Ingredients for a Precise Top-Quark Mass Measurement from Jets

Iain Stewart MIT

Based on:

A. Hoang, S. Fleming, S. Mantry, & I.S. (hep-ph/0703207)
A. Hoang & I.S. (arXiv:0709.3519)
A. Hoang, S. Fleming, S. Mantry, & I.S. (arXiv:0711.2079)
A. Jain, I. Scimemi, & I.S. (arXiv:0801.0743)

Outline

- Motivation. Why do we want a precision m_t ?
- Top mass measurements. Expt & Theory Issues. Which mass? $M_t^{\text{peak}} = m_t + (\text{nonperturbative effects}) + (\text{perturbative effects})$
- Factorization theorem for Jet Invariant Masses $e^+e^- \rightarrow t\bar{t}$ $Q \gg m_t \gg \Gamma_t$
 - Summation of Large Logs
 - Heavy-Quark Jet Function (perturbative shift)
 - Gluon Soft Function (nonperturbative shift)
- Cross Sections Results at NLL order
- Implications

Motivation • The top mass is a fundamental parameter of the Standard Model $m_t = 172.6 \pm 1.4 \,\text{GeV}$ (a 0.8% experimental error) (theory error? what mass is it?) m_W Important for precision e.w. constraints Top Yukawa coupling is large. Top parameters are important for many new physics models $\Gamma_t = 1.4 \,\mathrm{GeV} \qquad \mathrm{from} \quad t \to bW$ • Top is very unstable, it decays before it $\Lambda_{\rm QCD}$ has a chance to hadronize. How does this effect jet observables involving top-quarks? $m_{u,d}$

bW

World average (2008):

 $m_t = 172.6 \pm 0.8 (\text{stat}) \pm 1.1 (\text{syst}) \text{ GeV}$

Why precision m_t ?

eg. Electroweak precision observables

$$m_H = 76^{+33}_{-24} \,\text{GeV}$$

 87
 $m_H < 182 \,\text{GeV}$ (95% CL)
209

A 2 GeV shift in m_t changes these central values by 15%.

Gruenewald, EPS(2007)

Mass of Lightest MSSM Higgs Boson

Heinemeyer et.al.('03)

How is the top-mass measured? **Template Method (CDF II)**

Principle: perform kinematic fit and reconstruct to nciple: perform kinematic fit and reconstruct top ss event by event. E.g. in lepton+jets channel:

$$\sum_{Ajets} \frac{(p_T^{i,fit} - p_T^{i,meas})^2}{\sigma_i^2} + \sum_{j=x,y} \frac{(p_j^{UE,fit} - p_j^{UE,meas})^2}{\sigma_j^2}$$

 $(M_{\ell\nu} - M_W)^2$, $(M_{jj} - M_W)^2$, $(M_{b\ell\nu} - m_t^{\text{reco}})^2$, $(M_{bjj} - m_t^{\text{reco}})^2$ Usually pick solution with lowest χ^2 .

Build templates from MC for signal and background and compare to data.

Dynamics Method (D0 II)

Principle: compute event-by-event probability as a function of m, making use of all reconstructed objects in the events (integrate over unknowns). Maximize sensitivity by:

from A. Juste

Uncertainties

$m_t = 172.6 \pm 0.8 (\text{stat}) \pm 1.1 (\text{syst}) \text{ GeV}$

(eg. reconstruction)

- determine parton momentum of daughters, combinatorics
- jet-energy scale: calorimeter response, uninstrumented zones, multiple hard interactions, energy outside the jet "cone", underlying event (spectator partons)
 W-mass helps
- initial & final state radiation, parton distribution functions, b-fragmentation
- which jet algorithm? which Monte-Carlo?
- background (W+jets), b-tagging efficiency
- Statistics

Future -LHC: $pp \rightarrow t\bar{t}X$ top factory, 8 million $t\overline{t}$ / year $\delta m_t \sim 1 \, {
m GeV}$ systematics dominated

