High Precision Results for $\alpha_s(m_Z)$

from Jets*, Taus, Lattice, DIS, and Precision Electroweak

> Iain Stewart MIT & Harvard

UCSD seminar, San Diego February 2011

WORKSHOP ON PRECISION MEASUREMENTS OF

Max-Planck-Institute for Physics Munich, Germany February 9-11, 2011

EVENT SHAPES AND JET PRODUCTION • LATTICE SIMULATIONS • ELECTROWEAK PRECISION OBSERVABLES TAU DECAYS • DEEP INELASTIC SCATTERING • FUTURE PERSPECTIVES

Confirmed Speakers and Convenors: S. Aoki V. Mateu M. Beneke S. Menke J. Blümlein K. Mönig N. Brambilla Y. Nomura S. Brodsky F. Petriello T. Pich M. Davier K. Rabbertz Y. Dokshitzer J. Erler V. Radescu S. Forte G. Salam H. Schulz T. Gehrmann E. Shintani C. Glasman M. Golterman R. Sommer A. Höcker M. Steinhauser W. Hollik J. Stirling B. Webber M. Jamin C.P. Yuan A. Kronfeld G. Zanderighi J. Kühn P. Lepage Organizers: S. Bethke

A. Hoang S. Kluth J. Schieck I. Stewart

Program and registration http://www.mpp.mpg.de/alphas

l'Ilii

Outline

- $\alpha_s(m_Z)$ Motivation, World Averages
- Precision & Controversy
 - Electroweak Global fits
 Lattice QCD
 - Tau Decays DIS
 - Jets in e⁺e⁻, with event shapes at N³LL + $O(\alpha_s^3)$
 - perturbation theory
 - power corrections

 pert./power overlaps (renormalons)

• sum large logs

• Global Fit (thrust, heavy jet mass)

Abbate, Fickinger, Hoang, Mateu, I.S.

Motivation

- $\alpha_s(m_Z)$ is a key parameter in the standard model, and enters the analysis of all collider data (LHC, Tevatron, Jlab, RHIC, DESY, B-factories, ILC, ...)
- It also plays a role in searches for new physics
 - indirectly in precision electroweak analyses, $B \rightarrow X_s \gamma$
 - directly through the unification of couplings:

from Baglio, Djouadi et al. 2009-2011

eg. Grand Unification

(Y. Nomura, α_s -workshop)

Hard to even quantify the errors

... threshold corrections from the weak and unified scales

e.g. Minimal SUSY SU(5)

$$\alpha_3^{-1}(m_Z) = \frac{12}{7} \alpha_2^{-1}(m_Z) - \frac{5}{7} \alpha_1^{-1}(m_Z) - \frac{1}{4\pi} \left\{ \frac{18}{7} \ln \frac{M_{H_C}}{(M_V^2 M_\Sigma)^{1/3}} - \frac{19}{7} \ln \frac{m_{\text{SUSY}}}{m_Z} \right\}$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

GUT-scale threshold corrections become even larger in extended models ...

For "exact unification"

$$\alpha_s(m_Z) = \underbrace{0.130}_{\text{I}} + 0.009 \left(\frac{m_{t,\text{pole}}^2 - (173.1 \text{ GeV})^2}{(173.1 \text{ GeV})^2} \right) - \frac{19\alpha_s^2}{28\pi} \ln \frac{m_{\text{SUSY}}}{m_Z}$$
cf. Langacker, Polonsky ('95)

Somewhat large

 m_{SUSY} : "effective" superpartner scale

Grand unification in higher dimensions

World Averages

(PDG Average '05) Hinchliffe

 $\overline{\mathrm{MS}}$ scheme

$$\alpha_s(m_Z) = 0.1170 \pm 0.0012$$

(S. Bethke)

 $\alpha_s(m_Z) = 0.11 \pm 0.01$

World Averages

(PDG Average '05) Hinchliffe

 $\overline{\mathrm{MS}}$ scheme

$$\alpha_s(m_Z) = 0.1170 \pm 0.0012$$

(S. Bethke)

