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Outline

• Factorization theorem for Jet Invariant Masses

• Motivation.  Why do we want a precision        ?

• Summation of Large Logs

Q! mt ! Γt

• Cross Sections Results at NLL order

mt

•  Top mass measurements. Expt & Theory Issues.  Which mass?  
Mpeak

t = mt + (nonperturbative effects) + (perturbative effects)

e+e− → tt̄

•
•

Heavy-Quark Jet Function  (perturbative shift)

Gluon Soft Function (nonperturbative shift)

• Implications
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mW

?

ΛQCD

mu,d

The top mass is a fundamental parameter
of the Standard Model

Q •

Γt = 1.4 GeV

Motivation

Important for precision e.w. constraints•
Top Yukawa coupling is large.  Top parameters 

are important for many new physics models
•

Top is very unstable, it decays before it
has a chance to hadronize.  How does
this effect jet observables involving 
top-quarks?

•

(a 0.8% experimental error)

t→ bWfrom

(theory error?  what mass is it?)
mt = 172.6± 1.4 GeV
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Q ! 1 TeV Production scale
pp → tt̄X

bW

Γt ! 1.5 GeV

ΛQCD

Short Lifetime

σ

ΓMass scale
qq̄

′

e
+
ν

· · ·

Top Quark DecayTop Quark Decay

Within the SM:

mt > mW + mb dominant 2-body decay t Wb 

(t Ws, Wd CKM suppressed)

Assuming unitarity of 3-generation CKM matrix:

|Vtb| = 0.9990-0.9992 @ 90% CL B(t Wb) ~ 100%

t
SM 1.4 GeV at mt = 175 GeV

Top decays before top-flavored hadrons or tt-quarkonium bound 

states can form.

Top quark spin efficiently transferred to the final state. 

Typical final state signatures in top quark pair production:

require multipurpose detectors

QCDt

B(W qq) ~ 67%

B(W l )  ~ 11%, l=e, ,

jet

b-jet
b-jet

jet

jet jet

All-hadronic

(BR~46%, huge bckg)
Dilepton

(BR~5%, low bckg)

e,

b-jet

e,

b-jet

MET

jet

e,

b-jet
b-jet

jet

Lepton+jets

(BR~30%, moderate bckg)

MET

8CaltechNovember 18, 2004

... and our simple quark-level process

q

q t

t

--

... is buried in the muck.

q

q t

t

--

mt = 172.6± 1.4 GeV
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World average 
(2008):

eg. Electroweak precision observables

mH = 76+33
−24 GeV

mH < 182 GeV (95% CL)

Why precision mt?

A 2 GeV shift in mt changes
these central values by 15%.

87

209

Gruenewald,  EPS(2007)

mt = 172.6± 0.8(stat)± 1.1(syst) GeV

M
top

   !GeV/c
2
"

Mass of the Top Quark (*Preliminary)

April 2008

Measurement M
top

   !GeV/c
2
"

CDF-I   di-l 167.4 # 11.4

D!-I     di-l 168.4 # 12.8

CDF-II  di-l* 171.2 #  3.9

D!-II    di-l* 173.7 #  6.4

CDF-I   l+j 176.1 #  7.3

D!-I     l+j 180.1 #  5.3

CDF-II  l+j* 172.7 #  2.1

D!-II   l+j/a* 170.5 #  2.9

D!-II   l+j/b* 173.0 #  2.2

CDF-I   all-j 186.0 # 11.5

CDF-II  all-j* 177.0 #  4.1

CDF-II  lxy 180.7 # 16.8

"
2
 / dof  =  6.9 / 11

Tevatron Run-I/II* 172.6 #  1.4

150 170 190
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Figure 2: The prediction for mh in the mmax
h scenario is shown as a function of MA for

mt = 175 GeV and tan β = 5. The three bands correspond to δmt = 1, 2 GeV (LHC) and
δmt = 0.1 GeV (LC). The anticipated experimental error on mh at the LC is also indicated.

of predicted mh values (similar to the effect of δmt = 1 GeV). In this case the intrinsic
uncertainty would dominate, implying that a reduction of δmt = 1 GeV to δmt = 0.1 GeV
would lead to an only moderate improvement of the overall theoretical uncertainty of mh.

Confronting the theoretical prediction for mh with a precise measurement of the Higgs-
boson mass constitutes a very sensitive test of the MSSM, which allows us to obtain con-
straints on the model parameters. The sensitivity of the mh prediction on MA shown in
Fig. 2 cannot directly be translated into a prospective indirect determination of MA, how-
ever, since Fig. 2 shows the situation in a particular benchmark scenario [46] where, by
definition, certain fixed values of all other SUSY parameters are assumed. In a realistic situ-
ation the anticipated experimental errors of the other SUSY parameters, and possible effects
of intrinsic theoretical uncertainties, have to be taken into account. In the next section, we
will analyse the prospects for an indirect determination of SUSY parameters from precision
physics in the MSSM Higgs sector. In particular, we will consider two examples of parameter
determination in the stop sector of the MSSM.

3.2 Constraints on the parameters of the stop sector

Once a Higgs boson compatible with the MSSM predictions has been discovered, the depen-
dence of mh on the top and stop sectors can be utilized to determine unknown parameters
of the t̃ sector.

The mass matrix relating the interaction eigenstates t̃L and t̃R to the mass eigenstates

8

Ringberg Workshop on  QCD of Jets, January 8-10 2007André H. Hoang  - 8

Need for a precise Top mass

Mass of Lightest MSSM Higgs Boson

Ringberg Workshop on  QCD of Jets, January 8-10 2007André H. Hoang  - 8

Need for a precise Top mass

Mass of Lightest MSSM Higgs Boson

Heinemeyer et.al.(’03)

rule of thumb, want:
δmt ∼ δmh
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Top Quark Physics at LHC, Bad Honnef , January 26-27 

2007

André H. Hoang  - 11

Fitting Methods at Tevatron

Template Method (CDF II)

Dynamics Method (D0 II)

Note: Both methods 

(and many more are 

today used by D0 and 

CDF. This is not a 

review but a first order 

theorists view!
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Fitting Methods at Tevatron
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Dynamics Method (D0 II)

Note: Both methods 
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CDF. This is not a 

review but a first order 

theorists view!
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(syst)GeV.JES)(stat..mt
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31524173

     

  
Top Quark Mass: Template MethodsTop Quark Mass: Template Methods

Principle: perform kinematic fit and reconstruct top 

mass event by event. E.g. in lepton+jets channel:

Usually pick solution with lowest 2.

Build templates from MC for signal and background 

and compare to data.

Recent developments in this approach have lead to 

very precise top mass measurements:

Improve statistical power by defining four 
subsamples (based on number of tags) with 

different background content and sensitivity to 

mt.

Reduce JES systematic by using in-situ

hadronic W mass in tt events: simultaneous 

determination of mt and JES from reconstructed 

mt and MW templates. Implement constraint on 
JES from external measurement (~3%).

Many systematics are expected to decrease 

with larger data samples.

Lepton+jets ( 1 b-tag); Signal-only templates

Principle: compute event-by-event probability as 

a function of mt making use of all reconstructed 

objects in the events (integrate over unknowns). 
Maximize sensitivity by:

summing over all permutations of jets and neutrino 
solutions

allowing better measured events to contribute 

more.

Pioneered by DØ (Run I re-analysis in 

lepton+jets channel): statistical improvement was 
equivalent to x2.4 more data.

Being extensively used in Run II:

lepton+jets w/ (CDF,DØ) and w/o b-tagging (DØ): 
results competitive with Template Method

dilepton sample (CDF): statistical uncertainty not far 
from that in lepton+jets channel. Biggest limitation 
is b-jet energy scale.

)|()()();(
1

);( 2121 yxWqfqfdqdqmydmxP t

n

t

differential cross section (LO matrix element)

parton distribution functions

transfer function: mapping from
parton-level variables (y) to 

reconstructed-level variables (x)

Top Quark Mass: Dynamic MethodsTop Quark Mass: Dynamic Methods

Dilepton (1 fb-1)

Lepton+jets (370 pb-1)

(syst)GeV.JES)(statmt  416.170
0.4

7.4

(syst)GeV(stat)mt  9.39.35.164

Principle: compute event-by-event probability as 

a function of mt making use of all reconstructed 

objects in the events (integrate over unknowns). 
Maximize sensitivity by:

summing over all permutations of jets and neutrino 
solutions

allowing better measured events to contribute 

more.

Pioneered by DØ (Run I re-analysis in 

lepton+jets channel): statistical improvement was 
equivalent to x2.4 more data.

Being extensively used in Run II:

lepton+jets w/ (CDF,DØ) and w/o b-tagging (DØ): 
results competitive with Template Method

dilepton sample (CDF): statistical uncertainty not far 
from that in lepton+jets channel. Biggest limitation 
is b-jet energy scale.

)|()()();(
1

);( 2121 yxWqfqfdqdqmydmxP t

n

t

differential cross section (LO matrix element)

parton distribution functions

transfer function: mapping from
parton-level variables (y) to 

reconstructed-level variables (x)

Top Quark Mass: Dynamic MethodsTop Quark Mass: Dynamic Methods

Dilepton (1 fb-1)

Lepton+jets (370 pb-1)

(syst)GeV.JES)(statmt  416.170
0.4

7.4

(syst)GeV(stat)mt  9.39.35.164

from A.JusteHow is the top-mass measured?
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Uncertainties

•
(eg. reconstruction)

determine parton momentum of daughters, combinatorics

• jet-energy scale:   calorimeter response, uninstrumented zones,
  multiple hard interactions, energy outside the jet “cone”, 
  underlying event (spectator partons)

• initial & final state radiation,  parton distribution functions,
  b-fragmentation

• which jet algorithm?  which Monte-Carlo?

• Statistics
• background (W+jets), b-tagging efficiency

Handles for a Precision MeasurementHandles for a Precision Measurement

Jet Energy Scale (JES)

Dominant systematic uncertainty in Run I measurements.

Top mass measurement requires precise mapping between 

reconstructed jets and original partons:

correct for detector, jet algorithm and physics effects.

What s crucial is the relative energy calibration between data 

and MC jets: Ejet/Ejet~1% mt ~ 1 GeV

Handles:

dijets, photon+jets, Z+jets 

W mass from W jj in top quark decays (in-situ calibration)

Z bb (verification of b-jet energy scale)

B-tagging: reduction of physics as well as combinatorial background

Sophisticated mass extraction techniques: maximize statistical                 

sensitivity; minimize some systematic uncertainties (e.g. JES)

Simulation: accurate detector modeling and state-of-the-art theoretical 

knowledge (gluon radiation, b-fragmentation, etc) required.

Golden channel: lepton+jets

Over-constrained kinematics

Combinatorial background:

2 solutions (MW constraint) 

12 possible jet-parton assignments.         

Can be reduced using b-tagging: 6 (1-btag), 2 (2 b-tags)

jet

e,

b-jet
b-jet

jet

MW

MW

W-mass helps

mt = 172.6± 0.8(stat)± 1.1(syst) GeV
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Future -LHC:

Future -ILC:

δmt ∼ 1 GeV systematics dominated 

top factory,  8 million tt̄ / year 

e+e− → tt̄

pp→ tt̄X

exploit threshold region
√

s " 2mt

δmt ∼ 0.1 GeV

with high precision 
  theory calculations 

346 347 348 349 350 351 352 353 354
s GeV

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Q
t2 R

v

b

LL, NLL, NNLLcr
os

s s
ec

tio
n

t
t̄

Top Quark Physics at LHC, Bad Honnef , January 26-27 

2007

André H. Hoang  - 13

Reconstruction at LHC and ILC

~

~

ATLAS (l+jets)

! Which parton shower MC to use ?

! Which jet algorithm ?

Hoang, Manohar,
Teubner, I.S. 
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What mass is it?

pole mass?•
- ambiguity

Ringberg Workshop on  QCD of Jets, January 8-10 2007André H. Hoang  - 16

Reconstruction at LHC and ILC

ATLAS (l+jets)

~

~

δm ∼ ΛQCD ,  linear
sensitivity to IR momenta

- poor behavior of         expansionαs

- not used anymore for mb,mc

11

ω79
T (s) =

1

2
ω79(s) + L(s) +

1 + 5s

2s
ln(1 − s) −

s(1 + 3s)

2(1 − s)2
ln(s) −

9 − 5s

2(1 − s)
−

1 + s

1 − s
δ1S(µ) ,

ω70
A (s) =

3 + s(9 − 2s)

(1 − s)2
Li2(s) +

1 − s(22 − s)

2s(1 − s)
ln(1 − s) − 2

1 + s(13 − 4s)
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Li2(

√
s) +

13 − 3s

1 − s
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√
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+
5(1 + s)
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π2

3
−
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√
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−

1 + s

1 − s
δ1S(µ) ,

ω79
L (s) = −ω79(s) + L(s) +

1 + 2s

s
ln(1 − s) +

s(7 − s)

(1 − s)2
ln(s) +

1 + 11s

2(1 − s)
−

1 + s

1 − s
δ1S(µ) ,

ω79(s) = 4

√
s(3 + s)

(1 − s)2
Li2(1 −

√
s) −

1 +
√

s

(1 −
√

s)2
Li2(1 − s) +

1 −
√

s

(1 +
√

s)2
π2

2
. (A16)

The functions ωi(s) entering ωi
T,L(s) contain all the de-

pendence on
√

s, which cancels in the q2 spectrum. All
ln(µ/mb) terms that usually appear in the functions
ω77,79

i (s) have been moved into C7 (along with the ap-
propriate constant term contained in mb/m1S

b ).

The χj
i (s) containing the O(1/m2

b) corrections in
Eq. (13) can be extracted from Ref. [24]:

χ99
T (s) = −

λ1 + 3λ2

6

5 + 3s

1 − s
− 2λ2

s(4 − 3s)

(1 − s)2
,

χ90
A (s) =

λ1 + 3λ2

6

3 + s(2 + 3s)

(1 − s)2
− 2λ2

3 + s(4 − 3s)

(1 − s)2
,

χ99
L (s) =

λ1 + 3λ2

6

3 + 13s

1 − s
− 2λ2

s2

(1 − s)2
,

χ77
T (s) =

λ1 + 3λ2

6

3 + 5s

1 − s
− 2λ2

3 − 2s2

(1 − s)2
,

χ77
L (s) = −

λ1 + 3λ2

6

13 + 3s

1 − s
− 2λ2

s(4 − 3s)

(1 − s)2
,

χ79
T (s) =

λ1 + 3λ2

2
− λ2

5 − 3s2

(1 − s)2
,

χ70
A (s) =

λ1 + 3λ2

6

3 + s(2 + 3s)

(1 − s)2
− λ2

5 + 3s(2 − s)

(1 − s)2
,

χ79
L (s) =

λ1 + 3λ2

2
− 2λ2

1

(1 − s)2
. (A17)

APPENDIX B: NUMERICAL INPUTS

In this Appendix we collect all of our numerical inputs.
All values are taken from Ref. [38] except where stated
otherwise. To evaluate the Wilson coefficients we use

mW = 80.403 GeV ,

sin2 θW = 0.23122 ,

mpole
t = (171.4± 2.1)GeV ,

αs(mZ) = 0.1176 ,

µc
0 = 80 GeV ,

µt
0 = 120 GeV . (B1)

µ = 2.35 GeV µ = 4.7 GeV µ = 9.4 GeV

αs(µ) 0.2659 0.2140 0.1793

C1(µ) −0.4642 −0.2880 −0.1506

C2(µ) 1.019 1.007 1.001

C3(µ) −0.0096 −0.0043 −0.0017

C4(µ) −0.1247 −0.0795 −0.0508

C5(µ) 0.00069 0.00029 0.00009

C6(µ) 0.00205 0.00081 0.00026

C8(µ) −0.2012 −0.1778 −0.1598

mb(µ) 4.703 4.120 3.707

C7(µ) −0.3637 −0.3293 −0.2982

C7 −0.2435 −0.2611 −0.2687

C9(µ) 4.504 4.209 3.790

C9 4.258 4.207 4.188

C10 −4.175 −4.175 −4.175

TABLE I: Values of the Wilson coefficients to O(αs) at dif-
ferent low scales µ.

Here, µc,t
0 are the matching scales in the charm and top

sector, respectively, and we use the same values as in
Ref. [19]. For the top-quark mass we use the newest CDF
and D0 average [43]. The resulting values for the Wilson
coefficients at O(αs) run down to the low scale and the
corresponding values for the Ci according to Eq. (A2) are
listed in Table I. Note that the residual scale uncertainties
of C7 and especially C9 are much smaller than those of
C7,9(µ). We use a Mathematica code by Bobeth with
the initial conditions and renormalization group running
as given in Refs. [19, 20]. For C9(µ) this requires the
three-loop mixings calculated in Refs. [44].

In the decay rates we use

αem(mb) = 1/133 ,

|VtbV
∗
ts| = 41.09 × 10−3 ,

mB = 5.279 GeV ,

τB = 1.584 ps ,

mK∗ = 0.892 GeV ,

mb ≡ m1S
b = (4.70 ± 0.04)GeV ,e.g.

δm ∼ αs(Γ)Γ

quark masses are Lagrangian parameters, use a suitable scheme

mpole
t = mschemeA

t (1 + αs + α2
s + . . .)

or
mpole

t = mschemeB
t + R (αs + α2

s + . . .)

mt = 172.6± 0.8(stat)± 1.1(syst) GeV

- Monte Carlo has cutoff on shower / hadronization model
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mass?• MS mpole − mMS(m) ∼ 8 GeVtop

some schemes are more
appropriate than others

• must be a  “top-resonance mass scheme”

When we switch to a short-distance mass scheme we must expand in αs

Γ[
(M2

t−mpole2)2

mpole2 + Γ2
] =

Γ[
(M2

t−m2)2

m2 + Γ2
] +

(4 ŝΓ) δm
[

(M2
t−m2)2

m2 + Γ2
]2

Heavy quark mass definitions that do not have such an O(ΛQCD) ambiguity are called short-

distance mass schemes.5 In the factorization formulae in Eq. (90), the top-mass appears in

the hard function Hm and in the two jet functions B+(ŝt) and B−(ŝt̄). The most important

sensitivity to the top-mass scheme is in ŝt = (M2
t −m2)/m and ŝt̄ = (M2

t̄ −m2)/m, where

M2
t and M2

t̄ are scheme independent observables.

A specific short-distance top quark mass scheme “m” can be defined by a finite residual

mass term δm "= 0, as

mpole = m + δm , (93)

where δm starts at O(αs) or higher, and must be strictly expanded perturbatively to the

same order as other O(αs) corrections. (This strict expansion does not apply to powers of

αs times logs that are summed up by renormalization group improved perturbation theory.)

Let B+(ŝ, µ, δm) denote the jet-function in the short-distance mass scheme specified by

δm. We can calculate B+(ŝ, µ, δm) in two equivalent ways. i) Use the pole-mass scheme

initially by setting δm = 0 in Eq. (31). In this case the mass-dependence appears in

ŝpole = (M2 −m2
pole)/mpole in B+ and we change the scheme with Eq. (93). Alternatively,

ii) treat δm "= 0 in Eq. (31) as a vertex in Feynman diagrams, and take ŝ to be defined in

the short-distance mass scheme right from the start, so ŝ = (M 2 −m2)/m.

As discussed in Sec. II B, it is necessary that the residual mass term is consistent with

the bHQET power counting, i.e.

δm ∼ ŝt ∼ ŝt̄ ∼ Γ . (94)

Eq. (94) restricts us to a suitable class of short-distance mass schemes for jets. In any short-

distance mass scheme which violates Eq. (94) the EFT expansion breaks down, and thus

the notion of a top-quark Breit Wigner distribution becomes invalid. The most prominent

example for an excluded short-distance mass scheme is the MS mass scheme, m, for which

mpole−m = δm. Here δm $ 8 GeV% Γ, or parametrically δm ∼ αsm% Γ. Using Eq. (92)

and converting to the MS scheme with the O(αs) residual mass term we have

B+(ŝ, µ, δm ) =
1

πm

{
Γ

[ (M2
t −m2)2

m2 + Γ2
] +

(4 ŝΓ) δm
[ (M2

t −m2)2

m2 + Γ2
]2

}
. (95)

Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is

supposed to be a perturbative correction. This means that it is not the MS mass that is

ever directly measured from any reconstruction mass-measurement that uses a top Breit-

Wigner at some level of the analysis. We stress that this statement applies to any top mass

5 In practice, determining the pole mass from the analysis of experimental data leads to values that depend
strongly on the order of perturbation theory that has been employed for the theoretical predictions. This
makes the treatment of theoretical errors difficult.

36

∼ 1/Γ ∼ αsm/Γ2

not a correction!
it swamps the 1st term

mpole −m ∼ αsΓ
Lesson:

R ∼ Γ

If top-decay is described by Breit-Wigner, the answer is NO

δm =
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Theory Issues for
•

• suitable top mass for jets

•

•

•

•

•

initial state radiation

final state radiation

jet observable 

underlying events

color reconnection

beam remnant

parton distributions•

• sum large logs

pp→ tt̄X

Here we’ll study
e+e− → tt̄X

and the issues !

!

!

!!

!

!

Q! mt ! Γt

Top Mass from Jets far above 
     threshold at the ILC 
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Hemisphere Invariant Masses

Measure what observable?

M2
t =

( ∑

i∈a

pµ
i

)2
M2

t̄ =
( ∑

i∈b

pµ
i

)2

d2σ

dM2
t dM2

t̄

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

st ≡M2
t −m2 ∼ mΓ$ m2

Peak region:

Breit Wigner: mΓ
s2

t + (mΓ)2
=

( Γ
m

) 1
ŝ2

t + Γ2

ŝt ≡
M2

t −m2

m
∼ Γ$ m
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Q! m

172 174 176 178 180

0.002

0.004

0.006

0.008

0.010

0.012

“dijets” dominate, inclusive in decay products

m! Γ

Γ = Γt + . . .

= physical width

•

•

•
dσ

dM

M

m! ŝt

peak region
ŝt ∼ Γ

ŝt ! Γ

tail 
region

• Γ > ΛQCD

ŝt ≡
M2

t −m2

m
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Disparate Scales Effective Field Theory

Q! m! Γ ∼ ŝt,t̄

QCD

SCET

HQET
      Soft
Cross-Talk

top

Q

m t

!t

Integrate out 
Hard Modes

Factorize Jets, Integrate 
 out energetic collinear 
 gluons

Evolution and 
decay of top 
close to mass shell

t t

HQET
antitop

n n

QCD

SCET

HQET
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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the soft function that can be used for both regions, and carry out detailed calculations

of perturbative quantities in both factorization theorems. We verify that the matching

conditions which define the Wilson coefficients at the scales Q and m are infrared safe,

compute one-loop perturbative corrections to the matrix elements, and carry out the next-

to-leading-log renormalization group summation of large logs. For the peak region these are

logs between the scales Q, m, Γ, and ΛQCD, while away from the peak they are between Q2,

m2, and the variables M2
t − m2

t and M2
t̄ − m2

t described below.

As an observable sensitive to the top mass, we considered in Ref. [2] the double differential

invariant mass distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ m Γ # m2 , (1)

where

M2
t =

( ∑

i∈Xt

pµ
i

)2
, M2

t̄ =
( ∑

i∈Xt̄

pµ
i

)2
. (2)

Here Xt and Xt̄ represent a prescription to associate final state four momenta to top and

antitop invariant masses respectively. For simplicity we call Xt,t̄ the top and antitop jets,

and Mt,t̄ the invariant mass of the top and antitop jets respectively. The distribution in

Eq. (1) has a width Γ ∼ Γt + QΛQCD/m which can be larger than the top quark width

Γt. The restriction M2
t,t̄ − m2 ∼ m Γ # m2 defines the peak region which is sensitive to

the top quark mass m. Here the dynamics are characterized by energy deposits contained

predominantly in two back-to-back regions of the detector with opening angles of order m/Q

associated with the energetic jets or leptons coming from the top and antitop decays, plus

collinear radiation. The region between the top decay jets is populated by soft particles,

whose momentum is assigned to one of M2
t or M2

t̄ . The tail region is defined by invariant

masses starting just past the peak where the cross-section begins to fall off rapidly, namely

where m2 $ M2
t,t̄ − m2 and M2

t,t̄ − m2 >∼ m Γ or M2
t,t̄ − m2 $ m Γ. For M2

t,t̄ − m2 ∼ m2

we have an ultra-tail region where the cross-section is very small. The observable in Eq. (1)

in the peak and tail regions is the main focus of our analysis. We also briefly consider the

cross-section in the ultra-tail region.

The result for the double differential cross-section in the peak region at all orders in αs

is given by [2]

dσ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ

)

×
∫

d#+d#−B+

(
ŝt −

Q#+

mJ
, Γt, µ

)
B−

(
ŝt̄ −

Q#−

mJ
, Γt, µ

)
S(#+, #−, µ)

+ O
(mαs(m)

Q

)
+ O

(m2

Q2

)
+ O

(Γt

m

)
+ O

(st, st̄

m2

)
, (3) {FactThm}

6

Fleming, Hoang,
Mantry, I.S.

Compare to factorization theorem for massless dijets:
(

d2σ

dM2
adM2

b

)
= σ0H(Q,µ)

∫
d"+d"− J+(M2

a −Q"+, µ) J−(M2
b −Q"−, µ) Shemi("+, "−, µ)

Korchemsky & Sterman

Derive a Factorization Theorem:

Valid to all orders in αs
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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Answer

• cross-section depends on a hadronic soft function, not just B.W.’s
** the B.W. is only a good approx. for collinear top & gluons **

S_hemi is universal, & measured in massless jet event shapes (at LEP!)

• the formula removes the largest component of soft momentum
to get the correct argument for evaluating the B.W. functions

Everything but the soft function is calculable in perturbation theory. 

ŝt =
M2

t −m2

m

19Thursday, June 12, 2008



0 < t < 1/3 as shown in Fig. 1 [10, 23]. Further analysis of event shape energy dependence
should make it possible to estimate the underlying energy flow functions G(!ni).
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Figure 1: The comparison of the data with the QCD prediction for the thrust distribution at
different energies (from bottom to top): Q/GeV = 14, 22, 35, 44, 55, 91, 133, 161, based on the
shape function. The detailed description of the plot can be found in [10].

5 Summary

In this paper we have studied the power corrections to the differential thrust, t = 1 − T , and
heavy mass, ρ, distributions in e+e− annihilation close to the two-jet limit. In addressing this
problem, we did not aim to justify a particular QCD-inspired phenomenological model, but rather
to formulate a framework with which to study the relationship between perturbative and nonper-
turbative effects in high-energy final states. We have seen that, despite the fact that the thrust
and heavy jet mass are not inclusive quantities, the leading nonperturbative corrections to their
differential distributions can be factorized into the perturbative and nonperturbative functions,
in much the same way as for inclusive cross sections. We identified nonperturbative infrared
shape functions that organize all leading power corrections, 1/(tQ)n and 1/(ρQ)n. Although not
universal themselves, these shape functions can be derived from universal matrix elements that
describe energy flow. We anticipate that it will be possible to extend these considerations to a
wide class of infrared safe event shapes and hard-scattering processes.

13

Eg. Thrust data from massless quark jets at LEP

Korchemsky
& Sterman

We can further simplify the form of the factorized cross-sect ion. F irst we use the ident it ies

 Xn|χn,ω′|0 =  Xn|χnδω′,n̄·P†|0 = δω′,p−Xn
 Xn|χn|0 ,

 Xn̄|χn̄,ω̄′|0 =  Xn̄|χn̄δω̄′,n·P†|0 = δ−ω̄′,p+
Xn̄

 Xn̄|χn̄|0 , (54)

with similar relat ions for the other two collinear matrix elements in E q.(52). Combining this
with the relat ion δω′,p−Xn

δω,p−Xn
= δω′,ωδω,p−Xn

, and analog for p+
Xn̄

, we can write the product of
collinear matrix elements in E q.(52) as

 0|/̄̂nχn,ω′|Xn   Xn|χn,ω|0  0|χn̄,ω̄′|Xn̄   Xn̄|/̂nχn̄,ω̄|0 

= δω̄′,ω̄ δω′,ω  0|/̄̂nχn|Xn   Xn|χn,ω|0  0|χn̄|Xn̄   Xn̄|/̂nχn̄,ω̄|0 . (55)

Next we do the sums over ω′, ω̄′ to arrive at the form

σ = K0

∑

"n

res.∑

XnXn̄Xs

(2π)4 δ4(q − PXn − PXn̄ − PXs )  0|Y n̄ Yn|Xs   Xs|Y †
n Y

†
n̄|0 

×
∫

dω dω̄ |C(ω, ω̄)|2
〈

0
∣∣/̄̂nχn

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉〈

0
∣∣χn̄

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉
. (56)

B efore proceeding, we pause to define the thrust axis which is needed to properly define
the invariant mass of jets and state its relat ion to the direct ion of the energet ic collinear
degrees of freedom. T hen in order to make the power count ing manifest we decompose the
final state momenta into label and residual parts and perform some general manipulat ions of
the phase space integrals to setup a formula for the cross-sect ion to be used for the remaining
calculat ion.

C. Thrust or Jet Axis

T he thrust of any event is defined to be

T = max
t̂

∑
i |t̂ · pi|
Q

, (57)

where the sum is over the momenta pi of all the final state part icles produced. T he thrust
axis t̂ is chosen so that is maximizes the sum of part icle momenta pro jected along t̂. In-
tuit ively, for a dijet-like event the thrust axis corresponds to the axis along which most of
the momentum is deposited. Conversely, the thrust is close to its maximum for a dijet-like
event . We choose &n to point along t̂. For an event with exact ly two massive stable part icles
T =

√
Q2 − 4m2/Q = 1 − 2m2/Q2 + O(m4/Q4), is the maximum allowed thrust . Since we

are interested in thrusts in the dijet region for the top and ant itop jets it is convenient to
define a shifted thrust parameter,

τ =

√

1 −
4m2

Q2
− T = 1 −

2m2

Q2
− T + O

(m4

Q4

)
. (58)

24

peaks at 2ΛQCD

Q

Q = 35GeV

Q = 133GeV

1− T

(
d2σ

dM2
adM2

b

)
= σ0H(Q,µ)

∫
d"+d"− J+(M2

a −Q"+, µ) J−(M2
b −Q"−, µ) Shemi("+, "−, µ)

1 =
∫

dT δ
(
1− T − M2

a + M2
b

Q2

)
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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M

Mpeak = mt + Γt(αs + α2
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QΛQCD
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mt Mpeak

For our event shape for massive quarks:

measure
this

extract
this

Short distance mt can (in principle) be
determined to better than ΛQCD
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Summing the Large Logs

Fleming, Hoang,
Mantry, I.S.

22Thursday, June 12, 2008



m

Q

!

s/m

U 

(Q, µ )Q

 (m, µ )mH

 ( , µ ) +-B

S(! , µ! )

H

U 

U 

U B+U B-
U S

U Jn U J

Scales

m

H

Q

m

HQ

n

QCD

S

,
Q

m

Matching & 

 

a) b) c)

U H

U H

Q

m

U B-+

matrix elements

RGE for bHQET cross-section

FIG. 2: Matching, running, and matrix elements that determine the functions in the factorization
theorem in Eq.(3) for the peak region (when s/m ∼ Γ) and for the tail region (when s/m >∼ Γ).
The running in UHQ

and UHm is local, while that in UJn , UJn̄ , US , and UB involves convolutions.

Here the distribution width is Γ ∼ Γt + QΛ/m. Cases a), b), and c) show three equivalent ways
to sum large logs with the renormalization group. The consistency equations discussed in the text
express the equivalence of running from the top-down in case a) and from the bottom-up in case

b). Case c) is used for our numerical analysis.

situation shown in Fig. 2 the factorization theorem becomes

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm) Hm

(
m,

Q

m
, µm, µΓ

)
(44)

×
∫ ∞

−∞

d"+d"−
∫ ∞

−∞

d" ′+ d" ′− US(" ′+, " ′−, µΓ, µΛ)

× B+

(
ŝt −

Q"+

m
, Γ, µΓ

)
B−

(
ŝt̄ −

Q"−

m
, Γ, µΓ

)
S("+−" ′+, "−−" ′−, µΛ) ,

or equivalently

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm) Hm

(
m,

Q

m
, µm, µΛ

)
(45)

×
∫ ∞

−∞

dŝ′t dŝ′t̄ UB+(ŝt − ŝ′t, µΛ, µΓ) UB−
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)
B−

(
ŝ′t̄ −

Q"−

m
, Γ, µΓ

)
S("+, "−, µΛ) .

We will always take µΓ > µΛ (although technically these equations are still valid for the case

µΛ > µΓ). The evolution kernels UB and US sum the large logs between µΓ and µΛ, while

the large logs that only affect the overall normalization are summed into HQ and Hm. In

Fig. 2 we display three equivalent ways to sum the large logs, labeled cases a), b), and c).

In case a) we run all terms, from the top-down, from µQ down to µΓ, and we run the soft
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and UHm is local, while that in UJn , UJn̄ , US , and UB involves convolutions.

Here the distribution width is Γ ∼ Γt + QΛ/m. Cases a), b), and c) show three equivalent ways
to sum large logs with the renormalization group. The consistency equations discussed in the text
express the equivalence of running from the top-down in case a) and from the bottom-up in case

b). Case c) is used for our numerical analysis.
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We will always take µΓ > µΛ (although technically these equations are still valid for the case

µΛ > µΓ). The evolution kernels UB and US sum the large logs between µΓ and µΛ, while

the large logs that only affect the overall normalization are summed into HQ and Hm. In

Fig. 2 we display three equivalent ways to sum the large logs, labeled cases a), b), and c).

In case a) we run all terms, from the top-down, from µQ down to µΓ, and we run the soft
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the soft funct ion tha t can be used for both regions, and carry out detailed calcula t ions
of perturba t ive quant it ies in both factoriza t ion theorems. We verify tha t the ma tching
condit ions which define the W ilson coe  cients a t the scales Q and m are infrared safe,
compute one-loop perturba t ive correct ions to the ma trix elements, and carry out the nex t-
to-leading-log renormaliza t ion group summa t ion of large logs. For the peak region these are
logs between the scales Q, m,  , and  QCD , while away from the peak they are between Q2,
m2 , and the variables M2

t − m2
t and M2

t̄ − m2
t described below.

A s an observable sensit ive to the top mass, we considered in Ref. [2] the double di  erent ial
invariant mass distribut ion in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ m  # m2 , (1)

where

M2
t =

( ∑

i∈Xt

pµ
i

)2
, M2

t̄ =
( ∑

i∈Xt̄

pµ
i

)2
. (2)

Here Xt and Xt̄ represent a prescript ion to associa te final sta te four momenta to top and
ant itop invariant masses respect ively. For simplicity we call Xt,t̄ the top and ant itop jets,
and Mt,t̄ the invariant mass of the top and ant itop jets respect ively. T he distribut ion in
E q. (1) has a width  ∼  t + Q  QCD/m which can be larger than the top quark width
 t . T he restrict ion M2

t,t̄ − m2 ∼ m  # m2 defines the peak region which is sensit ive to
the top quark mass m. Here the dynamics are characterized by energy deposits contained
predominant ly in two back-to-back regions of the detector with opening angles of order m/Q

associa ted with the energet ic jets or leptons coming from the top and ant itop decays, plus
collinear radia t ion. T he region between the top decay jets is popula ted by soft part icles,
whose momentum is assigned to one of M2

t or M2
t̄ . T he tail region is defined by invariant

masses start ing just past the peak where the cross-sect ion begins to fall o  rapidly, namely
where m2 $ M2

t,t̄ − m2 and M2
t,t̄ − m2 >∼ m  or M2

t,t̄ − m2 $ m  . For M2
t,t̄ − m2 ∼ m2

we have an ultra-tail region where the cross-sect ion is very small. T he observable in E q. (1)
in the peak and tail regions is the main focus of our analysis. We also briefly consider the
cross-sect ion in the ultra-tail region.

