Theory Predictions & Uncertainties for Higgs Searches using Jet Bins

Iain Stewart MIT

Fermilab Seminar, October 2011

arXiv:1107.2117 I.S. & F. Tackmann

(input to LHC Higgs Xsec working group for summer 2011 recommendations, "BNL accord")

Friday, October 28, 2011

Outline

- Introduction: Jet-bins in Higgs Searches
- Theory Predictions, Uncertainties & Correlations
- Using NLO Calculations for Jet Bins
- Exploiting Log Resummation for the 0-Jet Bin
- Extension to NNLL resummation for N-Jet Bin cross sections, with fixed order NLO multi-jet cross sections
- Conclusions

m_H Exclusion in Standard Model

Observed exclusion: 146-230, 256-282, 296-459 GeV

m_H Exclusion in Standard Model

Tevatron Run II Preliminary, $L \le 8.6 \text{ fb}^{-1}$ 95% CL Limit/SM **Exclusion** Tevatron FP **Exclusion** Expected Observed ±1σ Expected ±20 Expected 1 SM=1 **Tevatron Exclusion** July 17, 2011 100 110 120 130 140 150 160 170 180 190 200 m_H(GeV/c²)

Observed exclusion: 146-230, 256-282, 296-459 GeV

If a signal exists, what is its fit favored cross section?

Friday, October 28, 2011

Use Jets bins: (exclusive jet σ 's) (σ 's with a particular # of jets)

- backgrounds vary with # of jets
- needed to improve sensitivity

 $\begin{array}{ll} H \to WW \to \ell \nu \ell \bar{\nu} & H \to \tau \tau \\ H \to WW \to \ell \nu j j & H \to \gamma \gamma \end{array}$

Use Jets bins: (exclusive jet σ 's) (σ 's with a particular # of jets)

- backgrounds vary with # of jets
- needed to improve sensitivity

 $\begin{array}{ll} H \to WW \to \ell \nu \ell \bar{\nu} & H \to \tau \tau \\ H \to WW \to \ell \nu j j & H \to \gamma \gamma \end{array}$

Theory Calculations

Factorization for inclusive Higgs production [Collins, Soper, Sterman; Bodwin; '80s]

$$\mathrm{d}\sigma^{\mathrm{FO}} = rac{\sqrt{2}G_F m_H^2}{576\pi E_{\mathrm{cm}}^2} \sum_{i,j} \int rac{\mathrm{d}\xi_a}{\xi_a} rac{\mathrm{d}\xi_b}{\xi_b} \,\mathrm{d}\sigma^{\mathrm{partonic}}_{ij} \Big(rac{x_a}{\xi_a},rac{x_b}{\xi_b}\Big) f_i(\xi_a) \,f_j(\xi_b)$$

Partonic cross section computed in QCD fixed-order perturbation theory

Higgs Production to NNLO

Gluon fusion: $gg \rightarrow H$

- Total cross section at NNLO including top-mass effec [Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]
 [Pak, Rogal, Steinhauser; Harlander, Mantler, Marzani, Ozeren]
- Electroweak corrections to $\mathcal{O}(\alpha_{em}\alpha_s)$ (Aglietti, Bonciani, Degrassi, Vicini; Actis, Passarino, Sturm, Uccirati; Anasta
- Summation of higher-order threshold and constant terms [de Florian, Grazzini; Ahrens, Becher, Neubert, Yang]
- FEHiP, HNNLO: Numerical *fully differential* cross section at NNLO [Anastasiou, Melnikov, Petriello; Grazzini]

igid) (H < dd)o

0000

0000 N

Vector-boson fusion: $qq \rightarrow qqH$

- Total cross section at NNLO* [Bolzoni, Maltoni, Moch, Zaro]
- HAWK: Numerical fully differential cross section at NLO (QCD+EW) [Ciccolini, Denner, Dittmaier, Mück]

Multiple Particle Final States

eg. $gg \rightarrow H + 2$ jets , . . .

Number of NLO Feynman diagrams explodes with increasing number of particles in the final state

- Onitarity-based methods allow to circumvent Feynman diagrams
- Directly construct NLO helicity amplitudes from "sewing together" lower-point tree amplitudes
- Several NLO programs/libraries
 - ► MCFM [Campbell, K.Ellis, Williams]
 - Blackhat [Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]
 - Rocket [K. Ellis, Melnikov, Zanderighi]
 - HelacNLO [Bevilacqua, Czakon, Papadopoulos, Pittau, Worek]
 - Samurai [Mastrolia, Ossola, Reiter, Tramontano]

PDF₄LHC recommendation:

Compute MSTW 68% PDF+ α_s errors at NNLO. Take envelope of CTEQ, MSTW, NNPDF errors at NLO, and divide by MSTW error at NLO. Multiply NNLO errors by this ratio (roughly 2).

Group	Source	Typical Uncertainty
$PDFs+\alpha_s$	$gg ightarrow H$, $t\bar{t}H$, $gg ightarrow VV$ (gg)	8 %
(cross sections)	VBF H , VH , VV @NLO ($q\bar{q}$)	4%
QCD scale	total inclusive $gg \rightarrow H$	$^{+12\%}_{-7\%}$
	inclusive $gg \rightarrow H + \geq 1$ jets	20%
	inclusive $gg \rightarrow H + \geq 2$ jets	20% (NLO), 70% (LO)
	VBF H	1%
	associated VH	1%

taken from ATLAS & CMS Higgs combination group

Lets focus on perturbative uncertainties for exclusive σ 's

CMS PAS HIG-11-014

2011/08/22

Table 3: Summary Callysona Richards (reactive and state and jet-bin.

