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Motivation
• is a key parameter in the standard model,

and enters the analysis of all collider data 
(LHC, Tevatron, Jlab, RHIC, DESY, B-factories, ILC, ... )

αs(mZ)

• It also plays a role in searches for new physics

indirectly in precision electroweak analyses,                  B→ Xsγ

directly through the unification of couplings:

Figure 8: Here the running of the couplings in the SM (left) and MSSM (right) is shown. In the MSSM unification
is possible due to threshold corrections of supersymmetric particles.

5 Gauge unification and the strong coupling constant

In this section we reconsider the determination of the coupling constants from the electroweak fit and
compare it with the coupling constants needed for unification. The gauge couplings in the MS scheme
determining unification can be written as:

α1 = (5/3)αMS/ cos2 θMS
W ,

α2 = αMS/ sin θMS
W ,

α3 = αMS
s ,

In the MSSM gauge unification can be reached in contrast to the SM (see Fig. 8). Instead of a common
SUSY mass scale we use a more sophisticated mass spectrum [6]-[8]. The high energy mSUGRA parameters
determine the low energy masses and couplings via RGEs. The running of the masses is shown in Fig. 9
for low and high values of tanβ. The supersymmetric particles contribute to the running of the gauge
couplings at energies above their masses as shown in Fig. 10. The mass scale of SUSY particles and the
unification scale MGUT, which yields perfect unification is dependent on the low energy values of the gauge
couplings (see Fig. 11).

How good the gauge couplings can be unified at high energies depends on the experimental low energy
values of them. We use the fine structure constant α(MZ) = 1/127.953(49) [30]. The other ingredients at
MZ , the electroweak mixing angle sin2 θW and the strong coupling constant αs, are best determined from
the electroweak precision data of the MZ line shape at LEP and SLC. Unfortunately the sin2 θW data
disagree by about 3 σ. Clearly, the SLC value yields a Higgs mass, which is below the present Higgs limit
of 114.6 GeV, but the average value is consistent with it (see Fig. 2).

In addition, the strong coupling constant depends on the observables used in the fit: if only MZ , Γtot

and σ0
had are used, a value of αs = 0.115(4) is found as shown in Tab. 4, while the ratio Rl of the hadronic

and leptonic partial widths of the Z0 boson yields a higher value αs = 0.123(4). Another quantity, which
has been calculated up to O(α3

s) is the ratio of hadronic and leptonic widths of the τ lepton, Rτ , which
yields a value close to the value from Rl: αs = 0.121(3).
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Outline

Focus of talk: ‘customer feeback,’ what uncertainties are induced 

by !S on benchmark LHC cross sections?  How, and which, !S 
uncertainties should be propagated through predictions?

Emphasis on Higgs production; lively debate within community 
over both Tevatron results and LHC predictions

Some further discussion of W/Z !+jets", top production

eg. Higgs Inclusive Cross SectionGluon-fusion at NLO

What makes is sensitive to new 
physics !begins at 1"loop# also 
makes it tough to calculate...

Dawson; Djouadi, Graudenz, Spira, Zerwas, 1991, 1995

K=!NLO/!LO
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2
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eg. Grand Unification (Y. Nomura,                         ) αs-workshop
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(PDG Average ‘05)
Hinchliffe

World Averages

αs(mZ) = 0.1170± 0.0012
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(S. Bethke )

1989:
was compatible with the QCD expectation of the running of αs, but did not yet allow to draw more
concrete conclusions.

Figure 3: Summary of measurements of αs in 1989 [24]. Shown are results from various experiments in
deep inelastic lepton-nucleon scattering as well as combined results from e+e− collisions, together with
the QCD expectation of a running αs for different values of ΛMS (see section 3).

Foundations were layed, however, to prepare for more quantitative tests with the upcoming higher
energy colliders, like the e+e− colliders LEP at CERN and SLC at SLAC, the Tevatron pp̄ collider at
Fermilab and the HERA electron-proton collider at DESY, who all started operation in the time from
1987 to 1991:

• From the summary of αs measurements shown in figure 3, using the QCD prediction of a running
coupling, the value of αs(Q2 = M2

Z0), at the energy scale of the Z0 boson mass, MZ0 ≈ 90 GeV,
was predicted to be αs(MZ0) = 0.11 ± 0.01. Experiments at LEP and SLC were determined to
scrutinise this prediction with high accuracy [24].

• Deep inelastic scattering results, extending to much higher values of Q2 and much lower values of
x, should proove scaling violations of nucleon structure functions.

• Significant progress in jet physics allowed to prepare for direct tests of asymptotic freedom, through
the energy dependence of jet production rates [25, 26], and of the gluon-selfcoupling, through spin-
correlations in 4-jet hadronic final states in e+e− annihilation [27].

• Precise determinations of αs at low and at high energy scales, in e+e− annihilation, at hadron
colliders and in deep inelastic lepton-nucleon collisions were expected to emerge, with the prospect
of proving the energy dependence of αs, and thus, asymptotic freedom.

8

αs(mZ) = 0.11± 0.01
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2006:

αs(mZ) = 0.1189± 0.0010
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Siegfried Bethke: The 2009 World Average of αs 11

The presence of correlated errors, if using the equations
given above, is usually signalled by χ2 < ndf . Values of
χ2 > ndf , in most practical cases, are a sign of possibly
underestimated errors. In this review, both these cases are
pragmatically handled in the following way:

In the presence of correlated errors, described by a
covariance matrix C, the optimal procedure to determine
the average x is to minimise the χ2 function

χ2 =
n

∑

i,j=1

(xi − x)(C−1)ij(xj − x) ,

which leads to

x =





∑

ij

(C−1)ijxj









∑

ij

(C−1)ij





−1

and

∆x2 =





∑

ij

(C−1)ij





−1

.