LL, NLL, NNLL

351

352

353

Future -ILC:
$$e^+e^- \rightarrow t\bar{t}$$

exploit threshold region
 $\sqrt{s} \simeq 2m_t$
with high precision
theory calculations
Hoang, Manohar,
 16
 14
 12
 10
 03
 03
 03
 04
 02
 10
 03
 04
 02
 10
 03
 04
 02
 10
 03
 04
 02
 10
 03
 04
 02
 10
 03
 04
 11
 12
 10
 03
 10
 14
 12
 10
 03
 10
 14
 12
 10
 03
 10
 03
 10
 04
 12
 10
 03
 10
 04
 12
 10
 04
 12
 10
 04
 12
 10
 04
 12
 10
 04
 12
 10
 04
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 14
 12
 10
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11

0.2

0.0

346

347

348

349

350

 \sqrt{s} (GeV)

 $\delta m_t \sim 0.1 \,\mathrm{GeV}$

9

354

What mass is it?

• pole mass?

- ambiguity $\delta m \sim \Lambda_{\rm QCD}$, linear sensitivity to IR momenta
- poor behavior of α_s expansion
- not used anymore for m_b, m_c

e.g.
$$m_b^{1S} = (4.70 \pm 0.04) \,\mathrm{GeV}$$

- $\delta m \sim \alpha_s(\Gamma)\Gamma$
- Monte Carlo has cutoff on shower / hadronization model

quark masses are Lagrangian parameters, use a suitable scheme

$$m_t^{\text{pole}} = m_t^{\text{schemeA}} (1 + \alpha_s + \alpha_s^2 + \ldots)$$

or

$$m_t^{\text{pole}} = m_t^{\text{schemeB}} + R\left(\alpha_s + \alpha_s^2 + \ldots\right)$$

• top $\overline{\text{MS}}$ mass? $\delta \overline{m} = m^{\text{pole}} - m^{\overline{\text{MS}}}(m) \sim 8 \text{ GeV}$ If top-decay is described by Breit-Wigner, the answer is NO When we switch to a short-distance mass scheme we must expand in α_s $\delta \overline{m} \sim \alpha_s \overline{m} \gg \Gamma$

 $\frac{\Gamma}{\left[\frac{(M_t^2 - m^{\text{pole}^2})^2}{m^{\text{pole}^2}} + \Gamma^2\right]} = \frac{\Gamma}{\left[\frac{(M_t^2 - \overline{m}^2)^2}{\overline{m}^2} + \Gamma^2\right]} + \frac{(4\,\hat{s}\,\Gamma)\,\delta\overline{m}}{\left[\frac{(M_t^2 - \overline{m}^2)^2}{\overline{m}^2} + \Gamma^2\right]^2}$ not a correction! $\sim 1/\Gamma \qquad \sim \alpha_s \overline{m}/\Gamma^2 \qquad \text{it swamps the 1st term}$

• must be a "top-resonance mass scheme" $R \sim \Gamma$ $m^{\text{pole}} - m \sim \alpha_s \Gamma$ Lesson: some schemes are more appropriate than others

Theory Issues for $pp \rightarrow t\bar{t}X$

- jet observable $\star \star$
- suitable top mass for jets \star
- initial state radiation
- final state radiation \star
- underlying events
- color reconnection \star
- beam remnant
- parton distributions
- sum large logs \star

Here we'll study $e^+e^- \rightarrow t\bar{t}X$ and the issues \bigstar

Top Mass from Jets far above threshold at the ILC

 $Q \gg m_t \gg \Gamma_t$

Measure what observable?

Hemisphere Invariant Masses

Peak region:

$$s_t \equiv M_t^2 - m^2 \sim m\Gamma \ll m^2$$
$$\hat{s}_t \equiv \frac{M_t^2 - m^2}{m} \sim \Gamma \ll m$$
Breit Wigner:
$$\frac{m\Gamma}{s_t^2 + (m\Gamma)^2} = \left(\frac{\Gamma}{m}\right) \frac{1}{\hat{s}_t^2 + \Gamma^2}$$