T he result for the double di  erent ial cross-sect ion in the peak region a t all orders in αs

is given by [2]

dσ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ

)

×
∫

d#+d#−B+

(
ŝt −

Q#+

mJ
,  t, µ

)
B−

(
ŝt̄ −

Q#−

mJ
,  t, µ

)
S(#+, #−, µ)

+ O
(mαs(m)

Q

)
+ O

(m2

Q2

)
+ O

(  t

m

)
+ O

(st, st̄

m2

)
, (3) {FactThm}

6

The various
functions are
sensitive to 

different scales

so typically
µΓ

µ∆
∼ Q

m

To minimize the logs we need several
stages of matching and running

function from the bottom-up starting at µΛ and ending at µΓ. In case b) we run the soft

function from µΛ all the way to µQ, and the jet functions from µΓ to µm, and then from µm

to µQ. Applying the consistency equations between µQ–µm and µm–µΓ, cases a) and b) are

equivalent, and both give the result shown in Eq. (44). If we take case a) and apply the

consistency equation between µΓ and µΛ we obtain another equivalent result, case c), with

the result shown in Eq. (45). We will use case c) for our analysis.

In the previous section we derived a form of the factorization formula (38), which combines

the finite lifetime effects and the nonperturbative effects into an infrared function R. This

form gives useful insights for the proper choice of the scales µΓ and µΛ. In terms of stable

jet functions and R in Eq. (39) the resummed factorization theorem in Eq. (45) becomes

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm) Hm

(
m,

Q

m
, µm, µΛ

)
(46)

×
∫ ∞

−∞

dŝ′t dŝ′t̄ UB+(ŝt, ŝ
′
t, µΛ, µΓ) UB−

(ŝt̄, ŝ
′
t̄, µΛ, µΓ)

×
∫ ∞

−∞

d"+d"− BΓ=0
+

(
ŝ′t −

Q"+

mJ
, µΓ

)
BΓ=0

−

(
ŝ′t̄ −

Q"−

mJ
, µΓ

)
R("+, "−, Γt, µΛ) .

From the convolution in this result we see that the smearing with R provides important

information on the infrared cutoff for the fluctuations described by jet functions, and hence

the choice of µΓ that minimizes large logs. Likewise, we see from the definition of R in

Eq. (39) and the form of the soft function in Eq. (40) that µΛ is affected by a smearing

caused by nonperturbative effects as well as by the scale mΓ/Q in the Breit-Wigner functions.

Hence in the peak region we should run down to the scales

µΓ # O
(
Γt +

QΛ

m
+

st,t̄

m

)
, µΛ # O

(
Λ +

mΓt

Q
+

st,t̄

Q

)
. (47)

In principle µΓ can be substantially larger than Γt depending on the Q/m we are interested

in. Also with a very large width (which does not apply for the top quark), µΛ could be

substantially larger than the hadronic scale, which would allow for a perturbative prediction

of the invariant mass distribution in the peak region. For the realistic case of Γt ∼ 1.5 GeV

the scale where the logs would be strictly minimized is in the nonperturbative regime, and

we will specify the soft function at scales µΛ ∼ 1 GeV to be close to this regime. In the tail

region we have ŝ >∼ Γ or ŝ % Γ and the convolution in Eq. (46) sets "± ∼ mŝt,t̄/Q % Λ, so

to sum the large logs we should instead run down to the scales

µΓ # O
(st,t̄

m

)
, µΛ # O

(st,t̄

Q

)
. (48)

The results above are designed to study situations where s & m2, which is important for

a precision extraction of the top-mass. In our formalism it is also possible to study the cross

section in the ultra-tail region, |Mt,t̄ −mJ | ∼ mJ , with renormalization group improvement.

This is the closest analog to the resummation for massless event shapes in regions where
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function from the bottom-up starting at µΛ and ending at µΓ. In case b) we run the soft

function from µΛ all the way to µQ, and the jet functions from µΓ to µm, and then from µm

to µQ. Applying the consistency equations between µQ–µm and µm–µΓ, cases a) and b) are

equivalent, and both give the result shown in Eq. (44). If we take case a) and apply the

consistency equation between µΓ and µΛ we obtain another equivalent result, case c), with

the result shown in Eq. (45). We will use case c) for our analysis.
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form gives useful insights for the proper choice of the scales µΓ and µΛ. In terms of stable

jet functions and R in Eq. (39) the resummed factorization theorem in Eq. (45) becomes

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm) Hm

(
m,

Q

m
, µm, µΛ

)
(46)

×
∫ ∞

−∞

dŝ′t dŝ′t̄ UB+(ŝt, ŝ
′
t, µΛ, µΓ) UB−

(ŝt̄, ŝ
′
t̄, µΛ, µΓ)
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∫ ∞
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(
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mJ
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)
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caused by nonperturbative effects as well as by the scale mΓ/Q in the Breit-Wigner functions.
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µΓ # O
(
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QΛ

m
+

st,t̄

m

)
, µΛ # O

(
Λ +

mΓt

Q
+

st,t̄

Q

)
. (47)

In principle µΓ can be substantially larger than Γt depending on the Q/m we are interested

in. Also with a very large width (which does not apply for the top quark), µΛ could be

substantially larger than the hadronic scale, which would allow for a perturbative prediction

of the invariant mass distribution in the peak region. For the realistic case of Γt ∼ 1.5 GeV

the scale where the logs would be strictly minimized is in the nonperturbative regime, and

we will specify the soft function at scales µΛ ∼ 1 GeV to be close to this regime. In the tail

region we have ŝ >∼ Γ or ŝ % Γ and the convolution in Eq. (46) sets "± ∼ mŝt,t̄/Q % Λ, so

to sum the large logs we should instead run down to the scales

µΓ # O
(st,t̄

m

)
, µΛ # O

(st,t̄

Q

)
. (48)

The results above are designed to study situations where s & m2, which is important for

a precision extraction of the top-mass. In our formalism it is also possible to study the cross

section in the ultra-tail region, |Mt,t̄ −mJ | ∼ mJ , with renormalization group improvement.

This is the closest analog to the resummation for massless event shapes in regions where
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All the perturbatively computable contributions in Eq. (179) are grouped into the function

P
(
ŝt, ŝt̄, µΛ

)
= 4MtMt̄ Γ

2
t HQ(Q, µh) UHQ

(Q, µh, µm) Hm(m, µm) UHm

( Q

mJ
, µm, µΛ

)

× G+

(
ŝt,

Q

mJ
, Γt, µΛ

)
G−

(
ŝt̄,

Q

mJ
, Γt, µΛ

)
. (181) {Pdef}

P also depends on Q, mJ , and Γt, but for simplicity we have not shown this dependence in

its arguments. For the hard coefficients we used Eqs. (53) and (62) to write them in terms

of the one-loop matching coefficients HQ and Hm in Eqs. (91,130) and the NLL evolution

factors UHQ
and UHm given by Eq. (77). The functions G± in Eq. (181) contain perturbative

corrections that modify the shape of the cross-section. Using Eqs. (44,37,176) and a few

trivial changes of integration variables, these functions are

G±

(
ŝ,

Q

mJ
, Γt, µΛ

)
≡

∫ +∞

−∞

dŝ′ dŝ′′ d!′ UB(ŝ − ŝ′, µΛ, µΓ)

× BΓ=0
±

(
ŝ′ − ŝ′′ − Q

mJ
!′, µΓ, δm

)
S̃part(!

′, µΛ, δ1)
Γt

π(ŝ′′ 2 + Γ2
t )

. (182) {Gpm}

This result depends on BΓ=0
± , the jet function for stable quarks in Eq. (140), and S̃part the

modified partonic soft function of Eq. (177). The form in Eq. (179) is derived from the

factorization theorem given in Eq. (44), where the renormalization scales µΓ and µΛ were

distinguished. This leads to the presence of the evolution factor UB in Eq. (182), which

is given at NLL in Eq. (77). All the ingredients in the functions G± and hence P can be

computed in perturbation theory, and analytic results for G± are given in Appendix E.

When quoting results at LL order we take UB, UHQ
, and UHm at LL order, and use tree-

level results for BΓ=0
± and S̃part, including δm = δ1 = 0. For results quoted at NLL order

use NLL-evolution for UB, UHQ
, and UHm . They also include the O(αs) results for matching

coefficients and matrix elements, including BΓ=0
± , S̃part, δm, δ1, HQ(Q, µh) and Hm(m, µm).

These O(αs) terms have no-large logs, and we strictly drop all terms of O(α2
s) or higher for

the product that appears in P. In our analysis we also make use of the two-loop solution

for the running coupling

1

αs(µ)
=

1

αs(µ0)
+

β0

2π
ln

( µ

µ0

)
+

β1

4πβ0
ln

[
1 +

β0

2π
αs(µ0) ln

( µ

µ0

)]
, (183)

with αs(µ0 = mZ) = 0.118 as our reference value, and with β0 and β1 from Eq. (81). For

the running above µm we take nf = 6, while for running below µm we take nf = 5 (hence

neglecting the b-quark threshold).

Since there are many features of the cross-section formulae in Eqs. (178-182) that we wish

to explore, it is useful to have a default set of parameters. When not otherwise specified,

we use the following values for our analysis below. Our default Q/mJ = 5, and the default

renormalization scales are µh = 5 ∗ 172 GeV, µm = 172 GeV, µΓ = 5 GeV, and µΛ = 1 GeV.
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function from the bottom-up starting at µΛ and ending at µΓ. In case b) we run the soft

function from µΛ all the way to µh, and the jet functions from µΓ to µm, and then from µm

to µh. Applying the consistency equations between µh–µm and µm–µΓ, cases a) and b) are

equivalent, and both give the result shown in Eq. (42). If we take case a) and apply the

consistency equation between µΓ and µΛ we obtain another equivalent result, case c), with

the result shown in Eq. (43). We will use case c) for our analysis.

In the previous section we derived a form of the factorization formula (36), which combines

the finite lifetime effects and the nonperturbative effects into an infrared function R. This

form gives useful insights for the proper choice of the scales µΓ and µΛ. In terms of stable

jet functions and R in Eq. (37) the resummed factorization theorem in Eq. (43) becomes

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm) Hm

(
m,

Q

m
, µm, µΛ

)
(44) {bHQETcross-hem2b

×
∫ ∞

−∞

dŝ′t dŝ′t̄ UB+(ŝt, ŝ
′
t, µΛ, µΓ) UB−

(ŝt̄, ŝ
′
t̄, µΛ, µΓ)

×
∫ ∞

−∞

d"+d"− BΓ=0
+

(
ŝ′t −

Q"+

mJ
, µΓ

)
BΓ=0

−

(
ŝ′t̄ −

Q"−

mJ
, µΓ

)
R("+, "−, Γt, µΛ) .

From the convolution in this result we see that the smearing with R provides important

information on the infrared cutoff for the fluctuations described by jet functions, and hence

the choice of µΓ that minimizes large logs. Likewise, we see from the definition of R in

Eq. (37) and the form of the soft function in Eq. (38) that µΛ is affected by a smearing

caused by nonperturbative effects as well as by the scale mΓ/Q in the Breit-Wigner functions.

Hence in the peak region we should run down to the scales

µΓ # O
(
Γt +

QΛ

m
+

st,t̄

m

)
, µΛ # O

(
Λ +

mΓt

Q
+

st,t̄

Q

)
. (45)

In principle µΓ can be substantially larger than Γt depending on the Q/m we are interested

in. Also with a very large width (which does not apply for the top quark), µΛ could be

substantially larger than the hadronic scale, which would allow for a perturbative prediction

of the invariant mass distribution in the peak region. For the realistic case of Γt ∼ 1.5 GeV

the scale where the logs would be strictly minimized is in the nonperturbative regime, and

we will specify the soft function at scales µΛ ∼ 1 GeV to be close to this regime. In the tail

region we have ŝ >∼ Γ or ŝ % Γ and the convolution in Eq. (44) sets "± ∼ mŝt,t̄/Q % Λ, so

to sum the large logs we should instead run down to the scales

µΓ # O
(st,t̄

m

)
, µΛ # O

(st,t̄

Q

)
. (46)

The results above are designed to study situations where s & m2, which is important for

a precision extraction of the top-mass. In our formalism it is also possible to study the cross

section in the ultra-tail region, |Mt,t̄ −mJ | ∼ mJ , with renormalization group improvement.

This is the closest analog to the resummation for massless event shapes in regions where
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FIG. 2: Matching, running, and matrix elements that determine the functions in the factorization
theorem in Eq.(3) for the peak region (when s/m ∼ Γ) and for the tail region (when s/m >∼ Γ).
The running in UHQ

and UHm is local, while that in UJn , UJn̄ , US , and UB involves convolutions.

Here the distribution width is Γ ∼ Γt + QΛ/m. Cases a), b), and c) show three equivalent ways
to sum large logs with the renormalization group. The consistency equations discussed in the text
express the equivalence of running from the top-down in case a) and from the bottom-up in case

b). Case c) is used for our numerical analysis. {fig:theoryII

situation shown in Fig. 2 the factorization theorem becomes

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm) Hm

(
m,

Q

m
, µm, µΓ

)
(42) {bHQETcross-hem2a

×
∫ ∞

−∞

d"+d"−
∫ ∞

−∞

d" ′+ d" ′− US(" ′+, " ′−, µΓ, µΛ)

× B+

(
ŝt −

Q"+

m
, Γ, µΓ

)
B−

(
ŝt̄ −

Q"−

m
, Γ, µΓ

)
S("+−" ′+, "−−" ′−, µΛ) ,

or equivalently

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm) Hm

(
m,

Q

m
, µm, µΛ

)
(43) {bHQETcross-hem2aa

×
∫ ∞

−∞

dŝ′t dŝ′t̄ UB+(ŝt − ŝ′t, µΛ, µΓ) UB−
(ŝt̄ − ŝ′t̄, µΛ, µΓ)

×
∫ ∞

−∞

d"+d"− B+

(
ŝ′t −

Q"+

m
, Γ, µΓ

)
B−

(
ŝ′t̄ −

Q"−

m
, Γ, µΓ

)
S("+, "−, µΛ) .

We will always take µΓ > µΛ (although technically these equations are still valid for the case

µΛ > µΓ). The evolution kernels UB and US sum the large logs between µΓ and µΛ, while

the large logs that only affect the overall normalization are summed into HQ and Hm. In

Fig. 2 we display three equivalent ways to sum the large logs, labelled cases a), b), and c).

In case a) we run all terms, from the top-down, from µh down to µΓ, and we run the soft
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Result with resummation:
W ith this theory we are interested in studying small invariant mass fluctua t ions around the
top quark mass m. T hus the renormaliza t ion group evolut ion is not rela ted to stronger
kinema t ic restrict ions on the magnitude of the overall invariant mass of top plus lighter
degrees of freedom. Here the evolut ion falls into case 1) ra ther than case 2). However, the
anomalous dimension of the bH Q E T current Jµ

bHQET st ill contains a remnant of the ln(µ/Q)
term in E q. (52) in the form of a dependence on ln(m/Q). T his µ-independent logarithmic
term is rela ted to a cusp between W ilson lines. T his can be made explicit through the field
redefinit ion hv± → Wv±h(0)

v± , where Wv± are W ilson lines defined in analogy to E q. (21) and
h(0)

v± are heavy quark fields tha t no longer couple to gluon fields a t leading power. For the
opera tor h̄v+Wn(0) tha t appears for example in the bH Q E T current of E q. (27) this leads
to h̄(0)

v+W †
v+

Wn(0). Insert ions of this opera tor lead to the anomalous dimension depending
on logarithms of the cusp angle n · v+ = Q/m. [23, 45, 46]. Unlike SC E T , this angle is fixed
and independent of µ because the overall invariant mass is not further restricted by the R G
evolut ion.

T he R G equa t ions for Cm and Hm = |Cm|2 are

µ
d

dµ
Cm

(
m,

Q

m
, µ

)
= γCm

(Q

m
, µ

)
Cm

(
m,

Q

m
, µ

)
,

µ
d

dµ
Hm

(
m,

Q

m
, µ

)
= γHm

(Q

m
, µ

)
Hm

(
m,

Q

m
, µ

)
, (60) {hqetrunning

where γCm = −Z−1
Cm

µ d/dµ ZCm and γHm = γCm + γ∗
Cm

, and the general form of the anomalous
dimension is

γHm (Q/m, µ) = ΓHm

[
αs

]
ln

(m2

Q2

)
+ γHm

[
αs

]
. (61) {gammaHm}

We write the solut ion to E q. (60) as

Hm

(
m,

Q

m
, µm, µ

)
= Hm(m, µm) UHm

(Q

m
, µm, µ

)
, (62) {UHm}

where Hm(m, µm) is the ma tching condit ion of the bH Q E T current a t the SC E T -bH Q E T
ma tching scale µm ∼ m and UHm (Q/m, µm, µ) is the evolut ion factor describing the running
to a scale µ < µm. T he local evolut ion genera ted by UHm is illustra ted in F ig. 2. Note
tha t the R HS of E q. (62) is not µm independent a t the order one is working, since part of
this dependence is cancelled by the UQ(µh, µm) in HQ(Q, µm). T his is indica ted by the µm

argument on the L HS of E q. (62).
Bottom-Up Running. Nex t consider the equivalent approach of factorized opera tor renor-

maliza t ion in bH Q E T . In this case we introduce Z-factors for the jet funct ions B± and the
soft funct ion S ra ther than counterterm contribut ions for the bH Q E T current . T he result-
ing evolut ion equa t ions for the soft funct ion S agree with those in SC E T , and will not be
repea ted. To switch from bare to renormalized H Q E T jet funct ions we write top-

loops
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With this theory we are interested in studying small invariant mass fluctuations around the

top quark mass m. Thus the renormalization group evolution is not related to stronger

kinematic restrictions on the magnitude of the overall invariant mass of top plus lighter

degrees of freedom. Here the evolution falls into case 1) rather than case 2). However, the

anomalous dimension of the bHQET current Jµ
bHQET still contains a remnant of the ln(µ/Q)

term in Eq. (52) in the form of a dependence on ln(m/Q). This µ-independent logarithmic

term is related to a cusp between Wilson lines. This can be made explicit through the field

redefinition hv± → Wv±h(0)
v± , where Wv± are Wilson lines defined in analogy to Eq. (21) and

h(0)
v± are heavy quark fields that no longer couple to gluon fields at leading power. For the

operator h̄v+Wn(0) that appears for example in the bHQET current of Eq. (27) this leads

to h̄(0)
v+W †

v+
Wn(0). Insertions of this operator lead to the anomalous dimension depending

on logarithms of the cusp angle n · v+ = Q/m. [23, 45, 46]. Unlike SCET, this angle is fixed

and independent of µ because the overall invariant mass is not further restricted by the RG

evolution.

The RG equations for Cm and Hm = |Cm|2 are

µ
d

dµ
Cm

(
m,

Q

m
, µ

)
= γCm

(Q

m
, µ

)
Cm

(
m,

Q

m
, µ

)
,

µ
d

dµ
Hm

(
m,

Q

m
, µ

)
= γHm

(Q

m
, µ

)
Hm

(
m,

Q

m
, µ

)
, (60) {hqetrunning

where γCm = −Z−1
Cm

µ d/dµ ZCm and γHm = γCm +γ∗
Cm

, and the general form of the anomalous

dimension is

γHm(Q/m, µ) = ΓHm

[
αs

]
ln

(m2

Q2

)
+ γHm

[
αs

]
. (61) {gammaHm}

We write the solution to Eq. (60) as

Hm

(
m,

Q

m
, µm, µ

)
= Hm(m, µm) UHm

(Q

m
, µm, µ

)
, (62) {UHm}

where Hm(m, µm) is the matching condition of the bHQET current at the SCET-bHQET

matching scale µm ∼ m and UHm(Q/m, µm, µ) is the evolution factor describing the running

to a scale µ < µm. The local evolution generated by UHm is illustrated in Fig. 2. Note

that the RHS of Eq. (62) is not µm independent at the order one is working, since part of

this dependence is cancelled by the UQ(µh, µm) in HQ(Q, µm). This is indicated by the µm

argument on the LHS of Eq. (62).

Bottom-Up Running. Next consider the equivalent approach of factorized operator renor-

malization in bHQET. In this case we introduce Z-factors for the jet functions B± and the

soft function S rather than counterterm contributions for the bHQET current. The result-

ing evolution equations for the soft function S agree with those in SCET, and will not be

repeated. To switch from bare to renormalized HQET jet functions we write top-
loops
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Bbare
± (ŝ) =

∫
dŝ′ ZB±

(ŝ−ŝ′, µ) B±(ŝ′, µ) , (63) {ZB}

where
∫

dŝ Z−1
B±

(ŝ′′ − ŝ, µ)ZB±
(ŝ − ŝ′, µ) = δ(ŝ′′ − ŝ′). The RG equations are

µ
d

dµ
B±(ŝ, µ) =

∫
dŝ′ γB±

(ŝ−ŝ′, µ) B±(ŝ′, µ), (64) {rgeB}

with anomalous dimension

γB±
(ŝ−ŝ′, µ) = −

∫
dŝ′′ Z−1

B±
(ŝ−ŝ′′, µ) µ

d

dµ
ZB±

(ŝ′′−ŝ′, µ) . (65) {gZB}

The general form for this anomalous dimension can be found in Appendix D. For the solu-

tions to the RGE we write

B±(ŝ, µ) =

∫
dŝ′ UB(ŝ−ŝ′, µ, µΓ) B±(ŝ′, µΓ) . (66) {UB}

The evolution kernels UB take us from the low-scale µΓ to a scale µ. Depending on the set

up of scales, as shown in Fig. 2, we can have µ > µΓ or µ < µΓ.

C. Consistency Conditions in SCET and bHQET

{subsec:consistency
In this section we derive the SCET and bHQET consistency equations quoted above in

Eq. (41), and a relation between the one-loop jet function anomalous dimensions in SCET

and bHQET.

Using Eq. (54) we can obtain a finite result for the SCET factorization theorem by

determining the UV-divergences for the Z-factors ZJn,n̄ and ZS from each individual SCET

Feynman diagram contributing to Jn,n̄ and S. If we instead use the counterterm method

with the current renormalization factor Zc then a consistent form for the counterterm is

only obtained once all collinear and soft vertex graphs that contribute to the factorization

theorem at some order in αs are added up. Since the two methods render UV-finite results

and lead to the same predictions, there is a consistency relation between the renormalization

constants for the operator and the counterterm renormalization method which is very useful

for practical computations. To derive it we start with Eq. (13) and switch to Jbare
n , Jbare

n̄ ,

and Sbare using either counterterm renormalization or factorized operator renormalization.

Equating the results we find that

|Zc|2 δ(s−Q$ ′+) δ(s̄−Q$ ′−) =

∫
d$+d$− Z−1

Jn
(s−Q$+) Z−1

Jn̄
(s̄−Q$−) Z−1

S ($+−$ ′+, $−−$ ′−) .

(67) {cons1}

The consistency condition can also be written in terms of the evolution kernels that solve

the individual RGE’s. To derive this form we consider the factorization theorem Eq. (13) at

the scale µ0, and use HQ(Q, µ0) = HQ(Q, µ)UHQ
(µ, µ0). Then write down the factorization
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B b are
± (ŝ) =

∫
dŝ′ ZB±

(ŝ−ŝ′ , µ) B±(ŝ′, µ) , (63) {ZB}

where
∫

dŝ Z −1
B±

(ŝ′′ − ŝ, µ)ZB±
(ŝ − ŝ′, µ) = δ(ŝ′′ − ŝ′). The RG equations are

µ
d

dµ
B±(ŝ, µ) =

∫
dŝ′ γB±

(ŝ−ŝ′, µ) B±(ŝ′, µ), (64) {rgeB}

with anomalous dimension

γB±
(ŝ−ŝ′, µ) = −

∫
dŝ′′ Z −1

B±
(ŝ−ŝ′′, µ) µ

d
dµ

ZB±
(ŝ′′−ŝ′, µ) . (65) {gZB}

The general form for this anomalous dimension can be found in Appendix D. For the solu-

tions to the RGE we write

B±(ŝ, µ) =

∫
dŝ′ UB(ŝ−ŝ′, µ , µΓ) B±(ŝ′, µΓ) . (66) {UB}

The evolution kernels UB take us from the low-scale µΓ to a scale µ. Depending on the set

up of scales, as shown in Fig. 2, we can have µ > µΓ or µ < µΓ.

C. Consistency Conditions in SCET and bHQET

{subsec:consistency
In this section we derive the SCET and bHQET consistency equations quoted above in

Eq. (41), and a relation between the one-loop jet function anomalous dimensions in SCET

and bHQET.

Using Eq. (54) we can obtain a finite result for the SCET factorization theorem by

determining the UV-divergences for the Z -factors ZJn,n̄ and ZS from each individual SCET

Feynman diagram contributing to Jn,n̄ and S . If we instead use the counterterm method

with the current renormalization factor Zc then a consistent form for the counterterm is

only obtained once all collinear and soft vertex graphs that contribute to the factorization

theorem at some order in αs are added up. Since the two methods render UV-finite results

and lead to the same predictions, there is a consistency relation between the renormalization

constants for the operator and the counterterm renormalization method which is very useful

for practical computations. To derive it we start with Eq. (13) and switch to J b are
n , J b are

n̄ ,

and S b are using either counterterm renormalization or factorized operator renormalization.

Equating the results we find that

|Zc|2 δ(s−Q$ ′ + ) δ(s̄−Q$ ′−) =

∫
d$ + d$− Z −1

Jn
(s−Q$ + ) Z −1

Jn̄
(s̄−Q$−) Z −1

S ($ + −$ ′ + , $−−$ ′−) .

(67) {cons1}

The consistency condition can also be written in terms of the evolution kernels that solve

the individual RGE’s. To derive this form we consider the factorization theorem Eq. (13) at

the scale µ0, and use H Q(Q , µ0) = H Q(Q , µ)UHQ
(µ , µ0). Then write down the factorization
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Here:  sum double logs

Only the logs between        and         can modify the shape of the 
   invariant mass distribution (the rest just modify normalization)

µΓ µΛ

LL =
∑

k

[αs ln2]k
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SCET
SCET [λ ∼ m/Q" 1] bHQET [Γ/m" 1]

n-collinear (ξn, Aµ
n) pµ

n∼Q(λ2, 1,λ) n-ucollinear (hv+ , Aµ
v+) kµ∼Γ(λ2, 1,λ)

n̄-collinear (ξn̄, Aµ
n̄) pµ

n̄∼Q(1,λ2,λ) n̄-ucollinear (hv− , Aµ
v−) kµ∼Γ(1,λ2,λ)

Crosstalk: soft (qs, Aµ
s ) pµ

s ∼Q(λ2,λ2,λ2) same soft (qs, Aµ
s ) pµ

s ∼(∆,∆,∆)

TABLE I: Summary of the fields required in SCET and bHQET. The first field in each bracket is
a quark, and the second is a gluon. The scaling of momentum components is given for (p+, p−, p⊥)
and the “u” prefactor stands for ultra. After factorization, the soft fields on the last line can be
treated as one universal cross-talk theory that communicates with collinear fields in both SCET
and bHQET through two kinematic variables.

where !n can be thought of as the direction of the top jet and −!n as the direction of the

antitop jet (!n2 = 1, n2 = 0, n̄2 = 0) . Any momentum can then be decomposed as

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ

⊥ , (9)

and we denote momentum components in this light cone basis as (p+, p−, p⊥) = (n·p, n̄·p, p⊥).

The square of the momentum vector pµ then reads p2 = p+p− + p2
⊥. It is also convenient to

denote the momentum of collinear particles in the !n and −!n directions by the subscripts n

and n̄ respectively, which corresponds to the large energy modes in the corresponding jets.

Thus we have collinear labels

n for the top-jet, n̄ for the antitop-jet . (10)

The momentum of soft particles will be denoted by a subscript s. The momenta of the

collinear and soft modes2 have the typical scalings shown in Table IIA in the SCET column,

where here λ is the small expansion parameter. A particle with components scaling as

(λ2, 1, λ) has a small ⊥-momentum relative to its energy, and is said to be collinear to the

nµ direction etc. Both λ and the hard scale Q have a size that depends on the particular

process under study. For example, in B → Xsγ the hard scale is the b-quark mass mb, and

the expansion parameter is
√

ΛQCD/mb. For pair production of top jets, the hard scale Q

is the center of mass energy, and the SCET expansion parameter is

λ ∼ m

Q
. (11)

It follows that the typical virtuality of the collinear and soft modes in SCET satisfy

st ∼ st̄ ∼ m2, and p2
s ∼

m4

Q2
. (12)

2 In some factorization theorems it is necessary to distinguish between soft and ultrasoft particles, and
between two versions of SCET: called SCETI and SCETII. In this paper we only deal with SCETI with
ultrasoft gluons. For simplicity we will therefore use the terms ultrasoft and soft interchangeably.
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Degrees of
Freedom

(+,−,⊥)
light-cone coordinatesquark

fields gluon
fields

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

Since m4 / Q2 ! Λ2
QCD , the soft modes in this theory st ill contain perturbat ive components

as well as the underlying non-perturbat ive dynamics at smaller scales. Using m = 171 G e V
this is true for Q <∼ 40 Te V i.e. for any conceivable c.m. energy of a future L inear Collider.
T he soft part icles correspond to modes with wavelengths that allow cross talk between the
two jets. T he n-collinear, n̄-collinear, and soft modes are described by separate quark and
gluon fields which are also listed in Table I I A . H ard modes have already been integrated
out when Q C D is matched onto SC E T .

A t leading order the SC E T Lagrangian for collinear part icles in different direct ions can
be writ ten as a soft Lagrangian plus a sum of collinear terms [35], L(0) = Ls +

∑
ni
L(0)

ni .
T he sum sat isfies the constraint ni · nj ! λ2 for i #= j , with the choice of λ determining
what is meant by dist inct collinear direct ions. T he collinear part icles in different sectors
only interact via soft gluon exchange or hard interact ions in external operators. W hen the
⊥-momentum of the collinear part icles is of the same size as the quark mass the result for
the leading order collinear Lagrangian [19, 20] must include the quark mass terms derived in
Ref. [23] (see also Ref. [44]). T he collinear quark Lagrangian for the direct ion n is therefore
given by

L(0)
qn = ξ̄n

[
i n · D s + g n · An + ( i D/⊥c −m)Wn

1
n̄ ·P W †

n( i D/⊥c + m)
] n̄/

2
ξn , (13)

with D⊥
c ∼ m ! D⊥

s . T here is also an n-collinear Lagrangian for gluons [21]. Here the soft
and collinear covariant derivat ives are

i D µ
s = i∂µ + g Aµ

s , i D µ
c = Pµ + g Aµ

n , (14)

where Pµ is a label operator picking out the large collinear momentum of order one and λ of
a collinear field [20], while the part ial derivat ive acts on the residual momentum components
∂µ ∼ λ2 . T he term Wn is the momentum space W ilson line built out of collinear gluon fields

Wn(x) =
∑

perms

exp
(
− g
P̄

n̄ · An(x)
)

. (15)

We also note that E q. (13) is the bare Lagrangian. In part icular, any mass definit ion can
be chosen for m through an appropriate renormalizat ion condit ion without breaking the
power-count ing. A t O(αs) these mass-schemes are the same as those in Q C D [45], because
the self-energy graphs are direct ly related.

A n example of an external operator that connects different collinear sectors is the jet
product ion current , which couples to the γ∗ or Z ∗ . In Q C D the product ion matrix element
is 〈X |J µ

a,v|0〉 where 〈X | is the final state. T he required vector and axial currents are given
by

J µ
v (x) = ψ̄(x)γµψ(x) , J µ

a (x) = ψ̄(x)γµγ5ψ(x) , (16)

11

LO collinear Lagrangian:

eikonal
soft couplings

collinear Wilson line

Wn = P exp
(
ig

∫ ∞

0
ds n̄·An(sn̄)

)k

i
n·k+iε k

i
−n·k+iε k

i
−n·k−iε k

i
n·k−iε

(Y+ ξ+
n ) (ξ̄+

n Y
†
+) (ξ̄−n Y

†
−) (Y− ξ−n )

FIG. 1: Eikonal iε prescriptions for incoming/outgoing quarks and antiquarks and the result that
reproduces this with an ultrasoft Wilson line and sterile quark field.

Since the dependence on s0 sometimes causes confusion, we explore some of the subtleties
in this section, in particular, why it is important to remember that factors of Y , Y † can
also be induced in the interpolating fields for incoming and outgoing collinear states, and
why a common choice for s0 = s †

0 is sufficient to properly reproduce the iε prescription in
perturbative computations. In many processes (examples being color allowed B → Dπ and
B → Xsγ) the s0 dependence of the Wilson lines cancels and the following considerations
are not crucial. In other processes, however, the path for the Wilson line is important for the
final result, particularly when these Wilson lines do not entirely cancel. An example of this
is jet event shapes as discussed in Refs. [28–30]. See also the discussion of path dependence
in eikonal lines in Refs. [31–37].

First consider the perturbative computation of attachments of usoft gluons to incoming
and outgoing quark and antiquark lines. The results for the eikonal factors for one gluon
are summarized in Fig. 1, and can be computed directly with the SCET collinear quark
Lagrangian (or from an appropriate limit of the QCD propagator). These attachments seem
to force one to make a particular choice for s0 and s0, see for example the recent detailed
study in Ref. [30]. In our notation it is straightforward to show that this choice corresponds
to

s0 = −∞ sign(P̄) , s0 = +∞ sign(P̄†) ,

{

P̃=P̃
′
=P , for P̄ , P̄† > 0

P̃=P̃
′
=P , for P̄ , P̄† < 0

. (21)

To see this take a quark with label n̄·p > 0 and an antiquark with label n̄·p′ < 0, and note
that

Y ξn,p = P̃ exp
(

ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

ξ+
n,p = P exp

(

ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

ξ+
n,p ≡ Y+ξ+

n,p , (22)

ξ̄n,pY
†= ξ̄+

n,pP̃
′
exp

(

−ig

∫ 0

∞

ds n·Aus(x
µ
s )

)

= ξ̄+
n,pP exp

(

ig

∫ ∞

0

ds n·Aus(x
µ
s )

)

≡ ξ̄+
n,pY

†
+ ,

Y ξn,p′ = P̃ exp
(

ig

∫ 0

∞

ds n·Aus(x
µ
s )

)

ξ−n,p′ = P exp
(

−ig

∫ ∞

0

ds n·Aus(x
µ
s )

)

ξ−n,p′ ≡ Y−ξ−n,p′ ,

ξ̄n,p′Y
†= ξ̄−n,p′P̃

′
exp

(

−ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

= ξ̄−n,p′P exp
(

−ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

≡ ξ̄−n,p′Y
†
− .

This is in agreement with the Ỹ = Y−, Y † = Y †
−, Y = Y+, Ỹ † = Y †

+ used in [30] for the
production and annihilation of antiparticles and the annihilation and production of parti-
cles respectively. The results in Eq. (22) reproduce the natural choice of having incoming
quarks/antiquarks enter from −∞, while outgoing quarks/antiquarks extend out to +∞.
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SCET [λ ∼ m/Q" 1] bHQET [Γ/m" 1]
n-collinear (ξn, Aµ

n) pµ
n∼Q(λ2, 1,λ) n-ucollinear (hv+ , Aµ

v+) kµ∼Γ(λ2, 1,λ)
n̄-collinear (ξn̄, Aµ

n̄) pµ
n̄∼Q(1,λ2,λ) n̄-ucollinear (hv− , Aµ

v−) kµ∼Γ(1,λ2,λ)
Crosstalk: soft (qs, Aµ

s ) pµ
s ∼Q(λ2,λ2,λ2) same soft (qs, Aµ

s ) pµ
s ∼(∆,∆,∆)

TABLE I: Summary of the fields required in SCET and bHQET. The first field in each bracket is
a quark, and the second is a gluon. The scaling of momentum components is given for (p+, p−, p⊥)
and the “u” prefactor stands for ultra. After factorization, the soft fields on the last line can be
treated as one universal cross-talk theory that communicates with collinear fields in both SCET
and bHQET through two kinematic variables.

where !n can be thought of as the direction of the top jet and −!n as the direction of the

antitop jet (!n2 = 1, n2 = 0, n̄2 = 0) . Any momentum can then be decomposed as

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ

⊥ , (9)

and we denote momentum components in this light cone basis as (p+, p−, p⊥) = (n·p, n̄·p, p⊥).

The square of the momentum vector pµ then reads p2 = p+p− + p2
⊥. It is also convenient to

denote the momentum of collinear particles in the !n and −!n directions by the subscripts n

and n̄ respectively, which corresponds to the large energy modes in the corresponding jets.

