), vary µ ∈ [mH/2, 2mH ] to get ∆0 etc.

vary µF , µR in σi’s ∆i(A)

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Counting Jets at Fixed Order

Fully differential NNLO is known numerically
[FEHiP(Anastasiou, Melnikov, Petriello), HNNLO(Grazzini)]

FO expansion gets unstable at small pcut
T

and eventually breaks down
Naively, jet veto appears to improve
convergence

Recipe previously used by experiments [Anastasiou et al., arXiv:0905.3529]

Common scale variation for jet bins, e.g. for the Tevatron
∆σ

σ
= 66.5% ×

�
+5%
−9%

�

� �� �
+ 28.6% ×

�
+24%
−22%

�

� �� �
+ 4.9% ×

�
+78%
−41%

�

� �� �
=

�
+14%
−14%

�

0 jets 1 jet ≥ 2 jets

Smaller uncertainty in 0-jet bin than in inclusive cross section

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-07-26 6 / 16

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Counting Jets at Fixed Order

Fully differential NNLO is known numerically
[FEHiP(Anastasiou, Melnikov, Petriello), HNNLO(Grazzini)]

FO expansion gets unstable at small pcut
T

and eventually breaks down
Naively, jet veto appears to improve
convergence

Recipe previously used by experiments [Anastasiou et al., arXiv:0905.3529]

Common scale variation for jet bins, e.g. for the Tevatron
∆σ

σ
= 66.5% ×

�
+5%
−9%

�

� �� �
+ 28.6% ×

�
+24%
−22%

�

� �� �
+ 4.9% ×

�
+78%
−41%

�

� �� �
=

�
+14%
−14%

�

0 jets 1 jet ≥ 2 jets

Smaller uncertainty in 0-jet bin than in inclusive cross section

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-07-26 6 / 16

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Counting Jets at Fixed Order

Fully differential NNLO is known numerically
[FEHiP(Anastasiou, Melnikov, Petriello), HNNLO(Grazzini)]

FO expansion gets unstable at small pcut
T

and eventually breaks down
Naively, jet veto appears to improve
convergence

Recipe previously used by experiments [Anastasiou et al., arXiv:0905.3529]

Common scale variation for jet bins, e.g. for the Tevatron
∆σ

σ
= 66.5% ×

�
+5%
−9%

�

� �� �
+ 28.6% ×

�
+24%
−22%

�

� �� �
+ 4.9% ×

�
+78%
−41%

�

� �� �
=

�
+14%
−14%

�

0 jets 1 jet ≥ 2 jets

Smaller uncertainty in 0-jet bin than in inclusive cross section

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-07-26 6 / 16

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Counting Jets at Fixed Order

Fully differential NNLO is known numerically
[FEHiP(Anastasiou, Melnikov, Petriello), HNNLO(Grazzini)]

FO expansion gets unstable at small pcut
T

and eventually breaks down
Naively, jet veto appears to improve
convergence

Recipe previously used by experiments [Anastasiou et al., arXiv:0905.3529]

Common scale variation for jet bins, e.g. for the Tevatron
∆σ

σ
= 66.5% ×

�
+5%
−9%

�

� �� �
+ 28.6% ×

�
+24%
−22%

�

� �� �
+ 4.9% ×

�
+78%
−41%

�

� �� �
=

�
+14%
−14%

�

0 jets 1 jet ≥ 2 jets

Smaller uncertainty in 0-jet bin than in inclusive cross section

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-07-26 6 / 16

• Uncertainties are 100% correlated. 
σtotal = σ0 + σ1 + . . . gets back its uncertainty ∆total
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•

•

eg.  Tevatron
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“Direct Exclusive Scale Variation?”

consider σ0(µ), vary µ ∈ [mH/2, 2mH ] to get ∆0 etc.

vary µF , µR in σi’s ∆i

• does not account for ∆cut

• due to numerical cancellations can underestimate uncertainties

(A)

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Perturbative Structure of Jet Cross Sections
[Stewart, FT, arXiv:1107.2117]

σtotal =
�

p
cut
T

0
dpT

dσ

dpT� �� �
+

� ∞

p
cut
T

dpT

dσ

dpT� �� �
σ0(pcut

T
) + σ≥1(pcut

T
)

σtotal � σB

�
1 + αs + α2

s
+ O(α3

s
)
�

σ≥1(pcut
T

) � σB

�
αs(L2+L+1) + α2

s
(L4+L3+L2+L+1) + O(α3

s
L6)

�

where L = ln(pcut
T

/mH)

⇒ σ0(pcut
T

) = σtotal − σ≥1(pcut
T

)

Perturbative series in σtotal and σ≥1(pcut
T

) are largely independent
To estimate pcut

T
effects in σ0 can use independent scale variations for

inclusive jet cross sections σtotal, σ≥1

⇒ ∆2
0 = ∆2

total + ∆2
≥1
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large K-factor

large logs

always a large cancellation for
in some range of pcut

T

• Uncertainties are 100% correlated. 
σtotal = σ0 + σ1 + . . . gets back its uncertainty ∆total
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Counting Jets at Fixed Order

Fully differential NNLO is known numerically
[FEHiP(Anastasiou, Melnikov, Petriello), HNNLO(Grazzini)]

FO expansion gets unstable at small pcut
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and eventually breaks down
Naively, jet veto appears to improve
convergence
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Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Higgs + 0 Jets

For example, at LHC for mH = 165 GeV and Ecm = 7 TeV

σtotal = (3.32 pb)
�
1 + 9.5 αs + 35 α2

s
+ O(α3

s
)
�

σ≥1

�
pjet

T
≥ 30 GeV) = (3.32 pb)

�
5.1 αs + 28 α2

s
+ O(α3

s
)
�
.

Naive scale variation in exclusive
σ0(pcut

T
) underestimates

uncertainties due to cancellations
between different series

Combination of inclusive scale
uncertainties takes into account
large logarithmic corrections 0
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FIG. 1: Perturbative predictions for H+0 jets (upper left panel), WW +0 jets (lower left panel), H+1 jet with pjetT1 ≥ 30GeV
(upper right panel), and H + 1 jet with pjetT1 ≥ 120GeV (lower right panel). Central values are shown by the blue solid curves,
naive scale variation in the exclusive jet bin by the green dashed and dotted curves, and the result of combining independent
inclusive uncertainties to get the jet bin uncertainty by the outer red solid curves.

Since both NLO and NNLO results for σ0(pcutT ) are
available, it is also useful to consider the convergence,
which we show in Fig. 2 for the Tevatron (top row) and
the LHC at 7TeV (bottom row). In the left panels we
use naive the scale variation, directly varying the scales
in σ0(pcutT ) to estimate the uncertainty, while in the right
panels we again propagate the uncertainties from the in-
clusive cross sections. As we lower pcutT , the naive scale
variation uncertainty estimate decreases at both NLO
and NNLO, and eventually becomes very small when
the curves pinch and the uncertainty is clearly under-
estimated. In contrast the inclusive scale variation gives
realistic uncertainties for all values of pcutT . In particular,
there is considerable uncertainty for small pcutT where the
summation of logarithms is important.

B. Higgs + 1 Jet

As our next example we consider the 1-jet bin in Higgs
production from gluon fusion. This jet bin is defined by

two cuts, one which ensures that the jet with the largest
pT is outside the 0-jet bin, pjetT1 ≥ pcutT1 , and one which
ensures that the jet with the next largest pT is restricted,
pjetT2 ≤ pcutT , so that we do not have 2 or more jets. The
1-jet cross section can be computed as a difference of
inclusive cross sections with these cuts,

σ1 = σ≥1

(
pjetT1 ≥ pcutT1

)
− σ≥2

(
pjetT1 ≥ pcutT1 , p

jet
T2 ≥ pcutT

)
.

(19)
For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).

The inclusive cross section σ≥1 that includes the 1-
jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =

green
lines

Direct Exclusive 
Scale Variation:

cancellation

All my fixed order plots use:  
MCFM v6.0 for spectra, FeHiP for NNLO cross section, 
MSTW pdfs,  anti-kT jets with R=0.5

µF = µR =
mH

2
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“Combined Inclusive Scale Variation”(B)
IS, Tackmann, arXiv:1107.2117

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Perturbative Structure of Jet Cross Sections
[Stewart, FT, arXiv:1107.2117]
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FIG. 1: Fixed-order perturbative uncertainties for gg → H + 0 jets at NLO and NNLO. On the left, the uncertainties are
obtained from the naive scale variation in σ0(pcutT ) between µ = mH/4 and µ = mH . On the right, the uncertainties are
obtained by independently evaluating the scale uncertainties in σtotal and σ≥1(p

cut) and combining them in quadrature. The
plots are taken from Ref. [2].

this cancellation, a standard use of scale variation in σ0(pcut) does not actually probe the size of the large logarithms,
and thus is not suitable to estimate ∆cut. This issue impacts the uncertainties in the experimentally relevant region.
For example, for gg → H (with Ecm = 7TeV, mH = 165GeV, µf = µr = mH/2), one finds

σtotal = (3.32 pb)
[
1 + 9.5αs + 35α2

s +O(α3
s)
]
,

σ≥1

(
pjetT ≥ 30GeV, |ηjet| ≤ 3.0

)
= (3.32 pb)

[
4.7αs + 26α2

s +O(α3
s)
]
. (7)

In σtotal one can see the impact of the well-known large K factors. (Using instead µf = µr = mH the αs and α2
s

coefficients in σtotal increase to 11 and 65.) In σ≥1, one can see the impact of the large logarithms on the perturbative
series. Taking their difference, one observes a sizeable numerical cancellation between the two series at each order in
αs.
Since ∆cut and ∆total are by definition uncorrelated, by associating ∆cut = ∆≥1 we are effectively treating the

perturbative series for σtotal and σ≥1 as independent with uncorrelated perturbative uncertainties. That is, considering
{σtotal,σ≥1}, the covariance matrix is diagonal,

(
∆2

total 0

0 ∆2
≥1

)
, (8)

where ∆total and ∆≥1 are evaluated by separate scale variations in the fixed-order predictions for σtotal and σ≥1. This
is consistent, since for small pcut the two series have very different structures. In particular, there is no reason to
believe that the same cancellations in σ0 will persist at every order in perturbation theory at a given pcut. It follows
that the perturbative uncertainty in σ0 = σtotal − σ≥1 is given by ∆2

total +∆2
≥1, and the resulting covariance matrix

for {σ0,σ≥1} is

C =

(
∆2

≥1 +∆2
total −∆2

≥1

−∆2
≥1 ∆2

≥1

)
. (9)

The ∆≥1 contributions hare are equivalent to Eq. (2) with ∆cut = ∆≥1. Note also that all of ∆total occurs in the
uncertainty for σ0. This is reasonable from the point of view that σ0 starts at the same order in αs as σtotal and
contains the same leading virtual corrections.
The limit ∆cut = ∆≥1 that Eq. (9) is based on is of course not exact. However, the preceding arguments show that

it is a more reasonable starting point than using a common scale variation for the different jet bins, since the latter
does not account for the additional pcut induced uncertainties. These two procedures of evaluating the perturbative
uncertainties are contrasted in Fig. 1 for gg → H + 0 jets at NLO (light gray) and NNLO (dark gray) as a function
of pcutT (using µ = mH/2 for the central scale choice). The left panel shows the uncertainties obtained from a naive
scale variation by a factor of two in σ0(pcutT ). Here one assumes that the δ(σi) cross section uncertainties are 100%

has
anti-correlation

Perturbative Uncertainties in Jet Bins

There is general agreement among theorists that one should hence treat the
fixed-order perturbative series for σtotal, σ≥1, σ≥2 as independent with
uncorrelated perturbative uncertainties, i.e.

The inclusive jet cross sections are considered uncorrelated

σtotal, σ≥1, σ≥2 ⇒ C =


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total 0 0
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≥1 0
0 0 ∆2

≥2





The covariance matrix for the exclusive jet cross sections follows from

σ0 = σtotal − σ≥1 , σ1 = σ≥1 − σ≥2 , σ≥2

⇒ C =
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For example, at LHC for mH = 165 GeV and Ecm = 7 TeV
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FIG. 1: Perturbative predictions for H+0 jets (upper left panel), WW +0 jets (lower left panel), H+1 jet with pjetT1 ≥ 30GeV
(upper right panel), and H + 1 jet with pjetT1 ≥ 120GeV (lower right panel). Central values are shown by the blue solid curves,
naive scale variation in the exclusive jet bin by the green dashed and dotted curves, and the result of combining independent
inclusive uncertainties to get the jet bin uncertainty by the outer red solid curves.

Since both NLO and NNLO results for σ0(pcutT ) are
available, it is also useful to consider the convergence,
which we show in Fig. 2 for the Tevatron (top row) and
the LHC at 7TeV (bottom row). In the left panels we
use naive the scale variation, directly varying the scales
in σ0(pcutT ) to estimate the uncertainty, while in the right
panels we again propagate the uncertainties from the in-
clusive cross sections. As we lower pcutT , the naive scale
variation uncertainty estimate decreases at both NLO
and NNLO, and eventually becomes very small when
the curves pinch and the uncertainty is clearly under-
estimated. In contrast the inclusive scale variation gives
realistic uncertainties for all values of pcutT . In particular,
there is considerable uncertainty for small pcutT where the
summation of logarithms is important.

B. Higgs + 1 Jet

As our next example we consider the 1-jet bin in Higgs
production from gluon fusion. This jet bin is defined by

two cuts, one which ensures that the jet with the largest
pT is outside the 0-jet bin, pjetT1 ≥ pcutT1 , and one which
ensures that the jet with the next largest pT is restricted,
pjetT2 ≤ pcutT , so that we do not have 2 or more jets. The
1-jet cross section can be computed as a difference of
inclusive cross sections with these cuts,

σ1 = σ≥1

(
pjetT1 ≥ pcutT1

)
− σ≥2

(
pjetT1 ≥ pcutT1 , p

jet
T2 ≥ pcutT

)
.

(19)
For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).

The inclusive cross section σ≥1 that includes the 1-
jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =

green lines

Direct Exclusive 
Scale Variation

red lines

Combined Inclusive 
Scale Variation

agree when 
cut is turned 

off

these plots only vary µR = µF (varying µF alone is quite small for Higgs)
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Perturbative Structure of Jet Cross Sections
[Stewart, FT, arXiv:1107.2117]
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FIG. 2: Fixed-order perturbative uncertainties for gg → H + 0 jets at NLO and NNLO. The upper row is for the Tevatron
and the lower row for the LHC with Ecm = 7TeV. On the left, the uncertainties are obtained from the naive scale variation in
σ0(p

cut
T ) between µ = mH/4 and µ = mH . On the right, the uncertainties are obtained by independently evaluating the scale

uncertainties in σtotal and σ≥1(p
cut) and combining them in quadrature. (For the LHC case the dark shaded NNLO bands

correspond to results in the top-left panel of Fig. 1. The naive scale variation band corresponds to the dashed green lines, and
the combined inclusive uncertainty band corresponds to the solid red lines.)

inclusive cross sections with these cuts,

σ1 = σ≥1

(
pjetT1 ≥ pcutT1

)
− σ≥2

(
pjetT1 ≥ pcutT1 , p

jet
T2 ≥ pcutT

)
.