 $d^2\sigma$

 $\frac{dM_t^2 dM_{\bar{t}}^2}{dM_t^2 dM_{\bar{t}}^2}$

• $Q \gg m$ "dijets" dominate, inclusive in decay products

• $m \gg \Gamma$ = physical width

 $\Gamma = \Gamma_t + \dots$

• $m \gg \hat{s}_t$

• $\Gamma > \Lambda_{\rm QCD}$

$$\hat{s}_t \equiv \frac{M_t^2 - m^2}{m}$$

 $Q \gg m \gg \Gamma \sim \hat{s}_{t,\bar{t}}$

Disparate Scales

Effective Field Theory

Derive a Factorization Theorem:

$$\left(\frac{d^2\sigma}{dM_t^2 dM_{\bar{t}}^2}\right)_{\text{hemi}} = \sigma_0 H_Q(Q,\mu_m) H_m\left(m,\frac{Q}{m},\mu_m,\mu\right)$$

$$\times \int_{-\infty}^{\infty} d\ell^+ d\ell^- B_+\left(\hat{s}_t - \frac{Q\ell^+}{m},\Gamma,\mu\right) B_-\left(\hat{s}_{\bar{t}} - \frac{Q\ell^-}{m},\Gamma,\mu\right) S_{\text{hemi}}(\ell^+,\ell^-,\mu).$$

$$+ \mathcal{O}\left(\frac{m\alpha_s(m)}{Q}\right) + \mathcal{O}\left(\frac{m^2}{Q^2}\right) + \mathcal{O}\left(\frac{\Gamma_t}{m}\right) + \mathcal{O}\left(\frac{s_t, s_{\bar{t}}}{m^2}\right)$$

Valid to all orders in α_s

Compare to factorization theorem for massless dijets:

$$\left(\frac{d^2\sigma}{dM_a^2 dM_b^2}\right) = \sigma_0 H(Q,\mu) \int d\ell^+ d\ell^- J_+(M_a^2 - Q\ell^+,\mu) J_-(M_b^2 - Q\ell^-,\mu) S_{\text{hemi}}(\ell^+,\ell^-,\mu)$$

Korchemsky & Sterman

5 T

• B.W. receives calculable perturbative corrections

$$\begin{pmatrix} \frac{d^2\sigma}{dM_t^2 dM_{\bar{t}}^2} \end{pmatrix}_{\text{hemi}} = \sigma_0 H_Q(Q,\mu_m) H_m\left(m,\frac{Q}{m},\mu_m,\mu\right)$$

$$\times \int_{-\infty}^{\infty} d\ell^+ d\ell^- B_+\left(\hat{s}_t - \frac{Q\ell^+}{m},\Gamma,\mu\right) B_-\left(\hat{s}_{\bar{t}} - \frac{Q\ell^-}{m},\Gamma,\mu\right) S_{\text{hemi}}(\ell^+,\ell^-,\mu).$$

$$Answer$$

- cross-section depends on a hadronic soft function, not just B.W.'s
 ** the B.W. is only a good approx. for collinear top & gluons **
- the formula removes the largest component of soft momentum to get the correct argument for evaluating the B.W. functions

$$\hat{s}_t = \frac{M_t^2 - m^2}{m}$$

Everything but the soft function is calculable in perturbation theory. S_hemi is universal, & measured in massless jet event shapes (at LEP!)

Eg. Thrust data from massless quark jets at LEP

$$\left(\frac{d^2\sigma}{dM_a^2 dM_b^2}\right) = \sigma_0 H(Q,\mu) \int d\ell^+ d\ell^- J_+(M_a^2 - Q\ell^+,\mu) J_-(M_b^2 - Q\ell^-,\mu) S_{\text{hemi}}(\ell^+,\ell^-,\mu)$$

For our event shape for massive quarks:

Fleming, Hoang, Mantry, I.S.

Summing the Large Logs

22

$$\frac{d\sigma}{dM_t^2 dM_{\bar{t}}^2} = \sigma_0 H_Q(Q,\mu_m) H_m\left(m_J, \frac{Q}{m_J}, \mu_m, \mu\right)$$

$$\times \int d\ell^+ d\ell^- B_+\left(\hat{s}_t - \frac{Q\ell^+}{m_J}, t, \mu\right) B_-\left(\hat{s}_{\bar{t}} - \frac{Q\ell^-}{m_J}, t, \mu\right) S(\ell^+, \ell^-, \mu)$$
The various functions are sensitive to different scales