Thus we have collinear labels

n for the top-jet, n̄ for the antitop-jet . (10)

The momentum of soft particles will be denoted by a subscript s. The momenta of the

collinear and soft modes2 have the typical scalings shown in Table IIA in the SCET column,

where here λ is the small expansion parameter. A particle with components scaling as

(λ2, 1, λ) has a small ⊥-momentum relative to its energy, and is said to be collinear to the

nµ direction etc. Both λ and the hard scale Q have a size that depends on the particular

process under study. For example, in B → Xsγ the hard scale is the b-quark mass mb, and

the expansion parameter is
√

ΛQCD/mb. For pair production of top jets, the hard scale Q

is the center of mass energy, and the SCET expansion parameter is

λ ∼ m

Q
. (11)

It follows that the typical virtuality of the collinear and soft modes in SCET satisfy

st ∼ st̄ ∼ m2, and p2
s ∼

m4

Q2
. (12)

2 In some factorization theorems it is necessary to distinguish between soft and ultrasoft particles, and
between two versions of SCET: called SCETI and SCETII. In this paper we only deal with SCETI with
ultrasoft gluons. For simplicity we will therefore use the terms ultrasoft and soft interchangeably.
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SCET [λ ∼ m/Q" 1] bHQET [Γ/m" 1]
n-collinear (ξn, Aµ

n) pµ
n∼Q(λ2, 1,λ) n-ucollinear (hv+ , Aµ

v+) kµ∼Γ(λ2, 1,λ)
n̄-collinear (ξn̄, Aµ

n̄) pµ
n̄∼Q(1,λ2,λ) n̄-ucollinear (hv− , Aµ

v−) kµ∼Γ(1,λ2,λ)
Crosstalk: soft (qs, Aµ

s ) pµ
s ∼Q(λ2,λ2,λ2) same soft (qs, Aµ

s ) pµ
s ∼(∆,∆,∆)

TABLE I: Summary of the fields required in SCET and bHQET. The first field in each bracket is
a quark, and the second is a gluon. The scaling of momentum components is given for (p+, p−, p⊥)
and the “u” prefactor stands for ultra. After factorization, the soft fields on the last line can be
treated as one universal cross-talk theory that communicates with collinear fields in both SCET
and bHQET through two kinematic variables.
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 n ,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x e i rn·x Disc 〈0|T{  n , Q (0)/̂̄n  n(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x e i rn̄·x Disc 〈0|T{  ̄ n̄(x)/̂n  n̄ ,−Q (0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2  
dM2

t dM2
t̄

=  0 HQ (Q, µ)

∫ ∞

−∞
d  +d  − Jn(st − Q  +, µ)Jn̄(s t̄ − Q  −, µ)Shemi(  +,  −, µ) , (81)

where the hard function HQ (Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(  +,  −, µ) =
1

Nc

∑

X s

 (  + − k+a
s )  (  − − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) =  (st), Jn̄(s t̄) =  (s t̄), and Shemi(  +,  −) =

 (  +)  (  −), and integrating Eq. (81) over st and s t̄ gives the total tree-level Born cross-section

 0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
n Y n̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQ C D , and thus the soft function Shemi(  +,  −) is governed by non-perturbative QCD

effects. The momentum variables  ± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(  +,  −) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ (Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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FIG. 6: Graphs for the hemisphere soft function at one-loop. In this figure the double solid lines
denote Y -Wilson lines,and the line with ticks is the final state cut. {softgraphs}

Eqs. (62,63) give the solution for the RG-evolution of the SCET jet function up to µ, via

Jn(s, µ) =
∫

ds′ UJn(s − s′, µ, µm)Jn(s′, µm).

Finally we return to the renormalized jet function. For the stable-top renormalized jet-

function at one-loop order this gives

Jn(s, m, Γ = 0, µ) = δ(s) +
αsCF

4π

{

8

κ2
1

[

θ(x) ln(x)

x

]

+

−
4

κ2
1

[

1+ln
(m2

κ2
1

)

+ln
(µ2

κ2
1

)

][

θ(x)

x

]

+

+ δ(s)

[

2 ln2
(µ2

κ2
1

)

+2 ln2
(m2

κ2
1

)

+3 ln
(µ2

κ2
1

)

+ln
(m2

κ2
1

)

+8−
π2

3

]}

, (64) {Jren}

where x = s/κ2
1. From this result we can immediately see why further matching and RG-

evolution are needed to deal with the large hierarchy of scales in Jn. For s ∼ mΓ no

choice of µ minimizes all the large logarithms. The terms in which the large logs appear are

controlled by the choice of κ1, but no choice of κ1 removes them completely. For example,

with κ1 = m and µ = m we still have ln(x) ∼ ln(Γ/m); while for κ2
1 = mΓ and µ = κ1 we

have ln(m2/κ2
1) ∼ ln(Γ/m). This motivates the matching onto bHQET and RG-evolution

between m and Γ to be carried out below. For later convenience we quote the result for Jn

with the choice κ1 = m,

Jn(s, m, Γ = 0, µ) = δ(s) +
αsCF

4π

{

8

m2

[

θ(x) ln(x)

x

]

+

−
4

m2

[

1+ln
( µ2

m2

)

][

θ(x)

x

]

+

+ δ(s)

[

2 ln2
( µ2

m2

)

+3 ln
( µ2

m2

)

+8−
π2

3

]}

. (65) {Jrenm}

C. Hemisphere Soft Function and its Running

{sect:soft}

In this section we compute the renormalization group evolution of the hemisphere soft-

function, Shemi(&+, &−, µ). Although this function is non-perturbative, its dependence on the

scale µ can be computed in perturbation theory, and is the same as the µ-dependence of

Shemi defined with partonic matrix elements.

To compute Shemi we use the squared matrix-element expression in Eq. (13) involving the

states |Xs〉. At O(αs) the corresponding diagrams are shown in Fig. 6, where the double
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Soft Functiongap parameter ∆ enforces !± ≥ ∆ and encodes the minimal hadronic energy deposit due to

soft radiation.

As explained in Ref. [61], there is a renormalon in Spart(!± − !̃±) that corresponds to

an O(ΛQCD) ambiguity in the partonic threshold where !± − !̃± = 0, and a corresponding

ambiguity in the non-perturbative gap-parameter ∆. It can be removed by shifting to a

renormalon free gap parameter ∆̄, using = ∆ = ∆̄(µ) + δ(µ),

S(!+, !−, µ) =

∫ +∞

−∞

d!̃+

∫ +∞

−∞

d!̃− Spart(!
+−!̃+, !−−!̃−, µ) fexp(!̃

+−∆, !̃−−∆) (171)

=

∫ +∞

−∞

d!̃+

∫ +∞

−∞

d!̃− Spart(!
+−!̃+−δ, !−−!̃−−δ, µ) fexp(!̃

+−∆̄, !̃−−∆̄) .

Here δ =
∑∞

i=1 δi is a perturbative series with δi ∼ O(αi
s) that defines the scheme for ∆̄.

Expanding Spart(!±−!̃±−δ) in perturbation theory the δi’s remove the renormalon ambiguity

from Spart order by order. Up to O(αs) this gives

Spart(!
+, !−, µ, δi) = S0

part(!
+, !−) +

[
S1

part(!
+, !−, µ) − δ1

( d

d!+
+

d

d!−

)
S0

part(!
+, !−)

]
, (172)

where defining L1(!) = 1/µ
[
θ(!) ln(!/µ)/(!/µ)

]
+

we have

S0
part(!

+, !−) = δ(!+)δ(!−) , S1
part(!

+, !−, µ) = δ(!+)S1
part(!

−, µ) + δ(!−)S1
part(!

+, µ) ,

S1
part(!, µ) =

CF αs(µ)

π

[π2

24
δ(!) − 2L1(!)

]
. (173)

A renormalon free scheme for the gap ∆̄ can be defined [61] using a first moment of the soft

function with upper cutoff L∆, similar to the jet-mass in Eq. (157). This definition can be

written

0 =

∫ L∆

−∞

d!+

∫ L∆

−∞

d!− !+ Spart(!
+ − δ, !− − δ, µ) , (174)

and at O(αs) gives [61]

δ1 = −2L∆
CF αs(µ)

π

[
ln

( µ

L∆

)
+ 1

]
. (175)

Because ∆ = ∆̄(µ) + δ(µ) is RG-invariant, this gives an anomalous dimension equation

µ
d

dµ
∆̄(µ) = 2L∆

CFαs(µ)

π
, (176)

with a LL solution

∆̄(µ) = ∆̄(µ0) − L∆
4CF

β0
ln

[
αs(µ)

αs(µ0)

]
. (177)
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Spart(!
+, !−, µ, δi) = S0

part(!
+, !−) +

[
S1

part(!
+, !−, µ) − δ1

( d

d!+
+

d

d!−

)
S0

part(!
+, !−)

]
, (172)

where defining L1(!) = 1/µ
[
θ(!) ln(!/µ)/(!/µ)

]
+

we have

S0
part(!

+, !−) = δ(!+)δ(!−) , S1
part(!

+, !−, µ) = δ(!+)S1
part(!

−, µ) + δ(!−)S1
part(!

+, µ) ,

S1
part(!, µ) =

CF αs(µ)

π

[π2

24
δ(!) − 2L1(!)

]
. (173)

A renormalon free scheme for the gap ∆̄ can be defined [61] using a first moment of the soft

function with upper cutoff L∆, similar to the jet-mass in Eq. (157). This definition can be

written

0 =

∫ L∆

−∞

d!+

∫ L∆

−∞

d!− !+ Spart(!
+ − δ, !− − δ, µ) , (174)

and at O(αs) gives [61]

δ1 = −2L∆
CF αs(µ)

π

[
ln

( µ

L∆

)
+ 1

]
. (175)

Because ∆ = ∆̄(µ) + δ(µ) is RG-invariant, this gives an anomalous dimension equation

µ
d

dµ
∆̄(µ) = 2L∆

CFαs(µ)

π
, (176)

with a LL solution

∆̄(µ) = ∆̄(µ0) − L∆
4CF

β0
ln

[
αs(µ)

αs(µ0)

]
. (177)

57

L1(!) =
1
µ

[θ(!) ln(!/µ)
!/µ

]

+
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ŝt ! Γ

tail 
region

• Anomalous dimension determined by partonic calculation.
it has cusp
anom.dim.

with

SNLO
part (!, µ) = δ(!) +

CFαs(µ)

π

{

π2

24
δ(!) − 2

µ

[θ(!) ln(!/µ)

!/µ
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We see explicitly that large logs in Spart(! − !̃, µ) are minimized for µ ∼ ! − !̃. Hence when
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mod = 1 one finds that for L $ ΛQCD the normalization
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π2

12
− 2 ln2

(L

µ

)

}

+ . . . , (14)

up to terms of O(α2
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Smod needs to be normalized.

For the peak region, perturbative improvements to Spart in Eq. (8) that cause a large

change to S, could in principle be compensated by changes to the model parameters in Smod.

However, it is quite desirable to make Spart and Smod as independent as possible, so that the

interpretation of the model parameters remains unchanged as we perturbatively improve

Spart. A measure for this independence is the convergence of the perturbative expansion
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A Convolution Formula does this

mtΓt +QΛ. We will consider all large logs to have already been summed by renormalization

group evolution from Q down to these µ’s. As discussed in [23], the factorization theorem

which sums large logs has the form, d2σ/dM2
t dM2

t̄ = σ0H(Q, mt, µΛ)
∫

dŝ′t dŝ′t̄ d"+d"−UB(ŝt−
ŝ′t, µΛ, µΓ)UB(ŝt̄−ŝ′t̄, µΛ, µΓ)B+((st−Q"+)/mt, µΓ)B−((st̄−Q"−)/mt, µΓ)S("+, "−, µΛ). So our

task here is to determine the soft function at a scale µΛ where it contains no large logs.

To begin, consider modeling the soft function by

S("+, "−, µ) =

∫ +∞

−∞

d"̃+

∫ +∞

−∞

d"̃− Spart("
+−"̃+, "−−"̃−, µ) Smod("̃

+, "̃−) , (8)

where Spart("±, µ) is the partonic soft function computed in perturbation theory, and

Smod("̃±) is a nonperturbative model function that is µ-independent and contributes only

for "̃± ∼ ΛQCD. In Ref. [14] an analog to Eq. (8) was used in the study of b → s"+"− to

alleviate the issues mentioned about Eq. (2). Taking Spart to O(αs) this formula provided a

simple way of incorporating the cutoff moment constraints of Ref. [16] in the model for the

nonperturbative B-meson soft function. Here we will argue that, suitably refined, Eq. (8)

can be used to design soft functions for jets that are consistent with the desired properties

stated earlier. Defining moments

S [n,m]
mod ≡

∫ +∞

−∞

d"+d"− ("+)n("−)mSmod("
+, "−) , (9)

we will demand that Smod is normalized, S [0,0]
mod = 1. We will also demand that higher

moments are finite where we have S [n,m]
mod ∼ (ΛQCD)n+m for n + m > 0.

A virtue of Eq. (8) is that it produces by construction the proper operator expansion in

Eq. (4) when used at a perturbative scale µ = µop ∼ st,t̄/Q % ΛQCD where "± ∼ st,t̄/Q. To

see this recall that "̃± ∼ ΛQCD, and so we can expand Spart for "̃± & "± to give

S("±, µop) = Spart("
±, µop) S [0,0]

mod −
[ d

d"+
Spart("

±, µop) S [1,0]
mod +

d

d"−
Spart("

±, µop) S [0,1]
mod

]

+ O
(Q2Λ2

QCD

s2

)

. (10)

Since S [0,0]
mod = 1 we have the desired result that S("±, µop) = Spart("±, µop) at leading power.

Computing the renormalized soft function in Eq. (5) to order αs (Fig. 1 with no nf -bubbles)

it factors as1

SNLO
part ("±, µ) = SNLO

part ("+, µ)SNLO
part ("−, µ) (11)

1 We note that the factorized form of the soft function with respect to the two hemisphere light-cone

variables !± in Eq. (11) allows for the possibility to choose two different µ’s at which to stop running the

two jet functions B± in the factorization theorems (3) and (4). While we do not expect that relation (11)

is maintained for non-logarithmic corrections beyond the one-loop level, one can prove that the factorized

form is maintained to all orders as far the scale-dependence is concerned, as in Eq. (15) [23]. Thus it

is possible to treat the situation where st and st̄ are widely separated and to account for the resulting

non-global logarithms [24] by choosing both renormalization scales differently.
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To begin, consider modeling the soft function by

S("+, "−, µ) =

∫ +∞

−∞

d"̃+

∫ +∞

−∞

d"̃− Spart("
+−"̃+, "−−"̃−, µ) Smod("̃

+, "̃−) , (8)

where Spart("±, µ) is the partonic soft function computed in perturbation theory, and

Smod("̃±) is a nonperturbative model function that is µ-independent and contributes only

for "̃± ∼ ΛQCD. In Ref. [14] an analog to Eq. (8) was used in the study of b → s"+"− to

alleviate the issues mentioned about Eq. (2). Taking Spart to O(αs) this formula provided a

simple way of incorporating the cutoff moment constraints of Ref. [16] in the model for the

nonperturbative B-meson soft function. Here we will argue that, suitably refined, Eq. (8)

can be used to design soft functions for jets that are consistent with the desired properties

stated earlier. Defining moments

S [n,m]
mod ≡

∫ +∞

−∞

d"+d"− ("+)n("−)mSmod("
+, "−) , (9)

we will demand that Smod is normalized, S [0,0]
mod = 1. We will also demand that higher

moments are finite where we have S [n,m]
mod ∼ (ΛQCD)n+m for n + m > 0.

A virtue of Eq. (8) is that it produces by construction the proper operator expansion in

Eq. (4) when used at a perturbative scale µ = µop ∼ st,t̄/Q % ΛQCD where "± ∼ st,t̄/Q. To

see this recall that "̃± ∼ ΛQCD, and so we can expand Spart for "̃± & "± to give

S("±, µop) = Spart("
±, µop) S [0,0]

mod −
[ d

d"+
Spart("

±, µop) S [1,0]
mod +

d

d"−
Spart("

±, µop) S [0,1]
mod

]

+ O
(Q2Λ2

QCD

s2

)

. (10)

Since S [0,0]
mod = 1 we have the desired result that S("±, µop) = Spart("±, µop) at leading power.

Computing the renormalized soft function in Eq. (5) to order αs (Fig. 1 with no nf -bubbles)

it factors as1

SNLO
part ("±, µ) = SNLO

part ("+, µ)SNLO
part ("−, µ) (11)

1 We note that the factorized form of the soft function with respect to the two hemisphere light-cone

variables !± in Eq. (11) allows for the possibility to choose two different µ’s at which to stop running the

two jet functions B± in the factorization theorems (3) and (4). While we do not expect that relation (11)

is maintained for non-logarithmic corrections beyond the one-loop level, one can prove that the factorized

form is maintained to all orders as far the scale-dependence is concerned, as in Eq. (15) [23]. Thus it

is possible to treat the situation where st and st̄ are widely separated and to account for the resulting

non-global logarithms [24] by choosing both renormalization scales differently.

5

Soft-function has a (u = 1/2) renormalon ambiguity•
implying that the partonic and model parts are sensitively tied together

This is removed by introducing a minimum energy gap for the soft 
radiation

•

gap parameter ∆ enforces !± ≥ ∆ and encodes the minimal hadronic energy deposit due to
soft radia t ion.

A s explained in Ref. [61], there is a renormalon in Spart(!± − !̃±) tha t corresponds to
an O(  QCD) ambiguity in the partonic threshold where !± − !̃± = 0, and a corresponding
ambiguity in the non-perturba t ive gap-parameter ∆ . I t can be removed by shift ing to a
renormalon free gap parameter ∆̄ , using = ∆ = ∆̄ (µ) + δ(µ),

S(!+, !−, µ) =
∫ +∞

−∞

d!̃+

∫ +∞

−∞

d!̃− Spart(!+−!̃+, !−−!̃−, µ) fexp(!̃+−∆, !̃−−∆ ) (171)

=
∫ +∞

−∞

d!̃+

∫ +∞

−∞

d!̃− Spart(!+−!̃+−δ, !−−!̃−−δ, µ) fexp(!̃+− ∆̄, !̃−− ∆̄ ) .

Here δ =
∑∞

i=1 δi is a perturba t ive series with δi ∼ O(αi
s) tha t defines the scheme for ∆̄ .

E xpanding Spart(!±−!̃±−δ) in perturba t ion theory the δi ’s remove the renormalon ambiguity
from Spart order by order. Up to O(αs) this gives

Spart(!+, !−, µ, δi) = S0
part(!+, !−) +

[
S1

part(!+, !−, µ) − δ1

( d

d!+
+

d

d!−

)
S0

part(!+, !−)
]
, (172)

where defining L1(!) = 1/µ
[
θ(!) ln(!/µ)/(!/µ)

]
+

we have

S0
part(!+, !−) = δ(!+)δ(!−) , S1

part(!+, !−, µ) = δ(!+)S1
part(!−, µ) + δ(!−)S1

part(!+, µ) ,

S1
part(!, µ) =

CF αs(µ)
π

[π2

24
δ(!) − 2L1(!)

]
. (173)

A renormalon free scheme for the gap ∆̄ can be defined [61] using a first moment of the soft
funct ion with upper cuto  L∆ , similar to the jet-mass in E q. (157). T his definit ion can be
writ ten

0 =
∫ L∆

−∞

d!+

∫ L∆

−∞

d!− !+ Spart(!+ − δ, !− − δ, µ) , (174)

and a t O(αs) gives [61]

δ1 = −2L∆
CF αs(µ)

π

[
ln

( µ

L∆

)
+ 1

]
. (175)

B ecause ∆ = ∆̄ (µ) + δ(µ) is R G -invariant , this gives an anomalous dimension equa t ion

µ
d

dµ
∆̄ (µ) = 2L∆

CFαs(µ)
π

, (176)

with a L L solut ion

∆̄ (µ) = ∆̄ (µ0) − L∆
4CF

β0
ln

[
αs(µ)
αs(µ0)

]
. (177)
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gap parameter ∆ enforces !± ≥ ∆ and encodes the minimal hadronic energy deposit due to

soft radiation.

As explained in Ref. [61], there is a renormalon in Spart(!± − !̃±) that corresponds to

an O(ΛQCD) ambiguity in the partonic threshold where !± − !̃± = 0, and a corresponding

ambiguity in the non-perturbative gap-parameter ∆. It can be removed by shifting to a

renormalon free gap parameter ∆̄, using = ∆ = ∆̄(µ) + δ(µ),

S(!+, !−, µ) =

∫ +∞

−∞

d!̃+

∫ +∞

−∞

d!̃− Spart(!
+−!̃+, !−−!̃−, µ) fexp(!̃

+−∆, !̃−−∆) (171)

=

∫ +∞

−∞

d!̃+

∫ +∞

−∞

d!̃− Spart(!
+−!̃+−δ, !−−!̃−−δ, µ) fexp(!̃

+−∆̄, !̃−−∆̄) .

Here δ =
∑∞

i=1 δi is a perturbative series with δi ∼ O(αi
s) that defines the scheme for ∆̄.

Expanding Spart(!±−!̃±−δ) in perturbation theory the δi’s remove the renormalon ambiguity

from Spart order by order. Up to O(αs) this gives

Spart(!
+, !−, µ, δi) = S0

part(!
+, !−) +

[
S1

part(!
+, !−, µ) − δ1

( d

d!+
+

d

d!−

)
S0

part(!
+, !−)

]
, (172)

where defining L1(!) = 1/µ
[
θ(!) ln(!/µ)/(!/µ)

]
+

we have

S0
part(!

+, !−) = δ(!+)δ(!−) , S1
part(!

+, !−, µ) = δ(!+)S1
part(!

−, µ) + δ(!−)S1
part(!

+, µ) ,

S1
part(!, µ) =

CF αs(µ)

π

[π2

24
δ(!) − 2L1(!)

]
. (173)

A renormalon free scheme for the gap ∆̄ can be defined [61] using a first moment of the soft

function with upper cutoff L∆, similar to the jet-mass in Eq. (157). This definition can be

written

0 =

∫ L∆

−∞

d!+

∫ L∆

−∞

d!− !+ Spart(!
+ − δ, !− − δ, µ) , (174)

and at O(αs) gives [61]

δ1 = −2L∆
CF αs(µ)

π

[
ln

( µ

L∆

)
+ 1

]
. (175)

Because ∆ = ∆̄(µ) + δ(µ) is RG-invariant, this gives an anomalous dimension equation

µ
d

dµ
∆̄(µ) = 2L∆

CFαs(µ)

π
, (176)

with a LL solution

∆̄(µ) = ∆̄(µ0) − L∆
4CF

β0
ln

[
αs(µ)

αs(µ0)

]
. (177)
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∆ = ∆̄ + δ = ∆̄ + (αs + α2
s + . . .) ∆̄ = renormalon free
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Gives soft function that:

has model parameters that are stable & not sensitive to • µ
• has correct µ dependence for MS-bar scheme

• has correct large momentum behavior

FIG. 2: Soft function S(!+, !−µ) as a function of ! = !+ = !− with µ = 1GeV, at tree level (solid
black line), one-loop (dotted red line), one-loop with renormalon subtraction (light solid red line),
two-loop NLL (dot-dashed blue line), and two-loop NLL with renormalon subtraction (dashed

blue line). Results are shown for three models: (a, b) = (2.5,−0.8) (left panel), (3.0,−0.5) (middle
panel) and (3.5,−0.2) (right panel). All models have Λ = 0.55 GeV and a gap of ∆̄ = 100MeV.

functions have unphysical negative values for small !, we see that the renormalon-subtracted

curves are alway positive. This effect of the renormalon subtraction is very general, we have

checked that it is realized for any choice of model parameters, renormalization scale µ, and

scheme parameter L >∼ Λ. We illustrate this in Fig. 3 by showing soft functions S(!, !, µ) with

Λ = 0.55 GeV and (a, b) = (3,−0.5), for different choices of µ and L. For the upper (lower)

panels µ = 1.0 (1.3) GeV, and for the left, middle and right panels we have L/Λ = 0.5, 1.0

and 1.5. Note that the soft function has an anomalous dimension, see Eq. (15) and (14), so

its shape and normalization change when varying µ.

In Fig. 2 the subtracted curves also show a somewhat smaller correction to the ! value

where their maximum is located than the unsubtracted curves, but this effect is more depen-

dent on the choice of parameters, such as the L value, see Fig. 3. At O(αs) the perturbative

series for the peak position has not yet approached its asymptotic behavior, but we expect

the improvement in convergence for the peak position of the soft function to become more

pronounced when higher order perturbative results for the soft function are considered.

To test whether Spart suffers from large logs for particular values of µ, the O(α2
s) NLL

predictions for the soft function from Eq. (21) are shown as the blue dot-dashed and dashed

lines in Figs. 2 and 3. The dot-dashed curves do not have renormalon subtractions, and

again exhibit negative dips. The dashed curve use our renormalon free ∆̄, with subtractions

given by the terms in the last set of square brackets in Eq. (28) and δ1 and δ2 from Eq. (32).

We see that at this order the renormalon subtractions continue to eliminate the negative

dip at small ! values. The behavior of the peak location for the two-loop NLL result is in

general not dramatically improved, but this is simply because the O(α2
s) soft function given

in Eq. (21) is based on a logarithmic approximation in a region where the logs are not large,

and does not contain the large renormalon terms of the full two-loop soft function. Finally,

for the lower right panel of Fig. 3, we see an indication for an instability due to increasing

logarithmic terms for µ = 1.3 GeV and L/Λ = 1.5. For the model function of Eq. (22) such

13

with renormalon
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without renormalon
subtraction
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FIG. 4: Top invariant mass distribution dσ/dM2
t dM2

t̄ in the peak region as a function of M − mt

with M = Mt = Mt̄ accounting only for the perturbative corrections arising from the soft function.

The left, middle and right panel refer to the respective models and renormalon subtraction scheme
used in Fig. 2 and the same line specifications are employed.

jet function and the top quark pole mass.

Finally, let us examine the tail region of the differential cross section, using again tree-level

jet functions and equal invariant masses M = Mt = Mt̄ and ignoring common normalization

factors. To be specific we adopt the model with Λ = 0.55 GeV and (a, b) = (3.0,−0.5).

In Fig. 5a the tree-level (black lines), one-loop (red lines) and two-loop (blue lines) cross

sections are shown without renormalon subtractions as a function of M − mt. We use

µ = (M2 −m2
t )/Q to avoid large logs in the soft function when plotting over a wide range of

scales. The dot-dashed lines use the leading order result in Eq. (4) with only the partonic soft

function and no gap, and the solid and dashed lines use the full soft function S from Eq. (8)

instead and take ∆̄ = 100 MeV. For a given order in αs the difference between the curves in

Fig. 5a reflect the typical size of power corrections, and are plotted in Fig. 5c. In Fig 5b the

same tail distributions as Fig. 5a are displayed, but now with the renormalon subtraction.

Since the perturbative contributions in Spart are at the scale µop one should choose L of order

µop to avoid large logarithmic terms, as can be also seen from Eq. (31). For Fig. 5 we adopted

the scheme choice L = 3 GeV to minimize logs in the tail region. Comparing the curves in

Figs. 5a,b we see that the renormalon subtraction substantially improves the perturbative

convergence. Figure 5d shows the difference between the solid/dashed and the dot-dashed

curves from Fig. 5b. Comparing it to Fig. 5c we see that the renormalon subtractions lead,

as anticipated, to a significantly better perturbative behavior for values one would extract

from the data for the power correction.3 This illustrates that the renormalon subtracted

predictions are essential for extracting stable and renormalon-free model parameters from

experimental data. A scheme such as the ones explored here, where L " 1-3 GeV, actually

3 Note that our choice of a gap of ∆̄ = 100 MeV shifts all curves in Fig. 5a,b that use S to larger values of

M − mt. This is a significant power correction, it increases these cross-sections by ∼30%. However, the

choice of ∆̄ does not effect the impact of the renormalon subtraction.

15

32Thursday, June 12, 2008



Heavy Quark Jet Function

QCD

SCET

HQET
      Soft
Cross-Talk

top

Q

m t

!t

Integrate out 
Hard Modes

Factorize Jets, Integrate 
 out energetic collinear 
 gluons

Evolution and 
decay of top 
close to mass shell

t t

HQET
antitop

n n

33Thursday, June 12, 2008



unstable boosted HQET

one HQET for top

one HQET for antitop

although any value ∆ > ΛQCD can be considered. So we must switch from SCET onto these

HQET theories, and also consider what happens to the decay interaction in Eq. (29). We

describe the boosted HQET theories in detail in the next section, and we also discuss how

the soft cross-talk interactions remains active when the fluctuations at the top mass scale

m are integrated out.

Since the above Lagrangians and currents are LO in λ, it is natural to ask about the role

power corrections. As it turns out, higher order Lagrangians and currents give corrections

to our analysis at O(αsm/Q), O(∆/Q), O(m2/Q2), or O(Γ/m). The absence of O(m/Q)

implies that the m/Q expansion does not significantly modify the top-mass determination.

The leading action contains all m/Q corrections that do not involve an additional perturba-

tive gluon, so the corrections are O(αsm/Q). Furthermore, many of the higher order m/Q

corrections have the form of normalization corrections, and thus do not change the shape of

the invariant mass distribution. Subleading soft interactions are O(∆/Q). The interplay of

our hemisphere invariant mass variable with the top decay can induce O(m2/Q2) corrections,

as we discuss later on. Finally there will be power corrections of O(Γ/m) in bHQET.

B. Boosted HQET with Unstable Particles and Soft Cross-Talk

Boosted Heavy Quarks. HQET [36, 37, 38, 39, 40] is an effective theory describing the

interactions of a heavy quark with soft degrees of freedom, and also plays a crucial role for

jets initiated by massive unstable particles in the peak regions close to the heavy particles

mass shell. The momentum of a heavy quark interacting with soft degrees of freedom can

be written as

pµ = mvµ + kµ, (30)

where kµ denotes momentum fluctuations due to interactions with the soft degrees of freedom

and is much smaller than the heavy quark mass |kµ|! m. Also typically vµ ∼ 1 so that we

are parametrically close to the top quark quark rest-frame, vµ = (1,#0).

In the top-quark rest frame, kµ ∼ Γ ! m, and refers to momentum fluctuations of the

top due to interactions with gluons collinear to its direction which preserve the invariant

mass conditions ŝt, ŝt̄ ∼ Γ ! m. For our top-quark analysis, the center of mass frame is

the most convenient to setup the degrees of freedom. In this frame the gluons collinear

to the top-quark which preserve the invariant mass condition will be called ultra-collinear

(ucollinear) in the n direction. A different set of n̄-ucollinear gluons interact with the antitop

quark which moves in the n̄ direction. The leading order Lagrangian of the EFT describing

the evolution and decay of the top or antitop close to it’s mass shell is given by

L+ = h̄v+

(
iv+ · D+ − δm +

i

2
Γ
)
hv+ , L− = h̄v−

(
iv− · D− − δm +

i

2
Γ
)
hv− , (31)
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fluctuations
beneath the mass

where the + and − subscripts refer to the top and antitop sectors respectively, and iDµ
± =

i∂µ + gAµ
±. These HQETs represent an expansion in Γ/m. The HQET field hv+ annihilates

top quarks, while hv− creates antitop quarks. In the c.m. frame the components of kµ are

no longer homogeneous in size, and vµ
± /∼ 1. Instead for the (+,−,⊥) components we have

vµ
+ =

(
m

Q
,
Q

m
, 0⊥

)
, kµ

+ ∼ Γ

(
m

Q
,
Q

m
, 1

)
, (32)

vµ
− =

(
Q

m
,
m

Q
, 0⊥

)
, kµ

− ∼ Γ

(
Q

m
,
m

Q
, 1

)
.

This is easily obtained by boosting from the rest frame of the top and antitop respectively

with a boost factor of Q/m. In this naming scheme we will continue to call the gluons

that govern the cross-talk between top and antitop jets soft. We emphasize that they are

not included in L±, since they have nothing to do with the gluons in standard HQET. Soft

gluon interactions will be added below. To avoid double counting between the soft gluons,

the ultracollinear gluons are defined with zero-bin subtractions [51], so that for example

n̄·k+ $= 0 and n·k− $= 0.

The leading order Lagrangians L± contain a residual mass term δm which has to be chosen

according to the desired top quark mass scheme. For a given top mass scheme m, the residual

mass term is determined by its relation to the pole mass mpole = m + δm. Anticipating

that we have to switch to a properly defined short-distance mass definition [52, 53, 54, 55]

when higher order QCD corrections are included, we note that only short-distance mass

definitions are allowed which do not violate the power counting of the bHQET theories,

δm ∼ Γ. This excludes for example the use of the well known MS mass, since in this

scheme δm = αsm% Γ. In practice, this means that using the MS leads to an inconsistent

perturbative expansion as explained in section IIIG. This is the reason why the MS mass

can not be measured directly from reconstruction.

The leading order Lagrangians L± also contain top-width terms iΓ/2. An effective field

theory treatment of the evolution and decay of a massive unstable particle close to its mass

shell was developed in [8, 25, 41, 42, 43]. The examples treated, were the resonant production

of a single unstable scalar particle, and the leading and subleading width corrections to

threshold tt̄ production. In our case, we deal with the energetic pair production of massive

unstable fermions, and we arrive at two copies of this unstable HQET corresponding to the

top and antitop sectors. In these two HQET theories we treat the top and antitop decays

as totally inclusive, since we do not require detailed differential information on the decay

products. So the total top width Γ appears as an imaginary mass term in L±, which is

obtained by simply matching the imaginary part of the top and antitop self-energy graphs

from SCET onto bHQET. As we show in Sec. III, this inclusive treatment of the top decay

is consistent with the hemisphere invariant mass definition we employ in this work up to

power corrections of order (m/Q)2. We will come back to the role of higher order power

corrections in the treatment of the finite top lifetime at the end of this section.

16

pµ = mvµ
+ + kµ

collinear, but with
smaller overall scale

mass scheme
choice

δm = mpole −m

our observable is inclusive in
top decay products

k !    << m

t b

W
a) b) c)W

t  b

W
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FIG. 4: Example of the cancellation of soft gluon attachments to the decay products.

was devised in Refs. [30, 56].) The result of this procedure is exactly Eqs. (31) and (39).

Thus, the result for ∆! mΓ/Q is the same as for ∆ ∼ mΓ/Q.

We conclude that at leading order the interaction of the bHQET heavy quarks with

soft gluons are described by Eq. (39) just as they were in massive SCET. Thus this matrix

element can be used to define a soft function S, that describes the cross-talk between massive

top-quarks which have fluctuations below the mass scale m, and we can use Eq. (31) for the

remaining dynamics at LO. Thus, the dynamics separates in the manner shown in Fig. 2,

into two decoupled HQET’s and a decoupled soft-sector. In section III F below we will derive

the same result in an alternative manner, starting from the factorization theorem for the

cross-section in SCET. In this approach the definition of the jet functions and soft-cross

talk matrix elements are defined in SCET, and the matching onto bHQET only affects the

jet function. In this case the soft couplings are formulated by a matrix element from the

factorization theorem, and there is no need to consider soft couplings to fields in the bHQET

Lagrangian.