From CMS H→WW analysis:

Source	$H \rightarrow W^+W^-$	$qq \rightarrow W^+W^-$	$gg \rightarrow W^+W^-$	non-Z resonant WZ/ZZ	top	DY	W + jets	$V(W/Z)$ + γ	
Luminosity	4.5			4.5				4.5	
Trigger efficiencies	1.5	1.5	1.5	1.5				1.5	
Muon efficiency	1.5	1.5	1.5	1.5				1.5	
Electron id efficiency	2.5	2.5	2.5	2.5			—	2.5	
Momentum scale	1.5	1.5	1.5	1.5			—	1.5	
$E_{\rm T}^{\rm miss}$ resolution	2.0	2.0	2.0	2.0	2.0	3.0		1.0	
Jet counting	7-20	$\supset -$	5.5	5.5				5.5	
Higgs cross section	5-15								
WZ/ZZ cross section				3.0					
$qq \rightarrow WW$ norm.		15							
$gg \rightarrow WW$ norm.			50						
W + jets norm.				—	—		36	—	
top norm.					25		—		
$Z/\gamma^* \rightarrow \ell^+ \ell^-$ norm.					—	60	—		
Monte Carlo statistics	1.0	1.0	1.0	4.0	6.0	20.0	20.0	10.0	

The uncertainty on the signal efficiency is estimated to be $\sim 20\%$ and is dominated by the theoretical uncertainty in the jet veto efficiency determination. The uncertainty on the background estimations in the H \rightarrow W⁺W⁻ signal region is $\sim 15\%$, which is dominated by the statistical uncertainties of the background control regions in data.

 \Rightarrow Perturbative corrections get large at small $p_T^{ ext{cut}} \ll m_H$

Vetoing Jets :

Search for jets and require $p_T^{\rm jet} < p_T^{\rm cut}$ Tevatron: $p_T^{\rm cut} \simeq 20 \ {
m GeV}$ LHC: $p_T^{\rm cut} \simeq 25 \ {
m GeV}$

Jet Veto changes form of perturbation theory

$$\sigma_0 \sim 1 + \alpha_s L^2 + \alpha_s^2 L^4 + \dots + \alpha_s L + \alpha_s^2 L^3 + \dots + \alpha_s^2 L^2 + \dots + \alpha_s^2 L^2 + \dots + \alpha_s^2 L + \dots + \alpha_s^2 L + \dots + \alpha_s^2 L + \dots$$

eg. $H \rightarrow WW + 0$ jets

 \boldsymbol{p}

$$\sigma_{\text{total}} = \underbrace{\int_{0}^{p_{T}^{\text{cut}}} \mathrm{d}p_{T} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{T}}}_{\sigma_{0}(p_{T}^{\text{cut}})} + \underbrace{\int_{p_{T}^{\text{cut}}} \mathrm{d}p_{T} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{T}}}_{\sigma_{\geq 1}(p_{T}^{\text{cut}})} + \underbrace{\sigma_{\geq 1}(p_{T}^{\text{cut}})}_{pp \to H + \geq 1 \text{ jet}}$$

- Added uncertainty Δ_{cut} from our ability to predict p_T^{cut} dependence ("large logs" or "particle migration between bins")
- Cancels when adding σ_0 and $\sigma_{\geq 1}$ anti-correlated

• Extension to multiple exclusive jet bins:

 $\sigma_0(p_T^{\text{cut}}), \sigma_1(p_T^{\text{cut}}, p_{T2}^{\text{cut}}), \sigma_2(p_{T2}^{\text{cut}}, p_{T3}^{\text{cut}}), \dots$ $\Delta_{\text{cut}} \qquad \Delta_{\text{cut}2} \qquad p_T^{\text{cu}}$

 p_{Tj}^{cut} is cut on j'th largest jet p_T

How do we compute Δ_{cut} ?

We will explore three methods (A) (B) (C)

(A) "Direct Exclusive Scale Variation?" vary μ_F, μ_R in σ_i 's $\longrightarrow \Delta_i$ consider $\sigma_0(\mu)$, vary $\mu \in [m_H/2, 2m_H]$ to get Δ_0 etc.

• Uncertainties are 100% correlated. Common scale variation for jet bins

Smaller uncertainty in 0-jet bin than in inclusive cross section

(A) "Direct Exclusive Scale Variation?" vary μ_F, μ_R in σ_i 's $\longrightarrow \Delta_i$ consider $\sigma_0(\mu)$, vary $\mu \in [m_H/2, 2m_H]$ to get Δ_0 etc.

• Uncertainties are 100% correlated. Common scale variation for jet bins $\sigma_{\text{total}} = \sigma_0 + \sigma_1 + \dots$ gets back its uncertainty Δ_{total}

- does not account for Δ_{cut}
- due to numerical cancellations can underestimate uncertainties

$$\sigma_{\text{total}} \simeq \sigma_B \left[1 + \alpha_s + \alpha_s^2 + \mathcal{O}(\alpha_s^3) \right] \quad \text{large K-factor}$$

$$\sigma_{\geq 1}(p_T^{\text{cut}}) \simeq \sigma_B \left[\alpha_s \left(L^2 + L + 1 \right) + \alpha_s^2 \left(L^4 + L^3 + L^2 + L + 1 \right) + \mathcal{O}(\alpha_s^3 L^6) \right] \quad \text{large logs}$$

$$L = \ln(p_T^{\text{cut}}/m_H)$$

always a large cancellation for $\sigma_0(p_T^{\text{cut}}) = \sigma_{\text{total}} - \sigma_{\geq 1}(p_T^{\text{cut}})$ in some range of p_T^{cut}

Friday, October 28, 2011

(B) "Combined Inclusive Scale Variation"

IS, Tackmann, arXiv:1107.2117

- Treat inclusive cross-section uncertainties as independent $\Delta_{\text{total}}, \Delta_{\geq 1}, \Delta_{\geq 2}, \dots$ $C = \begin{pmatrix} \Delta_{\text{total}}^2 & 0 & 0 \\ 0 & \Delta_{\geq 1}^2 & 0 \\ 0 & 0 & \Delta_{\geq 2}^2 \end{pmatrix}$
- For p_T^{cut} uncertainty use: $\Delta_{\text{cut}} = \Delta_{\geq 1}$

Propagate errors to get uncertainty for $\sigma_0(p_T^{\text{cut}}) = \sigma_{\text{total}} - \sigma_{\geq 1}(p_T^{\text{cut}})$

eg.
$$\{\sigma_0, \sigma_{\geq 1}\}$$
 $\begin{pmatrix} \Delta_{\geq 1}^2 + \Delta_{\text{total}}^2 & -\Delta_{\geq 1}^2 \\ -\Delta_{\geq 1}^2 & \Delta_{\geq 1}^2 \end{pmatrix}$ has anti-correlation