To minimize the logs we need several stages of matching and running

$$\mu_Q \simeq Q$$

$$\mu_{m} \simeq m$$

$$\mu_{\Gamma} \simeq \mathcal{O}\left(\Gamma_{t} + \frac{Q\Lambda}{m} + \frac{s_{t,\bar{t}}}{m}\right),$$

$$\mu_{\Lambda} \simeq \mathcal{O}\left(\Lambda + \frac{m\Gamma_{t}}{Q} + \frac{s_{t,\bar{t}}}{Q}\right).$$

so typically $\frac{\mu_{\Gamma}}{\mu_{\Delta}} \sim \frac{Q}{m}$

Result with resummation:

$$\frac{d^2\sigma}{dM_t^2 dM_{\bar{t}}^2} = \sigma_0 \ H_Q(Q,\mu_h) U_{H_Q}(Q,\mu_h,\mu_m) H_m(m,\mu_m) U_{H_m}\left(\frac{Q}{m_J},\mu_m,\mu_\Lambda\right) \\ \times \int_{-\infty}^{\infty} d\hat{s}'_t d\hat{s}'_{\bar{t}} \ U_{B_+}(\hat{s}_t - \hat{s}'_t,\mu_\Lambda,\mu_\Gamma) U_{B_-}(\hat{s}_{\bar{t}} - \hat{s}'_{\bar{t}},\mu_\Lambda,\mu_\Gamma) \\ \times \int_{-\infty}^{\infty} d\ell^+ d\ell^- B_+\left(\hat{s}'_t - \frac{Q\ell^+}{m},\Gamma,\mu_\Gamma\right) B_-\left(\hat{s}'_{\bar{t}} - \frac{Q\ell^-}{m},\Gamma,\mu_\Gamma\right) S(\ell^+,\ell^-,\mu_\Lambda)$$

Here: sum double logs $LL = \sum_{k} [\alpha_{s} \ln^{2}]^{k}$ $\mu \frac{d}{d\mu} H_{m} \left(m, \frac{Q}{m}, \mu \right) = \gamma_{H_{m}} \left(\frac{Q}{m}, \mu \right) H_{m} \left(m, \frac{Q}{m}, \mu \right) \qquad \mu \frac{d}{d\mu} B_{\pm}(\hat{s}, \mu) = \int d\hat{s}' \gamma_{B_{\pm}}(\hat{s} - \hat{s}', \mu) B_{\pm}(\hat{s}', \mu)$ $H_{m} \left(m, \frac{Q}{m}, \mu_{m}, \mu \right) = H_{m}(m, \mu_{m}) U_{H_{m}} \left(\frac{Q}{m}, \mu_{m}, \mu \right) \qquad \mathsf{B}_{\pm}(\mathfrak{s}, \mu) = \int d\mathfrak{s}' \mathsf{U}_{B}(\mathfrak{s} - \mathfrak{s}', \mu, \mu_{\Gamma}) \mathsf{B}_{\pm}(\mathfrak{s}', \mu_{\Gamma})$

Only the logs between μ_{Γ} and μ_{Λ} can modify the shape of the invariant mass distribution (the rest just modify normalization)

All objects are defined in field theory. Lets study the soft & jet functions in more detail

LO collinear Lagrangian:

Production Current: $Q \gg m$

Soft Function $S_{\text{hemi}}(\ ^{+},\ ^{-},\mu) = \frac{1}{N_{\text{c}}} \sum_{\mathbf{X}_{s}} (\ ^{+}-k_{\text{s}}^{+\text{a}}) (\ ^{-}-k_{\text{s}}^{-\text{b}}) \langle 0|\overline{Y}_{n} Y_{n}(0)|X_{\text{s}}\rangle \langle X_{\text{s}}|Y_{n}^{\dagger} \overline{Y}_{n}^{\dagger}(0)|0\rangle$ soft Wilson lines soft particles n-collinear n-collinear thrust axis hemisphere-a hemisphere-b b) a) d) c) n boood boood $\overline{Y}_{\overline{n}}$ n \overline{n} \overline{n} \overline{n} 0000000 m X X X X n n Y_n

 $S_{\text{part}}(\ell^+, \ell^-, \mu) = \delta(\ell^+)\delta(\ell^-) + \delta(\ell^+)S_{\text{part}}^1(\ell^-, \mu) + \delta(\ell^-)S_{\text{part}}^1(\ell^+, \mu),$

$$S_{\text{part}}^{1}(\ell,\mu) = \frac{C_{F}\alpha_{s}(\mu)}{\pi} \Big[\frac{\pi^{2}}{24}\,\delta(\ell) - 2\mathcal{L}^{1}(\ell)\Big]$$