(19)
For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).
The inclusive cross section σ≥1 that includes the 1-

jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =
165GeV, and MSTW2008 NNLO PDFs, we find

σ≥1

(
pjetT1 ≥ 30GeV)

= (2.00 pb)
[
1 + 5.4αs +O(α2

s)
]
,

σ≥2

(
pjetT1 ≥ 30GeV, pjetT2 ≥ 30GeV)

= (2.00 pb)
[
3.6αs +O(α2

s)
]
. (20)

For σ1 = σ≥1 − σ≥2 there is a sizeable cancellation be-
tween these αs terms. If we lower the cut to pjetT2 ≥
22GeV then the logarithm increases and there is an al-
most exact cancellation with the 5.4αs. In the top right
panel of Fig. 1 we plot σ1 as a function of pcutT , and we
again see that this cancellation occurs in a region where
there is a dramatic decrease in the naive scale depen-
dence (green dashed and dotted curves). Using the in-
clusive uncertainties for σ≥1 and σ≥2, and adding them
in quadrature, gives the solid red curves, which provide a
more realistic estimate for the perturbative uncertainty.
Using the result from App. A we can examine the

full uncertainties and correlation matrix with 0, 1, and
(≥ 2)-jet bins in Higgs production. For the cuts in
Eq. (20) varying the scale by factors of two, we have
σtotal = (8.70 ± 0.75) pb, σ≥1 = (3.29 ± 0.62) pb, and
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Quite generic: same pattern at Tevatron
similar plots if we vary rapidity cuts
similar plots for other processes
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FIG. 2: Fixed-order perturbative uncertainties for gg → H + 0 jets at NLO and NNLO. The upper row is for the Tevatron
and the lower row for the LHC with Ecm = 7TeV. On the left, the uncertainties are obtained from the naive scale variation in
σ0(p

cut
T ) between µ = mH/4 and µ = mH . On the right, the uncertainties are obtained by independently evaluating the scale

uncertainties in σtotal and σ≥1(p
cut) and combining them in quadrature. (For the LHC case the dark shaded NNLO bands

correspond to results in the top-left panel of Fig. 1. The naive scale variation band corresponds to the dashed green lines, and
the combined inclusive uncertainty band corresponds to the solid red lines.)

inclusive cross sections with these cuts,

σ1 = σ≥1

(
pjetT1 ≥ pcutT1

)
− σ≥2

(
pjetT1 ≥ pcutT1 , p

jet
T2 ≥ pcutT

)
.

(19)
For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).
The inclusive cross section σ≥1 that includes the 1-

jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =
165GeV, and MSTW2008 NNLO PDFs, we find
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(
pjetT1 ≥ 30GeV)

= (2.00 pb)
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]
,
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pjetT1 ≥ 30GeV, pjetT2 ≥ 30GeV)

= (2.00 pb)
[
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For σ1 = σ≥1 − σ≥2 there is a sizeable cancellation be-
tween these αs terms. If we lower the cut to pjetT2 ≥
22GeV then the logarithm increases and there is an al-
most exact cancellation with the 5.4αs. In the top right
panel of Fig. 1 we plot σ1 as a function of pcutT , and we
again see that this cancellation occurs in a region where
there is a dramatic decrease in the naive scale depen-
dence (green dashed and dotted curves). Using the in-
clusive uncertainties for σ≥1 and σ≥2, and adding them
in quadrature, gives the solid red curves, which provide a
more realistic estimate for the perturbative uncertainty.
Using the result from App. A we can examine the

full uncertainties and correlation matrix with 0, 1, and
(≥ 2)-jet bins in Higgs production. For the cuts in
Eq. (20) varying the scale by factors of two, we have
σtotal = (8.70 ± 0.75) pb, σ≥1 = (3.29 ± 0.62) pb, and

Friday, October 28, 2011



Combined Inclusive Scale Variation

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Perturbative Structure of Jet Cross Sections
[Stewart, FT, arXiv:1107.2117]

σtotal =
�

p
cut
T

0
dpT

dσ

dpT� �� �
+

� ∞

p
cut
T

dpT

dσ

dpT� �� �
σ0(pcut

T
) + σ≥1(pcut

T
)

σtotal � σB

�
1 + αs + α2

s
+ O(α3

s
)
�

σ≥1(pcut
T

) � σB

�
αs(L2+L+1) + α2

s
(L4+L3+L2+L+1) + O(α3

s
L6)

�

where L = ln(pcut
T

/mH)

⇒ σ0(pcut
T

) = σtotal − σ≥1(pcut
T

)

Perturbative series in σtotal and σ≥1(pcut
T

) are largely independent
To estimate pcut

T
effects in σ0 can use independent scale variations for

inclusive jet cross sections σtotal, σ≥1

⇒ ∆2
0 = ∆2

total + ∆2
≥1

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-07-26 7 / 16

large logs

• Treat inclusive cross-section uncertainties as independent
∆total,∆≥1,∆≥2, . . .

•

Propagate errors to get uncertainty 

estimate            obtained from 

eg. Perturbative Uncertainties in Jet Bins

There is general agreement among theorists that one should hence treat the
fixed-order perturbative series for σtotal, σ≥1, σ≥2 as independent with
uncorrelated perturbative uncertainties, i.e.

The inclusive jet cross sections are considered uncorrelated

σtotal, σ≥1, σ≥2 ⇒ C =




∆2

total 0 0
0 ∆2

≥1 0
0 0 ∆2

≥2





The covariance matrix for the exclusive jet cross sections follows from

σ0 = σtotal − σ≥1 , σ1 = σ≥1 − σ≥2 , σ≥2

⇒ C =




∆2

total + ∆2
≥1 −∆2

≥1 0
−∆2

≥1 ∆2
≥1 + ∆2

≥2 −∆2
≥2

0 −∆2
≥2 ∆2

≥2





Frank Tackmann (MIT) Perturbative Uncertainties in Jet Bins 2011-05-10 3 / 12

{σ0, σ1, σ≥2}

Perturbative Uncertainties in Jet Bins

There is general agreement among theorists that one should hence treat the
fixed-order perturbative series for σtotal, σ≥1, σ≥2 as independent with
uncorrelated perturbative uncertainties, i.e.

The inclusive jet cross sections are considered uncorrelated

σtotal, σ≥1, σ≥2 ⇒ C =




∆2

total 0 0
0 ∆2

≥1 0
0 0 ∆2

≥2





The covariance matrix for the exclusive jet cross sections follows from

σ0 = σtotal − σ≥1 , σ1 = σ≥1 − σ≥2 , σ≥2

⇒ C =




∆2

total + ∆2
≥1 −∆2

≥1 0
−∆2

≥1 ∆2
≥1 + ∆2

≥2 −∆2
≥2

0 −∆2
≥2 ∆2

≥2





Frank Tackmann (MIT) Perturbative Uncertainties in Jet Bins 2011-05-10 3 / 12

Perturbative Uncertainties in Jet Bins

There is general agreement among theorists that one should hence treat the
fixed-order perturbative series for σtotal, σ≥1, σ≥2 as independent with
uncorrelated perturbative uncertainties, i.e.

The inclusive jet cross sections are considered uncorrelated

σtotal, σ≥1, σ≥2 ⇒ C =




∆2

total 0 0
0 ∆2

≥1 0
0 0 ∆2

≥2





The covariance matrix for the exclusive jet cross sections follows from

σ0 = σtotal − σ≥1 , σ1 = σ≥1 − σ≥2 , σ≥2

⇒ C =




∆2

total + ∆2
≥1 −∆2

≥1 0
−∆2

≥1 ∆2
≥1 + ∆2

≥2 −∆2
≥2

0 −∆2
≥2 ∆2

≥2





Frank Tackmann (MIT) Perturbative Uncertainties in Jet Bins 2011-05-10 3 / 12

σ1(pcut
T , pcut

T2 )� σB [αs(L2 + L + 1) + α2
s(L

4 + L3 + L2 + L + 1) +O(α3
sL

6)

−α2
s(L

4 + L3 + L2 + L + 1) +O(α3
sL

6)]

σ≥2(pcut
T2 )� σB [α2

s(L
4 + L3 + L2 + L + 1) +O(α3

sL
6)]

L = ln(pcut
T2 /mH)

σ≥2(pcut
T2 )∆cut2

For pcut
T uncertainty use: ∆cut = ∆≥1, ∆cut2 = ∆≥2

Friday, October 28, 2011



5

0
0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

Ecm=7 TeV

pcut
T [GeV]

σ
0
(p

cu
t

T
)

[p
b
]

mH =165 GeV

gg → H+0 jet (NNLO)

µ=mH/4

µ=mH/2
µ=mH

combined incl. unc.
0
0

1

2

3

4

10 20 30 40 50 60 70 80 90 100

0.5

1.5

2.5

3.5

4.5

Ecm=7 TeV

pcut
T [GeV]

σ
1
(p

cu
t

T
)

[p
b
]

mH =165 GeV

gg → H+1 jet (NLO)

pjet
T1 ≥30 GeV

µ=mH/4

µ=mH/2
µ=mH

combined incl. unc.

0
0

10

10

20

20

30

30

40

40

50

50 60 70 80 90 100

Ecm=7 TeV

pcut
T [GeV]

σ
0
(p

cu
t

T
)

[p
b
]

WW +0 jet (NLO)

µ=mW/2

µ=mW

µ=2mW

combined incl. unc.
0
0 25 50 75 100 125 150 175 200

0.1

0.2

0.3

0.4

0.5

Ecm=7 TeV

pcut
T [GeV]

σ
1
(p

cu
t

T
)

[p
b
]

mH =165 GeV

gg → H+1 jet (NLO)

pjet
T1 ≥120 GeV

µ=mH/4

µ=mH/2
µ=mH

combined incl. unc.

FIG. 1: Perturbative predictions for H+0 jets (upper left panel), WW +0 jets (lower left panel), H+1 jet with pjetT1 ≥ 30GeV
(upper right panel), and H + 1 jet with pjetT1 ≥ 120GeV (lower right panel). Central values are shown by the blue solid curves,
naive scale variation in the exclusive jet bin by the green dashed and dotted curves, and the result of combining independent
inclusive uncertainties to get the jet-bin uncertainty by the outer red solid curves.

∆2
0 = ∆2

total +∆2
≥1. One can see that for large values of

pcutT this combined inclusive uncertainty estimate repro-
duces the naive scale variation, since σ≥1(pcut) becomes
small. On the other hand, for small values of pcutT the un-
certainties obtained in this way are now more realistic,
because they explicitly take into account the large log-
arithmic corrections. The features of this plot are quite
generic. In particular, the same pattern of uncertainties
is observed for the Tevatron, when we take µ = mH as
our central curve with µ = 2mH and µ = mH/2 for the
range of scale variation, and whether or not we only look
at jets at central rapidities. We also note that using in-
dependent variations for µf and µr does not change this
picture, in particular the µf variation for fixed µr is quite
small.
Since both NLO and NNLO results for σ0(pcutT ) are

available, it is also useful to consider the convergence,
which we show in Fig. 2 for the Tevatron (top row) and
the LHC at 7TeV (bottom row). In the left panels we
use the naive scale variation, directly varying the scales
in σ0(pcutT ) to estimate the uncertainty, while in the right

panels we again propagate the uncertainties from the in-
clusive cross sections. As we lower pcutT , the naive scale
variation uncertainty estimate decreases at both NLO
and NNLO, and eventually becomes very small when
the curves pinch and the uncertainty is clearly under-
estimated. In contrast the inclusive scale variation gives
realistic uncertainties for all values of pcutT . In particular,
there is considerable uncertainty for small pcutT where the
summation of logarithms is important.

B. Higgs + 1 Jet

As our next example we consider the 1-jet bin in Higgs
production from gluon fusion. This jet bin is defined by
two cuts, one which ensures that the jet with the largest
pT is outside the 0-jet bin, pjetT1 ≥ pcutT1 , and one which
ensures that the jet with the next largest pT is restricted,
pjetT2 ≤ pcutT , so that we do not have 2 or more jets. The
1-jet cross section can be computed as a difference of
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FIG. 1: Perturbative predictions for H+0 jets (upper left panel), WW +0 jets (lower left panel), H+1 jet with pjetT1 ≥ 30GeV
(upper right panel), and H + 1 jet with pjetT1 ≥ 120GeV (lower right panel). Central values are shown by the blue solid curves,
naive scale variation in the exclusive jet bin by the green dashed and dotted curves, and the result of combining independent
inclusive uncertainties to get the jet-bin uncertainty by the outer red solid curves.

∆2
0 = ∆2

total +∆2
≥1. One can see that for large values of

pcutT this combined inclusive uncertainty estimate repro-
duces the naive scale variation, since σ≥1(pcut) becomes
small. On the other hand, for small values of pcutT the un-
certainties obtained in this way are now more realistic,
because they explicitly take into account the large log-
arithmic corrections. The features of this plot are quite
generic. In particular, the same pattern of uncertainties
is observed for the Tevatron, when we take µ = mH as
our central curve with µ = 2mH and µ = mH/2 for the
range of scale variation, and whether or not we only look
at jets at central rapidities. We also note that using in-
dependent variations for µf and µr does not change this
picture, in particular the µf variation for fixed µr is quite
small.
Since both NLO and NNLO results for σ0(pcutT ) are

available, it is also useful to consider the convergence,
which we show in Fig. 2 for the Tevatron (top row) and
the LHC at 7TeV (bottom row). In the left panels we
use the naive scale variation, directly varying the scales
in σ0(pcutT ) to estimate the uncertainty, while in the right

panels we again propagate the uncertainties from the in-
clusive cross sections. As we lower pcutT , the naive scale
variation uncertainty estimate decreases at both NLO
and NNLO, and eventually becomes very small when
the curves pinch and the uncertainty is clearly under-
estimated. In contrast the inclusive scale variation gives
realistic uncertainties for all values of pcutT . In particular,
there is considerable uncertainty for small pcutT where the
summation of logarithms is important.

B. Higgs + 1 Jet

As our next example we consider the 1-jet bin in Higgs
production from gluon fusion. This jet bin is defined by
two cuts, one which ensures that the jet with the largest
pT is outside the 0-jet bin, pjetT1 ≥ pcutT1 , and one which
ensures that the jet with the next largest pT is restricted,
pjetT2 ≤ pcutT , so that we do not have 2 or more jets. The
1-jet cross section can be computed as a difference of

∆≥1, ∆≥2 independent

σ1(µ)

other examples

K-factor ∼ 1.5
(K∼ 2 with H search cuts)
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FIG. 2: Fixed-order perturbative uncertainties for gg → H + 0 jets at NLO and NNLO. The upper row is for the Tevatron
and the lower row for the LHC with Ecm = 7TeV. On the left, the uncertainties are obtained from the naive scale variation in
σ0(p

cut
T ) between µ = mH/4 and µ = mH . On the right, the uncertainties are obtained by independently evaluating the scale

uncertainties in σtotal and σ≥1(p
cut) and combining them in quadrature. (For the LHC case the dark shaded NNLO bands

correspond to results in the top-left panel of Fig. 1. The naive scale variation band corresponds to the dashed green lines, and
the combined inclusive uncertainty band corresponds to the solid red lines.)

inclusive cross sections with these cuts,

σ1 = σ≥1

(
pjetT1 ≥ pcutT1

)
− σ≥2

(
pjetT1 ≥ pcutT1 , p

jet
T2 ≥ pcutT

)
.