Decay Product Interactions. It is conspicuous that in the leading order bHQET setup,

gluon exchange involving top and antitop decay products is not present. We now show

that this treatment is correct and discuss the size of possible power corrections. Since we

are interested in top/antitop invariant masses in the peak region, we only have to consider

ucollinear and soft gluons. Concerning ucollinear gluons it is convenient to switch for each

bHQET into the respective heavy quark rest frame where vµ
± = (1, 0, 0, 0) and the ucollinear

gluons have momenta kµ ∼ Γ # m. For the hemisphere invariant masses we can treat the

top decay as fully inclusive at leading order (see Sec. III), so we can address the issue by

analyzing possible cuts from the top/antitop final states in electroweak contributions to the

bHQET matching conditions [42]. At leading order in the expansion in Γ/m there are cuts

from the top/antitop self energy which lead to the width terms in L±. Subleading finite

lifetime corrections to the heavy quark bilinear terms are suppressed by Γ/m and physically

related to the lifetime-dilations coming from residual momentum fluctuations of the heavy

quark. Furthermore, due to gauge invariance finite lifetime matching contributions can not

arise for the v± · A± couplings in the covariant derivatives of L±. Diagrammatically this

involves a cancellation between the graphs in Fig. 4 including all possible cuts. Diagram a

is a vertex correction, while diagram b is a wave-function-type contribution. Since momenta

19

SCET [λ ∼ m/Q " 1] bHQET [Γ/m " 1]

n-collinear (ξn, Aµ
n) pµ

n∼Q(λ2, 1,λ) n-ucollinear (hv+ , Aµ
v+) kµ∼Γ(λ,λ−1, 1)

n̄-collinear (ξn̄, Aµ
n̄) pµ

n̄∼Q(1,λ2,λ) n̄-ucollinear (hv− , Aµ
v−) kµ∼Γ(λ−1,λ, 1)

Crosstalk: soft (qs, Aµ
s ) pµ

s ∼Q(λ2,λ2,λ2) same soft (qs, Aµ
s ) pµ

s ∼(∆,∆,∆)

TABLE I: Summary of the fields required in SCET and bHQET. The first field in each bracket is

a quark, and the second is a gluon. The scaling of momentum components is given for (p+, p−, p⊥)
and the “u” prefactor stands for ultra. After factorization, the soft fields on the last line can be
treated as one universal cross-talk theory that communicates with collinear fields in both SCET

and bHQET through two kinematic variables.

where !n can be thought of as the direction of the top jet and −!n as the direction of the

antitop jet (!n2 = 1, n2 = 0, n̄2 = 0) . Any momentum can then be decomposed as

pµ = n · p n̄µ

2
+ n̄ · p nµ

2
+ pµ

⊥ , (9)

and we denote momentum components in this light cone basis as (p+, p−, p⊥) = (n·p, n̄·p, p⊥).

The square of the momentum vector pµ then reads p2 = p+p− + p2
⊥. It is also convenient to

denote the momentum of collinear particles in the !n and −!n directions by the subscripts n

and n̄ respectively, which corresponds to the large energy modes in the corresponding jets.

Thus we have collinear labels

n for the top-jet, n̄ for the antitop-jet . (10)

The momentum of soft particles will be denoted by a subscript s. The momenta of the

collinear and soft modes2 have the typical scalings shown in table I in the SCET column,

where here λ is the small expansion parameter. A particle with components scaling as

(λ2, 1, λ) has a small ⊥-momentum relative to its energy, and is said to be collinear to the

nµ direction etc. Both λ and the hard scale Q have a size that depends on the particular

process under study. For example, in B → Xsγ the hard scale is the b-quark mass mb, and

the expansion parameter is
√

ΛQCD/mb. For pair production of top jets, the hard scale Q

is the center of mass energy, and the SCET expansion parameter is

λ ∼ m

Q
. (11)

It follows that the typical virtuality of the collinear and soft modes in SCET satisfy

st ∼ st̄ ∼ m2, and p2
s ∼

m4

Q2
. (12)

2 In some factorization theorems it is necessary to distinguish between soft and ultrasoft particles, and

between two versions of SCET: called SCETI and SCETII. In this paper we only deal with SCETI with

ultrasoft gluons. For simplicity we will therefore use the terms ultrasoft and soft interchangeably.
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FIG. 9: bHQET graphs for the top quark jet function. {forwardII}

The bHQET jet functions are given by the imaginary part of the vacuum matrix elements

B± defined in Eq. (20). At tree level they are just given by the the HQET propagator,

B±(ŝ, Γt = 0) = − 1

πm

1

ŝ + i0
. (135) {cBtree}

At one loop the diagrams contributing to the vacuum matrix elements B± are shown in

Fig. (9). Results for individual graphs are given in the appendix. The sum of the one-loop

graphs in an arbitrary mass scheme gives the bare expression

Bbare
± (ŝ, Γt = 0, µ, δm) = − 1

πm

1

ŝ + i0

{
1 +

αsCF

4π

[
2

ε2
+

4

ε
ln

( µ

−ŝ − i0

)
+

2

ε

+4 ln2
( µ

−ŝ − i0

)
+ 4 ln

( µ

−ŝ − i0

)
+ 4 +

5π2

6

]}
− 1

πm

2δm

(ŝ + i0)2
. (136)

In general the residual mass term δm = mpole − m is nonzero and uniquely fixes the

mass scheme m that is being employed in HQET. In an arbitrary mass scheme we have

B±(ŝ, Γt, µ, δm) = B±(ŝ − 2δm, Γt, µ). Here δm is computed as a perturbative series in αs.

We have δm ∼ αs at lowest order, and the δm in the HQET Lagrangian, Eq. (28), should

be included as a perturbative insertion. This yields the term shown in Eq. (136).

The result in Eq. (136) can be compared to the computation of initial state radiation

from a heavy color scalar resonance produced by the collision of massless colored and neutral

scalars in Ref. [15]. At leading order in the 1/m expansion the HQET gluon interactions

are spin independent and so only affect the normalization. Furthermore to O(αs) there is

no difference between initial state and final state radiation, the signs of the i0 terms in the

eikonal propagators do not modify the result. In our calculation the analog of the initial conditions
when
this is
true?

state colored scalar in Ref. [15] is given by the final state Wilson lines in our jet-function.

Thus, we expect that the linear combination of terms in Eq. (136) in the pole mass scheme

where δm = 0 should be the same as obtained in the scalar computation [15], which is indeed

the case. In the scalar case the analog of the operator definition of the jet function B± in

Eq. (20) is not known.

The renormalization of the vacum matrix element and the jet functions for the stable or

the unstable bHQET theory is equivalent, so one can obtain the renormalization factor for
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−ŝ − i0

)
+ 4 ln

( µ
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and the most sensitive region for mass measurements is the peak region where ŝt,t̄
<∼ Γt + QΛQCD/m. Finally,

B± in Eq. (2) are heavy-quark jet functions for the top quark/antiquark, and S is the soft function describing soft
radiation between the jets. Our main focus in this article will be on the functions B±, which are defined in the
heavy-quark limit mt " Γt using HQET [20, 21]. The soft function S is universal to massless and massive jets and
a suitable model can be found in Ref. [22], extending earlier work in Ref. [23]. The factorization theorem in Eq. (2)
was derived using SCET [24, 25, 26, 27] and effective theory methods for unstable particles [28, 29, 30, 31]. A similar
factorization theorem with the soft-function and different jet functions is known to apply for jets initiated by massless
quarks [32, 33, 34, 35].

In this paper we carry out the first step towards NNLO and NNLL predictions for the invariant mass spectrum,
d2σ/dM2

t dM2
t̄ , by computing the top quark jet function at two-loop order. We also carry out the resummation

of large logs for this jet function at NNLL order. This translates into a resummation of all the large logs in the
cross-section that can modify the invariant mass distribution [12]. On the conceptual side we introduce a definition
of the top jet-mass scheme that has a well defined mass anomalous dimension at any order in perturbation theory
(unlike definitions based on cutoff moments or peak locations). In this jet-mass scheme we prove that the quark-
mass anomalous dimension is completely determined by the cusp anomalous dimension at any order in perturbation
theory. As an intermediate step to demonstrating this we show that in position space the heavy quark jet function
exponentiates. This follows from the fact that this jet function satisfies the criteria for the non-abelian exponentiation
theorem [36, 37].

Due to the simplifying nature of HQET our two-loop computation of the jet function is significantly simpler than a
direct two-loop computation of the cross-section. In particular, as we discuss below in sections II and III, even for a
finite width and an arbitrary mass scheme the jet function computation can be reduced to the perturbative evaluation
of a vacuum matrix element of Wilson lines. For heavy quarks two loop computations are already available for the
partonic heavy-quark shape function [38, 39, 40] and heavy-quark fragmentation function [38, 39, 41]. The hadronic
versions of these functions that appear in observables are non-perturbative. The hadronic shape function describes
the light-cone momentum distribution of b-quarks in a heavy B-meson [42, 43], while the hadronic fragmentation
function describes the probability that a b-quark fragments to a B-meson with a particular light-cone momentum
fraction [44]. The jet function is fundamentally different since it is defined by a matrix element evaluated between
vacuum states, and due to the smearing from the finite top-width can be reliably computed in perturbation theory.
We elaborate on similarities and differences below in sections II and III.

Our outline is as follows. In section II we discuss the basic formalism for the top quark jet function, including its
renormalization and anomalous dimension. We then give a summary of our two-loop results for the jet function and
for the solution of its renormalization group equation, with details relegated to appendices. In section III we determine
the Wilson line representation of the jet function and compare it with the shape function and fragmentation function.
Then in section IV we work out the implications of the non-abelian exponentiation theorem for the heavy-quark jet
function and for the partonic shape-function, including the combined implications of this theorem and the all-orders
solution of the renormalization group equation. In section V we discuss possible jet-mass scheme definitions, and
present a scheme based on the position space jet function that remains transitive to all orders in perturbation theory.
We also give two loop relations of the jet-mass to the pole-mass, MS-mass, and 1S-mass schemes. Finally, in section VI
we present results for the NNLO jet function with NNLL resummation, including numerical analysis. We conclude in
section VII.

II. HEAVY QUARK JET FUNCTION

In this section we describe the basic properties of the heavy-quark jet functions B±. Up to a change of variable
B+ for the top quark and B− for the antitop quark are identical by charge conjugation, so we will only refer to the
computation of B+. To simplify the notation we also drop the subscript, so that B = B+. These subscripts ± are
restored when we simultaneously consider the top and antitop system in the final factorization theorem. We start by
reviewing definitions and results for the HQET jet function from Refs. [12, 19]. B is given by the imaginary part of
a forward scattering matrix element,

B(ŝ, δm, Γt, µ)=Im
[

B(ŝ, δm, Γt, µ)
]

, (4)

where B are vacuum matrix elements of a time-ordered product of fields and Wilson lines

B(2v+ · r, δm, Γt, µ)=
−i

4πNcm

∫

d4x eir·x
〈

0
∣

∣T {h̄v+
(0)Wn(0)W †

n(x)hv+
(x)}

∣

∣ 0
〉

. (5)

Here vµ
+ is the velocity of the heavy top quark, and we introduce null-vectors nµ and n̄µ so that we can decompose

momenta as pµ = nµn̄·p/2 + n̄µn·p/2 + pµ
⊥. The vectors satisfy v2

+ = 1 and n2 = n̄2 = 0. The dot-products of these
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and the most sensi t ive region for mass measurements is the peak region where ŝt,t̄
<∼ Γt + QΛQCD / m . F inally,

B± in E q. (2) are heav y-quark jet funct ions for the top quark / antiquark , and S is the soft funct ion describing soft
radia tion between the jets. O ur main focus in this ar ticle will be on the funct ions B± , which are defined in the
heav y-quark limit mt " Γt using H Q E T [20, 21]. T he soft funct ion S is universal to massless and massive jets and
a suitable model can be found in Ref. [22], ex tending earlier work in Ref. [23]. T he factoriza tion theorem in E q. (2)
was derived using SC E T [24, 25, 26, 27] and effect ive theory methods for unstable par ticles [28, 29, 30, 31]. A similar
factoriza tion theorem with the soft-funct ion and different jet funct ions is known to apply for jets init ia ted by massless
quarks [32, 33, 34, 35].

In this paper we carry out the first step towards N N L O and N N L L predict ions for the invariant mass spectrum,
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t d M 2
t̄ , by computing the top quark jet funct ion a t two-loop order. We also carry out the resumma tion

of large logs for this jet funct ion a t N N L L order. T his transla tes into a resumma tion of all the large logs in the
cross-sect ion tha t can modify the invariant mass distribution [12]. O n the conceptual side we introduce a definition
of the top jet-mass scheme tha t has a well defined mass anomalous dimension a t any order in per turba tion theory
(unlike definitions based on cutoff moments or peak loca tions). In this jet-mass scheme we prove tha t the quark-
mass anomalous dimension is completely determined by the cusp anomalous dimension a t any order in per turba tion
theory. A s an intermedia te step to demonstra ting this we show tha t in posi t ion space the heav y quark jet funct ion
exponentia tes. T his follows from the fact tha t this jet funct ion sa tisfies the criteria for the non-abelian exponentia tion
theorem [36, 37].

D ue to the simplifying na ture of H Q E T our two-loop computa tion of the jet funct ion is significantly simpler than a
direct two-loop computa tion of the cross-sect ion. In par ticular, as we discuss below in sect ions I I and I I I , even for a
finite width and an arbitrary mass scheme the jet funct ion computa tion can be reduced to the per turba tive evalua tion
of a vacuum ma trix element of W ilson lines. For heav y quarks two loop computa tions are already available for the
par tonic heav y-quark shape funct ion [38, 39, 40] and heav y-quark fragmenta tion funct ion [38, 39, 41]. T he hadronic
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FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)

=
1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (93)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (91) into Eq. (83), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(

m,
Q

m
, µm, µ

)

(94)

×
∫ ∞

−∞

d$+d$− B+

(

ŝt −
Q$+

m
, Γ, µ

)

B−

(

ŝt̄ −
Q$−

m
, Γ, µ

)

Shemi($
+, $−, µ).

Eq. (94) is our final result in terms of the pole mass m. The analogous result for a short

distance mass is given in the next section. Here Hm(m, Q/m, µm, µ) is the hard coefficient

Hm(m, µm) run down from µm to µ, and we still have HQ(Q, µm) = |C(Q, µm)|2, and the

soft function with Wilson lines evaluated at x = 0,

Shemi($
+, $−, µ) =

1

Nc

∑

Xs

δ($+−k+a
s )δ($−−k−b

s )〈0|(Y n̄)ca′

(Yn)
cb′|Xs〉〈Xs|(Y †

n )b′c′(Y
†

n̄)a′c′|0〉 .

(95)

For completeness we wrote out the color indices from Eq. (52). Its interesting to note that in

the result in Eq. (94) the final matrix elements only involve Wilson lines (since the coupling

of gluons to a heavy quark field hv+
in B+ is the same as to a Wilson line Wv+

).

To conclude this section we finally repeat the computation of the tree level bHQET

jet functions, but now for the realistic case with Γ %= 0 in the HQET propagators. The

computation is done at a scale µ >∼ Γ, but the µ dependence does not show up at tree level.

Fig. 6b gives
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8πNcm
(−2Nc) Disc

( i

v± · k + iΓ/2

)

=
1

4πm
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( −2

v± · k + iΓ/2

)

=
1

πm

Γ

ŝ2 + Γ2
. (96)
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solution of the renormalization group equation. In section V we discuss possible jet-mass scheme definitions, and
present a scheme based on the position space jet function that remains transitive to all orders in perturbation theory.
We also give two loop relations of the jet-mass to the pole-mass, MS-mass, and 1S-mass schemes. Finally, in section VI
we present results for the NNLO jet function with NNLL resummation, including numerical analysis. We conclude in
section VII.

II. HEAVY QUARK JET FUNCTION

In this section we describe the basic properties of the heavy-quark jet functions B±. Up to a change of variable
B+ for the top quark and B− for the antitop quark are identical by charge conjugation, so we will only refer to the
computation of B+. To simplify the notation we also drop the subscript, so that B = B+. These subscripts ± are
restored when we simultaneously consider the top and antitop system in the final factorization theorem. We start by
reviewing definitions and results for the HQET jet function from Refs. [12, 19]. B is given by the imaginary part of
a forward scattering matrix element,

B(ŝ, δm, Γt, µ)=Im
[

B(ŝ, δm, Γt, µ)
]

, (4)

where B are vacuum matrix elements of a time-ordered product of fields and Wilson lines

B(2v+ · r, δm, Γt, µ)=
−i

4πNcm

∫

d4x eir·x
〈

0
∣

∣T {h̄v+
(0)Wn(0)W †

n(x)hv+
(x)}

∣

∣ 0
〉

. (5)

Here vµ
+ is the velocity of the heavy top quark, and we introduce null-vectors nµ and n̄µ so that we can decompose

momenta as pµ = nµn̄·p/2 + n̄µn·p/2 + pµ
⊥. The vectors satisfy v2

+ = 1 and n2 = n̄2 = 0. The dot-products of these

4

vectors encode the boost of the top quarks rela t ive to the center-of-mass frame of the e+e− collision, n · v+ = m / Q ,
and n̄ · v+ = Q / m . In E q. (5) the W ilson lines are

W †
n( x ) = P exp

(

ig
∫ ∞

0
ds n̄ · An(n̄s + x )

)

, Wn( x ) = P exp
(

− ig
∫ ∞

0
ds n̄ · An(n̄s + x )

)

. (6)

T hese W ilson lines make B gauge-invariant and encode the residual interact ions from the antitop jet . Both the H Q E T
fields hv+

and the gluon fields in Wn (which we call Aµ
n) are only sensi t ive to fluctua tions with p2 " m2 . In the rest-

frame of the top quark these are soft-fluctua tions, while in the e+e− center-of-mass frame they are “ ultra-collinear ”
along the direct ion of the energet ic top quark . T he gluon fields Aµ

n have zero-bin subtract ions [45] for the region of
the soft funct ion S in E q. (2) as explained in A ppendix B of Ref. [19].

T he H Q E T fields hv+
have the leading order L agrangian

Lh = h̄v+

(

i v+ · D − δm + i
2Γt

)

hv+
. (7)

H ere Γt is the top quark total width, obtained from ma tching the top-decay amplitudes in the standard model (or a
new physics model) onto H Q E T a t leading order in the electroweak interact ions, and a t any order in αs . T his gives
the correct description of finite lifet ime effects for cross-sect ion in E q. (2) to O(m2 / Q2, Γ / m) in the power counting
for separa tion of the jets from the decay products [12]. T he residual mass term δm in E q. (7) fixes the definition of
the top mass m for the H Q E T computa tions [46], where

δm = mpole − m . (8)

For predict ions in the peak region consistency with the power counting requires δm ∼ Γt ∼ ŝt ∼ ŝt̄ [12], a condition
which is true of the jet-mass scheme tha t we discuss below in sect ion V .

From the definitions in E qs. (4-5) and the L agrangian in E q. (7) one can deduce a series of proper t ies of the
jet funct ion. A s a first , instead of computing B (ŝ, δm , Γt , µ) and B(ŝ, δm , Γt , µ), one can consider computing these
funct ions for a (fict i t ious) top quark having zero width. Fur thermore, due to E q. (7) the ŝ and δm dependence occurs
in the combina tion (ŝ − 2δm), so it is useful to also have a nota tion for computa tions done with a zero residual mass
term in the L agrangian. T hus we define

B (ŝ, δm , µ) ≡ B (ŝ, δm , 0, µ) , B(ŝ, δm , µ) ≡ B(ŝ, δm , 0, µ) ,
B (ŝ, µ) ≡ B (ŝ, 0, 0, µ) , B(ŝ, µ) ≡ B(ŝ, 0, 0, µ) . (9)

T hese jet funct ions and vacuum ma trix elements are rela ted by

B (ŝ, δm , µ) = Im
[

B(ŝ, δm , µ)
]

, B (ŝ, µ) = Im
[

B(ŝ, µ)
]

, (10)

and B (ŝ, µ) has suppor t for ŝ ≥ 0. T he form of the L agrangian in E q. (7) implies tha t having calcula ted B(ŝ, µ) we
can include the width and δm terms by simple shifts,

B(ŝ, δm , Γt , µ) = B(ŝ + iΓt, δm , µ) = B(ŝ − 2δm + iΓt, µ) . (11)

A s discussed in Ref. [19] the stable and unstable H Q E T jet funct ions can also be rela ted with a dispersion rela t ion,

B (ŝ, δm , Γt , µ) =
∫ ∞

−∞
dŝ′ B (ŝ − ŝ′ , δm , µ)

Γt

π(ŝ′ 2 + Γ2
t )

=
∫ ∞

−∞
dŝ′ B (ŝ − ŝ′ − 2δm , µ)

Γt

π(ŝ′ 2 + Γ2
t )

. (12)

T he width of the top quark acts as an infrared cutoff through this smearing with the B rei t- W igner. F inally we remark
tha t the µ-dependence indica ted by the last argument of B (ŝ, δm , Γt, µ) and B(ŝ, δm , Γt , µ) is independent of Γt and
δm . A dditional scale dependence may be induced by the choice of mass-scheme, ie. by a parameter δm = δm(µ).
W hen we consider B (ŝt , δm , Γt , µ) as a funct ion of M t this additional µ-dependence from δm cancels against tha t in
the mass m(µ) in E q. (3). T his cancella t ion occurs a t leading order in the H Q E T power counting.

We will also find it useful to consider the Fourier transformed jet funct ions

B̃ (y , δm , Γt, µ) =
∫ +∞

−∞
dŝ e−iy ŝ B (ŝ, δm , Γt , µ) , B̃ (y , δm , µ) =

∫ +∞

−∞
dŝ e−iy ŝ B (ŝ, δm , µ) , (13)

where y = y− i0 to ensure convergence as ŝ → ∞. In Fourier space the connect ion between the jet funct ions computed
with zero and non-zero width and residual mass terms becomes par ticularly simple,

B̃ (y , δm , Γt , µ) = B̃ (y , δm , µ) e−|y|Γt = B̃ (y , µ) e−2iyδm e−|y|Γt . (14)

T his formula is quite interest ing, since as we discuss in sect ion I V below, the result for B̃ (y , µ) also exponentia tes to
all orders in per turba tion theory.
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Here Γt is the top quark total width, obtained from matching the top-decay amplitudes in the standard model (or a
new physics model) onto HQET at leading order in the electroweak interactions, and at any order in αs. This gives
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From the definitions in Eqs. (4-5) and the Lagrangian in Eq. (7) one can deduce a series of properties of the
jet function. As a first, instead of computing B(ŝ, δm, Γt, µ) and B(ŝ, δm, Γt, µ), one can consider computing these
functions for a (fictitious) top quark having zero width. Furthermore, due to Eq. (7) the ŝ and δm dependence occurs
in the combination (ŝ − 2δm), so it is useful to also have a notation for computations done with a zero residual mass
term in the Lagrangian. Thus we define
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These jet functions and vacuum matrix elements are related by
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[

B(ŝ, δm, µ)
]

, B(ŝ, µ) = Im
[

B(ŝ, µ)
]

, (10)

and B(ŝ, µ) has support for ŝ ≥ 0. The form of the Lagrangian in Eq. (7) implies that having calculated B(ŝ, µ) we
can include the width and δm terms by simple shifts,

B(ŝ, δm, Γt, µ) = B(ŝ + iΓt, δm, µ) = B(ŝ − 2δm + iΓt, µ) . (11)

As discussed in Ref. [19] the stable and unstable HQET jet functions can also be related with a dispersion relation,

B(ŝ, δm, Γt, µ) =

∫ ∞

−∞
dŝ′ B(ŝ − ŝ′, δm, µ)

Γt

π(ŝ′ 2 + Γ2
t )

=

∫ ∞

−∞
dŝ′ B(ŝ − ŝ′ − 2δm, µ)

Γt

π(ŝ′ 2 + Γ2
t )

. (12)

The width of the top quark acts as an infrared cutoff through this smearing with the Breit-Wigner. Finally we remark
that the µ-dependence indicated by the last argument of B(ŝ, δm, Γt, µ) and B(ŝ, δm, Γt, µ) is independent of Γt and
δm. Additional scale dependence may be induced by the choice of mass-scheme, ie. by a parameter δm = δm(µ).
When we consider B(ŝt, δm, Γt, µ) as a function of Mt this additional µ-dependence from δm cancels against that in
the mass m(µ) in Eq. (3). This cancellation occurs at leading order in the HQET power counting.

We will also find it useful to consider the Fourier transformed jet functions

B̃(y, δm, Γt, µ) =

∫ +∞

−∞
dŝ e−iy ŝ B(ŝ, δm, Γt, µ) , B̃(y, δm, µ) =

∫ +∞

−∞
dŝ e−iy ŝ B(ŝ, δm, µ) , (13)

where y = y−i0 to ensure convergence as ŝ → ∞. In Fourier space the connection between the jet functions computed
with zero and non-zero width and residual mass terms becomes particularly simple,

B̃(y, δm, Γt, µ) = B̃(y, δm, µ) e−|y|Γt = B̃(y, µ) e−2iyδm e−|y|Γt . (14)

This formula is quite interesting, since as we discuss in section IV below, the result for B̃(y, µ) also exponentiates to
all orders in perturbation theory.
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Renormalization and RGE:

5

A . R e n o r m a l i z a t io n a n d A n o m a lo us D i m e nsio n

We use dimensional regulariza tion with d = 4 − 2ε and the MS scheme to renormalize the jet funct ion. T he
renormaliza tion proper t ies of B(ŝ, µ) and B(ŝ, µ) are the same, so in the following we work with B(ŝ, µ) for simplici ty.
T he divergences of loop calcula tions are removed with Z-factors, so one can pass from bare to renormalized ma trix
elements by

B(ŝ, µ) =
∫

dŝ′ Z−1
B (ŝ − ŝ′, µ) Bbare(ŝ′) . (15)

T his equa tion can be thought of as the generaliza tion of a Z ma trix which renormalizes a set of opera tors indexed by
ŝ, to the case where ŝ is continuous [24]. H ere ZB and its inverse sa tisfy

∫

dŝ′ Z−1
B (ŝ′′ − ŝ′, µ)ZB (ŝ′ − ŝ, µ) = δ(ŝ′′ − ŝ) . (16)

From the µ independence of Bbare one obtains the renormaliza tion group equa tion

µ
d

dµ
B(ŝ, µ) =

∫

dŝ′ γB (ŝ − ŝ′, µ) B(ŝ′, µ) , (17)

where the anomalous dimension is

γB (ŝ, µ) = −
∫

dŝ′ Z−1
B (ŝ − ŝ′, µ)µ

d

dµ
ZB(ŝ′, µ) =

∫

dŝ′ ZB (ŝ − ŝ′, µ)µ
d

dµ
Z−1

B (ŝ′, µ) . (18)

Since γB (ŝ, µ) is real we can also simply take the imaginary par t of E q. (17) to obtain the renormaliza tion group
equa tion for B(ŝ, µ). In the MS scheme ZB and Z−1

B have the ε dependence

ZB (ŝ, µ) = δ(ŝ) +
∞
∑

k=1

1
εk

Z(k)(ŝ, µ) , Z−1
B (ŝ, µ) = δ(ŝ) +

∞
∑

k=1

1
εk

Z̄(k)(ŝ, µ) , (19)

where Z(k) and Z̄(k) are ε independent . E q. (16) implies tha t Z̄(1) = −Z(1), and Z̄(k) = −Z(k) −
∑k−1

j=1 Z̄(j) ⊗Z(k−j)

for k ≥ 2. D emanding tha t γB (ŝ, µ) is finite as ε → 0 and using the β-funct ion equa tion

µ
d

dµ
αs(µ) = −2εαs(µ) + β[αs] , (20)

gives the standard dimensional regulariza tion result tha t the anomalous dimension is determined by the residue of
the 1/ε term a t any order in per turba tion theory,

γB (ŝ, µ) = −2αs
∂

∂αs
Z̄(1)(ŝ, µ) = 2αs

∂

∂αs
Z(1)(ŝ, µ) . (21)

We find tha t the higher 1/ε poles lead to the consistency equa tions [' ≥ 1]

2αs
∂

∂αs
Z(!+1)

B (ŝ, µ) =
(

µ
∂

∂µ
+ β

∂

∂αs

)

Z(!)
B (ŝ, µ) +

!
∑

k=1

∫

dŝ′ Z̄(k)
B (ŝ−ŝ′, µ)

[

− 2αs
∂

∂αs
Z(!−k+1)

B (ŝ′, µ)

+
(

µ
∂

∂µ
+ β

∂

∂αs

)

Z(!−k)
B (ŝ′, µ)

]

, (22)

where for convenience we let Z(0)
B (ŝ, µ) = δ(ŝ). T he result in E q. (22) agrees with the form of the counter term

consistency condition derived in Ref. [40] for the heav y-quark shape funct ion.
A t any order in per turba tion theory the anomalous dimension in E q. (21) has the form

γB (ŝ, µ) = −2Γc[αs]
1
µ

[

µ θ(ŝ)
ŝ

]

+

+ γ[αs] δ(ŝ) , (23)

where our definition of this plus-funct ion is given below in E q. (40). H ere Γc[αs] and γ[αs] have an infinite power
series expansions in αs tha t star ts a t linear order. Γc[αs] is the cusp-anomalous dimension [47, 48, 49, 50], while γ[αs]
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ZB(ŝ′, µ) =

∫
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B (ŝ, µ) =
(

µ
∂

∂µ
+ β

∂

∂αs

)

Z(!)
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where our definition of this plus-funct ion is given below in E q. (40). H ere Γc[αs] and γ[αs] have an infinite power
series expansions in αs tha t star ts a t linear order. Γc[αs] is the cusp-anomalous dimension [47, 48, 49, 50], while γ[αs]

cusp
anom.dim.

non-cusp
term

Position space:

6

is the part of the anomalous dimension that is unrelated to the cusp. In position space the renormalization group
equation and anomalous dimension are simpler,

µ
d

dµ
B̃(y, µ) = γ̃B(y, µ) B̃(y, µ) , γ̃B(y, µ) = 2Γc[αs] ln

(

ieγEy µ
)

+ γ[αs] . (24)

The form of the anomalous dimensions given in Eqs. (23) and (24) is guaranteed to all orders in perturbation theory
by a theorem regarding the renormalization of Wilson-line operators with cusps proven in Ref. [49, 50], which ensures
it can not have dependence on the position space variable other than the ln(yµ). To solve Eq. (24) one first writes

ln(ieγEyµ) = ln(ieγEyµ0) + ln(µ/µ0), then rewrites ln(µ/µ0) =
∫ αs(µ)

αsµ0
dα′/β[α′], and finally integrates with a change

of variables d lnµ = dα/β[α]. This gives a solution that connects the result at the scale µ0 to that at the scale µ,

B̃(y, µ) = eK(µ,µ0)
(

ieγEy µ0

)ω(µ,µ0)
B̃(y, µ0) , (25)

where the two evolution functions are

ω(µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α] , K(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
γ[α] + 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α]

∫ α

αs(µ0)

dα′

β[α′]
. (26)

Taking the Fourier transform of Eq. (25) then gives the solution to the momentum space RGE equation

B(ŝ, µ) =

∫ +∞

−∞
dŝ′ UB(ŝ − ŝ′, µ, µ0) B(ŝ′, µ0) , UB(ŝ − ŝ′, µ, µ0) =

eK
(

eγE
)ω

µ0 Γ(−ω)

[

µ1+ω
0 θ(ŝ − ŝ′)

(ŝ − ŝ′)1+ω

]

+

, (27)

where K = K(µ, µ0) and ω = ω(µ, µ0). All results in this subsection are valid to all orders in the αs expansion, and
can thus be used to sum logs in B at LL, NLL, NNLL, and beyond. To our knowledge, the results in Eq. (26) and
(27) were first derived for the B-meson shape function, first at one-loop in Ref. [51] and then to all-orders in Ref. [52].

B. NNLO Result for B(ŝ, µ)

To obtain results at NNLO we consider the αs expansion of quantities defined in subsection II A. The bare and
renormalized jet functions can be written as

Bbare(ŝ) =
∞
∑

j=0

[αbare
s

π

]j
Bbare

j (ŝ) , B(ŝ, µ) =
∞
∑

j=0

[αs(µ)

π

]j
Bj(ŝ, µ) . (28)

We also expand the anomalous dimensions and β-function as

Γc[αs] =
∞
∑

j=0

Γc
j

[αs(µ)

4π

]j+1
, γ[αs] =

∞
∑

j=0

γj

[αs(µ)

4π

]j+1
, β[αs] = −2αs(µ)

∞
∑

n=0

βn

[

αs(µ)

4π

]n+1

, (29)

where up to three-loop order [53, 54, 55, 56, 57, 58]

β0 =
11CA

3
−

2nf

3
, β1 =

34C2
A

3
−

10CAnf

3
− 2CF nf ,

β2 =
2857C3

A

54
+

(

C2
F −

205CF CA

18
−

1415C2
A

54

)

nf +
(11CF

9
+

79CA

54

)

n2
f . (30)

To incorporate the δm term from the Lagrangian in Eq. (7) we evaluate Bbare
j (ŝ − 2δm) and then expand in αs(µ)

with

δm =
∞
∑

j=1

[αs(µ)

π

]j
δmj(µ) =

αs(µ)

π
δm1(µ) +

α2
s(µ)

π2
δm2(µ) + . . . . (31)

This is simpler than treating δm as a Feynman rule insertion, and equivalent. The bare and renormalized couplings
are related by

αbare
s = ιεµ2εαs(µ)Z2

g , ι ≡ exp(γE)/(4π) , (32)

6

is the part of the anomalous dimension that is unrelated to the cusp. In position space the renormalization group
equation and anomalous dimension are simpler,

µ
d

dµ
B̃(y, µ) = γ̃B(y, µ) B̃(y, µ) , γ̃B(y, µ) = 2Γc[αs] ln

(

ieγEy µ
)

+ γ[αs] . (24)

The form of the anomalous dimensions given in Eqs. (23) and (24) is guaranteed to all orders in perturbation theory
by a theorem regarding the renormalization of Wilson-line operators with cusps proven in Ref. [49, 50], which ensures
it can not have dependence on the position space variable other than the ln(yµ). To solve Eq. (24) one first writes

ln(ieγEyµ) = ln(ieγEyµ0) + ln(µ/µ0), then rewrites ln(µ/µ0) =
∫ αs(µ)

αsµ0
dα′/β[α′], and finally integrates with a change

of variables d lnµ = dα/β[α]. This gives a solution that connects the result at the scale µ0 to that at the scale µ,

B̃(y, µ) = eK(µ,µ0)
(

ieγEy µ0

)ω(µ,µ0)
B̃(y, µ0) , (25)

where the two evolution functions are

ω(µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α] , K(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
γ[α] + 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α]

∫ α

αs(µ0)

dα′

β[α′]
. (26)

Taking the Fourier transform of Eq. (25) then gives the solution to the momentum space RGE equation

B(ŝ, µ) =

∫ +∞

−∞
dŝ′ UB(ŝ − ŝ′, µ, µ0) B(ŝ′, µ0) , UB(ŝ − ŝ′, µ, µ0) =

eK
(

eγE
)ω

µ0 Γ(−ω)

[

µ1+ω
0 θ(ŝ − ŝ′)

(ŝ − ŝ′)1+ω

]

+

, (27)

where K = K(µ, µ0) and ω = ω(µ, µ0). All results in this subsection are valid to all orders in the αs expansion, and
can thus be used to sum logs in B at LL, NLL, NNLL, and beyond. To our knowledge, the results in Eq. (26) and
(27) were first derived for the B-meson shape function, first at one-loop in Ref. [51] and then to all-orders in Ref. [52].