 $S(\ell^+, \ell^-, \mu)$

- Anomalous dimension determined by partonic calculation. it has cusp $\int_{-\infty}^{L} d\ell^{+} \int_{-\infty}^{L} d\ell^{-} S(\ell^{+}, \ell^{-}, \mu) = 1 + \frac{C_{F}\alpha_{s}(\mu)}{\pi} \left\{ \frac{\pi^{2}}{12} - 2\ln^{2}\left(\frac{L}{\mu}\right) \right\} + \dots$ anom.dim.
- Cross-section in the tail region has $\pm \sim \frac{\hat{s} m}{Q} \gg \Lambda_{\text{QCD}}$ and the soft function becomes perturbatively calculable
- In the peak region $\ell^{\pm} \sim \Lambda_{\rm QCD} \longrightarrow$ nonperturbative soft function

A Convolution Formula does this

$$S(\ell^+, \ell^-, \mu) = \int_{-\infty}^{+\infty} d\tilde{\ell}^+ \int_{-\infty}^{+\infty} d\tilde{\ell}^- S_{\text{part}}(\ell^+ - \tilde{\ell}^+, \ell^- - \tilde{\ell}^-, \mu) S_{\text{mod}}(\tilde{\ell}^+, \tilde{\ell}^-)$$

calculated at fixed order

partonic soft function normalized model function (exponential fall off)

 $\int_{-\infty}^{+\infty} d\ell^+ d\ell^- \, \mathsf{S}_{\mathrm{mod}}(\ell^+, \ell^-) = 1$

- Soft-function has a (u = 1/2) renormalon ambiguity implying that the partonic and model parts are sensitively tied together
- This is removed by introducing a minimum energy gap for the soft radiation

$$S(\ell^{+}, \ell^{-}, \mu) = \int_{-\infty}^{+\infty} d\tilde{\ell}^{+} \int_{-\infty}^{+\infty} d\tilde{\ell}^{-} S_{\text{part}}(\ell^{+} - \tilde{\ell}^{+}, \ell^{-} - \tilde{\ell}^{-}, \mu) f_{\exp}(\tilde{\ell}^{+} - \Delta, \tilde{\ell}^{-} - \Delta)$$
$$= \int_{-\infty}^{+\infty} d\tilde{\ell}^{+} \int_{-\infty}^{+\infty} d\tilde{\ell}^{-} S_{\text{part}}(\ell^{+} - \tilde{\ell}^{+} - \delta, \ell^{-} - \tilde{\ell}^{-} - \delta, \mu) f_{\exp}(\tilde{\ell}^{+} - \bar{\Delta}, \tilde{\ell}^{-} - \bar{\Delta})$$
$$\Delta = \bar{\Delta} + \delta = \bar{\Delta} + (\alpha_{s} + \alpha_{s}^{2} + \dots) \qquad \bar{\Delta} = \text{renormalon free}$$

Gives soft function that:

- has correct μ dependence for MS-bar scheme
- has model parameters that are stable & not sensitive to $\,\mu$
- has correct large momentum behavior

Heavy Quark Jet Function

unstable boosted HQET

Heavy Quark Jet Function

Can be computed perturbatively

 $B(\hat{s}, \delta m, \Gamma_t, \mu) = \operatorname{Im} \left[\mathcal{B}(\hat{s}, \delta m, \Gamma_t, \mu) \right]$ $= \operatorname{Im} \left[\underbrace{\otimes}_{a} \underbrace{\otimes}_{a} + \underbrace{\otimes}_{a} \underbrace{\otimes}_{b} \underbrace{\otimes}_{a} + \underbrace{\otimes}_{a} \underbrace{\otimes}_{a$

$$\mathcal{B}(2v_{+}\cdot r,\delta m,\Gamma_{t},\mu) = \frac{-i}{4\pi N_{c}m} \int d^{4}x \, e^{ir\cdot x} \left\langle 0 \left| T\{\bar{h}_{v_{+}}(0)W_{n}(0)W_{n}^{\dagger}(x)h_{v_{+}}(x)\} \right| 0 \right\rangle$$

shift property $\mathcal{B}(\hat{s}, \delta m, \Gamma_t, \mu) = \mathcal{B}(\hat{s} - 2\delta m + i\Gamma_t, \mu)$