(19)
For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).
The inclusive cross section σ≥1 that includes the 1-

jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =
165GeV, and MSTW2008 NNLO PDFs, we find

σ≥1

(
pjetT1 ≥ 30GeV)

= (2.00 pb)
[
1 + 5.4αs +O(α2

s)
]
,

σ≥2

(
pjetT1 ≥ 30GeV, pjetT2 ≥ 30GeV)

= (2.00 pb)
[
3.6αs +O(α2

s)
]
. (20)

For σ1 = σ≥1 − σ≥2 there is a sizeable cancellation be-
tween these αs terms. If we lower the cut to pjetT2 ≥
22GeV then the logarithm increases and there is an al-
most exact cancellation with the 5.4αs. In the top right
panel of Fig. 1 we plot σ1 as a function of pcutT , and we
again see that this cancellation occurs in a region where
there is a dramatic decrease in the naive scale depen-
dence (green dashed and dotted curves). Using the in-
clusive uncertainties for σ≥1 and σ≥2, and adding them
in quadrature, gives the solid red curves, which provide a
more realistic estimate for the perturbative uncertainty.
Using the result from App. A we can examine the

full uncertainties and correlation matrix with 0, 1, and
(≥ 2)-jet bins in Higgs production. For the cuts in
Eq. (20) varying the scale by factors of two, we have
σtotal = (8.70 ± 0.75) pb, σ≥1 = (3.29 ± 0.62) pb, and
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FIG. 2: Fixed-order perturbative uncertainties for gg → H + 0 jets at NLO and NNLO. The upper row is for the Tevatron
and the lower row for the LHC with Ecm = 7TeV. On the left, the uncertainties are obtained from the naive scale variation in
σ0(p
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T ) between µ = mH/4 and µ = mH . On the right, the uncertainties are obtained by independently evaluating the scale

uncertainties in σtotal and σ≥1(p
cut) and combining them in quadrature. (For the LHC case the dark shaded NNLO bands

correspond to results in the top-left panel of Fig. 1. The naive scale variation band corresponds to the dashed green lines, and
the combined inclusive uncertainty band corresponds to the solid red lines.)

inclusive cross sections with these cuts,

σ1 = σ≥1

(
pjetT1 ≥ pcutT1

)
− σ≥2

(
pjetT1 ≥ pcutT1 , p

jet
T2 ≥ pcutT

)
.

(19)
For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).
The inclusive cross section σ≥1 that includes the 1-

jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =
165GeV, and MSTW2008 NNLO PDFs, we find

σ≥1

(
pjetT1 ≥ 30GeV)

= (2.00 pb)
[
1 + 5.4αs +O(α2

s)
]
,

σ≥2

(
pjetT1 ≥ 30GeV, pjetT2 ≥ 30GeV)

= (2.00 pb)
[
3.6αs +O(α2

s)
]
. (20)

For σ1 = σ≥1 − σ≥2 there is a sizeable cancellation be-
tween these αs terms. If we lower the cut to pjetT2 ≥
22GeV then the logarithm increases and there is an al-
most exact cancellation with the 5.4αs. In the top right
panel of Fig. 1 we plot σ1 as a function of pcutT , and we
again see that this cancellation occurs in a region where
there is a dramatic decrease in the naive scale depen-
dence (green dashed and dotted curves). Using the in-
clusive uncertainties for σ≥1 and σ≥2, and adding them
in quadrature, gives the solid red curves, which provide a
more realistic estimate for the perturbative uncertainty.
Using the result from App. A we can examine the

full uncertainties and correlation matrix with 0, 1, and
(≥ 2)-jet bins in Higgs production. For the cuts in
Eq. (20) varying the scale by factors of two, we have
σtotal = (8.70 ± 0.75) pb, σ≥1 = (3.29 ± 0.62) pb, and

0-jet bin:
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FIG. 1: Perturbative predictions for H+0 jets (upper left panel), WW +0 jets (lower left panel), H+1 jet with pjetT1 ≥ 30GeV
(upper right panel), and H + 1 jet with pjetT1 ≥ 120GeV (lower right panel). Central values are shown by the blue solid curves,
naive scale variation in the exclusive jet bin by the green dashed and dotted curves, and the result of combining independent
inclusive uncertainties to get the jet-bin uncertainty by the outer red solid curves.

∆2
0 = ∆2

total +∆2
≥1. One can see that for large values of

pcutT this combined inclusive uncertainty estimate repro-
duces the naive scale variation, since σ≥1(pcut) becomes
small. On the other hand, for small values of pcutT the un-
certainties obtained in this way are now more realistic,
because they explicitly take into account the large log-
arithmic corrections. The features of this plot are quite
generic. In particular, the same pattern of uncertainties
is observed for the Tevatron, when we take µ = mH as
our central curve with µ = 2mH and µ = mH/2 for the
range of scale variation, and whether or not we only look
at jets at central rapidities. We also note that using in-
dependent variations for µf and µr does not change this
picture, in particular the µf variation for fixed µr is quite
small.
Since both NLO and NNLO results for σ0(pcutT ) are

available, it is also useful to consider the convergence,
which we show in Fig. 2 for the Tevatron (top row) and
the LHC at 7TeV (bottom row). In the left panels we
use the naive scale variation, directly varying the scales
in σ0(pcutT ) to estimate the uncertainty, while in the right

panels we again propagate the uncertainties from the in-
clusive cross sections. As we lower pcutT , the naive scale
variation uncertainty estimate decreases at both NLO
and NNLO, and eventually becomes very small when
the curves pinch and the uncertainty is clearly under-
estimated. In contrast the inclusive scale variation gives
realistic uncertainties for all values of pcutT . In particular,
there is considerable uncertainty for small pcutT where the
summation of logarithms is important.

B. Higgs + 1 Jet

As our next example we consider the 1-jet bin in Higgs
production from gluon fusion. This jet bin is defined by
two cuts, one which ensures that the jet with the largest
pT is outside the 0-jet bin, pjetT1 ≥ pcutT1 , and one which
ensures that the jet with the next largest pT is restricted,
pjetT2 ≤ pcutT , so that we do not have 2 or more jets. The
1-jet cross section can be computed as a difference of

∆≥1, ∆≥2 independent

σ1(µ)
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FIG. 2: Fixed-order perturbative uncertainties for gg → H + 0 jets at NLO and NNLO. The upper row is for the Tevatron
and the lower row for the LHC with Ecm = 7TeV. On the left, the uncertainties are obtained from the naive scale variation in
σ0(p

cut
T ) between µ = mH/4 and µ = mH . On the right, the uncertainties are obtained by independently evaluating the scale

uncertainties in σtotal and σ≥1(p
cut) and combining them in quadrature. (For the LHC case the dark shaded NNLO bands

correspond to results in the top-left panel of Fig. 1. The naive scale variation band corresponds to the dashed green lines, and
the combined inclusive uncertainty band corresponds to the solid red lines.)

inclusive cross sections with these cuts,

σ1 = σ≥1

(
pjetT1 ≥ pcutT1

)
− σ≥2

(
pjetT1 ≥ pcutT1 , p

jet
T2 ≥ pcutT

)
.

(19)
For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).
The inclusive cross section σ≥1 that includes the 1-

jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =
165GeV, and MSTW2008 NNLO PDFs, we find

σ≥1

(
pjetT1 ≥ 30GeV)

= (2.00 pb)
[
1 + 5.4αs +O(α2

s)
]
,

σ≥2

(
pjetT1 ≥ 30GeV, pjetT2 ≥ 30GeV)

= (2.00 pb)
[
3.6αs +O(α2

s)
]
. (20)

For σ1 = σ≥1 − σ≥2 there is a sizeable cancellation be-
tween these αs terms. If we lower the cut to pjetT2 ≥
22GeV then the logarithm increases and there is an al-
most exact cancellation with the 5.4αs. In the top right
panel of Fig. 1 we plot σ1 as a function of pcutT , and we
again see that this cancellation occurs in a region where
there is a dramatic decrease in the naive scale depen-
dence (green dashed and dotted curves). Using the in-
clusive uncertainties for σ≥1 and σ≥2, and adding them
in quadrature, gives the solid red curves, which provide a
more realistic estimate for the perturbative uncertainty.
Using the result from App. A we can examine the

full uncertainties and correlation matrix with 0, 1, and
(≥ 2)-jet bins in Higgs production. For the cuts in
Eq. (20) varying the scale by factors of two, we have
σtotal = (8.70 ± 0.75) pb, σ≥1 = (3.29 ± 0.62) pb, and
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For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).
The inclusive cross section σ≥1 that includes the 1-

jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =
165GeV, and MSTW2008 NNLO PDFs, we find
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For σ1 = σ≥1 − σ≥2 there is a sizeable cancellation be-
tween these αs terms. If we lower the cut to pjetT2 ≥
22GeV then the logarithm increases and there is an al-
most exact cancellation with the 5.4αs. In the top right
panel of Fig. 1 we plot σ1 as a function of pcutT , and we
again see that this cancellation occurs in a region where
there is a dramatic decrease in the naive scale depen-
dence (green dashed and dotted curves). Using the in-
clusive uncertainties for σ≥1 and σ≥2, and adding them
in quadrature, gives the solid red curves, which provide a
more realistic estimate for the perturbative uncertainty.
Using the result from App. A we can examine the

full uncertainties and correlation matrix with 0, 1, and
(≥ 2)-jet bins in Higgs production. For the cuts in
Eq. (20) varying the scale by factors of two, we have
σtotal = (8.70 ± 0.75) pb, σ≥1 = (3.29 ± 0.62) pb, and
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FIG. 1: Perturbative predictions for H+0 jets (upper left panel), WW +0 jets (lower left panel), H+1 jet with pjetT1 ≥ 30GeV
(upper right panel), and H + 1 jet with pjetT1 ≥ 120GeV (lower right panel). Central values are shown by the blue solid curves,
naive scale variation in the exclusive jet bin by the green dashed and dotted curves, and the result of combining independent
inclusive uncertainties to get the jet-bin uncertainty by the outer red solid curves.

∆2
0 = ∆2

total +∆2
≥1. One can see that for large values of

pcutT this combined inclusive uncertainty estimate repro-
duces the naive scale variation, since σ≥1(pcut) becomes
small. On the other hand, for small values of pcutT the un-
certainties obtained in this way are now more realistic,
because they explicitly take into account the large log-
arithmic corrections. The features of this plot are quite
generic. In particular, the same pattern of uncertainties
is observed for the Tevatron, when we take µ = mH as
our central curve with µ = 2mH and µ = mH/2 for the
range of scale variation, and whether or not we only look
at jets at central rapidities. We also note that using in-
dependent variations for µf and µr does not change this
picture, in particular the µf variation for fixed µr is quite
small.
Since both NLO and NNLO results for σ0(pcutT ) are

available, it is also useful to consider the convergence,
which we show in Fig. 2 for the Tevatron (top row) and
the LHC at 7TeV (bottom row). In the left panels we
use the naive scale variation, directly varying the scales
in σ0(pcutT ) to estimate the uncertainty, while in the right

panels we again propagate the uncertainties from the in-
clusive cross sections. As we lower pcutT , the naive scale
variation uncertainty estimate decreases at both NLO
and NNLO, and eventually becomes very small when
the curves pinch and the uncertainty is clearly under-
estimated. In contrast the inclusive scale variation gives
realistic uncertainties for all values of pcutT . In particular,
there is considerable uncertainty for small pcutT where the
summation of logarithms is important.

B. Higgs + 1 Jet

As our next example we consider the 1-jet bin in Higgs
production from gluon fusion. This jet bin is defined by
two cuts, one which ensures that the jet with the largest
pT is outside the 0-jet bin, pjetT1 ≥ pcutT1 , and one which
ensures that the jet with the next largest pT is restricted,
pjetT2 ≤ pcutT , so that we do not have 2 or more jets. The
1-jet cross section can be computed as a difference of
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Appendix A: Case of Three Jet Bins

In this appendix we generalize Eq. (12) to the case of
0, 1, and (≥ 2)-jet bins that is actually used in current
Higgs searches. Since only neighboring jet bins will be
correlated, the generalization to more than three jet bins
is not any more complicated.
We start from the inclusive cross sections σtotal, σ≥1,

σ≥2, and denote their absolute uncertainties by ∆total,
∆≥1, ∆≥2 and their relative uncertainties by δi = ∆i/σi.
We define the exclusive cross sections and event fractions

σ0 = σtotal − σ≥1 , f0 =
σ0

σtotal
,

σ1 = σ≥1 − σ≥2 , f1 =
σ1

σtotal
. (A1)

The covariance matrix for the four quantities
{σtotal,σ0,σ1,σ≥2} is given by

C =





∆2
total ∆2

total 0 0

∆2
total ∆2

total +∆2
≥1 −∆2

≥1 0

0 −∆2
≥1 ∆2

≥1 +∆2
≥2 −∆2

≥2

0 0 −∆2
≥2 ∆2

≥2




.

(A2)
Of course, only three of these four quantities are inde-
pendent. For example, σtotal = σ0 + σ1 + σ≥2, and it is
easy to check that ∆(σ0 + σ1 + σ≥2)2 = ∆2

total, which is
given by the sum of all entries in the lower 3× 3 matrix.
The relative uncertainties of σ0,1 following from Eq. (A2),
written in terms of relative quantities, are

δ(σ0)
2 =

1

f2
0

δ2total +
( 1

f0
− 1

)2
δ2≥1 ,

δ(σ1)
2 =

(1− f0
f1

)2
δ2≥1 +

(1− f0
f1

− 1
)2

δ2≥2 . (A3)

Similarly, the correlation coefficients for σ0 and σ1 fol-
lowing from Eq. (A2) are

ρ(σ0,σtotal) =

[
1 +

δ2≥1

δ2total
(1 − f0)

2

]−1/2

,

ρ(σ0,σ1) = −
[
1 +

δ2total
δ2≥1

1

(1− f0)2

]−1/2

×
[
1 +

δ2≥2

δ2≥1

(
1− f1

1− f0

)2
]−1/2

,

ρ(σ0,σ≥2) = 0 ,

ρ(σ1,σtotal) = 0 ,

ρ(σ1,σ≥2) = −
[
1 +

δ2≥1

δ2≥2

(
1− f1

1− f0

)−2
]−1/2

. (A4)

The relative uncertainties for f0 and f1 are

δ(f0)
2 =

( 1

f0
− 1

)2(
δ2total + δ2≥1

)
, (A5)

δ(f1)
2 = δ2total +

(1− f0
f1

)2
δ2≥1 +

(1− f0
f1

− 1
)2

δ2≥2 ,

and their correlations are

ρ(f0,σtotal) =

[
1 +

δ2≥1

δ2total

]−1/2

,

ρ(f0, f1) = −
(
1 +

1− f0
f1

δ2≥1

δ2total

)( 1

f0
− 1

) δ2total
δ(f0)δ(f1)

,

ρ(f1,σtotal) = − δtotal
δ(f1)

. (A6)
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correlated. For small values of pcutT the cancellations that take place in σ0(pcut) cause the error bands to shrink and
eventually vanish at pcutT ! 25GeV, where there is an almost exact cancellation between the two series in Eq. (6).
In contrast, in the right panel the uncertainties are obtained using the above method by combining the independent
inclusive uncertainties to obtain the exclusive uncertainty, ∆2

0 = ∆2
total+∆2

≥1. For large values of p
cut
T this reproduces

the naive scale variation, since σ≥1(pcut) becomes small. On the other hand, for small values of pcutT the uncertainties
estimated in this way are more realistic, because they explicitly estimate the uncertainties due to the large logarithmic
corrections. The features of this plot are quite generic. In particular, the same pattern of uncertainties is observed for
the Tevatron, when using µ = mH as our central scale (with µ = 2mH and µ = mH/2 for the range of scale variation),
whether or not we only look at jets at central rapidities, or when considering the exclusive 1-jet cross section. We
also note that using independent variations for µf and µr does not change this picture, in particular the µf variation
for fixed µr is quite small.
The generalization of the above discussion to more jets and several jet bins is straightforward. For the N -jet bin we

replace σtotal → σ≥N , σ0 → σN , and σ≥1 → σ≥N+1, and take the appropriate σB. If the perturbative series for σ≥N

exhibits large αs corrections, then the additional large logarithms present in σ≥N+1 will again lead to cancellations
when we consider the difference σN = σ≥N − σ≥N+1. Hence, ∆≥N+1 will again give a better estimate for the ∆cut

that arises from separating σ≥N into jet bins σN and σ≥N+1.