 $\alpha_s(m_Z) = 0.1189 \pm 0.0010$

World Averages

 $\alpha_s(m_Z) = 0.1170 \pm 0.0012$

 $\alpha_s(m_Z) = 0.1184 \pm 0.0007$

Electroweak Fits

Tau Decays

$$\frac{2\pi}{r} \int_{W_{\tau} + had}^{1} dx (1 - m)^{2} \int_{V_{\tau} + had}^{T} dx (1 - m)^{2} \int_{V_{\tau} + had}^{1} dx (1 - m)^{2} \int_{V_{\tau} + had}^{1} dx (1 - m)^{2} \int_{V_{\tau} + had}^{1} dy (1 - m)^{2} \int_{V$$

 $-26\delta q_{R}^{3}$ + ..28% 0% A perturbative "issue" dominates the error

(Beneke, α_s -workshop)

FOPT
$$\delta_{\text{FO}}^{(0)} = \sum_{n=1}^{\infty} a (M_{\tau}^2)^n \sum_{k=1}^n k c_{n,k} J_{k-1} \qquad J_l \equiv \frac{1}{2\pi i} \oint_{\substack{|x|=1}} \frac{dx}{x} (1-x)^3 (1+x) \ln^l(-x)$$

CIPT
$$\delta_{\text{CI}}^{(0)} = \sum_{n=1}^{\infty} c_{n,1} J_n^a(M_{\tau}^2) \qquad J_n^a(M_{\tau}^2) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1-x)^3 (1+x) a^n (-M_{\tau}^2 x)$$

Series expansions for $\alpha_s(M_{\tau}^2) = 0.34$:

$$\alpha_s^1 \qquad \alpha_s^2 \qquad \alpha_s^3 \qquad \alpha_s^4 \qquad \alpha_s^5$$

$$\delta_{\text{FO}}^{(0)} = 0.1082 + 0.0609 + 0.0334 + 0.0174 (+0.0088) = 0.2200 (0.2288)$$

$$\delta_{\text{CI}}^{(0)} = 0.1479 + 0.0297 + 0.0122 + 0.0086 (+0.0038) = 0.1984 (0.2021)$$

Both methods appear to converge, but to different values.

(Beneke, α_s -workshop)

FOPT
$$\delta_{\text{FO}}^{(0)} = \sum_{n=1}^{\infty} a (M_{\tau}^2)^n \sum_{k=1}^n k c_{n,k} J_{k-1} \qquad J_l \equiv \frac{1}{2\pi i} \oint_{\substack{|x|=1}} \frac{dx}{x} (1-x)^3 (1+x) \ln^l(-x)$$

CIPT
$$\delta_{\text{CI}}^{(0)} = \sum_{n=1}^{\infty} c_{n,1} J_n^a(M_{\tau}^2) \qquad J_n^a(M_{\tau}^2) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1-x)^3 (1+x) a^n (-M_{\tau}^2 x)$$

Pro CIPT:

• Better convergence, smaller scale dependence

Scale error on $\alpha_s(M_{\tau}^2)$ from variation of μ in [1,2.5] GeV is $\substack{+0.010 \\ -0.005}$ for FO and $\substack{+0.005 \\ -0.002}$ for CI.

• Expansion of the running coupling on the circle as used in FO has only a finite radius of convergence [Le Diberder, Pich; 1992]

$$lpha_s(M_{\tau}^2 e^{i\pi}) = rac{lpha_s(M_{\tau}^2)}{1 + rac{eta_0}{4\pi}i\pilpha_s(M_{\tau}^2)}$$

Pro FOPT:

series are asymptotic. Models for higher terms with u=2 renormalon:

Duality violations in hadronic tau decays

(Golterman, α_s -workshop)

• High precision determination of α_s from tau decays requires understanding of Duality Violations; pinched weights do not suppress DVs sufficiently

$$w(s) = 1$$
, $1 - s/s_0$

$$\int_0^{s_0} ds \, w(s) \, \rho_{V,A}(s) = -\frac{1}{2\pi i} \oint_{|s|=s_0} ds \, w(s) \, \Pi_{V,A}^{OPE}(s) \, - \int_{s_0}^\infty ds \, w(s) \, \rho_{V,A}^{DV}(s)$$

 $p_{V,A}(s) = o(s - s_{min}) [n_{V,A}c - s_{min}(\alpha_{V,A} + \beta_{V,A}s)]$

model:
$$\rho_{V,A}^{DV}(s) = \theta(s - s_{min}) \left[\kappa_{V,A} e^{-\gamma_{V,A} s} \sin(\alpha_{V,A} + \beta_{V,A} s) \right]$$