Renormalization and RGE:

$$\begin{aligned} \text{convolutions} \quad & \mathcal{B}(\hat{s},\mu) = \int d\hat{s}' \ Z_B^{-1}(\hat{s} - \hat{s}',\mu) \ \mathcal{B}^{\text{bare}}(\hat{s}') \\ & \mu \frac{d}{d\mu} \mathcal{B}(\hat{s},\mu) = \int d\hat{s}' \ \gamma_B(\hat{s} - \hat{s}',\mu) \ \mathcal{B}(\hat{s}',\mu) \\ & \gamma_B(\hat{s},\mu) = -2 \Gamma^c[\alpha_s] \frac{1}{\mu} \left[\frac{\mu \ \theta(\hat{s})}{\hat{s}} \right]_+ + (\gamma[\alpha_s]) \delta(\hat{s}) \\ & \text{cusp} \\ \text{non-cusp} \\ \text{anom.dim.} \\ \text{term} \end{aligned}$$

$$\begin{aligned} & \text{Position space:} \quad \tilde{\gamma}_B(y,\mu) = 2\Gamma^c[\alpha_s] \ln \left(ie^{\gamma_E} y \, \mu \right) + \gamma[\alpha_s] \\ & \text{solution:} \quad \tilde{B}(y,\mu) = e^{K(\mu,\mu_0)} \left(ie^{\gamma_E} y \, \mu_0 \right)^{\omega(\mu,\mu_0)} \ \tilde{B}(y,\mu_0) \end{aligned}$$

$$\omega(\mu,\mu_0) = 2 \int_{\alpha_s(\mu_0)}^{\alpha_s(\mu)} \frac{\mathrm{d}\alpha}{\beta[\alpha]} \Gamma^c[\alpha] \quad , \quad K(\mu,\mu_0) = \dots$$

Momentum space:

$$B(\hat{s},\mu) = \int_{-\infty}^{+\infty} d\hat{s}' \ U_B(\hat{s} - \hat{s}',\mu,\mu_0) \ B(\hat{s}',\mu_0), \qquad U_B(\hat{s} - \hat{s}',\mu,\mu_0) = \frac{e^K (e^{\gamma_E})^{\omega}}{\mu_0 \Gamma(-\omega)} \left[\frac{\mu_0^{1+\omega} \theta(\hat{s} - \hat{s}')}{(\hat{s} - \hat{s}')^{1+\omega}} \right]_+$$

Jain, Scimemi, I.S.

$$m \mathcal{B}_{2}(\hat{s}, \delta m, \mu) = C_{F}^{2} \left[\frac{1}{2} L^{4} + L^{3} + \left(\frac{3}{2} + \frac{13\pi^{2}}{24} \right) L^{2} + \left(1 + \frac{13\pi^{2}}{24} - 4\zeta_{3} \right) L^{1} + \left(\frac{1}{2} + \frac{7\pi^{2}}{24} + \frac{53\pi^{4}}{640} - 2\zeta_{3} \right) L^{0} \right] \\ + C_{F} C_{A} \left[\left(\frac{1}{3} - \frac{\pi^{2}}{12} \right) L^{2} + \left(\frac{5}{18} - \frac{\pi^{2}}{12} - \frac{5\zeta_{3}}{4} \right) L^{1} + \left(-\frac{11}{54} + \frac{5\pi^{2}}{48} - \frac{19\pi^{4}}{960} - \frac{5\zeta_{3}}{8} \right) L^{0} \right] \\ + C_{F} \beta_{0} \left[\frac{1}{6} L^{3} + \frac{2}{3} L^{2} + \left(\frac{47}{36} + \frac{\pi^{2}}{12} \right) L^{1} + \left(\frac{281}{216} + \frac{23\pi^{2}}{192} - \frac{17\zeta_{3}}{48} \right) L^{0} \right] \\ - 2\delta m_{2} (L^{0})' + 2(\delta m_{1})^{2} (L^{0})'' - 2\delta m_{1} C_{F} \left[L^{2} + L^{1} + \left(1 + \frac{5\pi^{2}}{24} \right) L^{0} \right]'.$$

$$L^{k} = \frac{1}{\pi(-\hat{s} - i0)} \ln^{k} \left(\frac{\mu}{-\hat{s} - i0}\right)$$