 $\sigma_{\text{total}} \simeq \sigma_B \left[1 + \alpha_s + \alpha_s^2 + \mathcal{O}(\alpha_s^3) \right] \qquad \text{large K-factor}$ $\sigma_{\geq 1}(p_T^{\text{cut}}) \simeq \sigma_B \left[\alpha_s(L^2 + L + 1) + \alpha_s^2(L^4 + L^3 + L^2 + L + 1) + \mathcal{O}(\alpha_s^3 L^6) \right] \qquad \text{large logs}$ $L = \ln(p_T^{\text{cut}}/m_H)$ reated as independent series
estimate for impact of logs obtained from $\sigma_{\geq 1}(p_T^{\text{cut}})$'s μ dependence

Friday, October 28, 2011

For example, at LHC for $m_H = 165 \,\mathrm{GeV}$ and $E_{\mathrm{cm}} = 7 \,\mathrm{TeV}$

$$egin{aligned} &\sigma_{ ext{total}} = (3.32\, ext{pb})ig[1+9.5\,lpha_s+35\,lpha_s^2+\mathcal{O}(lpha_s^3)ig] \ &\sigma_{\geq 1}ig(p_T^{ ext{jet}}\geq 30\, ext{GeV}) = (3.32\, ext{pb})ig[5.1\,lpha_s+28\,lpha_s^2+\mathcal{O}(lpha_s^3)ig]. \end{aligned}$$

these plots only vary $\mu_R = \mu_F$ (varying μ_F alone is quite small for Higgs)

Convergence (NLO to NNLO)

 $egin{aligned} &\delta(\sigma_{ ext{total}}) = 8.6\% & &\delta(\sigma_{ ext{total}}) = 8.6\% & \ &\delta(\sigma_{\geq 1}) = 19\% & &\delta(\sigma_{\geq 1}) = 19\% & \ &\delta(\sigma_0) = 2.4\% & &\delta(\sigma_0) = 18\% & \ &\rho(\sigma_0,\sigma_{\geq 1}) = +100\% & &
ho(\sigma_0,\sigma_{\geq 1}) = -64\% \end{aligned}$

Quite generic: same pattern at Tevatron similar plots if we vary rapidity cuts similar plots for other processes

Friday, October 28, 2011

eg. $\{\sigma_0, \sigma_1, \sigma_{\geq 2}\}$ Combined Inclusive Scale Variation

- Treat inclusive cross-section uncertainties as independent $\Delta_{\text{total}}, \Delta_{\geq 1}, \Delta_{\geq 2}, \dots$ $C = \begin{pmatrix} \Delta_{\text{total}}^2 & 0 & 0 \\ 0 & \Delta_{\geq 1}^2 & 0 \\ 0 & 0 & \Delta_{\geq 1}^2 \end{pmatrix}$
- For p_T^{cut} uncertainty use: $\Delta_{\text{cut}} = \Delta_{\geq 1}, \ \Delta_{\text{cut}2} = \Delta_{\geq 2}$

Propagate errors to get uncertainty

 $\sigma_0 = \sigma_{ ext{total}} - \sigma_{\geq 1}\,, \qquad \sigma_1 = \sigma_{\geq 1} - \sigma_{\geq 2}\,, \qquad \sigma_{\geq 2}$

$$\Rightarrow C = egin{pmatrix} \Delta_{ ext{total}}^2 + \Delta_{\geq 1}^2 & -\Delta_{\geq 1}^2 & 0 \ -\Delta_{\geq 1}^2 & \Delta_{\geq 1}^2 + \Delta_{\geq 2}^2 & -\Delta_{\geq 2}^2 \ 0 & -\Delta_{\geq 2}^2 & \Delta_{\geq 2}^2 \end{pmatrix}$$

 $\sigma_1(p_T^{\text{cut}}, p_{T2}^{\text{cut}}) \simeq \sigma_B[\alpha_s(L^2 + L + 1) + \alpha_s^2(L^4 + L^3 + L^2 + L + 1) + \mathcal{O}(\alpha_s^3 L^6) - \alpha_s^2(L^4 + L^3 + L^2 + L + 1) + \mathcal{O}(\alpha_s^3 L^6)] \qquad \text{large logs}$

 $\sigma_{\geq 2}(p_{T2}^{\text{cut}}) \simeq \sigma_B[\alpha_s^2(L^4 + L^3 + L^2 + L + 1) + \mathcal{O}(\alpha_s^3 L^6)] \qquad L = \ln(p_T^{\text{cut}}/m_H)$ $L = \ln(p_{T2}^{\text{cut}}/m_H)$

estimate Δ_{cut2} obtained from $\sigma_{\geq 2}(p_{T2}^{\text{cut}})$

other examples

$$\sigma_{1}(\mu)$$

$$\Delta \geq 1, \Delta \geq 2 \text{-independent}$$

$$\sigma_{\geq 1}(p_{T1}^{\text{jet}} \geq 30 \text{ GeV})$$

$$\neq (2.00 \text{ pb})[1 + 5.4 \alpha_{s} + \mathcal{O}(\alpha_{s}^{2})]$$

$$\sigma_{\geq 2}(p_{T1}^{\text{jet}} \geq 30 \text{ GeV}, p_{T2}^{\text{jet}} \geq 30 \text{ GeV})$$

$$\downarrow \neq (2.00 \text{ pb})[3.6 \alpha_{s} + \mathcal{O}(\alpha_{s}^{2})].$$

\\;[[

$\sigma_1(\mu)$

$$\begin{split} &\Delta_{\geq 1}, \ \Delta_{\geq 2} \text{ independent} \\ &\sigma_{\geq 1} \left(p_{T1}^{\text{jet}} \geq 30 \text{ GeV} \right) \\ &= (2.00 \text{ pb}) \left[1 + 5.4 \,\alpha_s + \mathcal{O}(\alpha_s^2) \right] \\ &\sigma_{\geq 2} \left(p_{T1}^{\text{jet}} \geq 30 \text{ GeV}, p_{T2}^{\text{jet}} \geq 30 \text{ GeV} \right) \\ &= (2.00 \text{ pb}) \left[3.6 \,\alpha_s + \mathcal{O}(\alpha_s^2) \right]. \end{split}$$

- cancellation occurs for a larger p_T^{cut} , as expected
- logs are larger earlier