C. Example Implementation for H + 0 Jet and H + 1 Jet Channels

To illustrate the implications for a concrete example we consider the 0-jet and 1-jet bins together with the remaining
(≥ 2)-jet bin. By construction only neighboring jet bins are correlated, so the generalization to more jet bins is not
any more complicated. We denote the total inclusive cross section by σtotal, and the inclusive 1-jet and 2-jet cross
sections by σ≥1 and σ≥2. Their respective absolute uncertainties are ∆total, ∆≥1, ∆≥2, and their relative uncertainties
are given by δi = ∆i/σi. The exclusive 0-jet cross section, σ0, and 1-jet cross section, σ1, satisfy the relations

σ0 = σtotal − σ≥1 , σ1 = σ≥1 − σ≥2 , σtotal = σ0 + σ1 + σ≥2 . (10)

Experimentally it is convenient to work with the exclusive 0-jet and 1-jet fractions defined as

f0 =
σ0

σtotal
, f1 =

σ1

σtotal
. (11)

Treating the inclusive uncertainties ∆total, ∆≥1, ∆≥2 as uncorrelated, the covariance matrix for the three quantities
{σtotal,σ0,σ1} is given by

C =




∆2

total ∆2
total 0

∆2
total ∆2

total +∆2
≥1 −∆2

≥1

0 −∆2
≥1 ∆2

≥1 +∆2
≥2



 . (12)

The relative uncertainties and correlations for σ0 and σ1 directly follow from Eq. (12). Writing them in terms of the
relative quantities fi and δi, one gets

δ(σ0)
2 =

1

f2
0

δ2total +
( 1

f0
− 1

)2
δ2≥1 ,

δ(σ1)
2 =

(1− f0
f1

)2
δ2≥1 +

(1− f0
f1

− 1
)2

δ2≥2 ,

ρ(σ0,σtotal) =

[
1 +

δ2≥1

δ2total
(1− f0)

2

]−1/2

,

ρ(σ1,σtotal) = 0 ,

ρ(σ0,σ1) = −
[
1 +

δ2total
δ2≥1

1

(1 − f0)2

]−1/2[
1 +

δ2≥2

δ2≥1

(
1− f1

1− f0

)2
]−1/2

. (13)

Alternatively, we can use {σtotal, f0, f1} as the three independent quantities. Their relative uncertainties and correla-
tions following from Eq. (12) are then

δ(f0)
2 =

( 1

f0
− 1

)2(
δ2total + δ2≥1

)
,
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In this appendix we generalize Eq. (12) to the case of
0, 1, and (≥ 2)-jet bins that is actually used in current
Higgs searches. Since only neighboring jet bins will be
correlated, the generalization to more than three jet bins
is not any more complicated.
We start from the inclusive cross sections σtotal, σ≥1,

σ≥2, and denote their absolute uncertainties by ∆total,
∆≥1, ∆≥2 and their relative uncertainties by δi = ∆i/σi.
We define the exclusive cross sections and event fractions

σ0 = σtotal − σ≥1 , f0 =
σ0

σtotal
,

σ1 = σ≥1 − σ≥2 , f1 =
σ1

σtotal
. (A1)

The covariance matrix for the four quantities
{σtotal,σ0,σ1,σ≥2} is given by

C =





∆2
total ∆2

total 0 0

∆2
total ∆2

total +∆2
≥1 −∆2

≥1 0

0 −∆2
≥1 ∆2

≥1 +∆2
≥2 −∆2

≥2

0 0 −∆2
≥2 ∆2

≥2




.

(A2)
Of course, only three of these four quantities are inde-
pendent. For example, σtotal = σ0 + σ1 + σ≥2, and it is
easy to check that ∆(σ0 + σ1 + σ≥2)2 = ∆2

total, which is
given by the sum of all entries in the lower 3× 3 matrix.
The relative uncertainties of σ0,1 following from Eq. (A2),
written in terms of relative quantities, are

δ(σ0)
2 =

1

f2
0

δ2total +
( 1

f0
− 1

)2
δ2≥1 ,

δ(σ1)
2 =

(1− f0
f1

)2
δ2≥1 +

(1− f0
f1

− 1
)2

δ2≥2 . (A3)

Similarly, the correlation coefficients for σ0 and σ1 fol-
lowing from Eq. (A2) are

ρ(σ0,σtotal) =

[
1 +

δ2≥1

δ2total
(1 − f0)

2

]−1/2

,

ρ(σ0,σ1) = −
[
1 +

δ2total
δ2≥1

1

(1− f0)2

]−1/2

×
[
1 +

δ2≥2

δ2≥1

(
1− f1

1− f0

)2
]−1/2

,

ρ(σ0,σ≥2) = 0 ,

ρ(σ1,σtotal) = 0 ,

ρ(σ1,σ≥2) = −
[
1 +

δ2≥1

δ2≥2

(
1− f1

1− f0

)−2
]−1/2

. (A4)

The relative uncertainties for f0 and f1 are

δ(f0)
2 =

( 1

f0
− 1

)2(
δ2total + δ2≥1

)
, (A5)

δ(f1)
2 = δ2total +

(1− f0
f1

)2
δ2≥1 +

(1− f0
f1

− 1
)2

δ2≥2 ,

and their correlations are

ρ(f0,σtotal) =

[
1 +

δ2≥1

δ2total

]−1/2

,

ρ(f0, f1) = −
(
1 +

1− f0
f1

δ2≥1

δ2total

)( 1

f0
− 1

) δ2total
δ(f0)δ(f1)

,

ρ(f1,σtotal) = − δtotal
δ(f1)

. (A6)
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In this appendix we generalize Eq. (12) to the case of
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0, 1, and (≥ 2)-jet bins that is actually used in current
Higgs searches. Since only neighboring jet bins will be
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FIG. 2: Fixed-order perturbative uncertainties for gg → H + 0 jets at NLO and NNLO. The upper row is for the Tevatron
and the lower row for the LHC with Ecm = 7TeV. On the left, the uncertainties are obtained from the naive scale variation in
σ0(p

cut
T ) between µ = mH/4 and µ = mH . On the right, the uncertainties are obtained by independently evaluating the scale

uncertainties in σtotal and σ≥1(p
cut) and combining them in quadrature. (For the LHC case the dark shaded NNLO bands

correspond to results in the top-left panel of Fig. 1. The naive scale variation band corresponds to the dashed green lines, and
the combined inclusive uncertainty band corresponds to the solid red lines.)

inclusive cross sections with these cuts,

σ1 = σ≥1

(
pjetT1 ≥ pcutT1

)
− σ≥2

(
pjetT1 ≥ pcutT1 , p

jet
T2 ≥ pcutT

)
.

(19)
For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).
The inclusive cross section σ≥1 that includes the 1-

jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =
165GeV, and MSTW2008 NNLO PDFs, we find

σ≥1

(
pjetT1 ≥ 30GeV)

= (2.00 pb)
[
1 + 5.4αs +O(α2

s)
]
,

σ≥2

(
pjetT1 ≥ 30GeV, pjetT2 ≥ 30GeV)

= (2.00 pb)
[
3.6αs +O(α2

s)
]
. (20)

For σ1 = σ≥1 − σ≥2 there is a sizeable cancellation be-
tween these αs terms. If we lower the cut to pjetT2 ≥
22GeV then the logarithm increases and there is an al-
most exact cancellation with the 5.4αs. In the top right
panel of Fig. 1 we plot σ1 as a function of pcutT , and we
again see that this cancellation occurs in a region where
there is a dramatic decrease in the naive scale depen-
dence (green dashed and dotted curves). Using the in-
clusive uncertainties for σ≥1 and σ≥2, and adding them
in quadrature, gives the solid red curves, which provide a
more realistic estimate for the perturbative uncertainty.
Using the result from App. A we can examine the

full uncertainties and correlation matrix with 0, 1, and
(≥ 2)-jet bins in Higgs production. For the cuts in
Eq. (20) varying the scale by factors of two, we have
σtotal = (8.70 ± 0.75) pb, σ≥1 = (3.29 ± 0.62) pb, and
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in ln(pjetT1/mH), but remains predominantly independent
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tween these αs terms. If we lower the cut to pjetT2 ≥
22GeV then the logarithm increases and there is an al-
most exact cancellation with the 5.4αs. In the top right
panel of Fig. 1 we plot σ1 as a function of pcutT , and we
again see that this cancellation occurs in a region where
there is a dramatic decrease in the naive scale depen-
dence (green dashed and dotted curves). Using the in-
clusive uncertainties for σ≥1 and σ≥2, and adding them
in quadrature, gives the solid red curves, which provide a
more realistic estimate for the perturbative uncertainty.
Using the result from App. A we can examine the

full uncertainties and correlation matrix with 0, 1, and
(≥ 2)-jet bins in Higgs production. For the cuts in
Eq. (20) varying the scale by factors of two, we have
σtotal = (8.70 ± 0.75) pb, σ≥1 = (3.29 ± 0.62) pb, and
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σ≥2 = (0.85 ± 0.49) pb, corresponding to relative uncer-
tainties of 8.6%, 18.8%, and 57%, respectively. We let
δ(x) denote the relative percent uncertainty of the quan-
tity x, and ρ(x, y) the correlation coefficient between x
and y. App. A yields

δ(σ0) = 18% , δ(σ1) = 32% ,

ρ(σ0,σtotal) = 0.77 , ρ(σ1,σ≥2) = −0.62 ,

ρ(σ0,σ1) = −0.50 , (21)

where we have only shown the nonzero correlations. Note
that σ0 and σ1 as well as σ1 and σ≥2 have a substantial
negative correlation because of the jet-bin boundary they
share, while σ0 and σ≥2 are uncorrelated.
In contrast, the naive scale variation assumes that all

the cross sections are 100% correlated. Due to the can-
cellations between the perturbative series, this leads to
much smaller (and unrealistic) uncertainties, with our
choice of cuts δ(σ0) = 2.3% and δ(σ1) = 5.5%, which is
reflected in the pinching of the green lines in Fig. 2. (Note
that increasing the range of scale variation or separately
varying µr and µf does not mitigate this problem.) The
analog of Eq. (1) for this example would be

0.62× 2.3%+ 0.28× 5.5%+ 0.10× 57% = 8.6% . (22)

By treating all σi as 100% correlated, σ0 is forced to have
a smaller relative uncertainty than σtotal, as in Eq. (1),
since it has to make up for the much larger uncertainties
in σ≥2.
In addition to the cross sections in each jet bin, we can

also consider the relative jet fractions f0 = σ0/σtotal and
σ1/σtotal, which are often used in experimental analyses.
The perturbative theory uncertainties and correlations
for the jet fractions follow by standard error propagation
from those in Eq. (21). The general expressions are given
in App. A, and we find

δ(f0) = 13% , δ(f1) = 33% ,

ρ(f0,σtotal) = 0.42 , ρ(f1,σtotal) = −0.26 ,

ρ(f0, f1) = −0.80 . (23)

Comparing to Eq. (21), the use of jet fractions with σtotal

in the denominator yields a nonzero anti-correlation for
σtotal with the 1-jet bin, and decreases the correlation for
σtotal with the 0-jet bin.
It is also interesting to consider the case with pjetT1 ≥

120GeV, where the logarithms of pjetT1/mH are not large.
The cross section σ≥1 now has a smaller perturbative

correction, but for a region of cuts on pjetT2 there are still

substantial cancellations in σ1. For instance, for pjetT2 ≥
60GeV we have

σ≥1

(
pjetT1 ≥ 120GeV)

= (0.31 pb)
[
1 + 2.9αs +O(α2

s)
]
,

σ≥2

(
pjetT1 ≥ 120GeV, pjetT2 ≥ 60GeV)

= (0.31 pb)
[
3.7αs +O(α2

s)
]
, (24)

and the αs terms completely cancel around pjetT2 ≥
70GeV. In the bottom right panel of Fig. 1 we plot
σ1 as a function of pcutT for this scenario. Once again the
combined inclusive uncertainties (solid red curves) give
a better estimate than the naive scale uncertainty deter-
mined by up/down µ variation in σ1 (green dotted and
dashed curves). It is interesting to notice that the curves
dive and a logarithmic summation in pjetT2 becomes im-

portant earlier now, i.e., at much larger values for pjetT2,

when the cut on pjetT1 is raised. For pjetT1 ≥ 120GeV and

pjetT2 ≤ 30GeV fixed-order perturbation theory does not
yield a controlled expansion, and the resummation of the
jet-veto logarithms is clearly necessary.

C. WW + 0 Jets

The process pp → WW + 0 jets is the dominant irre-
ducible background for theH → WW ∗ search in the 0-jet
bin, and also exhibits a relatively large K factor ∼ 1.5.
Hence, it is interesting to contrast the scale uncertainties
here with those found for H+0 jets. Including the Higgs
search cuts (modulo the jet veto), the K factor for WW
becomes larger than two [17], but we will not include
those cuts in our analysis here. With µr = µf = mW ,
NLO MSTW2008 PDFs, and αs ≡ αs(mW ) = 0.1226,
the total pp → WW cross section is

σtotal = (32.5 pb)
[
1 + 3.6αs +O(α2

s)
]
, (25)

while for the inclusive 1-jet cross section with logarithms
of pcutT we have

σ≥1

(
pjetT ≥ 30GeV) = (32.5 pb)

[
2.8αs +O(α2

s)
]
. (26)

Thus, when we consider σ0 = σtotal − σ≥1 there is a size-
able cancellation for the αs terms. In Fig. 1, lower left
panel, we show σ0 for pp → WW +0 jets as a function of
pcutT . Once again the green curves from naive scale varia-
tion exhibit a pinching near pcutT ∼ 30GeV due to cancel-
lations between the two perturbative series in Eqs. (25)
and (26), and underestimate the theoretical uncertainty
for pcutT

<∼ 70GeV. The combined inclusive uncertainty
is again more realistic. The pattern of uncertainties here
is the same as for H + 0 jets and H + 1 jet, just with
smaller overall uncertainties. Just like for H + 0 jets us-
ing independent variations for µf and µr does not change
the picture, the µf variation for fixed µr is again quite
small.