Still need to find a suitable mass scheme $\delta \mathbf{m} = \frac{\alpha_s(\mu)}{\pi} \, \delta m_1(\mu) + \frac{\alpha_s^2(\mu)}{\pi^2} \, \delta m_2(\mu) + \dots$

Wilson Loop Definition:

Satisfies criteria for non-abelian exponentiation Theorem

Gatheral, Frenkel & Taylor

non-abelian: $m\tilde{B}(y,\mu) = e^{K(\mu,\mu_y) + T[\alpha_s(\mu_y)]}$

abelian:
$$m\tilde{B}(y,\mu)^{\text{abelian}} = \exp\left[\frac{\alpha_s}{4\pi}\left(\Gamma_0^{\text{c}}\tilde{L}^2 + \gamma_0\tilde{L} + T_0\right)\right]$$

 $\tilde{L} \equiv \ln\left(ie^{\gamma_E}y\,\mu\right)$

A convenient result for testing mass-schemes

Mass Scheme should:

- be renormalon free (not m^{pole})
- be a top-resonance mass scheme $\delta m \sim \alpha_s \Gamma_t \pmod{\mathrm{MS}}$
- have a RGE in μ

 $\delta m = m_{pole} - m$

3 possibilites for scheme with stable peak position:

"peak" a)
$$\frac{d}{d\hat{s}} B(\hat{s}, \delta m^{\text{peak}}, \Gamma_t, \mu) \Big|_{\hat{s}=0} = 0,$$

"moment" b)
$$\int_{-\infty}^{R} d\hat{s} \ \hat{s} \ B(\hat{s}, \delta m^{\text{mom}}, \mu) = 0,$$
$$R \sim \prod_{i} t$$

"position" c)
$$\delta m_J = \frac{-i}{2 \ \tilde{B}(y, \mu)} \frac{d}{dy} \ \tilde{B}(y, \mu) \Big|_{y=-ie^{-\gamma_E}/R} = e^{\gamma_E} \frac{R}{2} \frac{d}{d\ln(iy)} \ln \tilde{B}(y, \mu) \Big|_{iye^{\gamma_E} = 1/R}$$

Only c) has a consistent anomalous dimension equation, for the others the anom.dim. does not have a consistent pert. expn. "top jet mass scheme" (two loop conversion to MS is now known) This scheme is nice:

$$\frac{dm_J(\mu)}{d\ln\mu} = -e^{\gamma_E} R \ \Gamma^{\rm c}[\alpha_s(\mu)]$$

anom.dim. is determined by cusp term, and therefore is known to 3 loops

Result is jet-function with resummation:

$$B(\hat{s}, \delta m_J, \Gamma_t, \mu_\Lambda, \mu_\Gamma) \equiv \int d\hat{s}' \ U_B(\hat{s} - \hat{s}', \mu_\Lambda, \mu_\Gamma) \ B(\hat{s}', \delta m_J, \Gamma_t, \mu_\Gamma)$$

$$= \int d\hat{s}' \ d\hat{s}'' \ U_B(\hat{s} - \hat{s}', \mu_\Lambda, \mu_\Gamma) \ B(\hat{s}' - \hat{s}'', \delta m_J, \mu_\Gamma) \ \frac{\Gamma_t}{\pi(\hat{s}''^2 + \Gamma_t^2)}$$

convolute result from the previous page to sum logs and include width effects

Jet Function Results up to NNLL:

Fleming, Hoang, Mantry, I.S.