Vill

 $\{\sigma_{\text{total}}, \sigma_0, \sigma_1\}$ or $\{\sigma_{\text{total}}, f_0, f_1\}$

$$\sigma_0 = \sigma_{\text{total}} - \sigma_{\geq 1} , \qquad f_0 = \frac{\sigma_0}{\sigma_{\text{total}}} ,$$
$$\sigma_1 = \sigma_{\geq 1} - \sigma_{\geq 2} , \qquad f_1 = \frac{\sigma_1}{\sigma_{\text{total}}} .$$

relative uncertainties

$$\delta(\sigma_0)^2 = \frac{1}{f_0^2} \,\delta_{\text{total}}^2 + \left(\frac{1}{f_0} - 1\right)^2 \delta_{\ge 1}^2$$
$$\delta(\sigma_1)^2 = \left(\frac{1 - f_0}{f_1}\right)^2 \delta_{\ge 1}^2 + \left(\frac{1 - f_0}{f_1} - 1\right)^2 \delta_{\ge 2}^2$$

$$\delta(f_0)^2 = \left(\frac{1}{f_0} - 1\right)^2 \left(\delta_{\text{total}}^2 + \delta_{\ge 1}^2\right),$$

$$\delta(f_1)^2 = \delta_{\text{total}}^2 + \left(\frac{1 - f_0}{f_1}\right)^2 \delta_{\ge 1}^2 + \left(\frac{1 - f_0}{f_1} - 1\right)^2 \delta_{\ge 2}^2,$$

$$\begin{pmatrix} \Delta_{\text{total}}^2 & \Delta_{\text{total}}^2 & 0 \\ \Delta_{\text{total}}^2 & \Delta_{\text{total}}^2 + \Delta_{\geq 1}^2 & -\Delta_{\geq 1}^2 \\ 0 & -\Delta_{\geq 1}^2 & \Delta_{\geq 1}^2 + \Delta_{\geq 2}^2 \end{pmatrix}$$

correlation coefficients

$$\begin{split} \rho(\sigma_0, \sigma_{\text{total}}) &= \left[1 + \frac{\delta_{\geq 1}^2}{\delta_{\text{total}}^2} (1 - f_0)^2 \right]^{-1/2}, \\ \rho(\sigma_0, \sigma_1) &= - \left[1 + \frac{\delta_{\text{total}}^2}{\delta_{\geq 1}^2} \frac{1}{(1 - f_0)^2} \right]^{-1/2} \\ &\times \left[1 + \frac{\delta_{\geq 2}^2}{\delta_{\geq 1}^2} \left(1 - \frac{f_1}{1 - f_0} \right)^2 \right]^{-1/2}, \\ \rho(\sigma_0, \sigma_{\geq 2}) &= 0, \\ \rho(\sigma_1, \sigma_{\text{total}}) &= 0, \\ \rho(\sigma_1, \sigma_{\geq 2}) &= - \left[1 + \frac{\delta_{\geq 1}^2}{\delta_{\geq 2}^2} \left(1 - \frac{f_1}{1 - f_0} \right)^{-2} \right]^{-1/2}. \end{split}$$

$$\rho(f_0, \sigma_{\text{total}}) = \left[1 + \frac{\delta_{\geq 1}^2}{\delta_{\text{total}}^2}\right]^{-1/2},$$

$$\rho(f_0, f_1) = -\left(1 + \frac{1 - f_0}{f_1} \frac{\delta_{\geq 1}^2}{\delta_{\text{total}}^2}\right) \left(\frac{1}{f_0} - 1\right) \frac{\delta_{\text{total}}^2}{\delta(f_0)\delta(f_1)},$$

$$\rho(f_1, \sigma_{\text{total}}) = -\frac{\delta_{\text{total}}}{\delta(f_1)}.$$

 $\begin{array}{ll} \textbf{eg. Numbers for} & \{\sigma_{\text{total}}, \sigma_0, \sigma_1\} & p_T^{\text{jet}} \ge 30 \,\text{GeV} \\ p_{T2}^{\text{jet}} \ge 30 \,\text{GeV} & \begin{pmatrix} \Delta_{\text{total}}^2 & \Delta_{\text{total}}^2 & 0 \\ \Delta_{\text{total}}^2 & \Delta_{\text{total}}^2 + \Delta_{\ge 1}^2 & -\Delta_{\ge 1}^2 \\ 0 & -\Delta_{\ge 1}^2 & \Delta_{\ge 1}^2 + \Delta_{\ge 2}^2 \end{pmatrix} \end{array}$

start with:

$$\sigma_{\text{total}} = (8.70 \pm 0.75) \,\text{pb}_{2}$$
 8.6%
 $\sigma_{\geq 1} = (3.29 \pm 0.62) \,\text{pb}$ 18.8%
 $\sigma_{\geq 2} = (0.85 \pm 0.49) \,\text{pb}_{2}$ 57%

$$\sigma_0 = \sigma_{\text{tot}} - \sigma_{\geq 1}$$
$$\sigma_1 = \sigma_{\geq 1} - \sigma_{\geq 2}$$

propagate to get:

$$\delta(\sigma_0) = 18\%$$

$$\rho(\sigma_0, \sigma_{\text{total}}) = 0.77$$

$$\rho(\sigma_0, \sigma_1) = -0.50$$

$$\delta(\sigma_1) = 32\%$$
$$\rho(\sigma_1, \sigma_{\geq 2}) = -0.62$$

or consider jet fractions:

$$f_{0} = \frac{\sigma_{0}}{\sigma_{\text{total}}} \qquad \qquad \delta(f_{0}) = 13\% \qquad \qquad \delta(f_{1}) = 33\%$$

$$\rho(f_{0}, \sigma_{\text{total}}) = 0.42 \qquad \qquad \rho(f_{1}, \sigma_{\text{total}}) = -0.26$$

$$f_{1} = \frac{\sigma_{1}}{\sigma_{\text{total}}} \qquad \qquad \rho(f_{0}, f_{1}) = -0.80$$

W + jets

(C) Use Resummed Predictions to get Uncertainties

this will allow us to include both types of uncertainties (correlated & uncorrelated) from methods (A) and (B)