B. NNLO Result for B(ŝ, µ)

To obtain results at NNLO we consider the αs expansion of quantities defined in subsection II A. The bare and
renormalized jet functions can be written as

Bbare(ŝ) =
∞
∑

j=0

[αbare
s

π

]j
Bbare

j (ŝ) , B(ŝ, µ) =
∞
∑

j=0

[αs(µ)

π

]j
Bj(ŝ, µ) . (28)

We also expand the anomalous dimensions and β-function as

Γc[αs] =
∞
∑

j=0

Γc
j

[αs(µ)

4π

]j+1
, γ[αs] =

∞
∑

j=0

γj

[αs(µ)

4π

]j+1
, β[αs] = −2αs(µ)

∞
∑

n=0

βn

[

αs(µ)

4π

]n+1

, (29)

where up to three-loop order [53, 54, 55, 56, 57, 58]

β0 =
11CA

3
−

2nf

3
, β1 =

34C2
A

3
−

10CAnf

3
− 2CF nf ,

β2 =
2857C3

A

54
+

(

C2
F −

205CF CA

18
−

1415C2
A

54

)

nf +
(11CF

9
+

79CA

54

)

n2
f . (30)

To incorporate the δm term from the Lagrangian in Eq. (7) we evaluate Bbare
j (ŝ − 2δm) and then expand in αs(µ)

with

δm =
∞
∑

j=1

[αs(µ)

π

]j
δmj(µ) =

αs(µ)

π
δm1(µ) +

α2
s(µ)

π2
δm2(µ) + . . . . (31)

This is simpler than treating δm as a Feynman rule insertion, and equivalent. The bare and renormalized couplings
are related by

αbare
s = ιεµ2εαs(µ)Z2

g , ι ≡ exp(γE)/(4π) , (32)

6

is the par t of the anomalous dimension tha t is unrela ted to the cusp. In posi t ion space the renormaliza tion group
equa tion and anomalous dimension are simpler,

µ
d

dµ
B̃ (y , µ) = γ̃B (y , µ) B̃ (y , µ) , γ̃B (y , µ) = 2Γc[αs] ln

(

i eγE y µ
)

+ γ[αs] . (24)

T he form of the anomalous dimensions given in E qs. (23) and (24) is guaranteed to all orders in per turba tion theory
by a theorem regarding the renormaliza tion of W ilson-line opera tors with cusps proven in Ref. [49, 50], which ensures
i t can not have dependence on the posi t ion space variable other than the ln(y µ). To solve E q. (24) one first writes
ln( i eγE y µ) = ln( i eγE y µ0) + ln(µ / µ0), then rewrites ln(µ / µ0) =

∫ αs(µ)
αsµ0

dα′ /β[α′], and finally integra tes with a change
of variables d ln µ = dα /β[α]. T his gives a solution tha t connects the result a t the scale µ0 to tha t a t the scale µ ,

B̃ (y , µ) = eK(µ,µ0)
(

i eγE y µ0

)ω(µ,µ0) B̃ (y , µ0) , (25)

where the two evolution funct ions are

ω(µ , µ0) = 2
∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α] , K (µ , µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
γ[α] + 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α]

∫ α

αs(µ0)

dα′

β[α′]
. (26)

Taking the Fourier transform of E q. (25) then gives the solution to the momentum space R G E equa tion

B (ŝ, µ) =
∫ +∞

−∞
dŝ′ UB (ŝ − ŝ′ , µ , µ0) B (ŝ′ , µ0) , UB (ŝ − ŝ′ , µ , µ0) =

eK
(

eγE
)ω

µ0 Γ(−ω)

[

µ1+ω
0 θ(ŝ − ŝ′)
(ŝ − ŝ′)1+ω

]

+

, (27)

where K = K (µ , µ0) and ω = ω(µ , µ0). A ll results in this subsect ion are valid to all orders in the αs expansion, and
can thus be used to sum logs in B a t L L , N L L , N N L L , and beyond. To our knowledge, the results in E q. (26) and
(27) were first derived for the B -meson shape funct ion, first a t one-loop in Ref. [51] and then to all-orders in Ref. [52].

B. NNLO Result for B(ŝ, µ)

To obtain results a t N N L O we consider the αs expansion of quantit ies defined in subsect ion I I A . T he bare and
renormalized jet funct ions can be writ ten as

Bbare(ŝ) =
∞
∑

j=0

[αbare
s

π

]j
Bbare

j (ŝ) , B(ŝ, µ) =
∞
∑

j=0

[αs(µ)
π

]j
Bj (ŝ, µ) . (28)

We also expand the anomalous dimensions and β-funct ion as

Γc[αs] =
∞
∑

j=0

Γc
j

[αs(µ)
4π

]j+1
, γ[αs] =

∞
∑

j=0

γj

[αs(µ)
4π

]j+1
, β[αs] = −2αs(µ)

∞
∑

n=0

βn

[

αs(µ)
4π

]n+1

, (29)

where up to three-loop order [53, 54, 55, 56, 57, 58]

β0 =
11 CA

3
−

2nf

3
, β1 =

34 C 2
A

3
−

10 CAnf

3
− 2 CF nf ,

β2 =
2857 C 3

A

54
+

(

C 2
F −

205 CF CA

18
−

1415 C 2
A

54

)

nf +
(11 CF

9
+

79 CA

54

)

n2
f . (30)

To incorpora te the δm term from the L agrangian in E q. (7) we evalua te Bbare
j (ŝ − 2δm) and then expand in αs(µ)

with

δm =
∞
∑

j=1

[αs(µ)
π

]j
δmj (µ) =

αs(µ)
π

δm1(µ) +
α2

s (µ)
π2

δm2(µ) + . . . . (31)

T his is simpler than trea ting δm as a Feynman rule inser t ion, and equivalent . T he bare and renormalized couplings
are rela ted by

αbare
s = ιε µ2εαs(µ) Z 2

g , ι ≡ exp(γE ) / (4π) , (32)

solution:

known to
3 loops

now known 
to

2 loops

convolutions

5

A. Renormalization and Anomalous Dimension

We use dimensional regularization with d = 4 − 2ε and the MS scheme to renormalize the jet function. The
renormalization properties of B(ŝ, µ) and B(ŝ, µ) are the same, so in the following we work with B(ŝ, µ) for simplicity.
The divergences of loop calculations are removed with Z-factors, so one can pass from bare to renormalized matrix
elements by

B(ŝ, µ) =

∫

dŝ′ Z−1
B (ŝ − ŝ′, µ) Bbare(ŝ′) . (15)

This equation can be thought of as the generalization of a Z matrix which renormalizes a set of operators indexed by
ŝ, to the case where ŝ is continuous [24]. Here ZB and its inverse satisfy

∫

dŝ′ Z−1
B (ŝ′′ − ŝ′, µ)ZB(ŝ′ − ŝ, µ) = δ(ŝ′′ − ŝ) . (16)

From the µ independence of Bbare one obtains the renormalization group equation

µ
d

dµ
B(ŝ, µ)=

∫

dŝ′ γB(ŝ − ŝ′, µ) B(ŝ′, µ) , (17)

where the anomalous dimension is

γB(ŝ, µ) = −
∫

dŝ′ Z−1
B (ŝ − ŝ′, µ)µ

d

dµ
ZB(ŝ′, µ) =

∫

dŝ′ ZB(ŝ − ŝ′, µ)µ
d

dµ
Z−1

B (ŝ′, µ) . (18)

Since γB(ŝ, µ) is real we can also simply take the imaginary part of Eq. (17) to obtain the renormalization group
equation for B(ŝ, µ). In the MS scheme ZB and Z−1

B have the ε dependence

ZB(ŝ, µ) = δ(ŝ) +
∞
∑

k=1

1

εk
Z(k)(ŝ, µ) , Z−1

B (ŝ, µ) = δ(ŝ) +
∞
∑

k=1

1

εk
Z̄(k)(ŝ, µ) , (19)

where Z(k) and Z̄(k) are ε independent. Eq. (16) implies that Z̄(1) = −Z(1), and Z̄(k) = −Z(k) −
∑k−1

j=1 Z̄(j) ⊗Z(k−j)

for k ≥ 2. Demanding that γB(ŝ, µ) is finite as ε → 0 and using the β-function equation

µ
d

dµ
αs(µ)=−2εαs(µ) + β[αs] , (20)

gives the standard dimensional regularization result that the anomalous dimension is determined by the residue of
the 1/ε term at any order in perturbation theory,

γB(ŝ, µ) = −2αs
∂

∂αs
Z̄(1)(ŝ, µ) = 2αs

∂

∂αs
Z(1)(ŝ, µ) . (21)

We find that the higher 1/ε poles lead to the consistency equations [' ≥ 1]

2αs
∂

∂αs
Z(!+1)

B (ŝ, µ) =
(

µ
∂

∂µ
+ β

∂

∂αs

)

Z(!)
B (ŝ, µ) +

!
∑

k=1

∫

dŝ′ Z̄(k)
B (ŝ−ŝ′, µ)

[

− 2αs
∂

∂αs
Z(!−k+1)

B (ŝ′, µ)

+
(

µ
∂

∂µ
+ β

∂

∂αs

)

Z(!−k)
B (ŝ′, µ)

]

, (22)

where for convenience we let Z(0)
B (ŝ, µ) = δ(ŝ). The result in Eq. (22) agrees with the form of the counterterm

consistency condition derived in Ref. [40] for the heavy-quark shape function.
At any order in perturbation theory the anomalous dimension in Eq. (21) has the form

γB(ŝ, µ)=−2Γc[αs]
1

µ

[

µ θ(ŝ)

ŝ

]

+

+ γ[αs] δ(ŝ) , (23)

where our definition of this plus-function is given below in Eq. (40). Here Γc[αs] and γ[αs] have an infinite power
series expansions in αs that starts at linear order. Γc[αs] is the cusp-anomalous dimension [47, 48, 49, 50], while γ[αs]

K(µ, µ0) = . . .,

Momentum space:

6

is the part of the anomalous dimension that is unrelated to the cusp. In position space the renormalization group
equation and anomalous dimension are simpler,

µ
d

dµ
B̃(y, µ) = γ̃B(y, µ) B̃(y, µ) , γ̃B(y, µ) = 2Γc[αs] ln

(

ieγEy µ
)

+ γ[αs] . (24)

The form of the anomalous dimensions given in Eqs. (23) and (24) is guaranteed to all orders in perturbation theory
by a theorem regarding the renormalization of Wilson-line operators with cusps proven in Ref. [49, 50], which ensures
it can not have dependence on the position space variable other than the ln(yµ). To solve Eq. (24) one first writes

ln(ieγEyµ) = ln(ieγEyµ0) + ln(µ/µ0), then rewrites ln(µ/µ0) =
∫ αs(µ)

αsµ0
dα′/β[α′], and finally integrates with a change

of variables d lnµ = dα/β[α]. This gives a solution that connects the result at the scale µ0 to that at the scale µ,

B̃(y, µ) = eK(µ,µ0)
(

ieγEy µ0

)ω(µ,µ0)
B̃(y, µ0) , (25)

where the two evolution functions are

ω(µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α] , K(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
γ[α] + 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α]

∫ α

αs(µ0)

dα′

β[α′]
. (26)

Taking the Fourier transform of Eq. (25) then gives the solution to the momentum space RGE equation

B(ŝ, µ) =

∫ +∞

−∞
dŝ′ UB(ŝ − ŝ′, µ, µ0) B(ŝ′, µ0) , UB(ŝ − ŝ′, µ, µ0) =

eK
(

eγE
)ω

µ0 Γ(−ω)

[

µ1+ω
0 θ(ŝ − ŝ′)

(ŝ − ŝ′)1+ω

]

+

, (27)

where K = K(µ, µ0) and ω = ω(µ, µ0). All results in this subsection are valid to all orders in the αs expansion, and
can thus be used to sum logs in B at LL, NLL, NNLL, and beyond. To our knowledge, the results in Eq. (26) and
(27) were first derived for the B-meson shape function, first at one-loop in Ref. [51] and then to all-orders in Ref. [52].

B. NNLO Result for B(ŝ, µ)

To obtain results at NNLO we consider the αs expansion of quantities defined in subsection II A. The bare and
renormalized jet functions can be written as

Bbare(ŝ) =
∞
∑

j=0

[αbare
s

π

]j
Bbare

j (ŝ) , B(ŝ, µ) =
∞
∑

j=0

[αs(µ)

π

]j
Bj(ŝ, µ) . (28)

We also expand the anomalous dimensions and β-function as

Γc[αs] =
∞
∑

j=0

Γc
j

[αs(µ)

4π

]j+1
, γ[αs] =

∞
∑

j=0

γj

[αs(µ)

4π

]j+1
, β[αs] = −2αs(µ)

∞
∑

n=0

βn

[

αs(µ)

4π

]n+1

, (29)

where up to three-loop order [53, 54, 55, 56, 57, 58]

β0 =
11CA

3
−

2nf

3
, β1 =

34C2
A

3
−

10CAnf

3
− 2CF nf ,

β2 =
2857C3

A

54
+

(

C2
F −

205CF CA

18
−

1415C2
A

54

)

nf +
(11CF

9
+

79CA

54

)

n2
f . (30)

To incorporate the δm term from the Lagrangian in Eq. (7) we evaluate Bbare
j (ŝ − 2δm) and then expand in αs(µ)

with

δm =
∞
∑

j=1

[αs(µ)

π

]j
δmj(µ) =

αs(µ)

π
δm1(µ) +

α2
s(µ)

π2
δm2(µ) + . . . . (31)

This is simpler than treating δm as a Feynman rule insertion, and equivalent. The bare and renormalized couplings
are related by

αbare
s = ιεµ2εαs(µ)Z2

g , ι ≡ exp(γE)/(4π) , (32)

36Thursday, June 12, 2008



Two-Loop Result Jain, Scimemi, I.S.
8

F I G . 1: G raphs for Bbare
2 (ŝ). G luons from an ⊗ are from t he W ilson lines, t he ha t ched blob is t he two-loop vacuum polariza t ion

of t he heav y quark , and t he blobs wi t h diagonal lines include all one-loop vacuum polariza t ion graphs for t he gluon . N umb ering
t he graphs from 1 to 16 from left-to-right and top-to-bot tom, we not e t ha t graphs 2, 4, 5, 7, 9, 10, 11, 14, and 16 implici t ly
also st and for t heir left-right sy mmet ric count erpar t .

O ne can pass from the funct ion B(ŝ, δm, µ) to the distribution B(ŝ, δm, µ) using E q. (10) and the formulas in E q. ( B3).
T his gives

m B(ŝ, δm, µ) = δ(ŝ) +
CF αs(µ)

π

{

2L1 − L0 +
(

1 −
π2

8

)

δ(ŝ)
}

−
2 αs(µ)

π
δm1(µ) δ′(ŝ)

+
α2

s (µ)
π2

{

C2
F

[

2L3 − 3L2 +
(

3 −
11π2

12

)

L1 +
(

− 1 +
11π2

24
+ 4ζ3

)

L0 +
(1

2
−

5π2

24
+

13π4

5760
− 2ζ3

)

δ(ŝ)
]

+ CF CA

[

(2
3
−

π2

6

)

L1 +
(

−
5

18
+

π2

12
+

5ζ3

4

)

L0 +
(

−
11
54

−
π2

144
+

23π4

2880
−

5ζ3

8

)

δ(ŝ)
]

+ CF β0

[

−
1
2
L2 +

4
3
L1 +

(

−
47
36

+
π2

12

)

L0 +
(281

216
−

59π2

576
−

17ζ3

48

)

δ(ŝ)
]

}

−
2 α2

s(µ)
π2

{

δm2 δ′(ŝ) − (δm1)2 δ′′(ŝ) + δm1 CF

[

2(L1)′ − (L0)′ +
(

1 −
π2

8

)

δ′(ŝ)
]

}

, (39)

where for the log plus-funct ions we use the nota tion

Lk =
1
µ

[

θ(ŝ) lnk(ŝ/µ)
ŝ/µ

]

+

≡ lim
ξ→0

1
µ

[

θ(x−ξ) lnn x

x
+ δ(x−ξ)

lnn+1ξ

n + 1

]

x=ŝ/µ

. (40)

T he results in E qs. (38) and (39) are presented in an arbitrary mass scheme, which is specified by the choice for the
coefficients δm1 and δm2 . A n appropria te mass-scheme for top-jet cross sect ions is described below in sect ion V .
In order to obtain the distribution B(ŝ, δm, Γt, µ) with Γt #= 0 one can input E q. (39) into the integral with the
B rei t- W igner in E q. (12). However the simpler method, which we use below in sect ion V I , is to shift ŝ → ŝ + iΓt in
E qs. (36,38) and then take the imaginary par t as in E q. (11).

From the renormaliza tion constants Z(1)
1 and Z(1)

2 given in A ppendix A we also obtain the anomalous dimension
terms in E q. (29). T he cusp anomalous dimension is known up to three-loop order Γc

0,1,2 [50, 61], and we have
confirmed tha t our two-loop analysis reproduces the expected result for the two-loop cusp coefficient , Γc

1 . For B the
one-loop anomalous dimension γ0 has been calcula ted in Ref. [19]. T he two-loop anomalous dimension γ1 is obtained

7

where Zg is the Z-factor for the strong coupling and the iota dependence, ιε, ensures we are in the MS scheme rather
than the MS scheme. To determine the renormalized jet function we expand the counterterms as

Z−1
B (ŝ, µ) = δ(ŝ) +

∞
∑

j=1

[αs(µ)

π

]j
Z̄j(ŝ, µ) = δ(ŝ) +

∞
∑

k=1

∞
∑

j=1

1

εk

[αs(µ)

π

]j
Z̄(k)

j (ŝ, µ) , (33)

Zg = 1 +
∞
∑

j=1

[αs(µ)

π

]j
zgj .

Using this notation, converting αbare
s to αs(µ) with Eq. (32), and then equating powers of αs(µ) in Eq. (15) these

expansions determine the renormalized Bj(ŝ, δm, µ). The tree, one-loop, and two-loop coefficients are respectively,

B0(ŝ, δm, µ) = Bbare
0 (ŝ) , (34)

B1(ŝ, δm, µ) = ιεµ2εBbare
1 (ŝ) +

∫

dŝ′ Z̄1(ŝ−ŝ′, µ) Bbare
0 (ŝ′) − 2 δm1

dB0(ŝ, µ)

dŝ
,

B2(ŝ, δm, µ) = ι2εµ4εBbare
2 (ŝ) + 2zg1 ιεµ2εBbare

1 (ŝ) +

∫

dŝ′ Z̄1(ŝ−ŝ′, µ) ιεµ2εBbare
1 (ŝ′) +

∫

dŝ′ Z̄2(ŝ−ŝ′, µ) Bbare
0 (ŝ′)

− 2 δm2
dB0(ŝ, µ)

dŝ
+ 2 (δm1)

2 d2B0(ŝ, µ)

d2ŝ
− 2 δm1

dB1(ŝ, µ)

dŝ
,

where we used a subscript notation for the [αs(µ)/π]j expansion coefficients as in Eq. (28). The one and two-loop
Z-factors have terms

Z̄1 =
1

ε
Z̄(1)

1 +
1

ε2
Z̄(2)

1 , Z̄2 =
1

ε
Z̄(1)

2 +
1

ε2
Z̄(2)

2 +
1

ε3
Z̄(3)

2 +
1

ε4
Z̄(4)

2 , (35)

where the coefficients Z̄(k)
j are defined so that the Bj(ŝ, δm, µ) are finite as ε → 0.

The results for B0 and B1 were obtained in Ref. [12, 19]. In an arbitrary mass-scheme we have

mB0(ŝ, δm, µ) = L0 , mB1(ŝ, δm, µ) = CF

{

L2 + L1 +
(

1 +
5π2

24

)

L0
}

− 2 δm1(L
0)′ , (36)

where the prime denotes a derivative with respect to ŝ, and for convenience we have defined

Lk =
1

π(−ŝ − i0)
lnk

( µ

−ŝ − i0

)

. (37)

The corresponding two-loop result, B2, is one of the main results of this paper and involves the Feynman diagrams
shown in Fig. 1. Details of the computation of B2 using Eq. (34) in Feynman gauge are given in Appendix A. To
summarize, we use the computation of Broadhurst and Grozin [59, 60] for the divergent and finite terms of the two-loop
heavy quark propagator (the first graph in Fig. 1), and compute the remaining Feynman diagrams directly. We treat
the quarks other than top as massless, with nf such flavors, and thus do not include effects due to the b-quark mass

in vacuum polarization diagrams. We have also confirmed that the resulting Z̄(k)
j satisfy the counterterm consistency

conditions in Eq. (22). The final result for the renormalized two-loop matrix element is

mB2(ŝ, δm, µ) = C2
F

[

1

2
L4 + L3 +

(3

2
+

13π2

24

)

L2 +
(

1 +
13π2

24
− 4ζ3

)

L1 +
(1

2
+

7π2

24
+

53π4

640
− 2ζ3

)

L0

]

+ CF CA

[

(1

3
−

π2

12

)

L2 +
( 5

18
−

π2

12
−

5ζ3

4

)

L1 +
(

−
11

54
+

5π2

48
−

19π4

960
−

5ζ3

8

)

L0

]

+ CF β0

[

1

6
L3 +

2

3
L2 +

(47

36
+

π2

12

)

L1 +
(281

216
+

23π2

192
−

17ζ3

48

)

L0

]

− 2δm2(L
0)′ + 2(δm1)

2(L0)′′ − 2δm1 CF

[

L2 + L1 +
(

1 +
5π2

24

)

L0

]′

. (38)
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where Zg is the Z-factor for the strong coupling and the iota dependence, ιε, ensures we are in the MS scheme rather
than the MS scheme. To determine the renormalized jet function we expand the counterterms as

Z−1
B (ŝ, µ) = δ(ŝ) +

∞
∑

j=1

[αs(µ)

π

]j
Z̄j(ŝ, µ) = δ(ŝ) +

∞
∑

k=1

∞
∑

j=1

1

εk

[αs(µ)

π

]j
Z̄(k)

j (ŝ, µ) , (33)

Zg = 1 +
∞
∑

j=1

[αs(µ)

π

]j
zgj .

Using this notation, converting αbare
s to αs(µ) with Eq. (32), and then equating powers of αs(µ) in Eq. (15) these

expansions determine the renormalized Bj(ŝ, δm, µ). The tree, one-loop, and two-loop coefficients are respectively,

B0(ŝ, δm, µ) = Bbare
0 (ŝ) , (34)

B1(ŝ, δm, µ) = ιεµ2εBbare
1 (ŝ) +

∫

dŝ′ Z̄1(ŝ−ŝ′, µ) Bbare
0 (ŝ′) − 2 δm1

dB0(ŝ, µ)

dŝ
,

B2(ŝ, δm, µ) = ι2εµ4εBbare
2 (ŝ) + 2zg1 ιεµ2εBbare

1 (ŝ) +

∫

dŝ′ Z̄1(ŝ−ŝ′, µ) ιεµ2εBbare
1 (ŝ′) +

∫

dŝ′ Z̄2(ŝ−ŝ′, µ) Bbare
0 (ŝ′)

− 2 δm2
dB0(ŝ, µ)

dŝ
+ 2 (δm1)

2 d2B0(ŝ, µ)

d2ŝ
− 2 δm1

dB1(ŝ, µ)

dŝ
,

where we used a subscript notation for the [αs(µ)/π]j expansion coefficients as in Eq. (28). The one and two-loop
Z-factors have terms

Z̄1 =
1

ε
Z̄(1)

1 +
1

ε2
Z̄(2)

1 , Z̄2 =
1

ε
Z̄(1)

2 +
1

ε2
Z̄(2)

2 +
1

ε3
Z̄(3)

2 +
1

ε4
Z̄(4)

2 , (35)

where the coefficients Z̄(k)
j are defined so that the Bj(ŝ, δm, µ) are finite as ε → 0.

The results for B0 and B1 were obtained in Ref. [12, 19]. In an arbitrary mass-scheme we have

mB0(ŝ, δm, µ) = L0 , mB1(ŝ, δm, µ) = CF

{

L2 + L1 +
(

1 +
5π2

24

)

L0
}

− 2 δm1(L
0)′ , (36)

where the prime denotes a derivative with respect to ŝ, and for convenience we have defined

Lk =
1

π(−ŝ − i0)
lnk

( µ

−ŝ − i0

)

. (37)

The corresponding two-loop result, B2, is one of the main results of this paper and involves the Feynman diagrams
shown in Fig. 1. Details of the computation of B2 using Eq. (34) in Feynman gauge are given in Appendix A. To
summarize, we use the computation of Broadhurst and Grozin [59, 60] for the divergent and finite terms of the two-loop
heavy quark propagator (the first graph in Fig. 1), and compute the remaining Feynman diagrams directly. We treat
the quarks other than top as massless, with nf such flavors, and thus do not include effects due to the b-quark mass

in vacuum polarization diagrams. We have also confirmed that the resulting Z̄(k)
j satisfy the counterterm consistency

conditions in Eq. (22). The final result for the renormalized two-loop matrix element is

mB2(ŝ, δm, µ) = C2
F

[

1

2
L4 + L3 +

(3

2
+

13π2

24

)

L2 +
(

1 +
13π2

24
− 4ζ3

)

L1 +
(1

2
+

7π2

24
+

53π4

640
− 2ζ3

)

L0

]

+ CF CA

[

(1

3
−

π2

12

)

L2 +
( 5

18
−

π2

12
−

5ζ3

4

)

L1 +
(

−
11

54
+

5π2

48
−

19π4

960
−

5ζ3

8

)

L0

]

+ CF β0

[

1

6
L3 +

2

3
L2 +

(47

36
+

π2

12

)

L1 +
(281

216
+

23π2

192
−

17ζ3

48

)

L0

]

− 2δm2(L
0)′ + 2(δm1)

2(L0)′′ − 2δm1 CF

[

L2 + L1 +
(

1 +
5π2

24

)

L0

]′

. (38)

Still need to find a suitable 
mass scheme

6

is the par t of the anomalous dimension tha t is unrela ted to the cusp. In posi t ion space the renormaliza tion group
equa tion and anomalous dimension are simpler,

µ
d

dµ
B̃ (y , µ) = γ̃B (y , µ) B̃ (y , µ) , γ̃B (y , µ) = 2Γc[αs] ln

(

i eγE y µ
)

+ γ[αs] . (24)

T he form of the anomalous dimensions given in E qs. (23) and (24) is guaranteed to all orders in per turba tion theory
by a theorem regarding the renormaliza tion of W ilson-line opera tors with cusps proven in Ref. [49, 50], which ensures
i t can not have dependence on the posi t ion space variable other than the ln(y µ). To solve E q. (24) one first writes
ln( i eγE y µ) = ln( i eγE y µ0) + ln(µ / µ0), then rewrites ln(µ / µ0) =

∫ αs(µ)
αsµ0

dα′ /β[α′], and finally integra tes with a change
of variables d ln µ = dα /β[α]. T his gives a solution tha t connects the result a t the scale µ0 to tha t a t the scale µ ,

B̃ (y , µ) = eK(µ,µ0)
(

i eγE y µ0

)ω(µ,µ0) B̃ (y , µ0) , (25)

where the two evolution funct ions are

ω(µ , µ0) = 2
∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α] , K (µ , µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
γ[α] + 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α]

∫ α

αs(µ0)

dα′

β[α′]
. (26)

Taking the Fourier transform of E q. (25) then gives the solution to the momentum space R G E equa tion

B (ŝ, µ) =
∫ +∞

−∞
dŝ′ UB (ŝ − ŝ′ , µ , µ0) B (ŝ′ , µ0) , UB (ŝ − ŝ′ , µ , µ0) =

eK
(

eγE
)ω

µ0 Γ(−ω)

[

µ1+ω
0 θ(ŝ − ŝ′)
(ŝ − ŝ′)1+ω

]

+

, (27)

where K = K (µ , µ0) and ω = ω(µ , µ0). A ll results in this subsect ion are valid to all orders in the αs expansion, and
can thus be used to sum logs in B a t L L , N L L , N N L L , and beyond. To our knowledge, the results in E q. (26) and
(27) were first derived for the B -meson shape funct ion, first a t one-loop in Ref. [51] and then to all-orders in Ref. [52].

B. NNLO Result for B(ŝ, µ)

To obtain results a t N N L O we consider the αs expansion of quantit ies defined in subsect ion I I A . T he bare and
renormalized jet funct ions can be writ ten as

Bbare(ŝ) =
∞
∑

j=0

[αbare
s

π

]j
Bbare

j (ŝ) , B(ŝ, µ) =
∞
∑

j=0

[αs(µ)
π

]j
Bj (ŝ, µ) . (28)

We also expand the anomalous dimensions and β-funct ion as

Γc[αs] =
∞
∑

j=0

Γc
j

[αs(µ)
4π

]j+1
, γ[αs] =

∞
∑

j=0

γj

[αs(µ)
4π

]j+1
, β[αs] = −2αs(µ)

∞
∑

n=0

βn

[

αs(µ)
4π

]n+1

, (29)

where up to three-loop order [53, 54, 55, 56, 57, 58]

β0 =
11 CA

3
−

2nf

3
, β1 =

34 C 2
A

3
−

10 CAnf

3
− 2 CF nf ,

β2 =
2857 C 3

A

54
+

(

C 2
F −

205 CF CA

18
−

1415 C 2
A

54

)

nf +
(11 CF

9
+

79 CA

54

)

n2
f . (30)

To incorpora te the δm term from the L agrangian in E q. (7) we evalua te Bbare
j (ŝ − 2δm) and then expand in αs(µ)

with

δm =
∞
∑

j=1

[αs(µ)
π

]j
δmj (µ) =

αs(µ)
π

δm1(µ) +
α2

s (µ)
π2

δm2(µ) + . . . . (31)

T his is simpler than trea ting δm as a Feynman rule inser t ion, and equivalent . T he bare and renormalized couplings
are rela ted by

αbare
s = ιε µ2εαs(µ) Z 2

g , ι ≡ exp(γE ) / (4π) , (32)

6

is the part of the anomalous dimension that is unrelated to the cusp. In position space the renormalization group
equation and anomalous dimension are simpler,

µ
d

dµ
B̃(y, µ) = γ̃B(y, µ) B̃(y, µ) , γ̃B(y, µ) = 2Γc[αs] ln

(

ieγEy µ
)

+ γ[αs] . (24)

The form of the anomalous dimensions given in Eqs. (23) and (24) is guaranteed to all orders in perturbation theory
by a theorem regarding the renormalization of Wilson-line operators with cusps proven in Ref. [49, 50], which ensures
it can not have dependence on the position space variable other than the ln(yµ). To solve Eq. (24) one first writes

ln(ieγEyµ) = ln(ieγEyµ0) + ln(µ/µ0), then rewrites ln(µ/µ0) =
∫ αs(µ)

αsµ0
dα′/β[α′], and finally integrates with a change

of variables d lnµ = dα/β[α]. This gives a solution that connects the result at the scale µ0 to that at the scale µ,

B̃(y, µ) = eK(µ,µ0)
(

ieγEy µ0

)ω(µ,µ0)
B̃(y, µ0) , (25)

where the two evolution functions are

ω(µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α] , K(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
γ[α] + 2

∫ αs(µ)

αs(µ0)

dα

β[α]
Γc[α]

∫ α

αs(µ0)

dα′

β[α′]
. (26)

Taking the Fourier transform of Eq. (25) then gives the solution to the momentum space RGE equation

B(ŝ, µ) =

∫ +∞

−∞
dŝ′ UB(ŝ − ŝ′, µ, µ0) B(ŝ′, µ0) , UB(ŝ − ŝ′, µ, µ0) =

eK
(

eγE
)ω

µ0 Γ(−ω)

[

µ1+ω
0 θ(ŝ − ŝ′)

(ŝ − ŝ′)1+ω

]

+

, (27)

where K = K(µ, µ0) and ω = ω(µ, µ0). All results in this subsection are valid to all orders in the αs expansion, and
can thus be used to sum logs in B at LL, NLL, NNLL, and beyond. To our knowledge, the results in Eq. (26) and
(27) were first derived for the B-meson shape function, first at one-loop in Ref. [51] and then to all-orders in Ref. [52].

B. NNLO Result for B(ŝ, µ)

To obtain results at NNLO we consider the αs expansion of quantities defined in subsection II A. The bare and
renormalized jet functions can be written as

Bbare(ŝ) =
∞
∑

j=0

[αbare
s

π

]j
Bbare

j (ŝ) , B(ŝ, µ) =
∞
∑

j=0

[αs(µ)

π

]j
Bj(ŝ, µ) . (28)

We also expand the anomalous dimensions and β-function as

Γc[αs] =
∞
∑

j=0

Γc
j

[αs(µ)

4π

]j+1
, γ[αs] =

∞
∑

j=0

γj

[αs(µ)

4π

]j+1
, β[αs] = −2αs(µ)

∞
∑

n=0

βn

[

αs(µ)

4π

]n+1

, (29)

where up to three-loop order [53, 54, 55, 56, 57, 58]

β0 =
11CA

3
−

2nf

3
, β1 =

34C2
A

3
−

10CAnf

3
− 2CF nf ,

β2 =
2857C3

A

54
+

(

C2
F −

205CF CA

18
−

1415C2
A

54

)

nf +
(11CF

9
+

79CA

54

)

n2
f . (30)

To incorporate the δm term from the Lagrangian in Eq. (7) we evaluate Bbare
j (ŝ − 2δm) and then expand in αs(µ)

with

δm =
∞
∑

j=1

[αs(µ)

π

]j
δmj(µ) =

αs(µ)

π
δm1(µ) +

α2
s(µ)

π2
δm2(µ) + . . . . (31)

This is simpler than treating δm as a Feynman rule insertion, and equivalent. The bare and renormalized couplings
are related by

αbare
s = ιεµ2εαs(µ)Z2

g , ι ≡ exp(γE)/(4π) , (32)
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FIG. 2: Representations of the Wilson line matrix elements for the heavy quark jet function, The Wilson lines include Wv, W †
v

(double lines), and Wn, W †
n (single lines). In a) we display the result in Eq. (44) that gives B(ŝ, µ). In b) we display the result

in Eq. (46) that gives B(ŝ, µ).

We can also write the jet function B(ŝ, µ) as a matrix element of Wilson lines. To derive this result we note that

B(2v · r, µ) =
1

8πNcm

∫

d4x eir·x
∑

X

Tr
〈

0
∣

∣T W †
n(x)hv(x)

∣

∣X
〉〈

X
∣

∣T h̄v(0)Wn(0)
∣

∣0
〉

=
1

8πNcm

∫

d4x eir·x Tr
〈

0
∣

∣

[

T W †
n(x)hv(x)

][

T h̄v(0)Wn(0)
]
∣

∣0
〉

=
1

8πNcm

∫

d4x eir·x Tr
〈

0
∣

∣

[

T W †
n(x)Wv(x)h(0)

v (x)
][

T h̄(0)
v (0)W †

v (0)Wn(0)
]
∣

∣0
〉

, (45)

where T is time-ordering, T is anti-time-ordering, and the trace Tr is over spin and color indices. Next we use

〈0|h(0)a
v (x)h̄(0)b

v (0)|0〉 = 2δabδ3(#x), where here there is no time-ordering and hence no θ(x0). Thus

B(ŝ, µ) =
1

2π

∫

dy eiŝ y B̃(y, µ) , B̃(y, µ) =
1

m Nc

〈

0
∣

∣tr
[

T W †
n(2y)Wv(2y)

][

T W †
v (0)Wn(0)

]
∣

∣0
〉

. (46)

Here we took x0 = 2y in order to agree with the notation for the position space jet function B̃(y, µ) above in Eq. (13).
In Fig. 2b we give a graphical representation for the Wilson line matrix element for B(ŝ, µ) in Eq. (46), where the
arrows denote the time-ordering. Comparing to the Wilson loop for B(ŝ, µ) in Fig. 2a we note the importance of the
∞-points to determine which fields are time-ordered and which are antitime-ordered.

It is instructive to compare the Wilson line definition of the heavy quark jet function with the corresponding defini-
tions for the heavy quark shape function that appears in B-decays [42, 43], and with the heavy quark fragmentation
function [44]. The B-meson shape function is given by

fBv (%+, µ) =
1

8π

∫

dx− e−i!+x−/2
∑

X

〈

B̄v

∣

∣T h̄v(0)Wn(0)
∣

∣X
〉〈

X
∣

∣T W †
n(x̃)hv(x̃)

∣

∣B̄v

〉

=
1

8π

∫

dx− e−i!+x−/2
〈

B̄v

∣

∣

[

T h̄(0)
v (0)W̃ †

v (0)Wn(0)
][

T W †
n(x)W̃v(x̃)h(0)

v (x̃)
]
∣

∣B̄v

〉

=
1

8π

∫

dx− e−i!+x−/2
〈

B̄v

∣

∣h̄(0)
v (0)W̃ †

v (0)Wn(0, x̃)W̃v(x̃)h(0)
v (x̃)

∣

∣B̄v

〉

, (47)

where we use the shorthand x− = n̄ · x and x̃µ = x−nµ/2, and set n̄ · v = 1. To obtain the second line we made the
same field redefinition as above in Eq. (43), but now on both the heavy-quark field and on the interpolating field for
the B-meson [63, 64]. Combining the lines from these sources yielded the Wilson lines

W̃v(x) = P exp
(

ig

∫ 0

−∞
ds v ·A(vs+x)

)

, W̃ †
v (x) = P exp

(

− ig

∫ 0

−∞
ds v ·A(vs+x)

)

. (48)

To obtain the third line of Eq. (47) we noted that TW †
n = W †

n, TWn = Wn, TW̃v = W̃v, and TW̃ †
v = W̃ †

v , and that
the gluons in the Wilson lines which sit next to each other, W †

n(x̃)W̃v(x̃) and W̃ †
v (0)Wn(0), are already time-ordered

and anti-time-ordered respectively. For the B-meson fragmentation function in HQET, the field redefinition gives

DBv/b(%+, µ) =
1

16π

∫

dx− ei!+x−/2
∑

X

〈

0
∣

∣T W̃ †
n(x̃)hv(x̃)

∣

∣B̄vX
〉〈

B̄vX
∣

∣T h̄v(0)W̃n(0)
∣

∣0
〉

=
1

16π

∫

dx− ei!+x−/2
∑

X

〈

0
∣

∣T W̃ †
n(x̃)Wv(x̃)h(0)

v (x̃)
∣

∣B̄vX
〉〈

B̄vX
∣

∣T h̄(0)
v (0)W †

v (0)W̃n(0)
∣

∣0
〉

. (49)
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FIG. 2: Representations of the Wilson line matrix elements for the heavy quark jet function, The Wilson lines include Wv, W †
v

(double lines), and Wn, W †
n (single lines). In a) we display the result in Eq. (44) that gives B(ŝ, µ). In b) we display the result

in Eq. (46) that gives B(ŝ, µ).