 $[s_0,\infty)$

fit w = 1to data

 $\alpha_s(M_\tau) = 0.322(25) \Rightarrow \alpha_s(M_Z) = 0.1188(29)$ (CIPT)

• Assuming our ansatz for DVs, we obtain, from vector channel with w = 1 preliminary values

$$\alpha_s(M_{\tau}) \approx 0.322(25) \Rightarrow \alpha_s(M_Z) = 0.1188(29) \quad \text{(CIPT)}$$

$$\alpha_s(M_{\tau}) = 0.307(18) \Rightarrow \alpha_s(M_Z) = 0.1169(24) \quad \text{(Fighz)}, \text{(Figz)}$$

$$\int_{0}^{s_{0}} ds \, w(s) \, \rho_{V,A}(s) = -\frac{1}{2\pi i} \oint_{|s|=s_{0}} ds \, w(s) \, \Pi_{V,A}^{OPE}(s) \, - \int_{s_{0}}^{\infty} ds \, w(s) \, \rho_{V,A}^{DV}(s)$$

 $[s_0,\infty)$

17

Recent $\alpha_s(m_{\tau})$ Analyses

Reference	Method	δ _P	$\alpha_{s}(m_{\tau})$	$\alpha_{s}(m_{Z})$
Baikov et al	CIPT, FOPT	0.1998 (43)	0.332 (16)	0.1202 (19)
Davier et al	CIPT	0.2066 (70)	0.344 (09)	0.1212 (11)
Beneke-Jamin	BSR + FOPT	0.2042 (50)	0.316 (06)	0.1180 (08)
Maltman-Yavin	PWM + CIPT	—	0.321 (13)	0.1187 (16)
Menke	CIPT, FOPT	0.2042 (50)	0.342 (11)	0.1213 (12)
Narison	CIPT, FOPT	—	0.324 (08)	0.1192 (10)
Caprini-Fischer	BSR + CIPT	0.2042 (50)	0.321 (10)	—
Cvetič et al	$\beta_{exp} + CIPT$	0.2040 (40)	0.341 (08)	0.1211 (10)
Pich	CIPT	0.1997 (35)	0.338 (12)	0.1209 (14)

CIPT:	Contour-improved perturbation theory
FOPT:	Fixed-order perturbation theory
BSR:	Borel summation of renormalon series
CIPTm:	Modified CIPT (conformal mapping)
β <mark>exp</mark> :	Expansion in derivatives of the coupling (β function)
PWM:	Pinched-weight moments

Lattice QCD

The QOD Lagrangian

Fix parameters. Calibrate.

$$\mathcal{L}_{\text{QCD}} = \frac{1}{g_0^2} \operatorname{tr}[F_{\mu\nu}F^{\mu\nu}] - \sum_f \bar{\Psi}_f (\not\!\!D + m_f) \Psi_f$$

Per

(A. Kronfeld, α_s -workshop)

 m_{π} , m_K , m_{Ds} or $m_{J/\psi}$, m_{Bs} or m_Y ,

Hadron Spectrum

Small Wilson loops $Y = \sum c_n \alpha_V^n (d/a)$ n=1staggered quarks

3

- 264 different α_{Vs} .
- Know 3 terms in pert'n theory; allow for 10 in all (only 4 needed).
- Use BLM/LM scale $q^*=d/a$ with α_{\vee} . lacksquare
- n_f =3. Convert to MS-bar and evolve to M_Z n_f =5 using continuum pert'n theory.
- Nonperturbative corrections: chiral (measured) and gluon condensates (sensitivity varies by 100s).

$$\alpha_{\overline{\text{MS}}}(M_Z, n_f = 5) = 0.1184(6)$$

(P. Lepage, α_s -workshop)

Davies et al (HPQCD), Phys. Rev. D78, 114507 (2008) [arXiv:0807.1687] McNeile et al (HPQCD) Phys. Rev. D82, 034512 (2010) [arXiv:1004.4285]