- resummed calculation has two sources of uncertainty, - one is correlated with Δ_{total}
 - one gives $\Delta_{\rm cut}$
JOIL let Vetoes Conventional: Jet Algorithm Jet Search for jets and require Jet Tevatron: $p_T^{\text{cut}} \simeq 20 \,\text{GeV}$ LHC: $p_T^{\text{cut}} \simeq 25 \,\text{GeV}$ Soft Complicated phase-space restrictions max rapidity $\mathcal{T}_{\mathrm{cm}}^{\mathrm{max}}, \mathcal{T}_{\mathrm{cm}}^{\mathrm{max2}}, \ldots, \mathcal{T}_{\mathrm{cm}}$ Alternative: Event Shape binning Measure beam thrust for each event Jet $\mathcal{T}_{ ext{cm}} = \sum_{m{k}} ert ec{p}_{m{k}T} ert e^{-ert \eta_{m{k}} ert} = \sum_{m{k}} ig(E_{m{k}} - ert p_{m{k}}^{m{z}} ert ig)$ and require $\mathcal{T}_{\mathrm{cm}} < \mathcal{T}_{\mathrm{cm}}^{\mathrm{cut}}$ - \mathfrak{C} Soft Soft

Nice for higher order calculations

Soft

Jet

 $., H_T$

Jet

 max^2 .

Jet veto restricts ISR, gives double logs

$$L = \ln \frac{p_T^{\text{cut}}}{m_H}$$
 or $L = \ln \frac{\mathcal{T}_{\text{cm}}^{\text{cut}}}{m_H}$

 $\Rightarrow T_{\rm cm}^{\rm cut} \simeq 10 \, {
m GeV}$ corresponds to $p_T^{\rm cut} \simeq 20 \, {
m GeV}$ in conventional jet veto

Jet veto restricts ISR, gives double logs

eg. MC@NLO is NLO+LL

Jet veto restricts ISR, gives double logs

$$L = \ln \frac{p_T^{\text{cut}}}{m_H} \quad \text{or} \quad L = \ln \frac{T_{\text{cm}}^{\text{cut}}}{m_H}$$

$$\begin{array}{cccc}
\text{LO} & \text{NLO} & \text{NNLO} \\
\sigma_{0\text{-jet}} = 1 & +\alpha_s L^2 & +\alpha_s^2 L^4 & +\alpha_s^3 L^6 & +\dots & \text{LL} \\
& +\alpha_s L & +\alpha_s^2 L^3 & +\alpha_s^3 L^5 & +\dots & \text{NLL} \\
& +\alpha_s n_1(p_T^{\text{cut}}) & +\alpha_s^2 L^2 & +\alpha_s^3 L^4 & +\dots \\
& & +\alpha_s^2 L & +\alpha_s^3 L^3 & +\dots & \text{NNLL} \\
& & +\alpha_s^2 n_2(p_T^{\text{cut}}) & +\alpha_s^3 L^2 & +\dots \\
\text{Calculation:} & & +\alpha_s^3 L & +\dots \\
\text{NNLL + NNLO} & & +\alpha_s^3 & +\dots \end{array}$$

two orders of summation beyond LL shower programs

arXiv:1012.4480 Berger, Marcantonini, IS, Tackmann, Waalewijn

Function	describes	at the scale	
Hard H_{gg}	hard virtual radiation	$ \mu_H \simeq m_H$	<pre>logs give sensitivity to smaller scales</pre>
Beam B_g	virtual & real energetic ISR	$\mu_B\simeq \sqrt{\mathcal{T}_{ m cm}m_H}$	
Soft S_B^{gg}	virtual & real soft radiation	$\mu_S \simeq \mathcal{T}_{ m cm}$	

Perturbation theory at each scale contributes to uncertainties

General Structure of the Cross Section

- Required to reproduce full fixed-order cross section at large au
- Obtained numerically from FEHiP to NNLO

(MCFM)

Summation of Jet-Veto Logarithms

Factorization theorem splits up large logarithms

$$\frac{\mathrm{d}\sigma^{\mathrm{s}}}{\mathrm{d}\mathcal{T}_{\mathrm{cm}}} = H_{gg}(\mu) \int \mathrm{d}t_a \mathrm{d}t_b \, B_g(t_a,\mu) \, B_g(t_b,\mu) \, S_B^{gg} \left(\mathcal{T}_{\mathrm{cm}} - \frac{t_a + t_b}{m_H},\mu\right)$$

$$\ln^2 \frac{\mathcal{T}_{\rm cm}}{m_H} = 2 \ln^2 \frac{m_H}{\mu} \qquad - \qquad \ln^2 \frac{\mathcal{T}_{\rm cm} m_H}{\mu^2} \qquad + \qquad 2 \ln^2 \frac{\mathcal{T}_{\rm cm}}{\mu}$$

Logarithms are summed by

Evaluating each function at its natural scale

 $|\mu_H| \simeq m_H \gg \mu_B \simeq \sqrt{\mathcal{T}_{\rm cm} m_H} \gg \mu_S \simeq \mathcal{T}_{\rm cm}$

RG evolving to common (arbitrary) scale
NNLL requires

- 1-loop matching
- 2-loop anomalous dimensions
- 3-loop cusp anomalous dimension

Nonsingular Corrections

• σ^{NLO} and σ^{NNLO} numerically from FEHiP [Anastasiou, Melnikov, Petriello]

- NNLO $C^{-1}\delta(\tau)$ term is not part of $\sigma^{\mathrm{s,NNLL}}$
 - Obtained from intercept at $\tau^{cut} = 0$ and added to singular
 - Proper treatment requires 2-loop hard, beam, soft functions

Scale Profiles

- Nonsingular terms are equally important for $\mathcal{T}_{
 m cm}\gtrsim m_H/2$
- Resummation in singular terms must be turned off to not spoil large cancellation between singular and nonsingular terms

Scale variations

- Overall scale by factors of 2
- 2 $\mu_B(\mathcal{T}_{cm})$ profile
- $\bigcirc \mu_{S}(\mathcal{T}_{cm})$ profile
- ⇒ Perturbative uncertainties estimated by envelope of three variations