We can also write the jet function B(ŝ, µ) as a matrix element of Wilson lines. To derive this result we note that

B(2v · r, µ) =
1

8πNcm

∫

d4x eir·x
∑

X

Tr
〈

0
∣

∣T W †
n(x)hv(x)

∣

∣X
〉〈

X
∣

∣T h̄v(0)Wn(0)
∣

∣0
〉

=
1

8πNcm

∫

d4x eir·x Tr
〈

0
∣

∣

[

T W †
n(x)hv(x)

][

T h̄v(0)Wn(0)
]
∣

∣0
〉

=
1

8πNcm

∫

d4x eir·x Tr
〈

0
∣

∣

[

T W †
n(x)Wv(x)h(0)

v (x)
][

T h̄(0)
v (0)W †

v (0)Wn(0)
]
∣

∣0
〉

, (45)

where T is time-ordering, T is anti-time-ordering, and the trace Tr is over spin and color indices. Next we use

〈0|h(0)a
v (x)h̄(0)b

v (0)|0〉 = 2δabδ3(#x), where here there is no time-ordering and hence no θ(x0). Thus

B(ŝ, µ) =
1

2π

∫

dy eiŝ y B̃(y, µ) , B̃(y, µ) =
1

m Nc

〈

0
∣

∣tr
[

T W †
n(2y)Wv(2y)

][

T W †
v (0)Wn(0)

]
∣

∣0
〉

. (46)

Here we took x0 = 2y in order to agree with the notation for the position space jet function B̃(y, µ) above in Eq. (13).
In Fig. 2b we give a graphical representation for the Wilson line matrix element for B(ŝ, µ) in Eq. (46), where the
arrows denote the time-ordering. Comparing to the Wilson loop for B(ŝ, µ) in Fig. 2a we note the importance of the
∞-points to determine which fields are time-ordered and which are antitime-ordered.

It is instructive to compare the Wilson line definition of the heavy quark jet function with the corresponding defini-
tions for the heavy quark shape function that appears in B-decays [42, 43], and with the heavy quark fragmentation
function [44]. The B-meson shape function is given by

fBv (%+, µ) =
1

8π

∫

dx− e−i!+x−/2
∑

X

〈

B̄v

∣

∣T h̄v(0)Wn(0)
∣

∣X
〉〈

X
∣

∣T W †
n(x̃)hv(x̃)

∣

∣B̄v

〉

=
1

8π

∫

dx− e−i!+x−/2
〈

B̄v

∣

∣

[

T h̄(0)
v (0)W̃ †

v (0)Wn(0)
][

T W †
n(x)W̃v(x̃)h(0)

v (x̃)
]
∣

∣B̄v

〉

=
1

8π

∫

dx− e−i!+x−/2
〈

B̄v

∣

∣h̄(0)
v (0)W̃ †

v (0)Wn(0, x̃)W̃v(x̃)h(0)
v (x̃)

∣

∣B̄v

〉

, (47)

where we use the shorthand x− = n̄ · x and x̃µ = x−nµ/2, and set n̄ · v = 1. To obtain the second line we made the
same field redefinition as above in Eq. (43), but now on both the heavy-quark field and on the interpolating field for
the B-meson [63, 64]. Combining the lines from these sources yielded the Wilson lines

W̃v(x) = P exp
(

ig

∫ 0

−∞
ds v ·A(vs+x)

)

, W̃ †
v (x) = P exp

(

− ig

∫ 0

−∞
ds v ·A(vs+x)

)

. (48)

To obtain the third line of Eq. (47) we noted that TW †
n = W †

n, TWn = Wn, TW̃v = W̃v, and TW̃ †
v = W̃ †

v , and that
the gluons in the Wilson lines which sit next to each other, W †

n(x̃)W̃v(x̃) and W̃ †
v (0)Wn(0), are already time-ordered

and anti-time-ordered respectively. For the B-meson fragmentation function in HQET, the field redefinition gives

DBv/b(%+, µ) =
1

16π

∫

dx− ei!+x−/2
∑

X

〈

0
∣

∣T W̃ †
n(x̃)hv(x̃)

∣

∣B̄vX
〉〈

B̄vX
∣

∣T h̄v(0)W̃n(0)
∣

∣0
〉

=
1

16π

∫

dx− ei!+x−/2
∑

X

〈

0
∣

∣T W̃ †
n(x̃)Wv(x̃)h(0)

v (x̃)
∣

∣B̄vX
〉〈

B̄vX
∣

∣T h̄(0)
v (0)W †

v (0)W̃n(0)
∣

∣0
〉

. (49)

Satisfies criteria for non-abelian exponentiation Theorem
Gatheral, 

Frenkel & Taylor
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T he non-abelian exponentia tion theorem guarantees tha t correct ions to this result are O (α3
s ) in the exponent , and

tha t these correct ions will vanish if we take the abelian limit CA → 0 and nf → 0.
In the abelian limit with zero β-funct ion, the exponentia tion theorem implies tha t ln[mB̃(y, µ)] is one-loop exact .

T hus taking CA = nf = 0, and a charge CF we have to all orders in per turba tion theory

mB̃(y, µ)abelian = exp
[

αs

4π

(

Γc
0L̃

2 + γ0L̃ + T0

)

]

, (54)

where the constants are Γc
0 = γ0 = 4CF and T0 = 4CF (1 + π2/24). T he exact result in E q. (54) provides a simple way

of test ing the proper t ies of different possible jet-mass definitions a t higher orders in per turba tion theory, as discussed
in sect ion V .

We can also consider the implica tions of the non-abelian exponentia tion theorem for the solution of the renormal-
iza tion group equa tion (25). Following Ref. [22] we first use the evolution kernel K (µ, µ0) to solve for B̃(y, µ) by
taking µ0 = µy ≡ −ie−γE/y . T his makes all the logs in B̃(y, µy ) vanish since L̃(µy ) = ln(ieγEyµy) = 0. T hus

mB̃(y, µ) = eK(µ,µy) mB̃(y, µy) = eK(µ,µy)+T [αs(µy)] . (55)

H ere the boundary condition for the R G E , denoted mB̃(y, µy), is just a per turba tive series in αs(µy ). D ue to
the non-abelian exponentia tion theorem this series must exponentia te to give exp(T [αs(µy )]), and the coefficients
in the per turba tive series for T [αs] have color factors tha t sa tisfy the exponentia tion theorem constraints. I t is a
straightforward exercise to verify tha t expanding the result for K (µ, µ0) in E q. (42) to O (α2

s ) gives a result from
E q. (55) tha t is consistent with E q. (53).

T he Fourier transformed par tonic b-quark shape funct ion is also given by a vacuum ma trix element of W ilson lines
via E q. (50). T hus, i t too sa tisfies the criteria of the non-abelian exponentia tion theorem [38]. Taking the Fourier
transform of the two-loop computa tion of f bv (%+, µ) in Ref. [40] we have verified tha t the C2

F α2
s terms sa tisfy the

non-abelian exponentia tion theorem. T his calcula tion gives

f̃ bv (x−, µ) = exp

{

−CF αs(µ)
π

(

L̆2 − L̆ +
5π2

24

)

+
α2

s (µ)CF β0

π2

[

−
1
6
L̆3 −

1
6
L̆2 +

(1−3π2)
36

L̆ −
11ζ(3)

48
−

7π2

192
+

1
216

]

+
α2

s (µ)CF CA

π2

[

−
(1

3
−

π2

12

)

L̆2 +
(

−
11
18

−
π2

12
+

9ζ3

4

)

L̆ −
9ζ3

8
+

107π4

2880
−

13π2

48
−

29
108

]

}

, (56)

where L̆ = ln(−ieγEx−µ). C orrect ions to this result are again O (α3
s ) in the exponent , and vanish when CA = nf = 0.

C omparing E q. (53) and (56) we explici t ly observe the difference between the heav y quark jet funct ion and the
par tonic shape funct ion. U p to a sign the highest powers of L̃ and L̆ agree a t each order in αs , because of the rela t ion
between their cusp anomalous dimension terms. T he subleading logs and constant terms differ.

V. A TRANSITIVE JET-MASS SCHEME

T he last remaining ingredient needed for the N N L O and N N L L computa tions of the heav y-quark jet funct ion is the
specifica tion of the mass scheme counter term δm a t two-loop order. Since the jet funct ion will be used to describe
momenta ŝ ∼ Γ, where Γ is the width of the physical invariant mass distribution, we must have δm ∼ Γ or smaller to
not upset the power counting in the H Q E T L agrangian, E q. (7). In the MS scheme δm ∼ m(αs + α2

s + . . .), and since
mαs % Γ this scheme does not sa tisfy the power counting criteria. In the pole-mass scheme δm = 0 to all orders,
however this scheme has instabili t ies rela ted to its infrared sensi t ively. In par ticular the pole-mass has an infrared
renormalon tha t leads to an asymptotic ambiguity δmpole ∼ ΛQCD , and hence is not a useful scheme for precision
computa tions. Schemes tha t sa tisfy δm ∼ Γ and do not suffer from infrared renormalons were called top “ jet-mass”
schemes in Ref. [12]. We refer to them more generally as “ top resonance mass-schemes” here and reserve the name
jet-mass for a specific example of this type of scheme. T hese mass-schemes are suitable for use in the factoriza tion
theorem for the top-invariant mass distribution in E q. (2) and rela ted observables. We star t by defining a jet-mass
scheme with nice renormaliza tion proper t ies in sect ion V A , and then rela te this jet-mass to the pole, MS, and 1S
mass schemes in sect ion V B .
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The non-abelian exponentiation theorem guarantees that corrections to this result are O(α3
s) in the exponent, and

that these corrections will vanish if we take the abelian limit CA → 0 and nf → 0.
In the abelian limit with zero β-function, the exponentiation theorem implies that ln[mB̃(y, µ)] is one-loop exact.

Thus taking CA = nf = 0, and a charge CF we have to all orders in perturbation theory

mB̃(y, µ)abelian = exp

[

αs

4π

(

Γc
0L̃

2 + γ0L̃ + T0

)

]

, (54)

where the constants are Γc
0 = γ0 = 4CF and T0 = 4CF (1+π2/24). The exact result in Eq. (54) provides a simple way

of testing the properties of different possible jet-mass definitions at higher orders in perturbation theory, as discussed
in section V.

We can also consider the implications of the non-abelian exponentiation theorem for the solution of the renormal-
ization group equation (25). Following Ref. [22] we first use the evolution kernel K(µ, µ0) to solve for B̃(y, µ) by
taking µ0 = µy ≡ −ie−γE/y. This makes all the logs in B̃(y, µy) vanish since L̃(µy) = ln(ieγEyµy) = 0. Thus

mB̃(y, µ) = eK(µ,µy) mB̃(y, µy) = eK(µ,µy)+T [αs(µy)] . (55)

Here the boundary condition for the RGE, denoted mB̃(y, µy), is just a perturbative series in αs(µy). Due to
the non-abelian exponentiation theorem this series must exponentiate to give exp(T [αs(µy)]), and the coefficients
in the perturbative series for T [αs] have color factors that satisfy the exponentiation theorem constraints. It is a
straightforward exercise to verify that expanding the result for K(µ, µ0) in Eq. (42) to O(α2

s) gives a result from
Eq. (55) that is consistent with Eq. (53).

The Fourier transformed partonic b-quark shape function is also given by a vacuum matrix element of Wilson lines
via Eq. (50). Thus, it too satisfies the criteria of the non-abelian exponentiation theorem [38]. Taking the Fourier
transform of the two-loop computation of f bv(%+, µ) in Ref. [40] we have verified that the C2

F α2
s terms satisfy the

non-abelian exponentiation theorem. This calculation gives

f̃ bv (x−, µ) = exp

{

−CF αs(µ)

π

(

L̆2 − L̆ +
5π2

24

)

+
α2

s(µ)CF β0

π2

[

−
1

6
L̆3 −

1

6
L̆2 +

(1−3π2)

36
L̆ −

11ζ(3)

48
−

7π2

192
+

1

216

]

+
α2

s(µ)CF CA

π2

[

−
(1

3
−

π2

12

)

L̆2 +

(

−
11

18
−

π2

12
+

9ζ3

4

)

L̆ −
9ζ3

8
+

107π4

2880
−

13π2

48
−

29

108

]

}

, (56)

where L̆ = ln(−ieγEx−µ). Corrections to this result are again O(α3
s) in the exponent, and vanish when CA = nf = 0.

Comparing Eq. (53) and (56) we explicitly observe the difference between the heavy quark jet function and the
partonic shape function. Up to a sign the highest powers of L̃ and L̆ agree at each order in αs, because of the relation
between their cusp anomalous dimension terms. The subleading logs and constant terms differ.

V. A TRANSITIVE JET-MASS SCHEME

The last remaining ingredient needed for the NNLO and NNLL computations of the heavy-quark jet function is the
specification of the mass scheme counterterm δm at two-loop order. Since the jet function will be used to describe
momenta ŝ ∼ Γ, where Γ is the width of the physical invariant mass distribution, we must have δm ∼ Γ or smaller to
not upset the power counting in the HQET Lagrangian, Eq. (7). In the MS scheme δm ∼ m(αs +α2

s + . . .), and since
mαs % Γ this scheme does not satisfy the power counting criteria. In the pole-mass scheme δm = 0 to all orders,
however this scheme has instabilities related to its infrared sensitively. In particular the pole-mass has an infrared
renormalon that leads to an asymptotic ambiguity δmpole ∼ ΛQCD, and hence is not a useful scheme for precision
computations. Schemes that satisfy δm ∼ Γ and do not suffer from infrared renormalons were called top “jet-mass”
schemes in Ref. [12]. We refer to them more generally as “top resonance mass-schemes” here and reserve the name
jet-mass for a specific example of this type of scheme. These mass-schemes are suitable for use in the factorization
theorem for the top-invariant mass distribution in Eq. (2) and related observables. We start by defining a jet-mass
scheme with nice renormalization properties in section VA, and then relate this jet-mass to the pole, MS, and 1S
mass schemes in section VB.
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The non-abelian exponentiation theorem guarantees that corrections to this result are O(α3
s) in the exponent, and

that these corrections will vanish if we take the abelian limit CA → 0 and nf → 0.
In the abelian limit with zero β-function, the exponentiation theorem implies that ln[mB̃(y, µ)] is one-loop exact.

Thus taking CA = nf = 0, and a charge CF we have to all orders in perturbation theory

mB̃(y, µ)abelian = exp

[

αs

4π

(

Γc
0L̃

2 + γ0L̃ + T0

)

]

, (54)

where the constants are Γc
0 = γ0 = 4CF and T0 = 4CF (1+π2/24). The exact result in Eq. (54) provides a simple way

of testing the properties of different possible jet-mass definitions at higher orders in perturbation theory, as discussed
in section V.

We can also consider the implications of the non-abelian exponentiation theorem for the solution of the renormal-
ization group equation (25). Following Ref. [22] we first use the evolution kernel K(µ, µ0) to solve for B̃(y, µ) by
taking µ0 = µy ≡ −ie−γE/y. This makes all the logs in B̃(y, µy) vanish since L̃(µy) = ln(ieγEyµy) = 0. Thus

mB̃(y, µ) = eK(µ,µy) mB̃(y, µy) = eK(µ,µy)+T [αs(µy)] . (55)

Here the boundary condition for the RGE, denoted mB̃(y, µy), is just a perturbative series in αs(µy). Due to
the non-abelian exponentiation theorem this series must exponentiate to give exp(T [αs(µy)]), and the coefficients
in the perturbative series for T [αs] have color factors that satisfy the exponentiation theorem constraints. It is a
straightforward exercise to verify that expanding the result for K(µ, µ0) in Eq. (42) to O(α2

s) gives a result from
Eq. (55) that is consistent with Eq. (53).

The Fourier transformed partonic b-quark shape function is also given by a vacuum matrix element of Wilson lines
via Eq. (50). Thus, it too satisfies the criteria of the non-abelian exponentiation theorem [38]. Taking the Fourier
transform of the two-loop computation of f bv(%+, µ) in Ref. [40] we have verified that the C2

F α2
s terms satisfy the

non-abelian exponentiation theorem. This calculation gives
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where L̆ = ln(−ieγEx−µ). Corrections to this result are again O(α3
s) in the exponent, and vanish when CA = nf = 0.

Comparing Eq. (53) and (56) we explicitly observe the difference between the heavy quark jet function and the
partonic shape function. Up to a sign the highest powers of L̃ and L̆ agree at each order in αs, because of the relation
between their cusp anomalous dimension terms. The subleading logs and constant terms differ.

V. A TRANSITIVE JET-MASS SCHEME

The last remaining ingredient needed for the NNLO and NNLL computations of the heavy-quark jet function is the
specification of the mass scheme counterterm δm at two-loop order. Since the jet function will be used to describe
momenta ŝ ∼ Γ, where Γ is the width of the physical invariant mass distribution, we must have δm ∼ Γ or smaller to
not upset the power counting in the HQET Lagrangian, Eq. (7). In the MS scheme δm ∼ m(αs +α2

s + . . .), and since
mαs % Γ this scheme does not satisfy the power counting criteria. In the pole-mass scheme δm = 0 to all orders,
however this scheme has instabilities related to its infrared sensitively. In particular the pole-mass has an infrared
renormalon that leads to an asymptotic ambiguity δmpole ∼ ΛQCD, and hence is not a useful scheme for precision
computations. Schemes that satisfy δm ∼ Γ and do not suffer from infrared renormalons were called top “jet-mass”
schemes in Ref. [12]. We refer to them more generally as “top resonance mass-schemes” here and reserve the name
jet-mass for a specific example of this type of scheme. These mass-schemes are suitable for use in the factorization
theorem for the top-invariant mass distribution in Eq. (2) and related observables. We start by defining a jet-mass
scheme with nice renormalization properties in section VA, and then relate this jet-mass to the pole, MS, and 1S
mass schemes in section VB.

non-abelian:

abelian:

A convenient result for testing mass-schemes
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H ere W̃n and W̃ †
n are defined as in E q. (48) but with v → n̄ . T he shape and fragmenta tion funct ion results in E q. (47)

and (49) are similar to the heav y-quark jet funct ion in tha t all three are defined by ma trix elements with heav y-quark
fields and W ilson lines. T hey differ because they are non-per turba tive distributions involving a B -meson sta te in
contrast to the per turba tively computable jet funct ion. T he shape and fragmenta tion funct ions also have a light-cone
separa tion ra ther than the t ime-like separa tion tha t we have for the jet funct ion.

In cer tain contex ts i t is also useful to consider the par tonic shape funct ion f bv and the par tonic fragmenta tion
funct ion D bv/b where the B v-meson sta te is replace by a bv-quark with residual momentum kµ . In this case we can
perform the contract ion h(0)

v ( x )|b̄v〉 = e−ik·x uv|0〉 /
√

N c and write

f bv

k+ (!+ , µ) =
1

4π N c

∫

dx− e−i(!+−k+)x−/2
〈

0
∣

∣tr W̃ †
v (0)Wn(0, x̃ )W̃v ( x̃ )

∣

∣0
〉

, (50)

D bv/b
k+ (!+ , µ) =

1
4π N c

∫

dx− ei(!+−k+)x−/2
〈

0
∣

∣

∣
tr W̃ †

n ( x̃ )Wv ( x̃ )W †
v (0)W̃n(0)

∣

∣

∣
0
〉

=
1

4π N c

∫

dx− ei(!+−k+)x−/2
〈

0
∣

∣tr W̃ †
n ( x̃ )W̃v ( x̃ )W̃ †

v (0)W̃n(0)
∣

∣0
〉

=
1

4π N c

∫

dx− ei(!+−k+)x−/2
〈

0
∣

∣tr W̃ †
v (0)Wn(0, x̃ )W̃v ( x̃ )

∣

∣0
〉

= f bv

−k+ (−!+, µ) = f bv (k+−!+, µ) ,

where we used W̃n(0)W̃ †
n( x ) = Wn(0)W †

n( x ) = Wn(0, x ). E q. (50) sta tes tha t the par tonic shape funct ion and
fragmenta tion funct ion are identical, but with complementary ranges of suppor t . T his was observed in Ref. [39] for
logs a t N N L L accuracy, and was derived to all orders in per turba tion theory in Ref. [41] as we outlined above. T hus,
the par tonic shape funct ion in posi t ion space, f̃ bv ( x− , µ) is also given by a vacuum ma trix of W ilson lines. I t differs
from B̃ (y , µ) in E q. (44) both due to the light-like ra ther than time-like separa tion, and due to the pa th.

IV. NON-ABELIAN EXPONENTIATION

In the previous sect ion in E q. (46) we showed tha t the posi t ion space heav y-quark jet funct ion B̃ (y , µ) is determined
by a vacuum ma trix element of W ilson lines. D ue to the non-abelian exponentia tion theorem for ma trix elements of
W ilson lines [36, 37], B̃ (y , µ) exponentia tes. T his is also true of the par tonic heav y-quark shape funct ion in posi t ion
space.

Taking the Fourier transform of the two-loop jet funct ion result in E q. (39) using E q. ( B1) we obtain

m B̃ (y , µ) = 1 +
CF αs(µ)

π

(

L̃2 + L̃ +
π2

24
+ 1

)

+
α2

s (µ)
π2

{

CF β0

[

1
6

L̃3 +
2
3

L̃2 +
47
36

L̃ −
ζ(3)

48
+

5π2

576
+

281
216

]

+ CF CA

[

(1
3
−

π2

12

)

L̃2 +
(

5
18

−
π2

12
−

5ζ3

4

)

L̃ −
5ζ3

8
−

17π4

2880
+

7π2

144
−

11
54

]

+ C 2
F

[

1
2

L̃4 + L̃3 +
( 3

2
+

π2

24

)

L̃2 +
(

1 +
π2

24

)

L̃ +
π4

1152
+

π2

24
+

1
2

]

}

, (51)

where L̃k =
(

L̃
)k and

L̃ ≡ ln
(

i eγE y µ
)

. (52)

I t is evident in E q. (51) tha t the two-loop, C 2
F α2

s term sa tisfies the exponentia tion theorem, being determined by
one-half the square of the one-loop CF αs term. T hus we can write

m B̃ (y , µ) = exp

{

CF αs(µ)
π

(

L̃2 + L̃ +
π2

24
+ 1

)

+
α2

s (µ) CF β0

π2

[

1
6

L̃3 +
2
3

L̃2 +
47
36

L̃ −
ζ(3)

48
+

5π2

576
+

281
216

]

+
α2

s (µ) CF CA

π2

[

( 1
3
−

π2

12

)

L̃2 +
(

5
18

−
π2

12
−

5ζ3

4

)

L̃ −
5ζ3

8
−

17π4

2880
+

7π2

144
−

11
54

]

}

. (53)
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vectors encode the boost of the top quarks relative to the center-of-mass frame of the e+e− collision, n · v+ = m/Q,
and n̄ · v+ = Q/m. In Eq. (5) the Wilson lines are

W †
n(x) = P exp

(

ig

∫ ∞

0
ds n̄ · An(n̄s + x)

)

, Wn(x) = P exp

(

− ig

∫ ∞

0
ds n̄ · An(n̄s + x)

)

. (6)

These Wilson lines make B gauge-invariant and encode the residual interactions from the antitop jet. Both the HQET
fields hv+

and the gluon fields in Wn (which we call Aµ
n) are only sensitive to fluctuations with p2 " m2. In the rest-

frame of the top quark these are soft-fluctuations, while in the e+e− center-of-mass frame they are “ultra-collinear”
along the direction of the energetic top quark. The gluon fields Aµ

n have zero-bin subtractions [45] for the region of
the soft function S in Eq. (2) as explained in Appendix B of Ref. [19].

The HQET fields hv+
have the leading order Lagrangian

Lh = h̄v+

(

iv+ · D − δm + i
2Γt

)

hv+
. (7)

Here Γt is the top quark total width, obtained from matching the top-decay amplitudes in the standard model (or a
new physics model) onto HQET at leading order in the electroweak interactions, and at any order in αs. This gives
the correct description of finite lifetime effects for cross-section in Eq. (2) to O(m2/Q2, Γ/m) in the power counting
for separation of the jets from the decay products [12]. The residual mass term δm in Eq. (7) fixes the definition of
the top mass m for the HQET computations [46], where

δm=mpole − m . (8)

For predictions in the peak region consistency with the power counting requires δm ∼ Γt ∼ ŝt ∼ ŝt̄ [12], a condition
which is true of the jet-mass scheme that we discuss below in section V.

From the definitions in Eqs. (4-5) and the Lagrangian in Eq. (7) one can deduce a series of properties of the
jet function. As a first, instead of computing B(ŝ, δm, Γt, µ) and B(ŝ, δm, Γt, µ), one can consider computing these
functions for a (fictitious) top quark having zero width. Furthermore, due to Eq. (7) the ŝ and δm dependence occurs
in the combination (ŝ − 2δm), so it is useful to also have a notation for computations done with a zero residual mass
term in the Lagrangian. Thus we define

B(ŝ, δm, µ) ≡ B(ŝ, δm, 0, µ) , B(ŝ, δm, µ) ≡ B(ŝ, δm, 0, µ) ,

B(ŝ, µ) ≡ B(ŝ, 0, 0, µ) , B(ŝ, µ) ≡ B(ŝ, 0, 0, µ) . (9)

These jet functions and vacuum matrix elements are related by

B(ŝ, δm, µ) = Im
[

B(ŝ, δm, µ)
]

, B(ŝ, µ) = Im
[

B(ŝ, µ)
]

, (10)

and B(ŝ, µ) has support for ŝ ≥ 0. The form of the Lagrangian in Eq. (7) implies that having calculated B(ŝ, µ) we
can include the width and δm terms by simple shifts,

B(ŝ, δm, Γt, µ) = B(ŝ + iΓt, δm, µ) = B(ŝ − 2δm + iΓt, µ) . (11)

As discussed in Ref. [19] the stable and unstable HQET jet functions can also be related with a dispersion relation,

B(ŝ, δm, Γt, µ) =

∫ ∞

−∞
dŝ′ B(ŝ − ŝ′, δm, µ)

Γt

π(ŝ′ 2 + Γ2
t )

=

∫ ∞

−∞
dŝ′ B(ŝ − ŝ′ − 2δm, µ)

Γt

π(ŝ′ 2 + Γ2
t )

. (12)

The width of the top quark acts as an infrared cutoff through this smearing with the Breit-Wigner. Finally we remark
that the µ-dependence indicated by the last argument of B(ŝ, δm, Γt, µ) and B(ŝ, δm, Γt, µ) is independent of Γt and
δm. Additional scale dependence may be induced by the choice of mass-scheme, ie. by a parameter δm = δm(µ).
When we consider B(ŝt, δm, Γt, µ) as a function of Mt this additional µ-dependence from δm cancels against that in
the mass m(µ) in Eq. (3). This cancellation occurs at leading order in the HQET power counting.

We will also find it useful to consider the Fourier transformed jet functions

B̃(y, δm, Γt, µ) =

∫ +∞

−∞
dŝ e−iy ŝ B(ŝ, δm, Γt, µ) , B̃(y, δm, µ) =

∫ +∞

−∞
dŝ e−iy ŝ B(ŝ, δm, µ) , (13)

where y = y−i0 to ensure convergence as ŝ → ∞. In Fourier space the connection between the jet functions computed
with zero and non-zero width and residual mass terms becomes particularly simple,

B̃(y, δm, Γt, µ) = B̃(y, δm, µ) e−|y|Γt = B̃(y, µ) e−2iyδm e−|y|Γt . (14)

This formula is quite interesting, since as we discuss in section IV below, the result for B̃(y, µ) also exponentiates to
all orders in perturbation theory.

• be renormalon free 
• be a top-resonance mass scheme
•

(not mpole)

δm ∼ αsΓt (not MS)

3 possibilites for scheme with stable peak position: 
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A. Potential Jet-Mass Definitions and Anomalous Dimensions

In this section we explore three resonance mass-schemes for m. With the notation for δm in Eq. (8) they are defined
by

a)
d

dŝ
B(ŝ, δmpeak, Γt, µ)

∣

∣

∣

∣

ŝ=0

= 0 , (57)

b)

∫ R

−∞
dŝ ŝ B(ŝ, δmmom, µ) = 0 ,

c) δmJ =
−i

2 B̃(y, µ)

d

dy
B̃(y, µ)

∣

∣

∣

∣

y=−ie−γE /R

= eγE
R

2

d

d ln(iy)
ln B̃(y, µ)

∣

∣

∣

∣

iyeγE =1/R

.

We refer to a), b), c) as the peak-mass, moment-mass, and position-mass respectively. The peak-mass definition uses
the jet function with a non-zero width and satisfies the δm ∼ Γt power counting criteria [12]. In b) and c) the schemes
depend on a parameter R, and we must take R ∼ Γt in order to satisfy the power counting criteria. Different choices
for R specify different schemes, and are analogous to the difference between the MS and MS mass-schemes. All three
schemes in Eq. (57) are free from leading renormalon ambiguities [65]. In the following we will argue that only the
definition in c) is a reasonable scheme for higher order computations. Thus we will only use the name jet-mass for
this position-scheme mass definition.

The definitions in Eq. (57) are all perturbative mass-schemes which stabilize the peak position of the jet function
B(ŝ, δm, Γt, µ). In scheme a) the peak position is fixed to all orders in perturbation theory by definition. In scheme
b) we instead fix the first moment, which provides a more local observable that is still sensitive to the peak location.
However, scheme b) still has non-locality induced by the cutoff R on the momentum space moment. A finite R
is necessary due to ultraviolet divergences that occur for R → ∞. This type of moment divergence is a general
property of functions that have a cusp anomalous dimension (see for example Refs. [66, 67]). If it was not for the
UV divergences then the schemes b) and c) would be equivalent in the limit R → ∞. In the situation at hand, c)
provides an independent mass scheme definition. A jet-mass definition from c) is explicitly local since it just involves
the position space jet function at a particular position y.

An additional criteria for a reasonable jet-mass scheme is to have a renormalization group evolution that is transitive,
as discussed in Ref. [19]. Transitivity is a well-known feature of the MS mass, and implies that we will obtain the same
result if we evolve directly from µ0 → µ2, or if we first evolve from µ0 → µ1 and then from µ1 → µ2. Transitivity is
guaranteed by any mass-scheme with a consistent anomalous dimension and renormalization group equation. Since
in HQET the scale independent mpole = m(µ) + δm(µ), the general form for the RGE equation for the mass is

µ
d

dµ
m(µ) = γm[R, m(µ), αs(µ)] , γm = −µ

d

dµ
δm(µ) , (58)

where R is a mass dimension-1 scheme parameter. Transitivity of m(µ) is guaranteed by this anomalous dimension
equation, as long as γm is proportional to [m(µ)]kR1−k for some k (and thus, for example, is not a sum of two types
of terms with different powers of k). In the MS scheme k = 1 and the anomalous dimension is proportional to m(µ),
while in all three schemes in Eq. (57) we have k = 0. However, it turns out that the peak-scheme and moment-scheme
do not have consistent anomalous dimension equations of the form in Eq. (58), because there γm’s depend on explicit
powers lnj(µ/Γt) and lnj(µ/R) with higher and higher powers of j ≥ 1 occurring for higher orders in αs. These logs
render the moment scheme anomalous dimension equation inconsistent at NLO order, and the peak scheme does not
even have an anomalous dimension equation of the form in (58) at LO order.

In order to illustrate the difference between the three schemes in Eq. (57) we first consider the simplified case of
the jet function in the abelian limit, CA → 0 and nf → 0. The all-order result for B̃(y, µ) is given in Eq. (54),
and can be directly used to determine δm in the position-mass scheme. The derivative of the exponential gives back
an exponential which cancels against the 1/B̃(y, µ) in δmJ . Thus the abelian result in the position-mass scheme is
one-loop exact,

δmabelian
J = eγER

CF αs

π

[

ln
µ

R
+

1

2

]

. (59)

Since for the abelian limit dαs/dµ = 0, the abelian anomalous dimension computed from Eq. (59) is (γJ
m)abelian =

−ReγECF αs/π to all orders. Thus this position-scheme anomalous dimension has the desired form in Eq. (58). To
compute results for the peak and moment mass-schemes we need the abelian jet function in momentum space, B(ŝ, µ).

“peak”

“moment”

“position”
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In this sect ion we explore three resonance mass-schemes for m. W ith the nota tion for δm in E q. (8) they are defined
by

a)
d

dŝ
B(ŝ, δmpeak, Γt, µ)

∣

∣

∣

∣

ŝ=0

= 0 , (57)

b)
∫ R

−∞
dŝ ŝ B(ŝ, δmmom, µ) = 0 ,

c) δmJ =
−i

2 B̃(y, µ)
d

dy
B̃(y, µ)

∣

∣

∣

∣

y=−ie−γE /R

= eγE
R

2
d

d ln(iy)
ln B̃(y, µ)

∣

∣

∣

∣

iyeγE =1/R

.

We refer to a), b), c) as the peak-mass, moment-mass, and posi t ion-mass respect ively. T he peak-mass definition uses
the jet funct ion with a non-zero width and sa tisfies the δm ∼ Γt power counting criteria [12]. In b) and c) the schemes
depend on a parameter R, and we must take R ∼ Γt in order to sa tisfy the power counting criteria. D ifferent choices
for R specify different schemes, and are analogous to the difference between the MS and MS mass-schemes. A ll three
schemes in E q. (57) are free from leading renormalon ambiguities [65]. In the following we will argue tha t only the
definition in c) is a reasonable scheme for higher order computa tions. T hus we will only use the name jet-mass for
this posi t ion-scheme mass definition.

T he definitions in E q. (57) are all per turba tive mass-schemes which stabilize the peak posi t ion of the jet funct ion
B(ŝ, δm, Γt, µ). In scheme a) the peak posi t ion is fixed to all orders in per turba tion theory by definition. In scheme
b) we instead fix the first moment , which provides a more local observable tha t is st ill sensi t ive to the peak loca tion.
However, scheme b) st ill has non-locality induced by the cutoff R on the momentum space moment . A finite R
is necessary due to ultraviolet divergences tha t occur for R → ∞. T his type of moment divergence is a general
proper ty of funct ions tha t have a cusp anomalous dimension (see for example Refs. [66, 67]). If i t was not for the
U V divergences then the schemes b) and c) would be equivalent in the limit R → ∞. In the si tua tion a t hand, c)
provides an independent mass scheme definition. A jet-mass definition from c) is explici t ly local since i t just involves
the posi t ion space jet funct ion a t a par ticular posi t ion y .

A n additional criteria for a reasonable jet-mass scheme is to have a renormaliza tion group evolution tha t is transi t ive,
as discussed in Ref. [19]. Transi t ivity is a well-known fea ture of the MS mass, and implies tha t we will obtain the same
result if we evolve direct ly from µ0 → µ2 , or if we first evolve from µ0 → µ1 and then from µ1 → µ2 . Transi t ivity is
guaranteed by any mass-scheme with a consistent anomalous dimension and renormaliza tion group equa tion. Since
in H Q E T the scale independent mpole = m(µ) + δm(µ), the general form for the R G E equa tion for the mass is

µ
d

dµ
m(µ) = γm[R, m(µ), αs(µ)] , γm = −µ

d

dµ
δm(µ) , (58)

where R is a mass dimension-1 scheme parameter. Transi t ivity of m(µ) is guaranteed by this anomalous dimension
equa tion, as long as γm is propor tional to [m(µ)]kR1−k for some k (and thus, for example, is not a sum of two types
of terms with different powers of k). In the MS scheme k = 1 and the anomalous dimension is propor tional to m(µ),
while in all three schemes in E q. (57) we have k = 0. However, i t turns out tha t the peak-scheme and moment-scheme
do not have consistent anomalous dimension equa tions of the form in E q. (58), because there γm ’s depend on explici t
powers lnj (µ/Γt) and lnj (µ/R) with higher and higher powers of j ≥ 1 occurring for higher orders in αs . T hese logs
render the moment scheme anomalous dimension equa tion inconsistent a t N L O order, and the peak scheme does not
even have an anomalous dimension equa tion of the form in (58) a t L O order.