D. W + 0 Jets

The exclusive process pp → W + N jets is an impor-
tant benchmark process at the LHC and also an impor-
tant SM background for new physics searches looking for
missing energy. In this section we consider pp → W + 0
jets, which provides us with a case to test our method

7

σ≥2 = (0.85 ± 0.49) pb, corresponding to relative uncer-
tainties of 8.6%, 18.8%, and 57%, respectively. We let
δ(x) denote the relative percent uncertainty of the quan-
tity x, and ρ(x, y) the correlation coefficient between x
and y. App. A yields

δ(σ0) = 18% , δ(σ1) = 32% ,

ρ(σ0,σtotal) = 0.77 , ρ(σ1,σ≥2) = −0.62 ,

ρ(σ0,σ1) = −0.50 , (21)

where we have only shown the nonzero correlations. Note
that σ0 and σ1 as well as σ1 and σ≥2 have a substantial
negative correlation because of the jet-bin boundary they
share, while σ0 and σ≥2 are uncorrelated.
In contrast, the naive scale variation assumes that all

the cross sections are 100% correlated. Due to the can-
cellations between the perturbative series, this leads to
much smaller (and unrealistic) uncertainties, with our
choice of cuts δ(σ0) = 2.3% and δ(σ1) = 5.5%, which is
reflected in the pinching of the green lines in Fig. 2. (Note
that increasing the range of scale variation or separately
varying µr and µf does not mitigate this problem.) The
analog of Eq. (1) for this example would be

0.62× 2.3%+ 0.28× 5.5%+ 0.10× 57% = 8.6% . (22)

By treating all σi as 100% correlated, σ0 is forced to have
a smaller relative uncertainty than σtotal, as in Eq. (1),
since it has to make up for the much larger uncertainties
in σ≥2.
In addition to the cross sections in each jet bin, we can

also consider the relative jet fractions f0 = σ0/σtotal and
σ1/σtotal, which are often used in experimental analyses.
The perturbative theory uncertainties and correlations
for the jet fractions follow by standard error propagation
from those in Eq. (21). The general expressions are given
in App. A, and we find

δ(f0) = 13% , δ(f1) = 33% ,

ρ(f0,σtotal) = 0.42 , ρ(f1,σtotal) = −0.26 ,

ρ(f0, f1) = −0.80 . (23)

Comparing to Eq. (21), the use of jet fractions with σtotal

in the denominator yields a nonzero anti-correlation for
σtotal with the 1-jet bin, and decreases the correlation for
σtotal with the 0-jet bin.
It is also interesting to consider the case with pjetT1 ≥

120GeV, where the logarithms of pjetT1/mH are not large.
The cross section σ≥1 now has a smaller perturbative

correction, but for a region of cuts on pjetT2 there are still

substantial cancellations in σ1. For instance, for pjetT2 ≥
60GeV we have

σ≥1

(
pjetT1 ≥ 120GeV)

= (0.31 pb)
[
1 + 2.9αs +O(α2

s)
]
,

σ≥2

(
pjetT1 ≥ 120GeV, pjetT2 ≥ 60GeV)

= (0.31 pb)
[
3.7αs +O(α2

s)
]
, (24)

and the αs terms completely cancel around pjetT2 ≥
70GeV. In the bottom right panel of Fig. 1 we plot
σ1 as a function of pcutT for this scenario. Once again the
combined inclusive uncertainties (solid red curves) give
a better estimate than the naive scale uncertainty deter-
mined by up/down µ variation in σ1 (green dotted and
dashed curves). It is interesting to notice that the curves
dive and a logarithmic summation in pjetT2 becomes im-

portant earlier now, i.e., at much larger values for pjetT2,

when the cut on pjetT1 is raised. For pjetT1 ≥ 120GeV and

pjetT2 ≤ 30GeV fixed-order perturbation theory does not
yield a controlled expansion, and the resummation of the
jet-veto logarithms is clearly necessary.

C. WW + 0 Jets

The process pp → WW + 0 jets is the dominant irre-
ducible background for theH → WW ∗ search in the 0-jet
bin, and also exhibits a relatively large K factor ∼ 1.5.
Hence, it is interesting to contrast the scale uncertainties
here with those found for H+0 jets. Including the Higgs
search cuts (modulo the jet veto), the K factor for WW
becomes larger than two [17], but we will not include
those cuts in our analysis here. With µr = µf = mW ,
NLO MSTW2008 PDFs, and αs ≡ αs(mW ) = 0.1226,
the total pp → WW cross section is

σtotal = (32.5 pb)
[
1 + 3.6αs +O(α2

s)
]
, (25)

while for the inclusive 1-jet cross section with logarithms
of pcutT we have

σ≥1

(
pjetT ≥ 30GeV) = (32.5 pb)

[
2.8αs +O(α2

s)
]
. (26)

Thus, when we consider σ0 = σtotal − σ≥1 there is a size-
able cancellation for the αs terms. In Fig. 1, lower left
panel, we show σ0 for pp → WW +0 jets as a function of
pcutT . Once again the green curves from naive scale varia-
tion exhibit a pinching near pcutT ∼ 30GeV due to cancel-
lations between the two perturbative series in Eqs. (25)
and (26), and underestimate the theoretical uncertainty
for pcutT

<∼ 70GeV. The combined inclusive uncertainty
is again more realistic. The pattern of uncertainties here
is the same as for H + 0 jets and H + 1 jet, just with
smaller overall uncertainties. Just like for H + 0 jets us-
ing independent variations for µf and µr does not change
the picture, the µf variation for fixed µr is again quite
small.

D. W + 0 Jets

The exclusive process pp → W + N jets is an impor-
tant benchmark process at the LHC and also an impor-
tant SM background for new physics searches looking for
missing energy. In this section we consider pp → W + 0
jets, which provides us with a case to test our method

7

σ≥2 = (0.85 ± 0.49) pb, corresponding to relative uncer-
tainties of 8.6%, 18.8%, and 57%, respectively. We let
δ(x) denote the relative percent uncertainty of the quan-
tity x, and ρ(x, y) the correlation coefficient between x
and y. App. A yields

δ(σ0) = 18% , δ(σ1) = 32% ,

ρ(σ0,σtotal) = 0.77 , ρ(σ1,σ≥2) = −0.62 ,

ρ(σ0,σ1) = −0.50 , (21)

where we have only shown the nonzero correlations. Note
that σ0 and σ1 as well as σ1 and σ≥2 have a substantial
negative correlation because of the jet-bin boundary they
share, while σ0 and σ≥2 are uncorrelated.
In contrast, the naive scale variation assumes that all

the cross sections are 100% correlated. Due to the can-
cellations between the perturbative series, this leads to
much smaller (and unrealistic) uncertainties, with our
choice of cuts δ(σ0) = 2.3% and δ(σ1) = 5.5%, which is
reflected in the pinching of the green lines in Fig. 2. (Note
that increasing the range of scale variation or separately
varying µr and µf does not mitigate this problem.) The
analog of Eq. (1) for this example would be

0.62× 2.3%+ 0.28× 5.5%+ 0.10× 57% = 8.6% . (22)

By treating all σi as 100% correlated, σ0 is forced to have
a smaller relative uncertainty than σtotal, as in Eq. (1),
since it has to make up for the much larger uncertainties
in σ≥2.
In addition to the cross sections in each jet bin, we can

also consider the relative jet fractions f0 = σ0/σtotal and
σ1/σtotal, which are often used in experimental analyses.
The perturbative theory uncertainties and correlations
for the jet fractions follow by standard error propagation
from those in Eq. (21). The general expressions are given
in App. A, and we find

δ(f0) = 13% , δ(f1) = 33% ,

ρ(f0,σtotal) = 0.42 , ρ(f1,σtotal) = −0.26 ,

ρ(f0, f1) = −0.80 . (23)

Comparing to Eq. (21), the use of jet fractions with σtotal

in the denominator yields a nonzero anti-correlation for
σtotal with the 1-jet bin, and decreases the correlation for
σtotal with the 0-jet bin.
It is also interesting to consider the case with pjetT1 ≥

120GeV, where the logarithms of pjetT1/mH are not large.
The cross section σ≥1 now has a smaller perturbative

correction, but for a region of cuts on pjetT2 there are still

substantial cancellations in σ1. For instance, for pjetT2 ≥
60GeV we have

σ≥1

(
pjetT1 ≥ 120GeV)

= (0.31 pb)
[
1 + 2.9αs +O(α2

s)
]
,

σ≥2

(
pjetT1 ≥ 120GeV, pjetT2 ≥ 60GeV)

= (0.31 pb)
[
3.7αs +O(α2

s)
]
, (24)

and the αs terms completely cancel around pjetT2 ≥
70GeV. In the bottom right panel of Fig. 1 we plot
σ1 as a function of pcutT for this scenario. Once again the
combined inclusive uncertainties (solid red curves) give
a better estimate than the naive scale uncertainty deter-
mined by up/down µ variation in σ1 (green dotted and
dashed curves). It is interesting to notice that the curves
dive and a logarithmic summation in pjetT2 becomes im-

portant earlier now, i.e., at much larger values for pjetT2,

when the cut on pjetT1 is raised. For pjetT1 ≥ 120GeV and

pjetT2 ≤ 30GeV fixed-order perturbation theory does not
yield a controlled expansion, and the resummation of the
jet-veto logarithms is clearly necessary.

C. WW + 0 Jets

The process pp → WW + 0 jets is the dominant irre-
ducible background for theH → WW ∗ search in the 0-jet
bin, and also exhibits a relatively large K factor ∼ 1.5.
Hence, it is interesting to contrast the scale uncertainties
here with those found for H+0 jets. Including the Higgs
search cuts (modulo the jet veto), the K factor for WW
becomes larger than two [17], but we will not include
those cuts in our analysis here. With µr = µf = mW ,
NLO MSTW2008 PDFs, and αs ≡ αs(mW ) = 0.1226,
the total pp → WW cross section is

σtotal = (32.5 pb)
[
1 + 3.6αs +O(α2

s)
]
, (25)

while for the inclusive 1-jet cross section with logarithms
of pcutT we have

σ≥1

(
pjetT ≥ 30GeV) = (32.5 pb)

[
2.8αs +O(α2

s)
]
. (26)

Thus, when we consider σ0 = σtotal − σ≥1 there is a size-
able cancellation for the αs terms. In Fig. 1, lower left
panel, we show σ0 for pp → WW +0 jets as a function of
pcutT . Once again the green curves from naive scale varia-
tion exhibit a pinching near pcutT ∼ 30GeV due to cancel-
lations between the two perturbative series in Eqs. (25)
and (26), and underestimate the theoretical uncertainty
for pcutT

<∼ 70GeV. The combined inclusive uncertainty
is again more realistic. The pattern of uncertainties here
is the same as for H + 0 jets and H + 1 jet, just with
smaller overall uncertainties. Just like for H + 0 jets us-
ing independent variations for µf and µr does not change
the picture, the µf variation for fixed µr is again quite
small.

D. W + 0 Jets

The exclusive process pp → W + N jets is an impor-
tant benchmark process at the LHC and also an impor-
tant SM background for new physics searches looking for
missing energy. In this section we consider pp → W + 0
jets, which provides us with a case to test our method

7

σ≥2 = (0.85 ± 0.49) pb, corresponding to relative uncer-
tainties of 8.6%, 18.8%, and 57%, respectively. We let
δ(x) denote the relative percent uncertainty of the quan-
tity x, and ρ(x, y) the correlation coefficient between x
and y. App. A yields

δ(σ0) = 18% , δ(σ1) = 32% ,

ρ(σ0,σtotal) = 0.77 , ρ(σ1,σ≥2) = −0.62 ,

ρ(σ0,σ1) = −0.50 , (21)

where we have only shown the nonzero correlations. Note
that σ0 and σ1 as well as σ1 and σ≥2 have a substantial
negative correlation because of the jet-bin boundary they
share, while σ0 and σ≥2 are uncorrelated.
In contrast, the naive scale variation assumes that all

the cross sections are 100% correlated. Due to the can-
cellations between the perturbative series, this leads to
much smaller (and unrealistic) uncertainties, with our
choice of cuts δ(σ0) = 2.3% and δ(σ1) = 5.5%, which is
reflected in the pinching of the green lines in Fig. 2. (Note
that increasing the range of scale variation or separately
varying µr and µf does not mitigate this problem.) The
analog of Eq. (1) for this example would be

0.62× 2.3%+ 0.28× 5.5%+ 0.10× 57% = 8.6% . (22)

By treating all σi as 100% correlated, σ0 is forced to have
a smaller relative uncertainty than σtotal, as in Eq. (1),
since it has to make up for the much larger uncertainties
in σ≥2.
In addition to the cross sections in each jet bin, we can

also consider the relative jet fractions f0 = σ0/σtotal and
σ1/σtotal, which are often used in experimental analyses.
The perturbative theory uncertainties and correlations
for the jet fractions follow by standard error propagation
from those in Eq. (21). The general expressions are given
in App. A, and we find

δ(f0) = 13% , δ(f1) = 33% ,

ρ(f0,σtotal) = 0.42 , ρ(f1,σtotal) = −0.26 ,

ρ(f0, f1) = −0.80 . (23)

Comparing to Eq. (21), the use of jet fractions with σtotal

in the denominator yields a nonzero anti-correlation for
σtotal with the 1-jet bin, and decreases the correlation for
σtotal with the 0-jet bin.
It is also interesting to consider the case with pjetT1 ≥

120GeV, where the logarithms of pjetT1/mH are not large.
The cross section σ≥1 now has a smaller perturbative

correction, but for a region of cuts on pjetT2 there are still

substantial cancellations in σ1. For instance, for pjetT2 ≥
60GeV we have

σ≥1

(
pjetT1 ≥ 120GeV)

= (0.31 pb)
[
1 + 2.9αs +O(α2

s)
]
,

σ≥2

(
pjetT1 ≥ 120GeV, pjetT2 ≥ 60GeV)

= (0.31 pb)
[
3.7αs +O(α2

s)
]
, (24)

and the αs terms completely cancel around pjetT2 ≥
70GeV. In the bottom right panel of Fig. 1 we plot
σ1 as a function of pcutT for this scenario. Once again the
combined inclusive uncertainties (solid red curves) give
a better estimate than the naive scale uncertainty deter-
mined by up/down µ variation in σ1 (green dotted and
dashed curves). It is interesting to notice that the curves
dive and a logarithmic summation in pjetT2 becomes im-

portant earlier now, i.e., at much larger values for pjetT2,

when the cut on pjetT1 is raised. For pjetT1 ≥ 120GeV and

pjetT2 ≤ 30GeV fixed-order perturbation theory does not
yield a controlled expansion, and the resummation of the
jet-veto logarithms is clearly necessary.

C. WW + 0 Jets

The process pp → WW + 0 jets is the dominant irre-
ducible background for theH → WW ∗ search in the 0-jet
bin, and also exhibits a relatively large K factor ∼ 1.5.
Hence, it is interesting to contrast the scale uncertainties
here with those found for H+0 jets. Including the Higgs
search cuts (modulo the jet veto), the K factor for WW
becomes larger than two [17], but we will not include
those cuts in our analysis here. With µr = µf = mW ,
NLO MSTW2008 PDFs, and αs ≡ αs(mW ) = 0.1226,
the total pp → WW cross section is

σtotal = (32.5 pb)
[
1 + 3.6αs +O(α2

s)
]
, (25)

while for the inclusive 1-jet cross section with logarithms
of pcutT we have

σ≥1

(
pjetT ≥ 30GeV) = (32.5 pb)

[
2.8αs +O(α2

s)
]
. (26)

Thus, when we consider σ0 = σtotal − σ≥1 there is a size-
able cancellation for the αs terms. In Fig. 1, lower left
panel, we show σ0 for pp → WW +0 jets as a function of
pcutT . Once again the green curves from naive scale varia-
tion exhibit a pinching near pcutT ∼ 30GeV due to cancel-
lations between the two perturbative series in Eqs. (25)
and (26), and underestimate the theoretical uncertainty
for pcutT

<∼ 70GeV. The combined inclusive uncertainty
is again more realistic. The pattern of uncertainties here
is the same as for H + 0 jets and H + 1 jet, just with
smaller overall uncertainties. Just like for H + 0 jets us-
ing independent variations for µf and µr does not change
the picture, the µf variation for fixed µr is again quite
small.

D. W + 0 Jets

The exclusive process pp → W + N jets is an impor-
tant benchmark process at the LHC and also an impor-
tant SM background for new physics searches looking for
missing energy. In this section we consider pp → W + 0
jets, which provides us with a case to test our method
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search cuts (modulo the jet veto), the K factor for WW
becomes larger than two [17], but we will not include
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NLO MSTW2008 PDFs, and αs ≡ αs(mW ) = 0.1226,
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Thus, when we consider σ0 = σtotal − σ≥1 there is a size-
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panel, we show σ0 for pp → WW +0 jets as a function of
pcutT . Once again the green curves from naive scale varia-
tion exhibit a pinching near pcutT ∼ 30GeV due to cancel-
lations between the two perturbative series in Eqs. (25)
and (26), and underestimate the theoretical uncertainty
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<∼ 70GeV. The combined inclusive uncertainty
is again more realistic. The pattern of uncertainties here
is the same as for H + 0 jets and H + 1 jet, just with
smaller overall uncertainties. Just like for H + 0 jets us-
ing independent variations for µf and µr does not change
the picture, the µf variation for fixed µr is again quite
small.