Analysis at NLL order

(Next-to-Leading-Order with resummation to all orders of next-to-leading logarithms)

Analysis to NLL order

- One-loop matching
- One-loop matrix element for B+, and for the soft function:

$$S(\ell^+, \ell^-, \mu) = \int_{-\infty}^{+\infty} d\tilde{\ell}^+ \int_{-\infty}^{+\infty} d\tilde{\ell}^- S_{\text{part}}(\ell^+ - \tilde{\ell}^+, \ell^- - \tilde{\ell}^-, \mu, \delta_i) S_{\text{mod}}(\tilde{\ell}^+, \tilde{\ell}^-)$$

- Renormalon Free Schemes for Jet and Soft functions
- RGE evolution, sum large logs $Q \gg m \gg \Gamma \sim \hat{s}_{t,\bar{t}}$ (Two-loop cusp anom.dims. & One-loop non-cusp)
- Proper choice for the scales

NLL Cross-Section Results

Normalized Cross-Section

 $F(M_t, M_t)$ versus M_t .

$$\mu_{\Gamma} = 3.3, 5, 7.5 \,\mathrm{GeV}$$

.

ГІ

This observable contains other event shapes as projections, like thrust $1 d = \frac{1}{2} \frac{1}{2$

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathsf{T}} = \int_0^\infty \mathrm{d}\mathsf{M}_t^2 \int_0^\infty \mathrm{d}\mathsf{M}_{\bar{t}}^2 \ \delta\left(\tau - \frac{\mathsf{M}_t^2 + \mathsf{M}_{\bar{t}}^2}{\mathsf{Q}^2}\right) \frac{\mathrm{d}^2\sigma}{\mathrm{d}\mathsf{M}_t^2 \mathrm{d}\mathsf{M}_{\bar{t}}^2}$$

Thrust peak position vs. Q can also be used to measure the short-distance top-mass

$$T = \max_{\hat{\mathbf{t}}} \frac{\sum_{i} |\hat{\mathbf{t}} \cdot \mathbf{p}_{i}|}{Q}$$

What (if anything) can be said about the Tevatron mass?

• Given that top decay is described by a Breit-Wigner, we know that the mass should be close to a pole mass (top-resonance mass scheme)

$$m_{\text{pole}} = m(R,\mu) + \delta m(R,\mu), \qquad \delta m(R,\mu) = R \sum_{n=1}^{\infty} \sum_{k=0}^{n} a_{nk} \left[\frac{\alpha_s(\mu)}{4\pi} \right]^n \ln^k \left(\frac{\mu}{R} \right)$$
$$R \sim \Gamma$$

• Recently we studied an RGE for R, which allows us to smoothly connect these schemes to \overline{MS} where $R = \overline{m}(\mu)$

Hoang, Jain, Scimemi, I.S. (arXiv:0803.4214)

[c.f. the kinetic mass of Bigi et.al.]

• We can estimate the scheme uncertainty of the Tevatron measurement by varying the initial $R = R_0 = 3^{+6}_{-2}$ GeV (since any such mass is an equally good short distance scheme)

(See the talk by A. Hoang tomorrow at 9:30am in the Flavor workshop for further details)

 $m_t(R_0)$ = 172.6 ± 1.4 GeV

assume Tevatron measures a top-resonance mass

$$\overline{m}_t(\overline{m}_t) = 163.0 \pm 1.3 \stackrel{+0.6}{_{-0.3}} \pm 0.05 \,\text{GeV}$$

schemeconversionuncertaintyuncertaintysmall $R_0 = 3^{+6}_{-2} \,\mathrm{GeV}$ (3 loop with RGE)

Similar issues at the LHC in most methods

The pole mass is what we get for $R_0 = 0$, but is very likely not what the Tevatron measures. If we demand that the measurement corresponds to a pole mass, then an additional uncertainty of

 $\sim \Lambda_{\rm QCD} \sim 600 \, {\rm GeV}$ from the renormalon should be added to those above.

Summary & Outlook

Top Jets

- Discussed a factorization theorem for invariant mass distributions for massive unstable particles: $e^+e^- \rightarrow t\bar{t}$ separation of perturbative and non-perturbative effects for ILC
- Systematic relation of peak to a Lagrangian mass parameter: What mass is measured? "Jet mass"
- Effective Field Theory: can be extended to higher orders in the power and perturbative expansions
- Progress for massless event shapes:
- Reexamine LEP massless jet data with calculations at NNLL, ... (Becher & Schwartz; Gehrmann-De Ridder et.al.) Future:
 - Extension to large pT events for LHC, and to Monte-Carlo
 - Technique can be used to study other processes with jets and massive underlying particles