In order to illustra te the difference between the three schemes in E q. (57) we first consider the simplified case of
the jet funct ion in the abelian limit , CA → 0 and nf → 0. T he all-order result for B̃(y, µ) is given in E q. (54),
and can be direct ly used to determine δm in the posi t ion-mass scheme. T he deriva tive of the exponential gives back
an exponential which cancels against the 1/B̃(y, µ) in δmJ . T hus the abelian result in the posi t ion-mass scheme is
one-loop exact ,

δmabelian
J = eγER

CF αs

π

[

ln
µ

R
+

1
2

]

. (59)

Since for the abelian limit dαs/dµ = 0, the abelian anomalous dimension computed from E q. (59) is (γJ
m)abelian =

−ReγECF αs/π to all orders. T hus this posi t ion-scheme anomalous dimension has the desired form in E q. (58). To
compute results for the peak and moment mass-schemes we need the abelian jet funct ion in momentum space, B(ŝ, µ).

Only c) has a consistent anomalous dimension equation, for
  the others the anom.dim. does not have a consistent pert. expn. 

“top jet mass scheme”
(two loop conversion to         is now known)MS

have a RGE in µ
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order peak scheme moment scheme jet-mass scheme
4

πΓt
δmpeak = 1

R
δmmom = e−γE 1

R
δmJ =

αs/π CF

ˆ

ln µ
Γt

+ 3
2

˜

CF

ˆ

ln µ
R

+ 3
2

˜

CF

ˆ

ln µ
R

+ 1
2

˜

α2
s/π2 C2

F

ˆ

−ln2 µ
Γt

+(π2

3
−5) ln µ

Γt
− 13

4
+ π2

2
−2ζ3

˜

C2
F

ˆ

(4− π2

3
) ln µ

R
+8− π2

2
−2ζ3

˜

0

+CF β0

ˆ

1
4

ln2 µ
Γt

+ 7
6

ln µ
Γt

+ 95
72

+ π2

48

˜

+CF β0

ˆ

1
4

ln2 µ
R

+ 7
6

ln µ
R

+ 131
72

− π2

24

˜

+CF β0

ˆ

1
4

ln2 µ
R

+ 2
3

ln µ
R

+ 47
72

˜

+CF CA

ˆ

( 1
3
− π2

12
) ln µ

Γt
+ 17

36
− π2

8
− 5

8
ζ3

˜

+CF CA

ˆ

( 1
3
− π2

12
) ln µ

R
+ 17

36
− π2

8
− 5

8
ζ3

˜

+CF CA

ˆ

( 1
3
− π2

12
) ln µ

R
+ 5

36
− π2

24
− 5

8
ζ3

˜

TABLE I: Coefficients of the HQET counterterm δm for different mass schemes at one and two-loop order.

Lets extend the proof of consistency of the anomalous dimension in the position-scheme (jet-mass scheme) to the
full non-abelian case. At the same time we will derive the very nice result that γm for the jet-mass scheme is entirely
determined by the cusp-anomalous dimension. To all orders in perturbation theory, using Eq. (57), the jet-mass
anomalous dimension is

γJ
m = −

dδm(µ)

d lnµ
= −eγE

R

2

d

d lnµ

d

d ln(iy)
ln B̃(y, µ)

∣

∣

∣

∣

iyeγE =1/R

. (63)

Using Eq. (55) and then Eq. (26) this gives [µy = e−γE/(iy)]

γJ
m = −eγE

R

2

d

d lnµ

d

d ln(iy)
K(µ, µy) = eγE

R

2

d

d lnµ

d

d lnµy
K(µ, µy) (64)

= eγER β[αs(µ)] β[αs(µy)]
d2

dαs(µy)dαs(µ)

∫ αs(µ)

αs(µy)

dα

β[α]
Γc[α]

∫ α

αs(µy)

dα′

β[α′]
,

where we should evaluate the final result at µy = R. Performing the derivatives with respect to the couplings we
see that at any order in perturbation theory the anomalous dimension for mJ(µ) is actually independent of µy.
Furthermore the result is given by the cusp-anomalous dimension, γm = −eγE R Γc[αs(µ)]. Thus, to all orders in
perturbation theory the jet-mass scheme, defined by c) in Eq. (57), has a consistent anomalous dimension as in
Eq. (58), and yields a transitive running mass, mJ (µ). The final anomalous dimension equation for the jet-mass is

dmJ (µ)

d lnµ
= −eγER Γc[αs(µ)] , (65)

and is fully determined by the cusp-anomalous dimension. The all-orders solution of this equation is

mJ (µ) = mJ(µ0) −
eγER

2
ω(µ, µ0) . (66)

Since Γc is known to three-loop order we can use Eq. (42) to obtain the running jet-mass at NNLL

mJ(µ) = mJ (µ0) + eγER
2CF

β0
ln

[

αs(µ)

αs(µ0)

]

+ eγER
(Γc

1

β0
−

β1Γc
0

β2
0

)

[

αs(µ) − αs(µ0)

8π

]

+ eγER
(Γc

2

β0
−

Γc
1β1

β2
0

+
Γc

0β
2
1

β3
0

−
Γc

0β2

β2
0

)

[

α2
s(µ) − α2

s(µ0)

64π2

]

. (67)

Note that the form of the anomalous dimension in µd/dµ [mJ(µ)/R] has the same structure as that in µd/dµ [lnm(µ)],
where m(µ) is the MS mass. In the remaining sections we will use the position mass-scheme and refer to it exclusively
as the jet-mass.

B. Relating the Jet-Mass to other Mass Schemes

Having obtained a suitable mass definition for measurements of the top-mass from jets, we now turn to perturbatively
connecting it to other schemes. Using the result for δmJ from Table I we obtain the two-loop relation between the

anom.dim. is determined by cusp term,
and therefore is known to 3 loops

This scheme is nice:
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well as of the log-resumma tion, including the per turba tive convergence and µ-dependence of B as a funct ion of ŝ,
and in par ticular the stabili ty of i ts peak posi t ion which is impor tant for a top-mass measurement . A t tree-level
B (ŝ, δm , µ) = δ(ŝ) and we see from E q. (12) tha t B (ŝ, δm , Γt , µ) is simply a B rei t- W igner centered a t ŝ = 0 with a
width Γt . B eyond tree-level the jet funct ion becomes dependent on µ and on the choice of mass-scheme through δm .

For the cross-sect ion d2σ / d M 2
t d M 2

t̄ in E q. (2) it has been proven tha t a t any order in per turba tion theory, the
only large logs tha t effect the shape of the invariant mass distribution are those due to the resumma tion in the
heav y-quark jet funct ion [19].4 Fur thermore these large logs only exist between scales µΓ ∼ Γ ≡ Γt + QΛQCD / m and
µΛ

>∼ ΛQCD + mΓt / Q . T he remaining large logs only modify the cross-sect ions normaliza tion. T he expression which
resums all logs between the scales µQ # Q $ µm # m $ µΓ # Γ $ µΛ

>∼ ΛQCD is

d2σ

d M td M t̄
= 4σ0 M t M t̄ H Q( Q , µQ)UHQ ( Q , µQ , µm) H m(mJ , µm)UHm ( Q / mJ , µm , µΛ) (73)

×
∫ +∞

−∞
d#+ d#− B+

(

ŝt −
Q#+

mJ
, δmJ , Γt , µΛ , µΓ

)

B−

(

ŝt̄ −
Q#−

mJ
, δmJ , Γt , µΛ , µΓ

)

S
(

#+ , #− , µΛ , δ, ∆̄(µΛ)
)

,

where we have defined the resummed jet funct ion as

B (ŝ, δmJ , Γt , µΛ , µΓ) ≡
∫

dŝ′ UB (ŝ − ŝ′ , µΛ , µΓ) B (ŝ′ , δmJ , Γt , µΓ)

=
∫

dŝ′ dŝ′′ UB (ŝ − ŝ′ , µΛ , µΓ) B (ŝ′ − ŝ′′ , δmJ , µΓ)
Γt

π(ŝ′′ 2 + Γ2
t )

. (74)

In E qs. (73,74) large logs are resummed by the evolution factors UHQ , UHm , and UB , and of these, the first two only
affect the overall normaliza tion. Since the scales µΓ and µΛ differ by a factor of Q / m i t is necessary to sum the large
logs between these scales. Recall tha t E q. (73) is valid for Q $ m , which is manda tory for the top quark and antitop
quarks to decay to well separa ted jets. T he numerical impor tance of this par ticular resumma tion has already been
demonstra ted a t N L L order in Ref. [19].

In the following we study the resummed jet funct ion B (ŝ, δm , Γt , µΛ , µΓ) and its dependence on ŝ and µΓ . In
par ticular the µΓ dependence cancels out order-by-order in renormaliza tion group improved per turba tion theory, and
thus the residual µΓ dependence provides a method for est ima ting the effect of higher order correct ions to the jet
funct ion. T his µΓ dependence cancels order-by-order between the evolutor UB (ŝ − ŝ′ , µΛ , µΓ) and the fixed-order jet
funct ion ma trix element tha t gives B (ŝ′− ŝ′′, δm , µΓ) in E q. (74). O n the other hand, the dependence of the resummed
jet funct ion on µΛ cancels out only in the complete cross-sect ion, where there is additional dependence on µΛ in both
the evolution funct ion UHm and the soft-funct ion S . T he analysis of the invariant mass dependence of the full N N L L
cross-sect ion requires construct ing a consistent model for the soft-funct ion a t two-loop order, since S contains both
per turba tive and non-per turba tive pieces. T he procedure in Ref. [22] can be used to carry out this analysis, but we
leave the study of the full cross-sect ion to a future publica tion. H ere we focus on the resummed jet funct ion.

Following the stra tegy in appendix E of Ref. [19] we can obtain analy tic results for the N N L L jet funct ion even in
the presence of the width. A t N N L L order we find

m B (ŝ, δm , Γt , µΛ , µΓ) = G0 +
CF αs(µΓ)

π

[

G2 − G1 +
(

1 +
5π2

24

)

G0

]

−
2αs(µΓ)

π
δm1(µΓ) ( G0)′

+
α2

s (µΓ)
π2

{

C 2
F

[

1
2

G4 − G3 +
(3

2
+

13π2

24

)

G2 −
(

1 +
13π2

24
− 4ζ3

)

G1 +
( 1

2
+

7π2

24
+

53π4

640
− 2ζ3

)

G0

]

+ CF CA

[

( 1
3
−

π2

12

)

G2 −
( 5

18
−

π2

12
−

5ζ3

4

)

G1 +
(

−
11
54

+
5π2

48
−

19π4

960
−

5ζ3

8

)

G0

]

+ CF β0

[

−
1
6

G3 +
2
3

G2 −
( 47

36
+

π2

12

)

G1 +
( 281

216
+

23π2

192
−

17ζ3

48

)

G0

]

}

−
2α2

s(µΓ)
π2

{

δm2 ( G0)′ − (δm1)2 ( G0)′′ + δm1 CF

[

( G2)′ − ( G1)′ +
(

1 +
5π2

24

)

( G0)′
]

}

. (75)

4 In principle both the logs in the jet function and in the soft-function can modify the invariant mass distribution. However due to the
consistency conditions discussed in Ref. [19] it is always possible to exchange a summation of large logs in the soft function in favor of
large logs in the jet function and in the hard function normalization factors.

Result is jet-function with resummation:
}

convolute result from the previous page
to sum logs and include width effects
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FIG. 3: The jet function, mB(ŝ, δm, Γt, µ) versus Mt, where ŝ = (M2
t −m2)/m and Γt = 1.43 GeV. The left panel shows results

in the pole-mass scheme and the right panel shows results in the jet-mass scheme. The black dotted curve is the tree-level
Breit-Wigner, the green short-dashed curves are LL results, blue long-dashed curves are NLL, and the solid red curves are at
NNLL order. For each of the LL, NLL, and NNLL results we show three curves with µΓ = 3.3, 5.0, 7.5 GeV respectively. Other
parameters are discussed in the text.

M t  (GeV)
peak

172.0

171.8

172.2

172.4

µ!2 4 6 8 10

jet LL

jet NLL

jet NNLL

pole LL

pole NLL

pole NNLL

 (GeV)

FIG. 4: Peak position Mpeak
t of the jet function versus µΓ. Short-dashed results are at LL order, long-dashed are at NLL

order, and solid are at NNLL order. Results are labeled for the pole mass-scheme (blue) and jet mass-scheme (red).

residual µΓ dependence is smaller in the jet-scheme than in the pole-scheme. T he numerical size of the residual µΓ

scale dependence varies region by region. In the pole-mass scheme the scale dependence in the slope before the peak
is ∼ 17% a t N L L and ∼ 14% a t N N L L , while the maximum varia tion near the peak is 23% a t N L L and 17% a t
N N L L , and then in the tail region well above the peak it is ∼ 19% a t N L L and ∼ 13% a t N N L L . H ence, in the pole
scheme including the N N L L results does not significantly decrease the µΓ dependence. In the jet-mass scheme the
scale dependence in the slope before the peak is ∼ 6% a t N L L and ∼ 2% a t N N L L , while the maximum varia tion
near the peak is 14% a t N L L and 7% a t N N L L , and then in the tail above the peak it is ∼ 12% a t N L L and ∼ 5%
a t N N L L . T hus, in the jet-mass scheme the µΓ dependence is reduced by a factor of two or more. T he same level of
improvement is observed for different values of the scheme parameter R than the value used in our analysis.

In F ig. 4 we plot the peak posi t ion Mpeak
t of the jet funct ion curves, versus µΓ . T his figure displays the convergence

and µΓ dependence of the jet funct ion peak posi t ion in more detail than F ig. 3. T he stabili ty of the jet funct ion
peak has a direct influence on the peak of the cross-sect ion, and both are very sensi t ive to the value of the shor t-
distance top-mass. H ence the peak-posi t ion is impor tant to gauge the effect of per turba tive correct ions for the mass
measurement . We use a wider range for µΓ than tha t of the curves in F ig. 3, but note tha t results for µΓ ≤ 3 G e V
upset the hierarchy µΓ/µΛ # 5 and hence can be safely ignored. In the pole-mass scheme we observe tha t there is
limited sign of convergence for the peak posi t ion, although the shifts with µΓ = 5 G e V a t each order are st ill rela t ively
small being # 230 M e V from L L to N L L order and # 120 M e V from N L L to N N L L order. T he lack of convergence
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in the pole-mass scheme and the right panel shows results in the jet-mass scheme. The black dotted curve is the tree-level
Breit-Wigner, the green short-dashed curves are LL results, blue long-dashed curves are NLL, and the solid red curves are at
NNLL order. For each of the LL, NLL, and NNLL results we show three curves with µΓ = 3.3, 5.0, 7.5 GeV respectively. Other
parameters are discussed in the text.
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FIG. 4: Peak position Mpeak
t of the jet function versus µΓ. Short-dashed results are at LL order, long-dashed are at NLL

order, and solid are at NNLL order. Results are labeled for the pole mass-scheme (blue) and jet mass-scheme (red).

residual µΓ dependence is smaller in the jet-scheme than in the pole-scheme. The numerical size of the residual µΓ

scale dependence varies region by region. In the pole-mass scheme the scale dependence in the slope before the peak
is ∼ 17% at NLL and ∼ 14% at NNLL, while the maximum variation near the peak is 23% at NLL and 17% at
NNLL, and then in the tail region well above the peak it is ∼ 19% at NLL and ∼ 13% at NNLL. Hence, in the pole
scheme including the NNLL results does not significantly decrease the µΓ dependence. In the jet-mass scheme the
scale dependence in the slope before the peak is ∼ 6% at NLL and ∼ 2% at NNLL, while the maximum variation
near the peak is 14% at NLL and 7% at NNLL, and then in the tail above the peak it is ∼ 12% at NLL and ∼ 5%
at NNLL. Thus, in the jet-mass scheme the µΓ dependence is reduced by a factor of two or more. The same level of
improvement is observed for different values of the scheme parameter R than the value used in our analysis.

In Fig. 4 we plot the peak position Mpeak
t of the jet function curves, versus µΓ. This figure displays the convergence

and µΓ dependence of the jet function peak position in more detail than Fig. 3. The stability of the jet function
peak has a direct influence on the peak of the cross-section, and both are very sensitive to the value of the short-
distance top-mass. Hence the peak-position is important to gauge the effect of perturbative corrections for the mass
measurement. We use a wider range for µΓ than that of the curves in Fig. 3, but note that results for µΓ ≤ 3 GeV
upset the hierarchy µΓ/µΛ # 5 and hence can be safely ignored. In the pole-mass scheme we observe that there is
limited sign of convergence for the peak position, although the shifts with µΓ = 5 GeV at each order are still relatively
small being # 230 MeV from LL to NLL order and # 120 MeV from NLL to NNLL order. The lack of convergence
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Analysis at NLL order

(Next-to-Leading-Order with resummation to
all orders of next-to-leading logarithms)

Fleming, Hoang,
Mantry, I.S.
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Analysis to NLL order

• RGE  evolution, sum large logs

•

Q! m! Γ ∼ ŝt,t̄

(Two-loop cusp anom.dims. &  One-loop non-cusp)

Proper choice for the scales

•

•

•

One-loop matching

Renormalon Free Schemes for Jet and Soft functions

One-loop matrix element for B+,  and for the soft function:
VII. SOFT FUNCTION MODELS WITH PERTURBATIVE CORRECTIONS

{sec:ModelSoft
The soft function at a scale µ ∼ µ∆ is written as

S(!+, !−, µ) =

∫ +∞

−∞

d!̃+

∫ +∞

−∞

d!̃− Spart(!
+−!̃+, !−−!̃−, µ, δi) Smod(!̃

+, !̃−) . (167) {Smodel1v2}

This combines the partonic perturbative result for the soft function Spart (given in Eqs. (111)

for the hemisphere prescription), with a model hadronic function Smod satisfying the moment

constraints in Eq. (39). As explained in Ref. [34], this form encodes the features we require

for an appropriate soft-function S for our analysis. In particular it works equally well for

the peak region where the soft-function in non-perturbative, and for the tail region where

the soft-function is perturbatively calculable. S in Eq. (167) has µ dependence consistent

with its anomalous dimension and the MS scheme. And finally it should be totally free from

the O(ΛQCD) soft-function renormalon ambiguity identified in Ref. [34], which is also known

to appear in event shapes for massless jets [74].

For the analyses in this work we will use the exponential model fexp of Ref. [20], with the

addition of a gap parameter ∆, so that

Smod(!
+, !−, ∆) = fexp

(
!+ − ∆, !− − ∆

)
, (168) {SM1}

fexp(!
+, !−) = θ(!+)θ(!−)

N (a, b)

Λ2

(!+!−

Λ2

)a−1
exp

(−(!+)2 − (!−)2 − 2b!+!−

Λ2

)
.

Here the normalization constant N (a, b) is defined so that
∫

d!+d!−S(!+, !−) = 1. The

parameter Λ ∼ ΛQCD sets the width of the hadronic function and hence the scale for !± and

the soft radiation. The dimensionless parameter a controls how fast the function vanishes at

the origin, and the dimensionless parameter b > −1 controls the correlation of energy flow

into the two hemispheres. Any b #= 0 implies cross-talk between the two hemispheres.10 The

gap parameter ∆ enforces !± ≥ ∆ and encodes the minimal hadronic energy deposit due to

soft radiation.

As explained in Ref. [34], there is a renormalon in Spart(!± − !̃±) that corresponds to

an O(ΛQCD) ambiguity in the partonic threshold where !± − !̃± = 0, and a corresponding

ambiguity in the non-perturbative gap-parameter ∆. It can be removed by shifting to a

renormalon free gap parameter ∆̄, using = ∆ = ∆̄(µ) + δ(µ),

S(!+, !−, µ) =

∫ +∞

−∞

d!̃+

∫ +∞

−∞

d!̃− Spart(!
+−!̃+, !−−!̃−, µ) fexp(!̃

+−∆, !̃−−∆) (169) {S2}

=

∫ +∞

−∞

d!̃+

∫ +∞

−∞

d!̃− Spart(!
+−!̃+−δ, !−−!̃−−δ, µ) fexp(!̃

+−∆̄, !̃−−∆̄) .

10 In Ref. [20] the values a = 2 and b = −0.4 were obtained from a fit to LEP data. This analysis used a

different scheme for including perturbative corrections in the soft-function than the one advocated here.

56
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NLL Cross-Section
Results

VIII. NUMERICAL ANALYSIS UP TO NEXT-TO-LEADING LOG ORDER

{sec:analysis
In Ref. [2] we carried out a numerical analysis of the top-invariant mass distribution

concentrating on nonperturbative effects caused by the soft function and on the dependence

of the invariant mass distributions on the parameters used for the soft function model.

The analysis was based on the tree-level results for the jet functions in Eq. (23), without

summation of logarithms, and on the hemisphere soft function as given by the model of

Ref. [20] which had been obtained from fits to event shapes in e+e− annihilation. The

soft-function caused a positive shift in the peak position of the invariant mass distribution,

Mt,t̄ > mJ , where the shift is parametrically ∼ ΛQCDQ/m, and it was demonstrated that

the peak shift and peak width grow linearly with Q/m.

In this section we will extend the analysis to include radiative corrections and examine the

perturbative convergence of predictions for the invariant mass distribution. This amounts

to a full NLL analysis (i.e. one-loop matrix elements plus NLL summation of logarithms).

Recall from Fig. 1 that there are four relevant scales for the log-summation, µh " Q, µm " m,

µΓ " ŝ + Γt + QΛ/mt and µΛ " 1 GeV >∼ ΛQCD + mΓt/Q. Our analysis is performed in

several steps. First in section VIIIA we consider the large logs between Q, m, and Γ, and

the effect of the consistency equations. Then in section ?? we analyze the cross-section

in the peak region including a resummation of large logs between µΓ " Γt + QΛ/mt and

µΛ " 1 GeV, which have a significant impact on stabilizing the cross-section. Finally in

section ?? we analyze the cross-section in the tail region.

For the numerical analysis it is convenient to write the invariant mass cross-section in

the top jet mass scheme in terms of dimension one invariant mass variables

d2σ

dMt dMt̄
=

σ0

Γ 2
t

F
(
Mt, Mt̄, mJ ,

Q

mJ

)
. (178) {sigmaMM}

where the prefactor σ0 is given in Eq. (7). Here mJ = mJ(µΓ) is the jet-mass and the

dimensionless function F is

F
(
Mt, Mt̄, mJ ,

Q

mJ

)
=

∫ ∞

−∞

d"+ d"− P
(
ŝt −

Q"+

mJ
, ŝt̄ −

Q"−

mJ
, µΛ

)
Smod

(
"+, "−, ∆̄(µΛ)

)
(179) {Fdef}

=

∫ ∞

−∞

d"+ d"− P
(
ŝt −

Q"+

mJ
− Q∆̄(µΛ)

mJ
, ŝt̄ −

Q"−

mJ
− Q∆̄(µΛ)

mJ
, µΛ

)
Smod

(
"+, "−, 0

)
,

with Smod the hadronic model function given in Eq. (168). In the second line we shifted

the integration variables to put all µ-dependent factors into P. In terms of Mt and Mt̄ the

invariant mass variables ŝt,t̄ in Eq. (179) are

ŝt =
M2

t − m2
J

mJ
, ŝt̄ =

M2
t̄ − m2

J

mJ
. (180) {ssM}
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In Ref. [2] we carried out a numerical analysis of the top-invariant mass distribution

concentrating on nonperturbative effects caused by the soft function and on the dependence

of the invariant mass distributions on the parameters used for the soft function model.

The analysis was based on the tree-level results for the jet functions in Eq. (23), without

summation of logarithms, and on the hemisphere soft function as given by the model of

Ref. [20] which had been obtained from fits to event shapes in e+e− annihilation. The

soft-function caused a positive shift in the peak position of the invariant mass distribution,

Mt,t̄ > mJ , where the shift is parametrically ∼ ΛQCDQ/m, and it was demonstrated that

the peak shift and peak width grow linearly with Q/m.

In this section we will extend the analysis to include radiative corrections and examine the

perturbative convergence of predictions for the invariant mass distribution. This amounts

to a full NLL analysis (i.e. one-loop matrix elements plus NLL summation of logarithms).

Recall from Fig. 1 that there are four relevant scales for the log-summation, µh " Q, µm " m,

µΓ " ŝ + Γt + QΛ/mt and µΛ " 1 GeV >∼ ΛQCD + mΓt/Q. Our analysis is performed in

several steps. First in section VIIIA we consider the large logs between Q, m, and Γ, and

the effect of the consistency equations. Then in section ?? we analyze the cross-section

in the peak region including a resummation of large logs between µΓ " Γt + QΛ/mt and

µΛ " 1 GeV, which have a significant impact on stabilizing the cross-section. Finally in

section ?? we analyze the cross-section in the tail region.

For the numerical analysis it is convenient to write the invariant mass cross-section in

the top jet mass scheme in terms of dimension one invariant mass variables

d2σ

dMt dMt̄
=
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Γ 2
t

F
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Mt, Mt̄, mJ ,
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where the prefactor σ0 is given in Eq. (7). Here mJ = mJ(µΓ) is the jet-mass and the

dimensionless function F is

F
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=

∫ ∞

−∞

d"+ d"− P
(
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=

∫ ∞

−∞

d"+ d"− P
(
ŝt −

Q"+

mJ
− Q∆̄(µΛ)

mJ
, ŝt̄ −

Q"−

mJ
− Q∆̄(µΛ)

mJ
, µΛ

)
Smod

(
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)
,

with Smod the hadronic model function given in Eq. (168). In the second line we shifted

the integration variables to put all µ-dependent factors into P. In terms of Mt and Mt̄ the

invariant mass variables ŝt,t̄ in Eq. (179) are

ŝt =
M2

t − m2
J

mJ
, ŝt̄ =

M2
t̄ − m2

J

mJ
. (180) {ssM }
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In Ref. [2] we carried out a numerical analysis of the top-invariant mass distribution

concentrating on nonperturbative effects caused by the soft function and on the dependence

of the invariant mass distributions on the parameters used for the soft function model.

The analysis was based on the tree-level results for the jet functions in Eq. (23), without

summation of logarithms, and on the hemisphere soft function as given by the model of

Ref. [20] which had been obtained from fits to event shapes in e+e− annihilation. The

soft-function caused a positive shift in the peak position of the invariant mass distribution,

Mt,t̄ > mJ , where the shift is parametrically ∼ ΛQCDQ/m, and it was demonstrated that

the peak shift and peak width grow linearly with Q/m.
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the effect of the consistency equations. Then in section ?? we analyze the cross-section

in the peak region including a resummation of large logs between µΓ " Γt + QΛ/mt and

µΛ " 1 GeV, which have a significant impact on stabilizing the cross-section. Finally in

section ?? we analyze the cross-section in the tail region.
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, ŝt̄ −
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with Smod the hadronic model function given in Eq. (168). In the second line we shifted

the integration variables to put all µ-dependent factors into P. In terms of Mt and Mt̄ the

invariant mass variables ŝt,t̄ in Eq. (179) are

ŝt =
M2

t − m2
J

mJ
, ŝt̄ =
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perturbative
part is

analytic

All the perturbatively computable contributions in Eq. (179) are grouped into the function

P
(
ŝt, ŝt̄, µΛ

)
= 4MtMt̄ Γ

2
t HQ(Q, µh) UHQ

(Q, µh, µm) Hm(m, µm) UHm

( Q

mJ
, µm, µΛ

)

× G+

(
ŝt,

Q

mJ
, Γt, µΛ

)
G−

(
ŝt̄,

Q

mJ
, Γt, µΛ

)
. (181) {Pdef}

P also depends on Q, mJ , and Γt, but for simplicity we have not shown this dependence in

its arguments. For the hard coefficients we used Eqs. (53) and (62) to write them in terms

of the one-loop matching coefficients HQ and Hm in Eqs. (91,130) and the NLL evolution

factors UHQ
and UHm given by Eq. (77). The functions G± in Eq. (181) contain perturbative

corrections that modify the shape of the cross-section. Using Eqs. (44,37,176) and a few

trivial changes of integration variables, these functions are

G±

(
ŝ,

Q

mJ
, Γt, µΛ

)
≡

∫ +∞

−∞

dŝ′ dŝ′′ d!′ UB(ŝ − ŝ′, µΛ, µΓ)

× BΓ=0
±

(
ŝ′ − ŝ′′ − Q

mJ
!′, µΓ, δm

)
S̃part(!

′, µΛ, δ1)
Γt

π(ŝ′′ 2 + Γ2
t )

. (182) {Gpm}

This result depends on BΓ=0
± , the jet function for stable quarks in Eq. (140), and S̃part the

modified partonic soft function of Eq. (177). The form in Eq. (179) is derived from the

factorization theorem given in Eq. (44), where the renormalization scales µΓ and µΛ were

distinguished. This leads to the presence of the evolution factor UB in Eq. (182), which

is given at NLL in Eq. (77). All the ingredients in the functions G± and hence P can be

computed in perturbation theory, and analytic results for G± are given in Appendix E.

When quoting results at LL order we take UB, UHQ
, and UHm at LL order, and use tree-

level results for BΓ=0
± and S̃part, including δm = δ1 = 0. For results quoted at NLL order

use NLL-evolution for UB, UHQ
, and UHm . They also include the O(αs) results for matching

coefficients and matrix elements, including BΓ=0
± , S̃part, δm, δ1, HQ(Q, µh) and Hm(m, µm).

These O(αs) terms have no-large logs, and we strictly drop all terms of O(α2
s) or higher for

the product that appears in P. In our analysis we also make use of the two-loop solution

for the running coupling

1

αs(µ)
=

1

αs(µ0)
+

β0

2π
ln

( µ

µ0

)
+

β1

4πβ0
ln

[
1 +

β0

2π
αs(µ0) ln

( µ

µ0

)]
, (183)

with αs(µ0 = mZ) = 0.118 as our reference value, and with β0 and β1 from Eq. (81). For

the running above µm we take nf = 6, while for running below µm we take nf = 5 (hence

neglecting the b-quark threshold).

Since there are many features of the cross-section formulae in Eqs. (178-182) that we wish

to explore, it is useful to have a default set of parameters. When not otherwise specified,

we use the following values for our analysis below. Our default Q/mJ = 5, and the default

renormalization scales are µh = 5 ∗ 172 GeV, µm = 172 GeV, µΓ = 5 GeV, and µΛ = 1 GeV.
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A ll the perturba t ively computable contribut ions in E q. (179) are grouped into the funct ion

P
 
ŝt, ŝt̄, µΛ

 
= 4MtMt̄ Γ

2
t HQ(Q, µh) UHQ

(Q, µh, µm) Hm(m, µm) UHm

 Q

mJ
, µm, µΛ

 

× G+

 
ŝt,

Q

mJ
, Γt, µΛ

 
G−

 
ŝt̄,

Q

mJ
, Γt, µΛ

 
. (181) {Pdef}

P also depends on Q, mJ , and Γt, but for simplicity we have not shown this dependence in
its arguments. For the hard coefficients we used E qs. (53) and (62) to write them in terms
of the one-loop ma tching coefficients HQ and Hm in E qs. (91,130) and the N L L evolut ion
factors UHQ

and UHm given by E q. (77). T he funct ions G± in E q. (181) contain perturba t ive
correct ions tha t modify the shape of the cross-sect ion. Using E qs. (44,37,176) and a few
trivial changes of integra t ion variables, these funct ions are

G±

 
ŝ,

Q

mJ
, Γt, µΛ

 
≡

 +∞

−∞

dŝ′ dŝ′′ d!′ UB (ŝ − ŝ′, µΛ, µΓ)

× BΓ=0
±

 
ŝ′ − ŝ′′ − Q

mJ
!′, µΓ, δm

 
S̃part(!′, µΛ, δ1)

Γt

π(ŝ′′ 2 + Γ2
t )

. (182) {Gpm}

T his result depends on BΓ=0
± , the jet funct ion for stable quarks in E q. (140), and S̃part the

modified partonic soft funct ion of E q. (177). T he form in E q. (179) is derived from the
factoriza t ion theorem given in E q. (44), where the renormaliza t ion scales µΓ and µΛ were
dist inguished. T his leads to the presence of the evolut ion factor UB in E q. (182), which
is given a t N L L in E q. (77). A ll the ingredients in the funct ions G± and hence P can be
computed in perturba t ion theory, and analy t ic results for G± are given in A ppendix E .

W hen quot ing results a t L L order we take UB , UHQ
, and UHm a t L L order, and use tree-

level results for BΓ=0
± and S̃part , including δm = δ1 = 0. For results quoted a t N L L order

use N L L-evolut ion for UB , UHQ
, and UHm . T hey also include the O(αs) results for ma tching

coefficients and ma trix elements, including BΓ=0
± , S̃part , δm, δ1 , HQ(Q, µh) and Hm(m, µm).

T hese O(αs) terms have no-large logs, and we strict ly drop all terms of O(α2
s ) or higher for

the product tha t appears in P . In our analysis we also make use of the two-loop solut ion
for the running coupling

1
αs(µ)

=
1

αs(µ0)
+

β0

2π
ln

 µ

µ0

 
+

β1

4πβ0
ln

 
1 +

β0

2π
αs(µ0) ln

 µ

µ0

  
, (183)

with αs(µ0 = mZ ) = 0.118 as our reference value, and with β0 and β1 from E q. (81). For
the running above µm we take nf = 6, while for running below µm we take nf = 5 (hence
neglect ing the b-quark threshold).

Since there are many fea tures of the cross-sect ion formulae in E qs. (178-182) tha t we wish
to explore, it is useful to have a default set of parameters. W hen not otherwise specified,
we use the following values for our analysis below. O ur default Q/mJ = 5, and the default
renormaliza t ion scales are µh = 5 ∗ 172 G e V , µm = 172 G e V , µΓ = 5 G e V , and µΛ = 1 G e V .
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to sum large logs with the renormalization group. The consistency equations discussed in the text
express the equivalence of running from the top-down in case a) and from the bottom-up in case

b). Case c) is used for our numerical analysis.

situation shown in Fig. 2 the factorization theorem becomes
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We will always take µΓ > µΛ (although technically these equations are still valid for the case

µΛ > µΓ). The evolution kernels UB and US sum the large logs between µΓ and µΛ, while

the large logs that only affect the overall normalization are summed into HQ and Hm. In

Fig. 2 we display three equivalent ways to sum the large logs, labeled cases a), b), and c).