D. W + 0 Jets

The exclusive process pp → W + N jets is an impor-
tant benchmark process at the LHC and also an impor-
tant SM background for new physics searches looking for
missing energy. In this section we consider pp → W + 0
jets, which provides us with a case to test our method
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Appendix A: Case of Three Jet Bins

In this appendix we generalize Eq. (12) to the case of
0, 1, and (≥ 2)-jet bins that is actually used in current
Higgs searches. Since only neighboring jet bins will be
correlated, the generalization to more than three jet bins
is not any more complicated.
We start from the inclusive cross sections σtotal, σ≥1,

σ≥2, and denote their absolute uncertainties by ∆total,
∆≥1, ∆≥2 and their relative uncertainties by δi = ∆i/σi.
We define the exclusive cross sections and event fractions

σ0 = σtotal − σ≥1 , f0 =
σ0

σtotal
,

σ1 = σ≥1 − σ≥2 , f1 =
σ1

σtotal
. (A1)

The covariance matrix for the four quantities
{σtotal,σ0,σ1,σ≥2} is given by

C =





∆2
total ∆2

total 0 0

∆2
total ∆2

total +∆2
≥1 −∆2

≥1 0

0 −∆2
≥1 ∆2

≥1 +∆2
≥2 −∆2

≥2

0 0 −∆2
≥2 ∆2

≥2




.

(A2)
Of course, only three of these four quantities are inde-
pendent. For example, σtotal = σ0 + σ1 + σ≥2, and it is
easy to check that ∆(σ0 + σ1 + σ≥2)2 = ∆2

total, which is
given by the sum of all entries in the lower 3× 3 matrix.
The relative uncertainties of σ0,1 following from Eq. (A2),
written in terms of relative quantities, are

δ(σ0)
2 =

1

f2
0

δ2total +
( 1

f0
− 1

)2
δ2≥1 ,

δ(σ1)
2 =

(1− f0
f1

)2
δ2≥1 +

(1− f0
f1

− 1
)2

δ2≥2 . (A3)

Similarly, the correlation coefficients for σ0 and σ1 fol-
lowing from Eq. (A2) are

ρ(σ0,σtotal) =

[
1 +

δ2≥1

δ2total
(1 − f0)

2

]−1/2

,

ρ(σ0,σ1) = −
[
1 +

δ2total
δ2≥1

1

(1− f0)2

]−1/2

×
[
1 +

δ2≥2

δ2≥1

(
1− f1

1− f0

)2
]−1/2

,

ρ(σ0,σ≥2) = 0 ,

ρ(σ1,σtotal) = 0 ,

ρ(σ1,σ≥2) = −
[
1 +

δ2≥1

δ2≥2

(
1− f1

1− f0

)−2
]−1/2

. (A4)

The relative uncertainties for f0 and f1 are

δ(f0)
2 =

( 1

f0
− 1

)2(
δ2total + δ2≥1

)
, (A5)

δ(f1)
2 = δ2total +

(1− f0
f1

)2
δ2≥1 +

(1− f0
f1

− 1
)2

δ2≥2 ,

and their correlations are

ρ(f0,σtotal) =

[
1 +

δ2≥1

δ2total

]−1/2

,

ρ(f0, f1) = −
(
1 +

1− f0
f1

δ2≥1

δ2total

)( 1

f0
− 1

) δ2total
δ(f0)δ(f1)

,

ρ(f1,σtotal) = − δtotal
δ(f1)

. (A6)
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correlated. For small values of pcutT the cancellations that take place in σ0(pcut) cause the error bands to shrink and
eventually vanish at pcutT ! 25GeV, where there is an almost exact cancellation between the two series in Eq. (6).
In contrast, in the right panel the uncertainties are obtained using the above method by combining the independent
inclusive uncertainties to obtain the exclusive uncertainty, ∆2

0 = ∆2
total+∆2

≥1. For large values of p
cut
T this reproduces

the naive scale variation, since σ≥1(pcut) becomes small. On the other hand, for small values of pcutT the uncertainties
estimated in this way are more realistic, because they explicitly estimate the uncertainties due to the large logarithmic
corrections. The features of this plot are quite generic. In particular, the same pattern of uncertainties is observed for
the Tevatron, when using µ = mH as our central scale (with µ = 2mH and µ = mH/2 for the range of scale variation),
whether or not we only look at jets at central rapidities, or when considering the exclusive 1-jet cross section. We
also note that using independent variations for µf and µr does not change this picture, in particular the µf variation
for fixed µr is quite small.
The generalization of the above discussion to more jets and several jet bins is straightforward. For the N -jet bin we

replace σtotal → σ≥N , σ0 → σN , and σ≥1 → σ≥N+1, and take the appropriate σB. If the perturbative series for σ≥N

exhibits large αs corrections, then the additional large logarithms present in σ≥N+1 will again lead to cancellations
when we consider the difference σN = σ≥N − σ≥N+1. Hence, ∆≥N+1 will again give a better estimate for the ∆cut

that arises from separating σ≥N into jet bins σN and σ≥N+1.

C. Example Implementation for H + 0 Jet and H + 1 Jet Channels

To illustrate the implications for a concrete example we consider the 0-jet and 1-jet bins together with the remaining
(≥ 2)-jet bin. By construction only neighboring jet bins are correlated, so the generalization to more jet bins is not
any more complicated. We denote the total inclusive cross section by σtotal, and the inclusive 1-jet and 2-jet cross
sections by σ≥1 and σ≥2. Their respective absolute uncertainties are ∆total, ∆≥1, ∆≥2, and their relative uncertainties
are given by δi = ∆i/σi. The exclusive 0-jet cross section, σ0, and 1-jet cross section, σ1, satisfy the relations

σ0 = σtotal − σ≥1 , σ1 = σ≥1 − σ≥2 , σtotal = σ0 + σ1 + σ≥2 . (10)

Experimentally it is convenient to work with the exclusive 0-jet and 1-jet fractions defined as

f0 =
σ0

σtotal
, f1 =

σ1

σtotal
. (11)

Treating the inclusive uncertainties ∆total, ∆≥1, ∆≥2 as uncorrelated, the covariance matrix for the three quantities
{σtotal,σ0,σ1} is given by

C =
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total +∆2
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 . (12)

The relative uncertainties and correlations for σ0 and σ1 directly follow from Eq. (12). Writing them in terms of the
relative quantities fi and δi, one gets

δ(σ0)
2 =

1

f2
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δ2total +
( 1
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− 1

)2
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. (13)

Alternatively, we can use {σtotal, f0, f1} as the three independent quantities. Their relative uncertainties and correla-
tions following from Eq. (12) are then

δ(f0)
2 =

( 1

f0
− 1

)2(
δ2total + δ2≥1

)
,
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FIG. 3: Fixed-order perturbative uncertainties for the exclusive pp → W + 0, 1, 2 jet cross sections at NLO for the LHC with
Ecm = 7TeV. Central values are shown by blue solid curves, naive scale variation in the exclusive jet bin by the green dashed
and dotted curves, and the result of combining independent inclusive uncertainties to get the jet-bin uncertainty by the outer
red solid curves.

when the perturbative corrections in the inclusive cross
sections are not as large. For simplicity, we only work to
NLO here. Using µf = µr = mW for the central value
and MSTW2008 NLO PDFs, the inclusive W production
cross section is

σtotal = (80.7 nb)
[
1 + 1.3αs +O(α2

s)
]
, (27)

where we have summed over W±, and have not included
the leptonic branching fractions. For the inclusive 1-jet
cross section we have

σ≥1

(
pjetT ≥ 30GeV) = (80.7 nb)

[
0.9αs +O(α2

s)
]
. (28)

The perturbative coefficients in Eqs. (27) and (28) are
much smaller than in Higgs production. The resulting
predictions for σ0(pcutT ) are shown in the top left panel of
Fig. 3, where the different lines have the same meaning as
in Fig. 1. Since the αs corrections are not very large here,
the µf scale variation in the PDFs dominates over the µr

variation in αs and produces a 100% negative correlation
between σtotal and σ≥1. (Keeping µf fixed at mW and

only varying µr results in the expected pinching of the
green lines.) This means their scale uncertainties add
linearly in σ0, which maximizes the uncertainty in this
0-jet cross section. In this case, our method, shown by
the solid red lines, gives an uncertainty band very similar
to naive scale variation. Hence, our method of using in-
dependent inclusive uncertainties still remains consistent
for this situation.

E. W + 1 Jets

For pp → W+1 jet the perturbative corrections in σ≥1

are larger than those in the W total cross section, which
is in part influenced by logarithms from the lower cut on
pjetT1, the pT of the leading jet. The situation for the W+1
jet bin is similar to H + 1 jet. Considering Eq. (19) the
series for the inclusive 2-jet cross section, σ≥2, has large
double logarithms L = ln(pjetT2/mW ) of the second largest
jet pT , which are independent of those in the perturbative
series for σ≥1. Taking µ = mW for central values, and

W + jets

µF important

qqgg and qqqq
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(C) Use Resummed Predictions to get Uncertainties
this will allow us to include both types of uncertainties 
(correlated & uncorrelated) from methods (A) and (B)

• resummed calculation has two sources of uncertainty,
- one is correlated with            
- one gives 

∆total

∆cut
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Factorization and SCET Higgs Jet Veto Calculation Results
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pjet
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Jet Vetoes

•
Conventional:  Jet Algorithm 

Search for jets and require pjet
T < pcut
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Factorization and SCET Higgs Jet Veto Calculation Results

How to Veto Central Jets
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•

•

• Nice for higher order calculations

p
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T max
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rapidity

binning
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Jet veto restricts ISR, gives double logs

Factorization and SCET Higgs Jet Veto Calculation Results

Large Logarithms from ISR

Even if hard signal process gg → H contains no jets,
jet veto affects cross section by restricting hadronic ISR

⇒ t-channel singularities produce double logarithms

L
2 = 2 ln2 p

cut
T

mH

or L
2 = ln2 T cut

cm

mH

σ0−jet = 1 + αsL
2 + αsL + αs NLO

+ α2
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L
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2 + α2
s
L + α2

s
NNLO

+ α3
s
L

6 + α3
s
L

5 + α3
s
L

4 + α3
s
L

3 + α3
s
L

2 + · · ·

+
... +

... +
... +

... +
...

. . .

LL NLL NNLL

Current methods: LL+NLO using Monte Carlo (or fixed NNLO)

Using SCET we include NNLL+NNLO
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Compare Beam Thrust to Standard Jet Veto
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Parton Shower 

LO NLO
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two orders of summation 
beyond LL shower programs

arXiv:1012.4480
Berger, Marcantonini, IS, Tackmann, Waalewijn
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Factorization and SCET Higgs Jet Veto Calculation Results

Factorization Theorem for Beam Thrust

[Stewart, FT, Waalewijn]
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� logs give
sensitivity
to smaller

scales

Perturbation theory at each scale contributes to uncertainties

Bi(t, x) =
�

dξ

ξ
Iij(t, x/ξ) fj(ξ)

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Factorization Theorem for Beam Thrust
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General Structure of the Cross Section
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Summation of Jet-Veto Logarithms

Factorization theorem splits up large logarithms
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Logarithms are summed by

1 Evaluating each function at its natural scale

|µH | � mH � µB �
�

TcmmH � µS � Tcm

2 RG evolving to common (arbitrary) scale µ

NNLL requires

� 1-loop matching

� 2-loop anomalous dimensions

� 3-loop cusp anomalous dimension
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Nonsingular Corrections
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� Obtained from intercept at τ cut = 0 and added to singular
� Proper treatment requires 2-loop hard, beam, soft functions

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 19 / 26

Factorization and SCET Higgs Jet Veto Calculation Results

Nonsingular Corrections
0

0 5 10 15 20

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7

Ecm=7 TeV

T cut

cm
[GeV]

σ
n
s
,N

L
O
(
T

c
u
t

c
m

)
[p

b
] mH =165 GeV

µ = mH/2

µ = mH

µ = 2mH

0

0

1

5 10 15 20

0.25

0.5

0.75

1.25

1.5

−0.25

−0.5

Ecm=7 TeV

T cut

cm
[GeV]

σ
r
e
s
,N

N
L
O
(
T

c
u
t

c
m

)
[p

b
]

mH =165 GeV

µ = mH/2

µ = mH

µ = 2mH

σns,NLO(τ cut) = σNLO(τ cut) − σs,NNLL(τ cut)
��
NLO

σres,NNLO(τ cut) = σNNLO(τ cut) − σs,NNLL(τ cut)
��
NNLO

σNLO and σNNLO numerically from FEHiP [Anastasiou, Melnikov, Petriello]

NNLO C−1δ(τ ) term is not part of σs,NNLL

� Obtained from intercept at τ cut = 0 and added to singular
� Proper treatment requires 2-loop hard, beam, soft functions

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 19 / 26

Factorization and SCET Higgs Jet Veto Calculation Results

Nonsingular Corrections
0

0 5 10 15 20

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7

Ecm=7 TeV

T cut

cm
[GeV]

σ
n
s
,N

L
O
(
T

c
u
t

c
m

)
[p

b
] mH =165 GeV

µ = mH/2

µ = mH

µ = 2mH

0

0

1

5 10 15 20

0.25

0.5

0.75

1.25

1.5

−0.25

−0.5

Ecm=7 TeV

T cut

cm
[GeV]

σ
r
e
s
,N

N
L
O
(
T

c
u
t

c
m

)
[p

b
]

mH =165 GeV

µ = mH/2

µ = mH

µ = 2mH

σns,NLO(τ cut) = σNLO(τ cut) − σs,NNLL(τ cut)
��
NLO

σres,NNLO(τ cut) = σNNLO(τ cut) − σs,NNLL(τ cut)
��
NNLO

σNLO and σNNLO numerically from FEHiP [Anastasiou, Melnikov, Petriello]

NNLO C−1δ(τ ) term is not part of σs,NNLL

� Obtained from intercept at τ cut = 0 and added to singular
� Proper treatment requires 2-loop hard, beam, soft functions

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 19 / 26

Friday, October 28, 2011



Factorization and SCET Higgs Jet Veto Calculation Results

Scale Profiles

Nonsingular terms are equally
important for Tcm � mH/2

⇒ Resummation in singular terms must
be turned off to not spoil large
cancellation between singular and
nonsingular terms

Scale variations
1 Overall scale by factors of 2
2 µB(Tcm) profile
3 µS(Tcm) profile

⇒ Perturbative uncertainties estimated
by envelope of three variations
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Beam Thrust Spectrum and Cumulant
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Figure 2. Comparison of the Higgs signal and tt̄ background using Pythia. The differential spectrum
in Tcm is shown on the left, and in pmax

T , the pT of the hardest jet, on the right. For the jet algorithm
we use the anti-kt algorithm with R = 0.4, only considering jets with |ηjet| < 2.5 or |ηjet| < 4.8.