	1	
юн	0.1186(4)	log W ₁₁ ***
юн	0.1184(4)	$\log W_{12}$
нон	0.1184(5)	$\log W_{\rm BR}$
нон	0.1183(5)	$\log W_{\rm CC}$
нон	0.1183(6)	$\log W_{13}$
<u>но-</u> і	0.1184(7)	$\log W_{14}$
<u>но</u> і	0.1182(7)	$\log W_{22}$
нон	0.1180(8)	$\log W_{23}$
	0.2200(0)	
<u>но</u> і	0.1188(7)	$\log W_{13}/W_{22}$
<u>но</u> і	0.1186(8)	$\log W_{11}W_{22}/W_{12}^2$
<u>но</u> і	0.1184(7)	$\log W_{CC}W_{BB}/W_{11}^3$
<u>но-</u> н	0.1186(7)	$\log W_{\rm CC}/W_{\rm BR}$
⊢−○−− 1	0.1170(9)	$\log W_{14}/W_{23}$
<u>н-о</u> і	0.1173(9)	$\log W_{11}W_{23}/W_{12}W_{13}$
	0.2210(0)	
нон	0.1184(5)	$\log W_{12}/u_0^6$
⊢−○−− I	0.1183(8)	$\log W_{\rm BB}/u_0^6$
H-0I	0.1184(7)	$\log W_{\rm CC}/u_0^6$
нон	0.1183(6)	$\log W_{13}/u_0^8$
<u>но</u> н	0.1188(6)	$\log W_{14}/u_0^{10}$
нон	0.1185(6)	$\log W_{22}/u_0^8$
нон	0.1178(7)	$\log W_{23}/u_0^{10}$
ю	0.1188(3)	$\alpha_{\text{lat}}/W_{11}$ ***
0.116 0.118 0.120		
$\alpha_{\overline{\mathrm{MS}}}(M_Z, n_f = 5)$	BI	$R = \int CC = $

0.

Error Budget

Current Correlators

dynamical overlap fermion

$$d^{4}xe^{iQx}\langle 0|J_{\mu}^{a}(x)J_{\nu}^{b\dagger}(0)|0\rangle = \delta^{ab} \Big[(\delta_{\mu\nu}Q^{2} - Q_{\mu}Q_{\nu})\Pi_{J}^{(1)}(Q) - {}_{0.01}$$

Need to be careful about

- Discretization effects? : more important at high Q². how are estimated?
- Window? : can we find the region where the pert formula safely applies while disc error is small enough?
 0.02F
- Enough sensitivity? : can we get enough precision for $\alpha_s(\mu)$

 $\alpha_s^{(5)}(M_Z) = 0.1181(3)(^{+14}_{-12})$

Systematic errors

• Error to $\alpha_s^{(5)}(M_Z)$

Sources	Estimated error in $\alpha_s^{(5)}(M_z)$	
Uncorrelated fit	± 0.0003	
Lattice artifact $(\mathcal{O}(a^2) \text{ effect})$	+0.0003	
$\Delta^{V+A}_{\mu u}$	± 0.0002	
Quark condensate	± 0.0001	
Z_m	± 0.0001	
Perturbative expansion	± 0.0003	Dominant error:
$1/Q^2$ expansion	< 0.0001	I.83(I) GeV r ₀ =0.49 fm
$m_{c,b}$	$+0.0001 \\ -0.0003$	1.97(4) GeV f_{π}
Lattice spacing	$+0.0013$ \leftarrow -0.0010	1.76(8) GeV m_{Ω}
Total (in quadrature)	$^{+0.0014}_{-0.0012}$	

 $\frac{1}{\overline{g^2(L)}} = \frac{1}{\overline{g^2(L)}} = \frac{1}{\overline{g^2$