In case a) we run all terms, from the top-down, from µQ down to µΓ, and we run the soft
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ŝt −

Q"+

m
, Γ, µΓ

)
B−

(
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ŝ′t −

Q"+

m
, Γ, µΓ

)
B−

(
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FIG. 15: F(Mt,Mt̄), the differential cross-section in units of σ0/Γ2
t , versus Mt and Mt̄. The result

is shown at NLL order.
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FIG. 16: Normalized peak cross-section, F(Mt,Mt) versus Mt. The dashed curves have µΓ = 5GeV,

and the solid curves have µΓ = 3.3, 7.5GeV. The left panel shows results at LL (lower purple
curves) and NLL (upper red curves) with the jet and ∆̄ schemes. The center panel shows results
in the jet-mass scheme (red) versus the pole-mass scheme (blue), where in both cases we use the

∆̄ scheme. The right panel shows results in the ∆̄(µ) scheme for the gap parameter (red) versus
the ∆ scheme (magenta), where in both cases we use the jet-mass scheme.

that the peak of the cross-section is very stable to the variation of µΓ, and changes very little

from LL to NLL order. As explained above, by far the dominant contribution of the shift of

the peak away from the input short-distance jet-mass is due to the underlying soft-function,

shown here by the difference between the dashed and solid lines. In the central panel we

show again the NLL order cross sections in the jet-mass and ∆̄-scheme (red curves) and

compare it to the NLL predictions in the pole-mass scheme for the same three µΓ values

(blue curves). The results show that in the pole-mass scheme there is more variation of the

peak position than in the jet-mass scheme. Finally in the right panel we show variations of

the cross-section in comparing the renormalon free ∆̄-scheme (red curves) and the gap with

a renormalon ambiguity in the ∆-scheme (magenta curves). This figure demonstrates that

the effect of the switching to a renormalon free gap-scheme is larger than the residual µΓ
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FIG. 12: Renormalization group evolution of the jet function, mJB+(ŝ,Γt, µ) (left panels), the
diagonal soft function S(!, !, µ) (center panels), and the function F in Eq. (179) (right panels) with

µ = µΓ = µΛ. The top three panels show LL results, while the bottom three are NLL results.
For the left and cener panels the curves are tree-level (black solid), NLO at µ = 1GeV (blue with

longest dashes), and curves which evolve at LL or NLL order from µ0 = 1 to µ = 1.5, 4.0, 7.0GeV
(red, green, magenta, with decreasing dash sizes respectively). The right panels show only these
last three curves. {fig:BSrun}
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FIG. 13: The µΓ and µΛ scale dependence of the perturbative contributions, P(Mt,Mt). The

top-panels show LL results, while bottom panels show NLL results. Central values are µΓ = 5GeV
and µΛ = 1GeV. In the left panels the solid curves are µΓ = 3.3, 5, 7.5GeV (from top to bottom
at the peak), while the blue-dashed line shows the result when µΓ = µΛ = 1GeV. In the central

panels the solid curves are µ∆ = 0.8, 1.0, 1.2GeV. The right panels are the same as the central
panels, except that we also change µΓ so that µΓ/µΛ = Q/m = 5 remains fixed. {figFmu}
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and the blue curve turns off the renormalon subtraction for the gap. {figFmu2}
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effect of using renormalon free gap and mass parameters, where the red curve includes both. The
green curve turns off the renormalon subtractions for the mass (thus using the pole mass scheme),
and the blue curve turns off the renormalon subtraction for the gap. {figFmu2}
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effect of using renormalon free gap and mass parameters, where the red curve includes both. The
green curve turns off the renormalon subtractions for the mass (thus using the pole mass scheme),
and the blue curve turns off the renormalon subtraction for the gap. {figFmu2}
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FIG. 12: Renormalization group evolution of the jet function, mJB+(ŝ,Γt, µ) (left panels), the
diagonal soft function S(!, !, µ) (center panels), and the function F in Eq. (179) (right panels) with

µ = µΓ = µΛ. The top three panels show LL results, while the bottom three are NLL results.
For the left and cener panels the curves are tree-level (black solid), NLO at µ = 1GeV (blue with

longest dashes), and curves which evolve at LL or NLL order from µ0 = 1 to µ = 1.5, 4.0, 7.0GeV
(red, green, magenta, with decreasing dash sizes respectively). The right panels show only these
last three curves. {fig:BSrun}
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FIG. 13: The µΓ and µΛ scale dependence of the perturbative contributions, P(Mt,Mt). The

top-panels show LL results, while bottom panels show NLL results. Central values are µΓ = 5GeV
and µΛ = 1GeV. In the left panels the solid curves are µΓ = 3.3, 5, 7.5GeV (from top to bottom
at the peak), while the blue-dashed line shows the result when µΓ = µΛ = 1GeV. In the central

panels the solid curves are µ∆ = 0.8, 1.0, 1.2GeV. The right panels are the same as the central
panels, except that we also change µΓ so that µΓ/µΛ = Q/m = 5 remains fixed. {figFmu}
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For the left and cener panels the curves are tree-level (black solid), NLO at µ = 1GeV (blue with

longest dashes), and curves which evolve at LL or NLL order from µ0 = 1 to µ = 1.5, 4.0, 7.0GeV
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last three curves. {fig:BSrun}
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panels the solid curves are µ∆ = 0.8, 1.0, 1.2GeV. The right panels are the same as the central
panels, except that we also change µΓ so that µΓ/µΛ = Q/m = 5 remains fixed. {figFmu}
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(red, green, magenta, with decreasing dash sizes respectively). The right panels show only these
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top-panels show LL results, while bottom panels show NLL results. Central values are µΓ = 5GeV
and µΛ = 1GeV. In the left panels the solid curves are µΓ = 3.3, 5, 7.5GeV (from top to bottom
at the peak), while the blue-dashed line shows the result when µΓ = µΛ = 1GeV. In the central
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FIG. 16: Normalized peak cross-section, F(Mt,Mt) versus Mt. The dashed curves have µΓ = 5GeV,

and the solid curves have µΓ = 3.3, 7.5GeV. The left panel shows results at LL (lower purple
curves) and NLL (upper red curves) with the jet and ∆̄ schemes. The center panel shows results
in the jet-mass scheme (red) versus the pole-mass scheme (blue), where in both cases we use the

∆̄ scheme. The right panel shows results in the ∆̄(µ) scheme for the gap parameter (red) versus
the ∆ scheme (magenta), where in both cases we use the jet-mass scheme.

curves (top three lines) using µΓ = 3.3, 5.0, 7.5 GeV in the jet-mass and ∆̄-scheme. We find

that the peak of the cross-section is very stable to the variation of µΓ, and changes very little

from LL to NLL order. As explained above, by far the dominant contribution of the shift of

the peak away from the input short-distance jet-mass is due to the underlying soft-function,

shown here by the difference between the dashed and solid lines. In the central panel we

show again the NLL order cross sections in the jet-mass and ∆̄-scheme (red curves) and

compare it to the NLL predictions in the pole-mass scheme for the same three µΓ values

(blue curves). The results show that in the pole-mass scheme there is more variation of the

peak position than in the jet-mass scheme. Finally in the right panel we show variations of

the cross-section in comparing the renormalon free ∆̄-scheme (red curves) and the gap with

a renormalon ambiguity in the ∆-scheme (magenta curves). This figure demonstrates that
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FIG. 16: Normalized peak cross-section, F(Mt,Mt) versus Mt. The dashed curves have µΓ = 5GeV,

and the solid curves have µΓ = 3.3, 7.5GeV. The left panel shows results at LL (lower green curves)
and NLL (upper red curves). The center panel shows results in the jet-mass scheme (red) versus the

pole-mass scheme (blue). The right panel shows results in the ∆̄(µ) scheme for the gap parameter
(red) versus the ∆ scheme (purple). [Do we also need µΛ plots?] {figFmu2}

B. Cross Section in the Peak Region

Note that the factor 4MtMt̄ on the RHS of Eq. (178) acts as a normalization constant

and in the peak region its invariant mass dependence does not affect the predictions up to

small power corrections of order Γ/m.

In our numerical analyis we will therefore only examine the function G. Since we are

mainly interested in the behavior of the shape (and in particular the resonance position)

of the predicted invariant mass distributions we will set µm = mJ and neglect the SCET

Wilson coefficient HQ for our examinations.

This is because we for the construction of our soft function model we use the partonic

contributions that are perturbatively computed at the scale µΛ as an input. For this approach

the scale µΛ represents a model parameter, and variations of it cannot be associated to a

theoretical uncertainty.
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µ = µΓ = µΛ. The top three panels show LL results, while the bottom three are NLL results.
For the left and cener panels the curves are tree-level (black solid), NLO at µ = 1GeV (blue with

longest dashes), and curves which evolve at LL or NLL order from µ0 = 1 to µ = 1.5, 4.0, 7.0GeV
(red, green, magenta, with decreasing dash sizes respectively). The right panels show only these
last three curves. {fig:BSrun}
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FIG. 13: The µΓ and µΛ scale dependence of the perturbative contributions, P(Mt,Mt). The

top-panels show LL results, while bottom panels show NLL results. Central values are µΓ = 5GeV
and µΛ = 1GeV. In the left panels the solid curves are µΓ = 3.3, 5, 7.5GeV (from top to bottom
at the peak), while the blue-dashed line shows the result when µΓ = µΛ = 1GeV. In the central

panels the solid curves are µ∆ = 0.8, 1.0, 1.2GeV. The right panels are the same as the central
panels, except that we also change µΓ so that µΓ/µΛ = Q/m = 5 remains fixed. {figFmu}
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171.9 ± 0.1GeV. {fig:peak_pos_1
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and the blue curve turns off the renormalon sub tract ion for the gap. {figFmu2}
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FIG. 14: P(Mt,Mt) versus Mt. Left panel shows the µm dependence at LL (top curves) and NLL

(bottom curves) taking µm = 86, 172, 344GeV. Central panels shows the µQ dependence at LL
(top curves) and NLL (bottom curves) taking µQ = 430, 860, 1720GeV. The right panel shows the

effect of using renormalon free gap and mass parameters, where the red curve includes both. The
green curve turns off the renormalon subtractions for the mass (thus using the pole mass scheme),
and the blue curve turns off the renormalon subtraction for the gap. {figFmu2}
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FIG. 16: Normalized peak cross-section, F(Mt,Mt) versus Mt. The dashed curves have µΓ = 5GeV,

and the solid curves have µΓ = 3.3, 7.5GeV. The left panel shows results at LL (lower green curves)
and NLL (upper red curves). The center panel shows results in the jet-mass scheme (red) versus the

pole-mass scheme (blue). The right panel shows results in the ∆̄(µ) scheme for the gap parameter
(red) versus the ∆ scheme (purple). [Do we also need µΛ plots?] {figFmu2}

B. Cross Section in the Peak Region

Note that the factor 4MtMt̄ on the RHS of Eq. (178) acts as a normalization constant

and in the peak region its invariant mass dependence does not affect the predictions up to

small power corrections of order Γ/m.

In our numerical analyis we will therefore only examine the function G. Since we are

mainly interested in the behavior of the shape (and in particular the resonance position)

of the predicted invariant mass distributions we will set µm = mJ and neglect the SCET

Wilson coefficient HQ for our examinations.

This is because we for the construction of our soft function model we use the partonic

contributions that are perturbatively computed at the scale µΛ as an input. For this approach

the scale µΛ represents a model parameter, and variations of it cannot be associated to a

theoretical uncertainty.
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and the solid curves have µΓ = 3.3, 7.5GeV. The left panel shows results at LL (lower green curves)
and NLL (upper red curves). The center panel shows results in the jet-mass scheme (red) versus the

pole-mass scheme (blue). The right panel shows results in the ∆̄(µ) scheme for the gap parameter
(red) versus the ∆ scheme (purple). [Do we also need µΛ plots?] {figFmu2}

B. Cross Section in the Peak Region

Note that the factor 4MtMt̄ on the RHS of Eq. (178) acts as a normalization constant

and in the peak region its invariant mass dependence does not affect the predictions up to

small power corrections of order Γ/m.

In our numerical analyis we will therefore only examine the function G. Since we are

mainly interested in the behavior of the shape (and in particular the resonance position)

of the predicted invariant mass distributions we will set µm = mJ and neglect the SCET

Wilson coefficient HQ for our examinations.

This is because we for the construction of our soft function model we use the partonic

contributions that are perturbatively computed at the scale µΛ as an input. For this approach

the scale µΛ represents a model parameter, and variations of it cannot be associated to a

theoretical uncertainty.
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(top curves) and N L L (bot tom curves) taking µQ = 430, 860, 1720 G e V . T he right panel shows the
effect of using renormalon free gap and mass parameters, where the red curve includes both. T he
green curve turns off the renormalon sub tract ions for the mass (thus using the pole mass scheme),
and the blue curve turns off the renormalon sub tract ion for the gap. {figFmu2}
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(bottom curves) taking µm = 86, 172, 344GeV. Central panels shows the µQ dependence at LL
(top curves) and NLL (bottom curves) taking µQ = 430, 860, 1720GeV. The right panel shows the

effect of using renormalon free gap and mass parameters, where the red curve includes both. The
green curve turns off the renormalon subtractions for the mass (thus using the pole mass scheme),
and the blue curve turns off the renormalon subtraction for the gap. {figFmu2}
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FIG. 21: Thrust distribution, dσ/dT in units of σ0, plotted versus 1 − T at LL (dashed
curves) and NLL (solid curves). In the left panel we take µΛ = µ0

Λ and plot three curves
with µΓ = {0.5, 1.0, 1.5}µ0

Γ . In the center panel we take µΓ = µ0
Γ and show three curves

with µΛ = {0.8, 1.0, 1.5}µ0
Λ . In the right panel we show µΛ = {0.8, 1.0, 1.5}µ0

Λ with µΓ =
µΛ [0.8Q/mJ (2GeV)].

slightly larger than the ones used earlier. This is because of the effective doubling of the

anomalous dimensions for the thrust cross-section (see Appendix G), which necessitates

using slightly larger values for µΛ to avoid the region where large values for αs cause a break

down in perturbation theory.

The threshold for thrust for two-massive particles is given by 1 − T = 2m2
J/Q2 and is

shown by the vertical dashed lines in Fig. 21. Just as for the invariant mass-distribution,

there is a peak in the thrust cross-section and it is shifted above the massive particle threshold

due to soft-radiation effects by an amount " 2ΛQCD/Q. The analog of this for massless jets

is a peak in the thrust distribution at values 1−T " 2ΛQCD/Q (see for example [22]), which

is a shift above the massless dijet threshold at 1 − T = 0. The three panels in Fig. 21 show

the µ-dependence of our NLL results, varying µΓ in the left panel, µΛ in the center panel,

and µΛ with µΓ/µΛ = 4 fixed in the right panel (since here Q/mJ = 5). Again we see that

there is very small µ-dependence when µΓ and µΛ are varied in a correlated fashion. We

believe the left panel gives a reasonable estimate of the perturbative uncertainties in the

shape of the thrust distribution. An analysis of the thrust-distribution peak for different

values of Q could also be used to extract the short-distance top-mass parameter.

IX. CONCLUSION

Precise measurements of the top quark mass mt belong to the most important standard

measurements carried out at the Tevatron and the LHC. The most sensitive method relies

on the reconstruction of the top quark invariant mass distribution through measurements of

the energies and momenta of jets from the top decay. While considerable work has and is

being invested to control experimental systematic effects, very little theoretical work exists

which study both perturbative and nonperturbative QCD aspects of the resulting invariant
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This observable contains other event shapes as projections,
 like thrust

which are analogous to the ones used for our analysis of the peak and tail cross-sect ions.
T hese formulae could be useful as a means of est ima t ing top-quark backgrounds from t t̄
events for other processes in the ultra-tail region.

D. Thrust

Start ing from the two-dimensional distribut ion, d2σ / d M 2
t d M 2

t̄ in E q. (180) it is straight-
forward to derive results for other event shape variables for massive part icles. For example,
for the thrust T , we have 1 − T ≡ τ = ( M 2

t + M 2
t̄ ) / Q2 , so

1
σ0

dσ

dT
=

∫ ∞

0

d M 2
t

∫ ∞

0

d M 2
t̄ δ

(
τ −

M 2
t + M 2

t̄

Q2

) d2σ

d M 2
t d M 2

t̄

(188)

=
∫ ∞

0

d$ PT

(
Q2τ − 2m2

J − Q$ − 2 Q∆̄(µΛ)
mJ

, µΛ

)
Ssymm

mod ($, 0) .

T he perturba t ive contribut ions are grouped into the dimensionless funct ion PT which is a
pro ject ion of our funct ion P ,

PT(ŝ, µΛ) ≡
∫ +∞

−∞

dŝd
mJ Q2

8 M t M t̄ Γ2
t

P
( ŝ + ŝd

2
,

ŝ − ŝd

2
, µΛ

)
. (189)

Here under the ŝd integral M 2
t = m2

J + mJ (ŝ + ŝd) / 2 and M 2
t̄ = m2

J + mJ (ŝ − ŝd) / 2. A n
analy t ic formula for PT is derived in A ppendix G . T he appropria te soft-funct ion for thrust ,
Ssymm

mod ($) in E q. (188), is also simply a pro ject ion of the model for the hemisphere soft
funct ion, Smod($+, $− , ∆), where

Ssymm
mod ($, 0) =

∫ ∞

0

d$+ d$−δ
(
$ − $+ − $−

)
Smod($+ , $−, 0) . (190)

For the exponent ial model in E q. (170) this pro ject ion gives

Ssymm
mod ($, 0) =

N (a, b)
Λ

√
πΓ(a)

Γ(a + 1
2 )

( $

2Λ

)2a−1

1 F1

(1
2

,
1
2

+ a,
(b − 1)$2

2Λ2

)
e−(1+b)!2/(2Λ2) , (191)

where {a, b, Λ} are the model parameters and N (a, b) is the same normaliza t ion constant as
in E q. (170).

In F ig. 21 we plot the thrust distribut ion a t L L order (dashed curves) and N L L order
(solid curves) for events which were init ia ted by the massive unstable top-quarks in e+e−

collisions. Since the plot includes values in the tail region we use the reference scales

µ0
Γ =

√[
Q4

4m2
J

(
τ − 2m2

J

Q2

)2
+ (5 G e V )2

]2

+
(

5 G e V
)2 , µ0

Λ =
1

0.8
µ0

Γ mJ

Q
, (192)

where τ = 1 − T . Taking µΓ $ µ0
Γ and µΛ $ µ0

Λ ensures tha t the logs involving these
parameters do not grow substant ially over the region plot ted. O ur choice for µΛ here is
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LL

NLL

Thrust peak position vs. Q 
can also be used to 

measure the short-distance 
top-mass

We can further simplify the form of the factorized cross-sect ion. F irst we use the ident it ies

 Xn|χn,ω′|0 =  Xn|χnδω′,n̄·P†|0 = δω′,p−Xn
 Xn|χn|0 ,

 Xn̄|χn̄,ω̄′|0 =  Xn̄|χn̄δω̄′,n·P†|0 = δ−ω̄′,p+
Xn̄

 Xn̄|χn̄|0 , (54)

with similar relat ions for the other two collinear matrix elements in E q.(52). Combining this
with the relat ion δω′,p−Xn

δω,p−Xn
= δω′,ωδω,p−Xn

, and analog for p+
Xn̄

, we can write the product of
collinear matrix elements in E q.(52) as

 0|/̄̂nχn,ω′|Xn   Xn|χn,ω|0  0|χn̄,ω̄′|Xn̄   Xn̄|/̂nχn̄,ω̄|0 

= δω̄′,ω̄ δω′,ω  0|/̄̂nχn|Xn   Xn|χn,ω|0  0|χn̄|Xn̄   Xn̄|/̂nχn̄,ω̄|0 . (55)

Next we do the sums over ω′, ω̄′ to arrive at the form

σ = K0

∑

"n

res.∑

XnXn̄Xs

(2π)4 δ4(q − PXn − PXn̄ − PXs )  0|Y n̄ Yn|Xs   Xs|Y †
n Y

†
n̄|0 

×
∫

dω dω̄ |C(ω, ω̄)|2
〈

0
∣∣/̄̂nχn

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉〈

0
∣∣χn̄

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉
. (56)

B efore proceeding, we pause to define the thrust axis which is needed to properly define
the invariant mass of jets and state its relat ion to the direct ion of the energet ic collinear
degrees of freedom. T hen in order to make the power count ing manifest we decompose the
final state momenta into label and residual parts and perform some general manipulat ions of
the phase space integrals to setup a formula for the cross-sect ion to be used for the remaining
calculat ion.

C. Thrust or Jet Axis

T he thrust of any event is defined to be

T = max
t̂

∑
i |t̂ · pi|
Q

, (57)

where the sum is over the momenta pi of all the final state part icles produced. T he thrust
axis t̂ is chosen so that is maximizes the sum of part icle momenta pro jected along t̂. In-
tuit ively, for a dijet-like event the thrust axis corresponds to the axis along which most of
the momentum is deposited. Conversely, the thrust is close to its maximum for a dijet-like
event . We choose &n to point along t̂. For an event with exact ly two massive stable part icles
T =

√
Q2 − 4m2/Q = 1 − 2m2/Q2 + O(m4/Q4), is the maximum allowed thrust . Since we

are interested in thrusts in the dijet region for the top and ant itop jets it is convenient to
define a shifted thrust parameter,

τ =

√

1 −
4m2

Q2
− T = 1 −

2m2

Q2
− T + O

(m4

Q4

)
. (58)
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What (if anything) can be said about the Tevatron mass?

Given that top decay is described by a Breit-Wigner, we know that
the mass should be close to a pole mass (top-resonance mass scheme)

•
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A shor t-dist ance heav y quark mass dep ends on two paramet ers, t he renormaliza t ion scale µ con-
t rolling t he absorp t ion of ul t rav iolet fluct ua t ions into t he mass, and a scale R cont rolling t he ab-
sorp t ion of infrared fluct ua t ions. 1/R can b e t hought of as t he radius for p er t urba t ive correct ions
t ha t build up t he mass b eyond i ts point-like defini t ion in t he pole scheme. Trea t ing R as a variable
gives a renormaliza t ion group equa t ion . We argue t ha t t he sign of t his anomalous dimension is
universal: increasing R to add I R modes decreases m(R). T he flow improves t he st abili t y of con-
versions b etween mass schemes, allowing us to avoid large logs and t he renormalon . T he flow in R
can b e used to st ud y I R renormalons wi t hou t using bubble chains, and we use i t to det ermine t he
coefficient of t he O(ΛQCD) renormalon ambigui t y of t he pole mass wi t h a convergent sum-rule.

The pole-mass, mpole, provides a simple definition of
a mass-parameter in perturbative quantum field theory,
corresponding to the location of the single particle pole
in the two-point function. For the electron mass in
QED mpole is used almost exclusively, but for quarks
in QCD there are two reasons it is impractical. First,
at high energies, large logs appear which spoil pertur-
bation theory with mpole. This problem is cured by in-
troducing the concept of a running-mass m(µ), where
the renormalizaton group (RG) flow in µ is controlled
by a mass-anomalous dimension. The second, and more
serious problem, is that due to confinement there is no
pole in the quark-propagator in non-perturbative QCD.
Thus the concept of a quark pole-mass is ambiguous by
∆mpole ∼ ΛQCD. This ambiguity appears as a linear sen-
sitivity to infrared momenta in Feynman diagrams, and
results in a diverging perturbation series for any observ-
able expressed in terms of mpole, with terms ∼ 2nn! αn+1

s
asymptotically for large n. For the heavy quark masses
(charm, bottom, top) that we study, this behavior is re-
ferred to as the pole-mass O(ΛQCD) renormalon prob-
lem [1], where the Borel transform of the series has a
singularity at u = 1/2. Schemes without this infrared
problem are known as short-distance masses, and always
depend on an additional infrared scale R.

Typically, R is considered as intrinsic to the short-
distance quark mass definition, mR(µ). Examples are

MS : m(µ), R = m(µ); (1)

RGI [2] : mRGI, R = mRGI;

kinetic [3] : mkin, R = µkin
f ;

1S [4] : m1S, R = m1SCF αs(µ);

PS [5] : mPS, R = µPS
f .

where CF = 4/3. Many schemes have R = m, but this
is not generic. For instance, the 1S-mass is defined as
one-half the mass of the heavy quarkonium 3S1 state in
perturbation theory, and its R is of order the inverse Bohr
radius. In the kinetic and the potential subtraction (PS)
schemes R is set by cutoffs, µkin

f and µPS
f , on integrals

over a heavy-quark correlator and the heavy-quark static
potential respectively. Depending on the scales involved
in a process, schemes with a specific range of µ and R are
most appropriate to achieve stable perturbative results.

The goal of this letter is to consider R as a contin-
uous parameter, and study the RG flow in R of masses
m(R, µ) = mR(µ). We consider converting between mass
schemes mA(R, µ) and mB(R′, µ) where R " R′. To
avoid the O(ΛQCD) renormalon in fixed-order perturba-
tion theory a common expansion in αs(µ) must be used,
which inevitably introduces large logs, ln(R′/R). The
RGE in R allows mass-scheme conversions to be done
avoiding both large logs and the renormalon. We show
this improves the stability of conversions between the
MS scheme with R = m, and low energy schemes with
R " m that are extensively used for high precision deter-
minations of heavy quark masses [6]. The solution of this
RGE is also used to systematically derive a convergent
series for the normalization of the u = 1/2 singularity in
the pole-mass Borel transform.

To start, translate the bare-quark mass in QCD to
the pole-mass, mbare = Zmmpole, where UV divergences
from scales p2 # m2 appear in the mass-renormalization
constant Zm. The difference between using mpole and
any other scheme m(R, µ) corresponds to specifying ad-
ditional finite subtractions, δm(R, µ). Let

mpole = m(R, µ) + δm(R, µ) , (2)

δm(R, µ) = R
∞
∑

n=1

n
∑

k=0

ank

[αs(µ)

4π

]n
lnk

( µ

R

)

.

Here ank are numbers, and αs is in the MS-scheme with

dαs(µ)

d lnµ
= β[αs(µ)] = −2αs(µ)

∞
∑

n=0

βn

[αs(µ)

4π

]n+1
. (3)

We will only consider gauge independent short-distance
mass schemes for m(R, µ), where δm eliminates the in-
frared ambiguity associated to the pole mass. This re-
quires that a(n+1)0 ∼ 2nn! asymptotically for large n.
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A short-distance heavy quark mass depends on two parameters, the renormalization scale µ con-
trolling the absorption of ultraviolet fluctuations into the mass, and a scale R controlling the ab-
sorption of infrared fluctuations. 1/R can be thought of as the radius for perturbative corrections
that build up the mass beyond its point-like definition in the pole scheme. Treating R as a variable
gives a renormalization group equation. We argue that the sign of this anomalous dimension is
universal: increasing R to add IR modes decreases m(R). The flow improves the stability of con-
versions between mass schemes, allowing us to avoid large logs and the renormalon. The flow in R
can be used to study IR renormalons without using bubble chains, and we use it to determine the
coefficient of the O(ΛQCD) renormalon ambiguity of the pole mass with a convergent sum-rule.

The pole-mass, mpole, provides a simple definition of
a mass-parameter in perturbative quantum field theory,
corresponding to the location of the single particle pole
in the two-point function. For the electron mass in
QED mpole is used almost exclusively, but for quarks
in QCD there are two reasons it is impractical. First,
at high energies, large logs appear which spoil pertur-
bation theory with mpole. This problem is cured by in-
troducing the concept of a running-mass m(µ), where
the renormalizaton group (RG) flow in µ is controlled
by a mass-anomalous dimension. The second, and more
serious problem, is that due to confinement there is no
pole in the quark-propagator in non-perturbative QCD.
Thus the concept of a quark pole-mass is ambiguous by
∆mpole ∼ ΛQCD. This ambiguity appears as a linear sen-
sitivity to infrared momenta in Feynman diagrams, and
results in a diverging perturbation series for any observ-
able expressed in terms of mpole, with terms ∼ 2nn! αn+1

s
asymptotically for large n. For the heavy quark masses
(charm, bottom, top) that we study, this behavior is re-
ferred to as the pole-mass O(ΛQCD) renormalon prob-
lem [1], where the Borel transform of the series has a
singularity at u = 1/2. Schemes without this infrared
problem are known as short-distance masses, and always
depend on an additional infrared scale R.

Typically, R is considered as intrinsic to the short-
distance quark mass definition, mR(µ). Examples are

MS : m(µ), R = m(µ); (1)

RGI [2] : mRGI, R = mRGI;

kinetic [3] : mkin, R = µkin
f ;

1S [4] : m1S, R = m1SCF αs(µ);

PS [5] : mPS, R = µPS
f .

where CF = 4/3. Many schemes have R = m, but this
is not generic. For instance, the 1S-mass is defined as
one-half the mass of the heavy quarkonium 3S1 state in
perturbation theory, and its R is of order the inverse Bohr
radius. In the kinetic and the potential subtraction (PS)
schemes R is set by cutoffs, µkin

f and µPS
f , on integrals

over a heavy-quark correlator and the heavy-quark static
potential respectively. Depending on the scales involved
in a process, schemes with a specific range of µ and R are
most appropriate to achieve stable perturbative results.

The goal of this letter is to consider R as a contin-
uous parameter, and study the RG flow in R of masses
m(R, µ) = mR(µ). We consider converting between mass
schemes mA(R, µ) and mB(R′, µ) where R " R′. To
avoid the O(ΛQCD) renormalon in fixed-order perturba-
tion theory a common expansion in αs(µ) must be used,
which inevitably introduces large logs, ln(R′/R). The
RGE in R allows mass-scheme conversions to be done
avoiding both large logs and the renormalon. We show
this improves the stability of conversions between the
MS scheme with R = m, and low energy schemes with
R " m that are extensively used for high precision deter-
minations of heavy quark masses [6]. The solution of this
RGE is also used to systematically derive a convergent
series for the normalization of the u = 1/2 singularity in
the pole-mass Borel transform.

To start, translate the bare-quark mass in QCD to
the pole-mass, mbare = Zmmpole, where UV divergences
from scales p2 # m2 appear in the mass-renormalization
constant Zm. The difference between using mpole and
any other scheme m(R, µ) corresponds to specifying ad-
ditional finite subtractions, δm(R, µ). Let

mpole = m(R, µ) + δm(R, µ) , (2)

δm(R, µ) = R
∞
∑

n=1

n
∑

k=0

ank

[αs(µ)

4π

]n
lnk

( µ

R

)

.

Here ank are numbers, and αs is in the MS-scheme with

dαs(µ)

d lnµ
= β[αs(µ)] = −2αs(µ)

∞
∑

n=0

βn

[αs(µ)

4π

]n+1
. (3)

We will only consider gauge independent short-distance
mass schemes for m(R, µ), where δm eliminates the in-
frared ambiguity associated to the pole mass. This re-
quires that a(n+1)0 ∼ 2nn! asymptotically for large n.

R ∼ Γ

• Recently we studied an RGE for R, which allows us to smoothly 
connect these schemes to         where MS R = m(µ)

• We can estimate the scheme uncertainty of the Tevatron 
measurement by varying the initial                              (since any 
such mass is an equally good short distance scheme)

R = R0 = 3+6
−2 GeV

Hoang, Jain, Scimemi, I.S.  (arXiv:0803.4214)

(See the talk by A. Hoang tomorrow at 9:30am in 
the Flavor workshop for further details)

[c.f. the kinetic mass 
of Bigi et.al.]
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mt(R0 ) = 172.6± 1.4 G e V

mt(mt) = 163.0± 1.3 +0.6
−0.3 ± 0.05 GeV

   scheme 
uncertainty
R0 = 3+6

−2 GeV

conversion
uncertainty is small
(3 loop with RGE)

4

FIG. 1: Convergence of the sum-rule for P1/2 for mpole .
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FIG. 2: Top-mass scheme conversion from R0 = 3GeV to R =
163 GeV. Shown are fixed order results (LO,NLO,NNLO) and
RGE results (LL,NLL,NNLL), both in the MSR scheme.

Q!(u) =
∞
∑

k=0

Sk(2u)k+!
2F1(1, 1+ b̂1+k, 2+ b̂1−!, 1−2u)

(1+ b̂1−!)Γ(k + !)
.

Here eG(t) e−t (−t)−b̂1 ≡
∑∞

!=0 g! (−t)−!, so g0 = 1,

g1 = b̂2, g2 = (b̂2
2 − b̂3)/2, etc. The normalization P1/2

multiplies all terms singular at u = 1/2 in Eq. (22).
Since γR(t) is free of the u = 1/2 renormalon, the large
order behavior of γR

k is dominated by the next pole at
u = ρ > 1/2. This implies that asymptotically for large
k, γR

k ∼ k! (β0)k+1ρ−k. Given that the sum for β[αs]
(and hence

∑

! g!) converges, Sk ∼ γ̃k ∼ k! (2ρ)−k, so
the sum over k in P1/2 converges. Since Q!(1/2) =
∑∞

k=0 Sk[(1+ b̂1− !)Γ(k+ !)]−1, all sums over k are ab-
solute convergent for u close to 1/2. From Eq. (22)
the large-n asymptotic behavior for any m(R) − mpole

is an+1 ∼ aasym
n+1 ≡ P1/2 (2β0)n+1

∑∞
!=0 g! Γ(1+b̂1−!+ n),

and this series in ! agrees precisely with the behavior ex-
pected from the ΛQCD ambiguity [8]. Thus Eq. (23) gives
a convergent sum-rule for the normalization P1/2.

P1/2 allows us to test for a u = 1/2 renormalon with-
out relying on the nf -bubble chain. Any Borel summable
series of an’s in Eq. (2) leads to a P1/2 that rapidly goes
to zero. The largest physical series of an’s that sums to
P1/2 = 0 has a u = 1 renormalon, whereas P1/2 $= 0 for
any u = 1/2 pole. Due to the universality of the u = 1/2

renormalon of mpole, its P1/2 is a unique scheme indepen-
dent number. In Fig. 1 we plot the sum of terms for this
P1/2 up to k = 0 (light/blue), k = 1 (medium/green),
and k = 2 (dark/red). We show the PS (solid), static
(dashed), and MSR-schemes (long-dashed), which are
each generalized to a class of schemes with λ ∈ [1/2, 2]
using Eq. (8). The convergence is clearly visible, and we
estimate P1/2 = 0.47 ± 0.10. For comparison, the widely
used light-fermion bubble chain [8] (large-nf with naive-
non-Abelianization, nf → −3β0/2), gives an overesti-
mate, P1/2 = 0.80. A different series for P1/2 was derived

in Refs. [14, 15], evaluating (1 − 2u)1+b̂1B(u) in an ex-
pansion about u = 0, at u = 1/2. It gives P1/2 ' 0.48, in
agreement with our result. One can use aasym

n in Eq. (2)
to define a mass-scheme and study its R dependence [15],
which however suffers from the uncertainty in P1/2.

Top-quark mass measurements from jets rely on an un-
derlying Breit-Wigner, and should be considered as val-
ues m(R0) in some scheme with R0 ∼ Γt [11]. The top
MS scheme has R ' 163 GeV ( R0 so a fixed order con-
version to MS involves large logs. If we measure the MSR
mass at R0 and run to R = [m(m)]MS then we directly
get this MS mass. In Fig. 2 we compare conversions be-
tween MSR-schemes with R0 = 3 GeV and R = 163 GeV,
using a fixed order expansion in αs(µ) = αs(κR) (dashed
curves), and the solution of the RGE in Eq. (19) for γR

i
obtained with µ = κR (solid curves). Varying κ gives
a measure for the residual uncertainty at a given order.
The plot shows that Eq.(19) converges rapidly, with flat
κ dependence at NNLL. Also the RGE results display
better convergence than the standard fixed order expres-
sions. Comparisons using the PS and static schemes yield
the same conclusion, with similar convergence. Taking
the Tevatron mass 172.6 ± 1.4 GeV [16] as mMSR(R0),
we obtain m(m) = 163.0 ± 1.3+.6

−.3 ± .05 GeV. The first
error is experimental, the second takes R0 = 3+6

−2 GeV to
account for the scheme uncertainty, and the third is the
uncertainty in our NNLL conversion. This assumes the
experimental error accounts for hadronic uncertainties.

The infrared RG analysis performed here can be gener-
alized to study higher order renormalons and quantities
other than quark masses. For an infrared sensitive ma-
trix element of O(ΛN

QCD) the anomalous dimension will

have terms RNαn
s (R), and the corresponding sum-rule

will provide info on the Borel singularity at u = N/2.
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assume Tevatron measures a  
top-resonance mass

The pole mass is what we get for              , but is very likely not 
what the Tevatron measures.  If we demand that the measurement 
corresponds to a pole mass, then an additional uncertainty of 

R0 = 0

∼ ΛQCD ∼ 600 GeV from the renormalon
should be added to those above.

Similar issues at the LHC
in most methods
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Summary & Outlook

• Discussed a factorization theorem for invariant mass 
distributions for massive unstable particles: 
separation of perturbative and non-perturbative effects for ILC

•

•

Systematic relation of peak to a Lagrangian mass parameter:

Top Jets

What mass is measured? “Jet mass”
Effective Field Theory:  can be extended to higher orders in 
the power and perturbative expansions

•

Progress for massless event shapes:

Extension to large pT events for LHC,  and to Monte-Carlo
• Technique can be used to study other processes with jets and 

  massive underlying particles

• Reexamine LEP massless jet data with calculations at NNLL, ...

e+e− → tt̄

( Becher & Schwartz; Gehrmann-De Ridder et.al. ) 
Future:
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