37] to simulate gg → H → WW for mH = 165GeV and tt̄ → WWbb̄ events. In both

cases we turn off multiple interactions in Pythia, since the corresponding uncertainty is

hard to estimate without dedicated LHC tunes. Following the selection cuts from ATLAS

in ref. [2] we force one W to decay into an electron and one into a muon. We then require

both leptons to have pT > 15GeV and |η| < 2.5. For the dilepton invariant mass we require

12GeV < m!! < 300GeV, and for the missing transverse momentum, pmiss
T > 30GeV. We

have not attempted to implement any lepton isolation criteria since they should have a similar

effect on the Higgs signal and tt̄ background. For the pT jet veto we define jets using the

anti-kt algorithm [64] with R = 0.4 implemented in the FastJet package [65]. The results for

the differential cross section in Tcm and pmax
T after the above cuts are shown in figure 2, where

the normalization corresponds to the total cross sections σgg→H = 8pb and σtt̄ = 163pb (see

e.g. ref. [66]). Note that the above selection cuts have no effect on the shape of the Higgs

signal and a small 5 − 20% effect on the shape of the tt̄ background. In this simulation a

signal to background ratio of one is achieved with cuts Tcm < 31GeV, pmax
T < 32GeV for

|η| < 2.5, and pmax
T < 33GeV for |η| < 4.8. It will be very interesting to see the performance

of Tcm in a full experimental analysis including a b-jet veto from b-tagging which will further

improve the suppression of t → Wb decays with only small effects on the Higgs signal.

Including the resummation of large logarithms for Tcm # mH , the production cross

section from gluon fusion, gg → H, is given by the factorization theorem [56]

dσ

dTcm
= σ0 Hgg(mt,m

2
H , µ)

∫
dY

∫
dta dtbBg(ta, xa, µ)Bg(tb, xb, µ)

× Sgg
B

(
Tcm − e−Y ta + eY tb

mH
, µ

)
+

dσns

dTcm
, (1.4)

where

xa =
mH

Ecm
eY , xb =

mH

Ecm
e−Y , σ0 =

√
2GF m2

H

576πE2
cm

, (1.5)

– 6 –

Pythia
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Reproducing Fixed-Order Result at Large Tcm
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µ � mH in gluon form factor
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(same effect as in Becher, Neubert, et al.)
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Figure 6. Profiles for the running scales µH , µB, and µS . The central lines for µB and µS show
our central scale choices. The upper and lower curves for µB and µS correspond to their respective
variations b) and c) in eq. (2.55).

becomes precisely the fixed-order result.

µrun(τ, µ) =






µ0 + aτ2/τ1 τ ≤ τ1 ,

2a τ + b τ1 ≤ τ ≤ τ2 ,

µ− a(τ − τ3)2/(τ3 − τ2) τ2 ≤ τ ≤ τ3 ,

µ τ > τ3 ,

a =
µ0 − µ

τ1 − τ2 − τ3
, b =

µτ1 − µ0(τ2 + τ3)

τ1 − τ2 − τ3
. (2.53)

The expressions for a and b follow from demanding that µrun(τ) is continuous and has a

continuous derivative. The value of µ0 determines the scales at τ = 0, while τ1,2,3 determine

the transition between the regions discussed above. For our central value we use the following

choice of parameters

µ = mH , eB = eS = 0 , µ0 = 2GeV , τ1 =
5GeV

mH
, τ2 = 0.4 , τ3 = 0.6 . (2.54)

The corresponding running scales are shown in figure 6.

Since the factorization theorem is not affected by O(1) changes of the renormalization

scales, we should vary them to determine the perturbative uncertainty. For a reasonable

variation of the above parameters, the cross section is most sensitive to µ, eB and eS . We

therefore estimate our uncertainties from higher order terms in perturbation theory by taking

the envelope of the following three separate variations,

a) µ = 2±1mH , eB = 0 , eS = 0 ,

b) µ = mH , eB = ±0.5 , eS = 0 ,

c) µ = mH , eB = 0 , eS = ±0.5 . (2.55)

– 25 –

• µH = µH0 100% correlated 
with σtotal

µB and µS give ∆cut = ∆SB

(dominate for small T cut
cm )
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(C) Use Resummed Predictions to get Uncertainties

Idea:            reweigh MC@NLO or POWHEG to NNLO•

•

(what you 
do now)

for central values for pcut
T

given these as % errors for spectra in          ,  reweigh 
a MC sample to apply these errors for 

Tcm

pcut
T

•

resummed calculation has two sources of uncertainty,
one is correlated with            , one gives ∆total ∆cut

for pT ?
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FIG. 4: Comparison of gg → H + 0 jets using T cut
cm at fixed NNLO with the resummed results at NNLL+NNLO. For the

fixed-order uncertainties in σ0 we use independent inclusive scale variations in σtotal and σ≥1. The uncertainty method for the
resummed results is described in the text.

at large rapidities, and hence this cut vetoes central jets.
Much like with pjetT the perturbative series for this σ0 has
double logarithms, for example the analog of Eq. (7) is

σ0(T cut
cm ) = σB

(
1− 3αs

π
ln2 T cut

cm

mH
+ · · ·

)
. (33)

For beam thrust, the all-order resummation of per-
turbative corrections is known to NNLL order for both
H+0 jets and V +0 jets [33–35]. For Higgs production the
computation has been extended to fully include all NNLO
corrections, and it was observed that the resummed cross
section at NNLL+NNLO had larger uncertainties than
the pure NNLO result for σ0(Tcm ≤ T cut

cm ) utilizing naive
fixed-order scale variation. This lead to the conclusion
that naive scale variation underestimates the fixed-order
perturbative uncertainties in the 0-jet bin. In the re-
summed calculation, fixed-order αs expansions are car-
ried out at three distinct scales (hard µH , jet/beam µB,
and soft µS) which appear in the corresponding factoriza-
tion theorem. The uncertainties in the resummed cross
section are obtained by varying these scales, which ex-
plicitly accounts for the presence of the large jet-veto
logarithms.
In Fig. 4 we compare the remaining perturbative un-

certainties after resummation at NNLL+NNLO, shown
by the darker orange bands, to the NNLO uncertainties
obtained with the fixed-order method advocated here,
which are shown by the lighter gray bands. The results
for the NNLL+NNLO cross section are obtained from
Ref. [35].5 The left panel shows the results for the Teva-
tron and the right panel the results for the LHC at 7TeV.

5 We have made a small improvement to Ref. [35]. The
NNLL+NNLO results of Ref. [35] fully incorporate the NNLO
corrections by adding so-called nonsingular fixed-order contribu-
tions, which are terms that do not appear in an expansion of the

The fact that the resummation reduces the perturbative
uncertainties, as it should, shows that our method of us-
ing independent inclusive scale variations yields more ro-
bust fixed-order uncertainties.
In the resummed calculation, σtotal is by construction

not affected by the µS and µB variations. We denote
the combined µS and µB uncertainty by ∆SB . It pro-
vides a direct estimate of the cut-induced uncertainty,
∆cut = ∆SB, which is anti-correlated between σ0(T cut

cm )
and the corresponding σ≥1(T cut

cm ) = σtotal−σ0(T cut
cm ). On

the other hand, the µH variation affects all the cross sec-
tions. In particular, it is responsible for estimating the
perturbative uncertainty of σtotal, for which it is equiv-
alent to the usual fixed-order scale variation, ∆Htot =
∆total. The full covariance matrix for {σtotal,σ0,σ≥1},
that is the analog of Eq. (12) but for the resummed re-
sult, is then

C = CSB + CH ,

CSB =




0 0 0

0 ∆2
SB −∆2

SB

0 −∆2
SB ∆2

SB



 , (34)

CH =




∆2

Htot ∆Htot∆H0 ∆Htot ∆H≥1

∆Htot ∆2
H0 ∆2

H0 ∆H0 ∆H≥1

∆Htot ∆H≥1 ∆H0 ∆H≥1 ∆2
H≥1



 ,

strict NNLL result. In Ref. [35] the nonsingular contributions
were obtained for the sum of O(αs)+O(α2

s) cross-sections using
FEHiP [28, 29]. Here we use a much higher statistics spectrum
from MCFM [15], which allows us to separately determine the
nonsingular cross sections at O(αs) and O(α2

s). The only place
this improvement is visible is for T cut

cm ≤ 3GeV, where the re-
summed cross sections are now consistent with zero within the
displayed uncertainties.
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∆cut = ∆SB, which is anti-correlated between σ0(T cut

cm )
and the corresponding σ≥1(T cut
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the other hand, the µH variation affects all the cross sec-
tions. In particular, it is responsible for estimating the
perturbative uncertainty of σtotal, for which it is equiv-
alent to the usual fixed-order scale variation, ∆Htot =
∆total. The full covariance matrix for {σtotal,σ0,σ≥1},
that is the analog of Eq. (12) but for the resummed re-
sult, is then
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from MCFM [15], which allows us to separately determine the
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sult, is then
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where ∆SB is obtained from the envelope of the µS and
µB variations, and CSB is equivalent to Ccut in Eq. (6).
The ∆Hi are obtained from the µH variation and satisfy
∆Htot = ∆H0 +∆H≥1. The full uncertainty in the 0-jet
bin shown by the darker red bands in Fig. 4 is then given
by ∆2

SB +∆2
H0, which is the 0-bin entry on the diagonal

of C.6

As an example, consider T cut
cm = 20GeV. At fixed

NNLO, the inclusive cross sections are σtotal = (8.70 ±
0.75) pb and σ≥1 = (2.25± 0.62) pb. Using Eq. (12), this
gives

δ(σ0) = 15% , δ(σ≥1) = 28% ,

ρ(σ0,σtotal) = 0.77 , ρ(σ≥1,σtotal) = 0 ,

ρ(σ0,σ≥1) = −0.64 . (35)

For σ0 this corresponds to the gray bands in Fig. 4,
and the structure here is very similar to what we saw
in Eq. (21).
From our resummed result using Eq. (34) we obtain

δ(σ0) = 11.8% , δ(σ≥1) = 19.7% ,

ρ(σ0,σtotal) = 0.04 , ρ(σ≥1,σtotal) = 0.33 ,

ρ(σ0,σ≥1) = −0.82 , (36)

which for σ0 corresponds to the orange bands in Fig. 4.
After resummation neither of σ0 and σ≥1 is strongly cor-
related with σtotal anymore, which at first sight is per-
haps a bit surprising. However, for small T cut

cm this is
not unexpected and is simply due to the fact that the
central values and remaining perturbative uncertainties
are dominated by the resummed logarithmic series (i.e.
∆SB dominates numerically over ∆H0 and ∆H≥1). In
fact, this supports our arguments in Sec. II, that the
uncertainties from higher-order terms in the logarithmic
series for σ≥1 and the fixed-order series for σtotal can and
should be considered independent, which lead to Eq. (11).
Comparing Eqs. (35) and (36), we see that the uncer-

tainties obtained from our fixed-order method follow a
similar pattern for the relative uncertainties for σ0 and
σ≥1 as observed in the resummed result, with a strong
negative correlation between them. Since resummation
provides an improved treatment of the cut-induced ef-
fects, we take this as further evidence that the method
of using inclusive fixed-order cross section uncertainties
provides a consistent way to obtain reliable estimates of
perturbative uncertainties in exclusive jet bins. In par-
ticular it provides a suitable starting point for an un-
certainty estimate, that can be further refined when an
appropriate resummed result becomes available.

6 In the results of Ref. [35], the envelope of all three scale variations
was used to obtain the total uncertainty. The slightly modified
procedure we use here, which adds ∆SB and ∆H in quadrature,
gives very similar results, but has the advantage that it also
allows for a straightforward treatment of the correlations.

V. CONCLUSIONS

We have proposed a method to reliably estimate per-
turbative uncertainties in fixed-order predictions of ex-
clusive jet cross sections. The method uses the fixed-
order calculations of inclusive cross sections, σ≥N and
σ≥N+1, for which the standard scale variation provides
reasonable uncertainty estimates, and combines these in-
clusive uncertainties into an estimate for the correspond-
ing exclusive N -jet cross section σN = σ≥N − σ≥N+1,
treating the inclusive cross sections as uncorrelated.
We have illustrated this procedure for a variety of pro-

cesses, including analysis of H + 0, 1 jets, WW + 0 jets,
andW+0, 1, 2 jets with MCFM, and showed that it yields
more robust estimates of theory uncertainties than naive
scale variation. We have also shown for a specific case
with H + 0 jets that it leads to fixed-order uncertainties
that are theoretically consistent with the corresponding
resummed predictions. In jet bins used for new physics
searches, we anticipate that it should yield realistic un-
certainty estimates for standard model backgrounds. We
also expect that it provides a suitable fixed-order start-
ing point for the central values, uncertainties, and jet
bin correlations, which can be improved by higher-order
logarithmic resummation.
Our treatment of the fixed-order exclusive and inclu-

sive cross sections has followed the standard approach of
always using cross section results at the same order in
αs. It would be interesting to study whether this can be
relaxed when using differences of inclusive cross sections
to compute the central values for the jet bins. For exam-
ple, for gg → H one could independently compute σtotal

at NNLO, and σ≥1 and σ≥2 each at NLO, and then use
these to compute the jet bins as σ0 = σtotal − σ≥1 and
σ1 = σ≥1 − σ≥2. Since we argued that the inclusive se-
ries can be treated independently, it may be consistent to
include them to different orders to compute the central
value and uncertainties of σ1. This would have the ad-
vantage of allowing one to utilize the NLO result for σ≥2

without destroying the consistent perturbative expansion
for σ≥1 and σtotal when the jet bins are added together.
Since in this case the perturbative order of the jet bound-
ary between σ1 and σ≥2 does not match up, this deserves
a dedicated study before being used in practice.
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Small T cut
cm

• logs are large, NNLL central value lower than NNLO

like small pcut
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FIG. 1: Comparison of fixed NNLO and MC@NLO reweighted to the total NNLO cross section (using a direct exclusive scale
variation in both cases) to the resummed result at NNLL+NNLO for beam thrust.
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FIG. 2: Comparison of fixed NNLO and MC@NLO reweighted to the total NNLO cross section (using the relative fixed-order
uncertainty from the combined inclusive scale variation in both cases) to the resummed result at NNLL+NNLO for beam
thrust.

• direct exclusive uncertainties here are too small (we discussed that...)

• reweigh MC@NLO to match NNLO value/uncertainty at 200GeV
Central value is nearer NNLL.  Uncertainty is only for norm.

combined NNLL scale variations shown

direct exclusive scale variation shown for NNLO & MC@NLO
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Small T cut
cm

•  NNLO band largely overlaps NNLL result

like small pcut
T

combined NNLL scale variations shown

•

• reweigh MC@NLO to match NNLO incl. relative uncertainties (full 
spectrum). Overlaps nicely with NNLL.

combined inclusive scale variation shown for NNLO & MC@NLO
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This factor of two improvement in uncertainty with NNLL is what 
one would expect if a similar reweighing exercise is done for pjet

T
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Validation?   Other options?

• Drell-Yan pairs from            with a jet veto should be used for 
validation.

γ∗, Z∗
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B = 0.1 in both numerator and denominator.

e+e− → qq̄. The experimental measurement of beam
thrust will contribute very valuable information to our
understanding of ISR at hadron colliders and could be
used to test and tune the initial-state parton shower and
underlying event models in Monte Carlo programs. Re-
stricting beam thrust τB " 1 implements a theoretically
well-controlled jet veto, which has important applications
in other processes, for example Higgs production [11].
The measurement of beam thrust in Drell-Yan provides a
clean environment to test the application of beam thrust
as a central jet veto.
This work was supported by the Office of Nuclear

Physics of the U.S. Department of Energy, under the
grant DE-FG02-94ER40818.
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(e) Isolated dijet production.

FIG. 2: Different final-state configurations for pp collisions. The top row corresponds to Drell-Yan factorization theorems for
the (a) inclusive, (b) threshold, and (c) isolated cases. The bottom row shows the corresponding pictures with the lepton pair
replaced by dijets.