Beam Thrust Spectrum and Cumulant

gg
ightarrow H production cross section for $m_H = 165\,{
m GeV}$ at the LHC

Differential beam-thrust spectrum

- peaks at small \mathcal{T}_{cm}
- has rather large tail from ISR

Perturbative corrections are important

- Incoming gluons radiate a lot
- Very large at lower orders
- Good convergence at higher orders

Reproducing Fixed-Order Result at Large $\mathcal{T}_{\mathrm{cm}}$

$\mu \simeq m_H$ in gluon form factor

• Exactly reproduces fixed NNLO at $\mu = m_H$ for large \mathcal{T}_{cm}

(scale profiles are essential)

$\mu \simeq -im_H$ in gluon form factor

- Increases cross section
- Almost exactly reproduces fixed NNLO at conventional $\mu=m_H/2$
- Smaller incl. uncertainty +3%, -5%
 (same effect as in Becher, Neubert, et al.)

individual scale variations

- three separate scale variations
- $\mu_H = \mu_{H0}$ 100% correlated with $\sigma_{\rm total}$
- μ_B and μ_S give $\Delta_{\text{cut}} = \Delta_{SB}$ (dominate for small $\mathcal{T}_{\text{cm}}^{\text{cut}}$)

(C) Use Resummed Predictions to get Uncertainties for p_T ?

Idea: • reweigh MC@NLO or POWHEG to NNLO (what you do now) for central values for p_T^{cut}

- resummed calculation has two sources of uncertainty, one is correlated with Δ_{total} , one gives Δ_{cut}
- given these as % errors for spectra in T_{cm} , reweigh a MC sample to apply these errors for p_T^{cut}

$$C = C_{SB} + C_H$$

$$C_H = \begin{pmatrix} \Delta_{H\text{tot}}^2 & \Delta_{H\text{tot}}\Delta_{H0} & \Delta_{H\text{tot}}\Delta_{H\geq 1} \\ \Delta_{H\text{tot}}\Delta_{H0}^2 & \Delta_{H0}^2 & \Delta_{H0}\Delta_{H\geq 1} \\ \Delta_{H\text{tot}}\Delta_{H\geq 1} & \Delta_{H0}\Delta_{H\geq 1} & \Delta_{H\geq 1}^2 \end{pmatrix} \qquad \Delta_{H\text{tot}} = \Delta_{H0} + \Delta_{H\geq 1}$$

$$C_{SB} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{SB}^2 & -\Delta_{SB}^2 \\ 0 & -\Delta_{SB}^2 & \Delta_{SB}^2 \end{pmatrix}$$

like small $p_T^{\rm cut}$

direct exclusive scale variation shown for NNLO & MC@NLO

combined NNLL scale variations shown

logs are large, NNLL central value lower than NNLO

 reweigh MC@NLO to match NNLO value/uncertainty at 200GeV Central value is nearer NNLL. Uncertainty is only for norm.

direct exclusive uncertainties here are too small (we discussed that...)

Friday, October 28, 2011

Small \mathcal{T}_{cm}^{cut}

like small p_T^{cut}

combined inclusive scale variation shown for NNLO & MC@NLO

combined NNLL scale variations shown

- NNLO band largely overlaps NNLL result
- reweigh MC@NLO to match NNLO incl. relative uncertainties (full spectrum). Overlaps nicely with NNLL.
- This factor of two improvement in uncertainty with NNLL is what one would expect if a similar reweighing exercise is done for $p_T^{\rm jet}$

Validation? Other options?

- Drell-Yan pairs from γ^*, Z^* with a jet veto should be used for validation.
- Directly measure beam thrust (important on its own). And UE is no harder than it is for HT.

Theory Plans:

- A calculation of the Higgs + 0-jet cross section at one higher order (N3LL) is feasible. "Only" a missing 2 loop calculation. This will help reduce the perturbative uncertainty.
- Similar resummed calculations for Higgs + I jet, H + 2 jets, ...

eg. differential jet masses

IS, Tackmann, Waalewijn arXiv: 1004.2489

Jouttenus, IS, Tackmann, Waalewijn arXiv: 1102.4344

 $d\sigma$

 $d\mathcal{T}^a_{\scriptscriptstyle NI}\cdots d\mathcal{T}^{\overline{N}}_{\scriptscriptstyle NI}$

- Why?
- sum logs beyond the parton shower (up to NNLL)
 - realistic estimates for theory errors
 - test and tune Monte Carlo
 - reweight Monte Carlo (eg. Higgs Search)

N-Jettiness T_N $pp \rightarrow \text{jets}, pp \rightarrow W/Z + \text{jets}, \dots$

consider an inclusive N-jet sample with jet energies E_i & directions \hat{n}_i determined by anti-kT (or any suitable algorithm)

$$q_{i}^{\mu} = E_{i}(1, \hat{n}_{i}) \qquad \begin{array}{l} q_{a}^{\mu} = \frac{1}{2}x_{a} E_{\rm cm}(1, \hat{z}), & x_{a}x_{b} = \frac{Q^{2}}{E_{\rm cm}^{2}} = \frac{(q_{1} + \ldots + q_{N} + q)^{2}}{E_{\rm cm}^{2}} \\ q_{b}^{\mu} = \frac{1}{2}x_{b} E_{\rm cm}(1, -\hat{z}) & \ln\frac{x_{a}}{x_{b}} = Y = \ldots \\ (\text{set } x_{a} = x_{b} = 1 \text{ for cases with MET}) \end{array}$$

measure $T_N = \sum_k |\vec{p}_{kT}| \min\{d_a(p_k), d_b(p_k), d_1(p_k), d_2(p_k), \dots, d_N(p_k)\}$

- d_{a,b}(p_k), d_j(p_k): Distance of particle k
 to beam and jet directions
- Divides phase space into
 N jet regions and 2 beam regions