 $b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_f \right),$ $\longrightarrow 16 \text{GeV} \xrightarrow{3\text{-loop}} \Lambda_{\text{SF}}^{(3)} \qquad b_1 = \frac{1}{(4\pi)^4} \left(102 - \frac{38}{3}N_f\right).$ SF, 3-flavor, non-perturbative 0.5 GeV — MS-bar, 3-flavor, perturbative(4-loop) $b_2 = \frac{1}{(4\pi)^3} \left(0.483(7) - 0.27 \right)$ $m_c \leftarrow$. Then running back to the scale $\mu = m_c(m_c)$ with three we start by calculating the scale for $\Lambda_{\overline{MR}} = 2.61192 \Lambda_{\overline{MR}}^{(4\pi)^{\circ}}$. bling constant, is matched to that for four flavors at three-hoped box sizes and lattice space at the same operation at the threshold $\mu = m_b(m_b)$ and obtain the five flavor, berturbative 4-loop dottain the five flavor. t. We finally run to $\mu = M_{ZN}$ with the four-loop β -function for five flavor . The sufficient number of values for the substitution of μ = Taking the sufficient number of values for the substitution of the substitution o for the \overline{MS} scheme with \underline{A} -loop $\beta(g)$. The results for listed in Table X. Fo Resimproved gauge action 12) are listed. non-perturbative c A is propagated into sthat of the SSF, in addition to the statistical error of g. Fire experimental errors of m_c , m_b^{a} and M_Z are also included. p we take the continuing limit using the three lattices parings from m_{π}^{2} , m_{K} and m_{Ω} avior^{0.1} of $\alpha_s(M_Z)$ and α_{max} of continuum extrapolation is given; constant fit with three and two lattice $do \hat{\xi}$ not depend on L_{max} , we adopt $t^{\alpha_s(M_Z)} = 0.12047(81)(48)(^{+0}_{-173})$ ral value 0.115 ee types of constant fit with B=2.05, 1.90 extrapolation; a constant fit with three or two date r extrapolation ¹. These results agree with each other and we adopt the three data points for our final results since there is almost no scaling

coold from m mar and m

$lpha_{\overline{ extsf{MS}}}^{(5)}(M_Z)$	·)	R	Q	range	${\mathcal R}$	SE
0.1170(12)				3		
Selected $\alpha_s($	M_Z) Res	VIIss.frPd	m Lattic	e QCD	NNLO	2+1 ,
-0.1192(11)	D		æ	1		
$\alpha_{\overline{MS}}(M_Z)$	R	Q range	R	sea	collab	when
001701124(12)		3		1–2		<u>2005</u>
0.1183(8)	Wilson loops	Q corre	latqr _{NLO}	2+1 √stag	NNEO	<u>_2008</u> 2+1 √
0.1183(7) 0.1192(11)		1		9–0	Maltman	2008
001.14181(3)(+14	$\frac{12}{2}$	Adler		5 _{0,1} /otog	NINGO	2008+1 OV
0.1183(7)	QQ correlator	.3-6	ININLO		+ KIT	2010
<u>0.1205(8)(5)(</u> 0.1181(3)(+14/-12)	-0/-17) Adler	Schrödir	iger	80 as 2+1 overlap	symptote	<u>2010</u> +1 V
0.1205(8)(5)(+0/-17)	Schrödinger	80	asymptote	2720-1 Wilsona	sympotote	<u>2009</u> 2 Wi
$\Lambda_{\overline{MS}}^{(2)} = 245(23) \frac{0.5 \text{ fm}}{\kappa_0} \text{ MeV}$		Schrödir		2 Wilson		<u>2004</u>
$0.1xxx(y) \\ 0.1xxx(y)$	Schrödinger	1000	asymptote	2+1+1 Wilson	Symptole	<u>2012</u> + + 1

• Superseded; re-analysis.

DIS & inclusive Jets

(J.Blumlein, CP Yuan, S. Forte, K.Monig, A.Martin α_s -workshop)

DIS $\alpha_s(m_Z)$ from scaling violation Global fits:

$$F_k(N,Q^2) = f_k(N,Q^2) \sum_{n=0}^{3} C_n(N) \alpha_s^n(Q^2)$$

- **MSTW** CTEQ
- NNPDF

DIS

	NLO	$\alpha_s(M_Z^2)$) expt	theory	Ref.		
	CTEQ6	0.1165	±0.0065		[1]		
	MRST03	0.1165	± 0.0020	± 0.0030	[2]		• Wrong
	A02	0.1171	± 0.0015	± 0.0033	[3]		• wrong i
	ZEUS	0.1166	± 0.0049		[4]		
		0.1150	± 0.0017	± 0.0050	[5]		[
	CDC BCDIVIS	0.110	± 0.000		[0]		$\alpha_s($
	BRG	0.112	+0 0019		[0]		
	BB (pol)	0.1140	± 0.0013 ± 0.004	+0.009	[7]		
		t loast			1.1		N N
	NLO U		0050	1013 01			
		$\perp 0$.0000				NNLO +F _L C
	NNLO MDST02	$\frac{\alpha_s(M_Z^2)}{0.1152}$	expt	theory	Ref.		
	A02	0.1155	± 0.0020 ± 0.0014	± 0.003 ± 0.000	0 [2] 9 [3]		
	SY01(ep)	0.1166	± 0.0013		[8]		
	SY01(ν N)	0.1153	± 0.0063		[8]		
	GRS A06	0.111	+0.0015		[10]		
	BBG	0.1134	± 0.0010 +0.0019/-0	.0021	[9]	l	
	N ³ LO	$\alpha_s(M_Z^2)$	expt	theory	Ref.		
	BBG	0.1141	+0.0020/-0	.0022	[9]		
	NNL	O syster	natic shifts	down			
	N ³	LO sligh	nt upward :	shift			
				$\alpha_s(\mathrm{M}^2_\mathrm{Z})$		Т	
				+0.0019			
B	3G (2006))	0.1134	-0.0021			
A	BKM		$0.1135 \pm$	0.0014		HQ:	FFS $N_f = 3$
A	BKM		$0.1129 \pm$	0.0014		HQ:	BSMN-approach
J	R (2008)		$0.1124 \pm$	0.0020		dyna	amical approach
N	ISTW (200)8)	$0.1171 \pm$	0.0014			
H	ERAPDF (2010)	0.1145			(cc	mbined H1/ZEUS
A	BM (2010))	$0.1147 \pm$	= 0.0012		(FFI	N, combined H1,
			0 1 1 1 1	+0.0020			
B	36 (2006))	0.1141	-0.0022		vale	nce analysis, N ^o LO

• Wrong treatment of $F_L(x,Q^2)$ in NMC F_2 extraction. BBG (2006)

$\alpha_s(M_Z^2)$	with $\sigma_{ m NMC}$	with $F_2^{ m NMC}$	difference
NLO	0.1179(16)	0.1195(17)	$+0.0026 \simeq 1\sigma$
NNLO	0.1135(14)	0.1170(15)	$+0.0035 \simeq 2.3\sigma$
NNLO + $F_LO(\alpha_s^3)$	0.1122(14)	0.1171(14)	$+0.0050 \simeq 3.6\sigma$

UNBIASED PDF DETERMINATION: THE NNPDF APPROACH

BASIC IDEA: MONTE CARLO SAMPLING OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

- START FROM MONTE CARLO SAMPLING OF DATA SPACE
- EACH PDF \leftrightarrow NEURAL NETWORK PARAMETRIZED BY 37 PARAMETERS (NNPDF: $37 \otimes 7 = 259$ PARMS)

"INFINITE" NUMBER OF PARAMETERS \Rightarrow CAN REP-RESENT ANY FUNCTION

 FIT STOPS WHEN QUALITY OF FIT TO RAN-DOMLY SELECTED "VALIDATION" DATA (NOT FIT-TED) STOPS IMPROVING

CAVEATS

• χ^2 IS A RANDOM VARIABLE \Rightarrow FLUCTUATES FOR FINITE SAMPLE SIZE \Rightarrow ADDITIONAL UNCERTAINTY DUE TO FINITE-SIZE FLUCTUATIONS

2. Inclusion of Tevatron jet data

Jet data themselves prefer α_s slightly lower than global α_s However jets demand more high x gluon (less low x gluon) which turn a low α_s into a better constrained high α_s

NLO NNPDF2.1 GLOBAL DETERMINATION (ONLY STAT. ERROR KNOWN) $\alpha_s(M_z) = 0.1191 \pm 0.0006$ (stat.) χ^2 /d.o.f. = 1.4 for the parabolic fit theory $\alpha_s(M_z) = 0.1169 \pm 0.0009$ (stat.) NLO NNPDF2.0 GLOBAL **HEAVY QUARKS** uncertainty DEEP-INELASTIC DATA

HERA DATA ONLY

 $\alpha_s(M_z) = 0.1178 \pm 0.0009$ (stat.) $\alpha_s(M_z) = 0.1103 \pm 0.0033$ (stat.) dominant

Event shapes $e^+e^- \rightarrow \text{jets}$

R. Abbate, M. Fickinger, A. Hoang, VM & I. Stewart – arXiv: 1006.3080 [hep-ph]

R. Abbate, A. Hoang, VM, M. Schwartz & I. Stewart – work in progress for HJM

Builds on work by Gehrmann et al & Weinzierl $O(\alpha_s^3)$ and Becher & Schwartz at N³LL

 α_{s}

Also builds on work done in SCET community.