A. Drell-Yan Factorization Theorems

To describe the Drell-Yan process pp → X!+!− or
pp̄ → X!+!−, we take

Pµ
a + Pµ

b = pµ
X + qµ , (4)

where Pµ
a,b are the incoming (anti)proton momenta,

Ecm =
√

(Pa + Pb)2 is the total center-of-mass energy,
and qµ is the total momentum of the !+!− pair. We also
define

τ =
q2

E2
cm

, Y =
1
2

ln
Pb · q
Pa · q ,

xa =
√

τeY , xb =
√

τe−Y , (5)

where Y is the total rapidity of the leptons with respect
to the beam axis, and xa and xb are in one-to-one corre-
spondence with τ and Y . Their kinematic limits are

0 ≤ τ ≤ 1 , 2|Y | ≤ − ln τ ,

τ ≤ xa ≤ 1 , τ ≤ xb ≤ 1 . (6)

The invariant mass of the hadronic final state is bounded
by

m2
X = p2

X ≤ E2
cm(1 −

√
τ )2 . (7)

In Drell-Yan

Q =
√

q2 % ΛQCD (8)

plays the role of the hard interaction scale. In general,
for factorization to be valid at some leading level of ap-
proximation with a perturbative computation of the hard
scattering, the measured observable must be infrared safe
and insensitive to the details of the hadronic final state.

For inclusive Drell-Yan, illustrated in Fig. 2(a), one
sums over all hadronic final states X allowed by Eq. (7)
without imposing any cuts. Hence, the measurement is
insensitive to any details of X because one sums over all
possibilities. In this situation there is a rigorous deriva-
tion of the classic factorization theorem [28, 51, 52]

1
σ0

dσ

dq2dY
=

∑

i,j

∫
dξa

ξa

dξb

ξb
H incl

ij

(xa

ξa
,
xb

ξb
, q2, µ

)

× fi(ξa, µ) fj(ξb, µ)
[
1 + O

(ΛQCD

Q

)]
, (9)

where σ0 = 4πα2
em/(3NcE2

cmq2), and the integration lim-
its are xa ≤ ξa ≤ 1 and xb ≤ ξb ≤ 1. The sum is
over partons i, j = {g, u, ū, d, . . .}, and fi(ξa) is the par-
ton distribution function for finding parton i inside the
proton with light-cone momentum fraction ξa along the
proton direction. Note that ξa,b are partonic variables,
whereas xa,b are leptonic, and the two are only equal at
tree level. The inclusive hard function H incl

ij can be com-
puted in fixed-order perturbative QCD as the partonic
cross section to scatter partons i and j [corresponding to
dσpart

ij in Eq. (1)] and is known to two loops [53–57].

• Directly measure beam thrust
(important on its own).  And
UE is no harder than it is for HT.
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Theory Plans:

• A calculation of the Higgs + 0-jet cross section at one higher 
order (N3LL) is feasible.  “Only” a missing 2 loop calculation. 
This will help reduce the perturbative uncertainty.

Similar resummed calculations for Higgs + 1 jet,  H + 2 jets, ...•
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N-Jettiness Event Shape

TN = TN (qa, qb, q1, . . . , qN )

W/Z

qbqa

q1

q2

T a
N

T b
N

T 1
N

T 2
N

TN → 0 for N -jets

TN = T a
N + T b

N + T 1
N + . . . + T N

N

Factorization Friendly

dσ

dT a
N · · · dT N

N

Want to calculate N-jet exclusive cross-sections.

eg. differential jet masses

Why? • sum logs beyond the parton shower (up to NNLL)

• realistic estimates for theory errors
•
• reweight Monte Carlo (eg. Higgs Search)

test and tune Monte Carlo

IS, Tackmann, Waalewijn
arXiv: 1004.2489

Jouttenus, IS, Tackmann, Waalewijn
arXiv: 1102.4344
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Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

N-Jettiness Event Shape
[Stewart, FT, Waalewijn, arXiv:1004.2489, arXiv:1102.4344]

TN =
�

k

|�pkT | min
�
da(pk), db(pk), d1(pk), d2(pk), . . . , dN(pk)

�

≡ T a
N + T b

N + T 1
N + · · · + T N

N

da,b(pk), dj(pk): Distance of particle k

to beam and jet directions

Divides phase space into
N jet regions and 2 beam regions

Can measure separate contribution
from each region W/Z

qbqa

q1

q2

T 1
N

T 2
N

T a
N

T b
N

For small T i
N final state contains exactly N jets

⇒ Enforcing small beam-thrust components T a
N + T b

N eliminates
contamination from ISR

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-05-07 17 / 20

pp→ jets, pp→W/Z + jets, . . .N-Jettiness
consider an inclusive N-jet sample with jet energies      & 
directions      determined by anti-kT (or any suitable algorithm)

2

H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum
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where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
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xa Ecm(1, ẑ) , qµb =
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pp→ jets, pp→W/Z + jets, . . .N-Jettiness
consider an inclusive N-jet sample with jet energies      & 
directions      determined by anti-kT (or any suitable algorithm)

2

H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum

2

H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum
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pp→ jets, pp→W/Z + jets, . . .N-Jettiness
consider an inclusive N-jet sample with jet energies      & 
directions      determined by anti-kT (or any suitable algorithm)

2

H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum
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H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =
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2
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where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum
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Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

N-Jettiness Event Shape
[Stewart, FT, Waalewijn, arXiv:1004.2489, arXiv:1102.4344]
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N-jettiness divides particles into jet and beam regions

Jet definition: 
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Teppo Jouttenus (MIT)

Jets treatment of soft radiation 
depends on the distance measure q̂µ

i ≡
qµ
i

Qi
, TN ≡
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Event display comparing N−jettiness and anti−kT clustering
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Figure 13. A boosted tt̄ event display comparing the 2-jettiness minimization procedure for β = 1
and β = 2 to the anti-kT jet algorithm. All three methods use R = 1.0. 2-jettiness yields perfectly
circular cones, while the two hardest anti-kT jets can be modified by the presence of a third jet. The
cluster of particles in the lower half of the figure is arranged into jets of pT = 233/231/231 GeV for
the three respective methods (β = 1/β = 2/anti-kT ). The anti-kT and β = 2 axes are well-aligned for
this jet, while the β = 1 axis is offset from the former two. The cluster of particles in the top half
of the figure has jets of pT = 235/226 GeV for the β = 1/β = 2 cones and is split into two jets of
pT = 167 GeV (red) and pT = 103 GeV (yellow) with the anti-kT algorithm.

for β = 1 (though the actual pT of the jet is rather stable), and this difference may be useful

for studying jet systematics. In particular, note that ∆pT between anti-kT and β = 1 jets

is roughly symmetric about zero. For identifying moderately boosted tops, Fig. 15 shows

how the top decay products are more likely to be clustered into the same jet with 2-jettiness

minimization compared to the anti-kT algorithm.

5.3 Discussion

There are a number of potential benefits with using N -jettiness as a jet algorithm. First, as

advocated in Ref. [34], N -jettiness is a way to define exclusive N -jet samples, and there is

a growing interest in calculating (and resumming) N -jettiness distributions [75–79]. Second,

for inclusive N -jet samples, minimizing τN simultaneously determines the jet regions and

gives a quality measure for the jet reconstruction (namely τN itself, corresponding roughly

to unclustered pT ). Third, unlike traditional iterative cone finding, N -jettiness automatically

incorporates a “split-merge step” into the cone finding. In particular, the stable cones found

– 25 –

R0 and a beam pseudorapidity cut η0, one possible definition of N -jettiness is:

τ (β,γ)N (R0, η0) =
∑

i

pT,imin

{

(

exp
−ηi
η0

)γ

,

(

exp
ηi
η0

)γ

,

(

∆R1,i

R0

)β

, . . . ,

(

∆RN,i

R0

)β

, 1

}

.

(5.2)

The first two entries in the minimum are “beam measures”, the next N entries are “jet

measures”, and the final entry defines unclustered momentum. The exponents γ and β are

angular weighting exponents for the beam measure and the jet measure, respectively, and the

choice β = 2 and γ = ∞ is similar in spirit to traditional iterative cone finding with hard

cutoffs on R0 and η0.

While there are a number of different distance measures that could be used to define

N -jettiness, this one is well-suited for hadronic collisions, since it is boost invariant along

the beam axis and yields circular cones in rapidity/azimuth. The quantity τN (R0, η0) cor-

responds roughly to unclustered pT , so minimizing τN (R0, η0) is essentially maximizing the

amount of radiation contained in N cones. Unlike iterative cone algorithms which require a

split-merge procedure, minimizing N -jettiness automatically splits overlapping cones at the

Voronoi edges.15 Of course, one could define the jets entirely by the Voronoi regions by taking

R0 to be very large.

The minimization procedure for τN (R0, η0) is nearly identical to Sec. 3.1 with one impor-

tant change. At each stage of the iteration, the only particles which participate in the axes

update step are those for which the jet measure is smallest. In this way, the beam measure

and R0 affect which particles can be clustered into jets, but not the way in which they are

clustered. As in Sec. 3.1, different values for β require different update steps.

In preliminary studies, we find that the jet regions determined by N -jettiness are very

similar to the N hardest jets returned by the anti-kT algorithm.16 Fig. 13 shows an event

display where the anti-kT region for R = 1.0 is closely aligned with the Voronoi regions defined

by τ (2,∞)
2 with R0 = 1.0 and η0 = 5.0. However, there is a crucial difference: for any process

with well-separated jets, 2-jettiness yields two perfect cones by definition, whereas the anti-

kT jet areas can be modified by the presence of a nearby third jet (even if only two jets are

studied). For β = 1, the jet axis can move substantially, though the actual jet constituents

are quite similar.

We can quantify the difference between the anti-kT jets and the N -jettiness jets using the

BOOST2010 samples. As demonstrated in Fig. 14, the two hardest jets determined by anti-kT
are closely aligned with the axes found by 2-jettiness minimization with β = 2 (∆R ! 0.02),

and the pT of the resulting jets are quite similar (|∆pT |/pT ! 0.05). However, there is a tail

to the distribution where the anti-kT jets have smaller pT than the N -jettiness jets, due to the

presence of a nearby third jet. As expected, there is a much larger change in the jet direction

15It is also possible to further generalize the definition of N-subjettiness (and the minimization algorithm)

to include “fuzzy edges” through partial assignment of particles to clusters. Instead of using absolute Voronoi

assignment, one could assign a particle to all clusters but with normalized weight factors that are negatively

correlated with the distance to the respective cluster centers, similar to Ref. [70].
16We in fact use the anti-kT jets (plus noise) as the seed axes for the minimization procedure.
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With Minimization Thaler, Van Tilburg

Friday, October 28, 2011



N-Jettiness Factorization Formula
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N-Jettiness Factorization Formula
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Assumptions needed to sum logs with this formula:

1)

2)

3)

Ti � Tj( gives non-global logs of Dasgupta & Salam)

jets are well separated

Ti ∼ Tj

q̂i · q̂j � Ti/Qi

Qi ∼ Qj
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With assumptions: Ti ∼ Tj q̂i · q̂j � Ti/Qi Qi ∼ Qj, ,

Can explore angular dependence, Qi dependence

Have Color / Kinematic info. Can look at jet mass in 
samples with various amounts of quarks vs. gluons.

Again can compute (un)correlated uncertainties.
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Pieces needed for NNLL are now all in hand:

•

•

•

•

Three Loop Cusp Anom. Dim,  Two Loop Non Cusp. 
(Note:  Beam function has same Logs as Jet Function)

One Loop Hard functions:  when available in QCD literature

Jet & Beam Functions at one loop

N-jet Soft function

(only part that restricts N)

Jouttenus, IS, Tackmann, 
Waalewijn also: Bauer, Hornig, Dunn 
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If we make use of a helicity basis for SCET operators,
   then hard matching coefficients are precisely the
   finite part of the color ordered helicity amplitudes
   in MS.

Introduction Helicity Operators Examples Further Discussion

ggggH: Basis

A(1+2+3+4−5H) = = iC+++−

O+ + +

� Five helicity operators:

Oabcd

++++ =
1

4!
Ba

1+Bb

2+Bc

3+Bd

4+H5

Oabcd

+++− =
1

3!
Ba

1+Bb

2+Bc

3+Bd

4−H5

. . .

� Six color structures:
�T †abcd

=
�

1
2
(tr[abcd] + tr[dcba]), . . .

tr[ab] tr[cd], . . .
�

� Parity: �C++++ = �C−−−− and �C+++− = �C+−−− up to a phase
� Under charge conjugation

COabcd

λ1λ2λ3λ4
�T abcd C = Oabcd

λ1λ2λ3λ4
�T dcba

tr[abcd] − tr[dcba] is thus not allowed
18 / 24

eg.

Introduction Helicity Operators Examples Further Discussion

ggggH: Basis

A(1+2+3+4−5H) = = iC+++−

O+ + +

� Five helicity operators:

Oabcd

++++ =
1

4!
Ba

1+Bb

2+Bc

3+Bd

4+H5

Oabcd

+++− =
1

3!
Ba

1+Bb

2+Bc

3+Bd

4−H5

. . .

� Six color structures:
�T †abcd

=
�

1
2
(tr[abcd] + tr[dcba]), . . .

tr[ab] tr[cd], . . .
�

� Parity: �C++++ = �C−−−− and �C+++− = �C+−−− up to a phase
� Under charge conjugation

COabcd

λ1λ2λ3λ4
�T abcd C = Oabcd

λ1λ2λ3λ4
�T dcba

tr[abcd] − tr[dcba] is thus not allowed
18 / 24

IS, Tackmann, Waalewijn
(work in progress)
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Introduction Helicity Operators Examples Further Discussion

ggggH: Intrinsic phases
� QCD partial amplitudes

A(1234)=i
�

σ∈S4/Z4
tr[aσ(1)aσ(2)aσ(3)aσ(4)]A

�
σ(1),σ(2),σ(3),σ(4)

�

+i
�

σ∈S4/Z
3
2

tr[aσ(1)aσ(2)]tr[aσ(3)aσ(4)]B
�
σ(1),σ(2),σ(3),σ(4)

�

� Matching coefficients are
�C++−−(p1,p2,p3,p4)=





2Afin(1
+,2+,3−,4−)...

Bfin(1
+,2+,3−,4−)...





� Tree-level helicity amplitudes calculated by [Kauffmann, Desai, Risal (1997)]

A(0)(1+,2+,3−,4−;5H)=2
�

s
2
12√

|s12s23s34s14|
+e−2iφ2

s
2
34√

|s12s23s34s14|

�
eiΦ

� Two independent intrinsic phases:

e
iφ1 =

�13��24�
�12��34�

�
|s12s34|�
|s13s24|

, e
iφ2 =

�14��23�
�12��34�

�
|s12s34|�
|s14s23|

.

� Independent of phase conventions
� e

iφi = ±1 for four massless particles
� φi can be written in terms of sij and �µνρσp

µ
1p

ν
2p

ρ
3p

σ
4
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• Experimental measurements require precision jet-bin cross sections
  with careful assessment of theoretical uncertainties

Summary

•

• Theory errors are important for Higgs analyses.  Improved 
precision for exclusive jet cross sections is necessary
(through resummation, or full             , or approximate             , 
  or more realistic analysis corresponding to the experimental 
  measurements)

Resummation for N jet-bins at NNLL is in sight, but will 
require coordination between various groups.

Assigning independent uncertainties to inclusive jet cross-sections, 
and propagating these to exclusive jet cross-sections is a good 
starting point.

NkLO NkLO

•
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The End
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