N-Jettiness T_N $pp \rightarrow \text{jets}, pp \rightarrow W/Z + \text{jets}, \dots$

consider an inclusive N-jet sample with jet energies E_i & directions \hat{n}_i determined by anti-kT (or any suitable algorithm)

$$q_{i}^{\mu} = E_{i}(1, \hat{n}_{i}) \qquad \begin{array}{l} q_{a}^{\mu} = \frac{1}{2}x_{a} E_{\rm cm}(1, \hat{z}), & x_{a}x_{b} = \frac{Q^{2}}{E_{\rm cm}^{2}} = \frac{(q_{1} + \ldots + q_{N} + q)^{2}}{E_{\rm cm}^{2}} \\ q_{b}^{\mu} = \frac{1}{2}x_{b} E_{\rm cm}(1, -\hat{z}) & \ln\frac{x_{a}}{x_{b}} = Y = \ldots \\ (\text{set } x_{a} = x_{b} = 1 \text{ for cases with MET}) \end{array}$$

measure
$$\mathcal{T}_N = \sum_k \min\left\{\frac{2q_a \cdot p_k}{Q_a}, \frac{2q_b \cdot p_k}{Q_b}, \frac{2q_1 \cdot p_k}{Q_1}, \dots, \frac{2q_N \cdot p_k}{Q_N}\right\}$$

- Here Q_j determines the measure
- Small \mathcal{T}_N constrains us to N-jets (one added scale) $\mathcal{T}_N^{\mathrm{alg.1}} = \mathcal{T}_N^{\mathrm{alg.2}} + \mathcal{O}[(\mathcal{T}_N^{\mathrm{alg.2}})^2]$ Large \mathcal{T}_N has >N jets

N-Jettiness T_N $pp \rightarrow \text{jets}, pp \rightarrow W/Z + \text{jets}, \dots$

consider an inclusive N-jet sample with jet energies E_i & directions \hat{n}_i determined by anti-kT (or any suitable algorithm)

$$q_{i}^{\mu} = E_{i}(1, \hat{n}_{i}) \qquad \begin{array}{l} q_{a}^{\mu} = \frac{1}{2}x_{a} E_{\rm cm}(1, \hat{z}), & x_{a}x_{b} = \frac{Q^{2}}{E_{\rm cm}^{2}} = \frac{(q_{1} + \ldots + q_{N} + q)^{2}}{E_{\rm cm}^{2}} \\ q_{b}^{\mu} = \frac{1}{2}x_{b} E_{\rm cm}(1, -\hat{z}) & \ln\frac{x_{a}}{x_{b}} = Y = \ldots \\ (\text{set } x_{a} = x_{b} = 1 \text{ for cases with MET}) \end{array}$$

measure
$$\mathcal{T}_N = \sum_k \min\left\{\frac{2q_a \cdot p_k}{Q_a}, \frac{2q_b \cdot p_k}{Q_b}, \frac{2q_1 \cdot p_k}{Q_1}, \dots, \frac{2q_N \cdot p_k}{Q_N}\right\}$$

"make it a true event shape"

• Determine q_i by minimization

For
$$Q_i = |ec{q}_{iT}|$$
 , $ec{p}_{ ext{jet}}^i = \sum_{k \in i} ec{p}_k$ haler, Van Tilburg

Extension to N-subjettiness

N-Jettiness Factorization

$$\mathcal{T}_{N} = \sum_{k} \min\left\{\frac{2q_{a} \cdot p_{k}}{Q_{a}}, \frac{2q_{b} \cdot p_{k}}{Q_{b}}, \frac{2q_{1} \cdot p_{k}}{Q_{1}}, \dots, \frac{2q_{N} \cdot p_{k}}{Q_{N}}\right\}$$
$$\mathcal{T}_{N} = \left(\sum_{k \in \text{soft}} \min_{m}\left\{\frac{2q_{m} \cdot p_{k}}{Q_{m}}\right\}\right) + \sum_{j=a,b,1,\dots,N} \left(\sum_{k \in \text{coll}_{j}} \frac{2q_{j} \cdot p_{k}}{Q_{j}}\right)$$
$$\bigwedge$$
Only soft particles get a nontrivial grouping. Jet boundaries collinear particles all grouped with their quarter of the second s

are determined by the q_m

grouped with their q_j

N-Jettiness & Jet Masses

$$\mathcal{T}_N = \sum_k \min\left\{\frac{2q_a \cdot p_k}{Q_a}, \frac{2q_b \cdot p_k}{Q_b}, \frac{2q_1 \cdot p_k}{Q_1}, \dots, \frac{2q_N \cdot p_k}{Q_N}\right\}$$
$$\mathcal{T}_N = \mathcal{T}_a + \mathcal{T}_b + \mathcal{T}_1 + \dots + \mathcal{T}_N$$

$$\mathcal{T}_N^j = \sum_{k \in j} \left| \vec{p}_{kT} \right| d_j(p_k)$$

Can measure:

 $\frac{d\sigma}{d\mathcal{T}_a d\mathcal{T}_b d\mathcal{T}_1 \cdots d\mathcal{T}_N}$

with jet axes aligned These are Jet Masses:

$$M_J^2 = P_J^2 = P_J^- P_J^+ = Q_i \mathcal{T}_N^i$$

So one can study the masses of jets!

Jet definition:

N-jettiness divides particles into jet and beam regions

$$\mathcal{T}_{N} = \sum_{k} |\vec{p}_{kT}| \min\{d_{a}(p_{k}), d_{b}(p_{k}), d_{1}(p_{k}), d_{2}(p_{k}), \dots, d_{N}(p_{k})\}$$

Jet definition:

N-jettiness divides particles into jet and beam regions

$$\mathcal{T}_{N} = \sum_{k} |\vec{p}_{kT}| \min\{d_{a}(p_{k}), d_{b}(p_{k}), d_{1}(p_{k}), d_{2}(p_{k}), \dots, d_{N}(p_{k})\}$$

Jets treatment of soft radiation depends on the distance measure

$$\hat{q}_i^{\mu} \equiv \frac{q_i^{\mu}}{Q_i}, \quad \mathcal{T}_N \equiv \sum_k \min_i \left\{ 2\hat{q}_i \cdot p_k \right\}$$

Friday, October 28, 2011

63

With Minimization

Thaler, Van Tilburg

$$\tau_N^{(\beta,\gamma)}(R_0,\eta_0) = \sum_i p_{T,i} \min\left\{ \left(\exp\frac{-\eta_i}{\eta_0}\right)^{\gamma}, \left(\exp\frac{\eta_i}{\eta_0}\right)^{\gamma}, \left(\frac{\Delta R_{1,i}}{R_0}\right)^{\beta}, \dots, \left(\frac{\Delta R_{N,i}}{R_0}\right)^{\beta}, 1 \right\}.$$