Thrust is a classic example of an "event-shape"

$$T = \max_{\hat{t}} \frac{\sum_{i} |\mathbf{t} \cdot \vec{p_i}|}{\sum_{i} |\vec{p_i}|} \qquad \tau = 1 - T$$

ALEPH, DELPHI, L₃, OPAL, SLD

Factorization theorem

Factorization theorem

Sum Large Logarithms

Thrust Factorization Theorem:

$$\begin{split} \frac{d\sigma}{d\tau} &= \sigma_0 H(Q,\mu) \, Q \int d\ell \, J_T \Big(Q^2 \tau - Q\ell, \mu \Big) S_T(\ell,\mu) \\ p^2 &\sim Q^2 \qquad p^2 \sim Q^2 \tau \qquad p^2 \sim Q^2 \tau^2 \\ &\sim \mu_Q^2 \qquad \sim \mu_J^2 \qquad \sim \mu_S^2 \end{split}$$

To minimize large logs we want to evaluate these functions at different scales

Our Three Regions:

Factorization theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}_{\mathrm{s}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q} \right) S_{\tau}^{\mathrm{mod}} \left(k - 2\bar{\Delta} \right) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{Q} \right) \right)$$

• $O(\alpha_s^3)$ fixed order (nonsingular). Event2 $O(\alpha_s^2)$ and EERAD3 $O(\alpha_s^3)$.

- $O(\alpha_s^3)$ matrix elements. Axial singlet anomaly. Full hard function at 3 loops.
- Resummation at N³LL. Effective field theory (SCET).
- Correct theory in peak, tail and multijet (profile functions).
- Field theory matrix elements for power corrections.
- Removal of u=1/2 renormalon in leading power correction/soft function.
- QED effects in Sudadok & FSR @ NNLL $O(\alpha_s^2)$ with $\alpha \sim \alpha_s^2$.
- bottom mass corrections with factorization theorem.
- Computation of bin cumulants in a meaningful way.

Why a global fit (many Q's)

We fit for $\Omega_1 \& \alpha_s(m_z)$ simultaneously. Strong degeneracy lifted by many Q's.

Power correction needed with 20% accuracy to get α_s at the 1% level

	Experiment data	Values of Q $e^+e^- \xrightarrow{Q} jets$
LEP	ALEPH DELPHI OPAL	[91.2, 133.0, 161.0, 172.0, 183.0, 189.0, 200.0, 206.0] [45.0, 66.0, 76.0, 89.5, 91.2, 93.0, 133.0, 161.0, 172.0, 183.0, 189.0, 192.0, 196.0, 200.0, 202.0, 205.0, 207.0] [91.0, 133.0, 177.0, 197.0]
ر SLAC	L3 SLD	[41.4, 55.3, 65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1, 161.3, 172.3, 182.8, 188.6, 194.4, 200.0, 206.2} [91.2]
DESY {	TASSO JADE AMY	[14.0, 22.0, 35.0, 44.0} [35.0, 44.0} [55.2]

"standard" data set: $Q \ge 35 \,\text{GeV}$ $\frac{6 \,\text{GeV}}{Q} \le \tau \le 0.33$ $487 \,\text{bins}$

- Resummation at N³LL
- Multijet boundary condition
- No power corrections
- No renormalon subtraction

0.00 L

0.32

0.34

0.36

0.38

 $^{0.4}$ au

0.5

0.3

0.2

 μ_i

0.0

0.1

0.42

 $^{0.40}$ au

Estimate of perturbative uncertainties

parameter	default value	range of values	
μ_0	$2{ m GeV}$	1.5 to 2.5 GeV	Hard, Jet, and Soft scales normalized to Q
n_1	5	2 to 8	
t_2	0.25	0.20 to 0.30	
e_J	0	-1,0,1	0.0
e_H	1	0.5 to 2.0	0.0 0.1 0.2 0.3 0.4 0.5
n_s	0	-1,0,1	Profile functions
s_2	-39.1	-36.6 to -41.6	$h_{\rm c} = 8998.05$
Γ_3^{cusp}	1553.06	-1553.06 to $+4569.18$	Baikov et al
j_3	0	-3000 to $+3000$	Padè approximants
s_3	0	-500 to +500	for range
ϵ_2	0	-1,0,1	Nonsingular
ϵ_3	0	-1,0,1	statistical error

- Resummation at N³LL
- Multijet boundary condition
- Power corrections give -7.5% shift

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau}\right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}}(k - 2\bar{\Delta}) + O\left(\sigma_{0}\frac{\alpha_{s}\Lambda_{\mathrm{QCD}}}{Q}\right)$$

In the tail region
$$\ell_{\text{soft}} \sim Q \tau \gg \Lambda_{QCD}$$

and we can expand the soft function
$$S(\tau) = S_{\text{pert}}(\tau) - S'_{\text{pert}}(\tau) \frac{2\Omega_1}{Q} \approx S_{\text{pert}}\left(\tau - \frac{2\Omega_1}{Q}\right) \qquad \Omega_1 \sim \Lambda_{QCD} \qquad \text{Is a nonperturbative parameter}$$

Ω_1 is defined in field theory

$$\begin{split} \bar{\Omega}_{1} &\equiv \frac{1}{2N_{C}} \left\langle 0 \left| \mathrm{tr} \bar{\mathrm{Y}}_{\overline{n}}(0) \mathrm{Y}_{n}(0) i \partial_{\tau} \mathrm{Y}_{n}^{\dagger}(0) \bar{\mathrm{Y}}_{\overline{n}}^{\dagger}(0) \right| 0 \right\rangle \quad \overline{\mathrm{MS}} \\ &i \partial_{\tau} \equiv \theta (i \,\overline{n} \cdot \partial - i \, n \cdot \partial) i \, n \cdot \partial + \theta (i \,\overline{n} \cdot \partial - i \, n \cdot \partial) i \,\overline{n} \cdot \partial \end{split}$$

Consistency check

- Resummation at N³LL
- Multijet boundary condition
- Power correction, in a scheme free of the $O(\Lambda_{\text{QCD}})$ renormalon

Convergence of results

 $\alpha_s(m_Z)$ from global thrust fits

Theory uncertainty is from a flat scan

no gap

With renormalon

N³LL'

N³LL results 1.0 NNLL NNLL 0.8 NLL' 0.6 0.4 0.2 0.002 0.0 0.115 0.110 0.120 0.125 0.130 $\alpha_s(m_Z)$ 2.5 no gap results 2.01.5 N³LL' N³LL NNLL' NNLL 1.0 NLL' 0.120 0.125 0.130 0.1100.115 $\alpha_s(m_Z)$

Renormalon-free results have smaller theory errors and better fits

 Ω_1 determined to 16% accuracy

500 points random scan per order

Adding individual errors in quadrature gives similar (but smaller) error

Effect of the various scan parameters

Fit for bins: different data sets

- Resummation at N³LL
- Multijet boundary condition
- Power correction, in a scheme free of the $O(\Lambda_{\text{QCD}})$ renormalon
- QED & bottom mass corrections

Final thrust result

$\alpha_s(m_Z) = 0.1135 \pm 0.0002_{\text{exp}} \pm 0.0005_{\text{had}} \pm 0.0009_{\text{pert}}$

Result from jets differs by 3.5σ from the HPQCD lattice result

Summary & Outlook

- $\alpha_s(m_Z)$ Tau Decays (FOPT vs. CIPT; Duality violation)
 - Lattice QCD (multiple actions; trustworthy errors)
 - DIS & Global (NMC data; gluon pdf parameterization; theory error analysis)
 - R ratio & Precision EW (Giga Z? Super B?)

Thrust & Event Shapes

- The Soft-Collinear Effective Theory provides a powerful formalism for deriving factorization theorems and analyzing processes with Jets
- Important to account for nonperturbative effects (not with MC)
- Consistency checks with other event shapes at perturbative level, consistency check for full analysis on the near horizon
- Results are systematically smaller than (some) other extractions

The End