N-Jettiness Factorization Formula T_N^{a}

N-Jettiness Factorization Formula T_N^{a}

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T_{N}^{a}\,\mathrm{d}T_{N}^{b}\cdots\mathrm{d}T_{N}^{N}} = \int \mathrm{d}x_{a}\mathrm{d}x_{b}\int \mathrm{d}(\mathrm{phase space})$$

$$\times \sum_{\kappa}\int \mathrm{d}t_{a}\,B_{\kappa_{a}}(t_{a},x_{a})\int \mathrm{d}t_{b}\,B_{\kappa_{b}}(t_{b},x_{b})\prod_{J=1}^{N}\int \mathrm{d}s_{J}\,J_{\kappa_{J}}(s_{J})$$

$$\times \mathrm{tr}\left[H_{N}^{\kappa}(\{q_{i}\cdot q_{j}\},\kappa_{a,b})\,\widehat{S}_{N}^{\kappa}\left(T_{N}^{a}-\frac{t_{a}}{Q_{a}},T_{N}^{b}-\frac{t_{b}}{Q_{b}},T_{N}^{1}-\frac{s_{1}}{Q_{1}},\dots,T_{N}^{N}-\frac{s_{N}}{Q_{N}},\{\hat{q}_{i}\cdot\hat{q}_{j}\}\right)\right]$$

$$\overset{\text{hard virtual corrections}}{2\to N+q}$$

$$\overset{N}{=} \mathcal{I}_{\kappa\kappa'}\otimes f_{\kappa'}$$

$$\overset{N}{=} \mathcal{I}_{\kappa\kappa'}\otimes f_{\kappa'}$$

 $q_i \cdot q_j = (Q_i Q_j)(\hat{q}_i \cdot \hat{q}_j)$

N-Jettiness Factorization Formula T_N^{a}

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T_N^a \,\mathrm{d}T_N^b \cdots \mathrm{d}T_N^N} = \int \mathrm{d}x_a \mathrm{d}x_b \int \mathrm{d}(\text{phase space})$$

$$\times \sum_{\kappa} \int \mathrm{d}t_a \, B_{\kappa_a}(t_a, x_a) \int \mathrm{d}t_b \, B_{\kappa_b}(t_b, x_b) \prod_{J=1}^N \int \mathrm{d}s_J \, J_{\kappa_J}(s_J)$$

$$\times \mathrm{tr} \left[H_N^\kappa \left(\{q_i \cdot q_j\}, x_{a,b} \right) \, \widehat{S}_N^\kappa \left(\mathcal{T}_N^a - \frac{t_a}{Q_a}, \mathcal{T}_N^b - \frac{t_b}{Q_b}, \mathcal{T}_N^1 - \frac{s_1}{Q_1}, \dots, \mathcal{T}_N^N - \frac{s_N}{Q_N}, \{\hat{q}_i \cdot \hat{q}_j\} \right) \right]$$

$$q_i \cdot q_j = (Q_i Q_j) (\hat{q}_i \cdot \hat{q}_j)$$

Assumptions needed to sum logs with this formula:

) $\mathcal{T}_i \sim \mathcal{T}_j$ ($\mathcal{T}_i \ll \mathcal{T}_j$ gives non-global logs of Dasgupta & Salam)

2) $\hat{q}_i \cdot \hat{q}_j \gg T_i/Q_i$ jets are well separated

3) $Q_i \sim Q_j$

N-Jettiness Factorization Formula

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T_N^a \,\mathrm{d}T_N^b \cdots \mathrm{d}T_N^N} = \int \mathrm{d}x_a \mathrm{d}x_b \int \mathrm{d}(\text{phase space})$$

$$\times \sum_{\kappa} \int \mathrm{d}t_a \, B_{\kappa_a}(t_a, x_a) \int \mathrm{d}t_b \, B_{\kappa_b}(t_b, x_b) \prod_{J=1}^N \int \mathrm{d}s_J \, J_{\kappa_J}(s_J)$$

$$\times \mathrm{tr} \left[H_N^\kappa \left(\{q_i \cdot q_j\}, x_{a,b} \right) \, \widehat{S}_N^\kappa \left(T_N^a - \frac{t_a}{Q_a}, T_N^b - \frac{t_b}{Q_b}, T_N^1 - \frac{s_1}{Q_1}, \dots, T_N^N - \frac{s_N}{Q_N}, \{\hat{q}_i \cdot \hat{q}_j\} \right) \right]$$

$$q_i \cdot q_j = (Q_i Q_j) (\hat{q}_i \cdot \hat{q}_j)$$

 T_N^a

With assumptions: $\mathcal{T}_i \sim \mathcal{T}_j$, $\hat{q}_i \cdot \hat{q}_j \gg \mathcal{T}_i/Q_i$, $Q_i \sim Q_j$

Can explore angular dependence, Q_i dependence

Have Color / Kinematic info. Can look at jet mass in samples with various amounts of quarks vs. gluons.

Again can compute (un)correlated uncertainties.

N-Jettiness Factorization Formula

Pieces needed for NNLL are now all in hand:

- Three Loop Cusp Anom. Dim, Two Loop Non Cusp.
 (Note: Beam function has same Logs as Jet Function)
- One Loop Hard functions: when available in QCD literature (only part that restricts N)
- Jet & Beam Functions at one loop
- N-jet Soft function

Jouttenus, IS, Tackmann, Waalewijn

also: Bauer, Hornig, Dunn

 T_N^a

If we make use of a helicity basis for SCET operators, then hard matching coefficients are precisely the finite part of the color ordered helicity amplitudes in MS.

IS, Tackmann, Waalewijn (work in progress)

eg. ggggH: Basis

Five helicity operators:

Summary

- Experimental measurements require precision jet-bin cross sections with careful assessment of theoretical uncertainties
- Assigning independent uncertainties to inclusive jet cross-sections, and propagating these to exclusive jet cross-sections is a good starting point.
- Theory errors are important for Higgs analyses. Improved precision for exclusive jet cross sections is necessary (through resummation, or full N^kLO, or approximate N^kLO, or more realistic analysis corresponding to the experimental measurements)
- Resummation for N jet-bins at NNLL is in sight, but will require coordination between various groups.

The End

Friday, October 28, 2011