The choice of Cii = ∆x2
i and Cij = 0 for i "= j re-

tains the uncorrelated case given above. In the presence
of correlations, however, the resulting χ2 will be less than
ndf = n − 1. In order to allow for an unknown common
degree of a correlation f , the method proposed in [61] will
be applied by choosing Cij = f×∆xi×∆xj and adjusting
f such that χ2 = n − 1.

For cases where the uncorrelated error determimation
results in χ2 > ndf , and in the absence of knowledge which
of the errors ∆xi are possibly underestimated, all individ-
ual errors are scaled up by a common factor g such that
the resulting value of χ2/ndf , using the definition for un-
correlated errors, will equal unity.

Note that both for values of f > 0 or g > 1, ∆x
increases, compared to the uncorrelated (f = 0 and g = 1)
case.

4.2 Determination of the world average

The eight different determinations of αs(MZ0) summarised
and discussed in the previous section are listed in ta-
ble 1 and are graphically displayed in figure 5. Apply-
ing equations 14, 15 and 16 to this set of measurements,
assuming that the errors are not correlated, results in
an average value of αs(MZ0) = 0.11842 ± 0.00063 with
χ2/ndf = 5.4/7.

The fact that χ2 < ndf signals a possible correlation
between all or subsets of the eight input results. Assuming
an overall correletion factor f and demanding that χ2 =
ndf = 7 requires f = 0.23, inflating the overall error from
0.00063 to 0.00089.

In fact, there are two pairs of results which are known
to be largely correlated:

– the two results from e+e− event shapes based on the
data from JADE and from ALEPH use the same theo-
retical predictions and similar hadronisation models to

0.11 0.12 0.13

!!    ((""    ))s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

#-decays (N3LO)

DIS  jets (NLO)

e+e– jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e– jets & shapes (NNLO) 

$ decays (NLO)

Fig. 5. Summary of measurements of αs(MZ0). The vertical
line and shaded band mark the final world average value of
αs(MZ0) = 0.1184 ± 0.0007 determined from these measure-
ments.

correct these predictions for the transitions of quarks
and gluons to hadrons. While the experimental errors
are uncorrelated, the theoretical uncertainties may be
assumed to be correlated to 100%. The latter accounts
for about 2/3 to 3/4 of the total errors. An appropriate
choice of correlation factor between the two may then
be f = 0.67.

– the QCD predictions for the hadronic widths of the
τ -lepton and the Z0 boson are essentially identical, so
the respective results on αs are correlated, too. The
values and total errors of αs(MZ0) from τ decays must
therefore be correlated to a large extend, too. In this
case, however, the error of one measurement is al-
most entirely determined by the experimental error
(Z0-decays), while the other, from τ -decays, is mostly
theoretical. A suitable choice of the correlation factor
between both these results may thus be f = 0.5.

Inserting these two pairs of correlations into the error
matrix C, the χ2/ndf of the averaging procedure results
in 6.8/7, and the overall error on the (unchanged) central
value of αs(MZ0) changes from 0.00063 to 0.00067. There-
fore the new world average value of αs(MZ0) is defined to
be

αs(MZ0) = 0.1184± 0.0007.

For seven out of the eight measurements of αs(MZ0),
the average value of 0.1184 is within one standard devi-
ation of their assigned errors. One of the measurements,
from structure functions [45], deviates from the mean value
by more than one standard deviation, see figure 5.

The mean value of αs(MZ0) is potentially dominated
by the αs result with the smallest overall assigned un-
certainty, which is the one based on lattice QCD [26]. In
order to verify this degree of dominance on the average
result and its error, and to test the compatibility of each

αs(mZ) = 0.1184± 0.0007

(arXiv:0908.1135)

2009:
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GAPP Zfitter/Gfitter

Introduction

• QCD corrections to σ(e+e− → (hadrons) are known since long

• At lower energies usually R = σ(e+e−→hadrons)
σ(e+e−→µ+µ−)

has been used for αs

determination

• Similar corrections arise on the Z-resonance

• These corrections modify the partial width of the Z decaying to hadrons,
Γhad, and via this the total Z-width ΓZ

• Relevant observables:

R0
# = Γhad

Γ#
: Ratio of had. and lept. partial width # ratio of cross sections

σhad
0 = 12π

mZ

ΓeΓhad
Γ2

Z
: Hadronic peak cross section, almost insensitive due

to cancellation of αs effects in Γhad and ΓZ
ΓZ: Total Z-width, measured with complementary systematics

σ0
# = 12π

mZ

Γ2
#

Γ2
Z
: Leptonic peak cross section. Very sensitive but included

automatically in a fit to R0
#, σhad

0 , ...
αs workshop, MPI Munich 2 Klaus Mönig
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The QCD corrections to Γhad

• The massless corrections are known to 4th order in QCD
(P. A. Baikov, K. G. Chetyrkin, J. H. Kühn, arXiv:0801.1821)

Γhad = Γno QCD
had

[

1 +
αs

π
+ 1.4

(αs

π

)2
− 12.7

(αs

π

)3
− 80.0

(αs

π

)4
]

• The massive corrections are known to numerically better precision
(K. G. Chetyrkin, J. H. Kühn and A. Kwiatkowski, hep-ph/9503396)

• Also numerically important ααs terms in the electroweak corrections
are taken into account

αs workshop, MPI Munich 5 Klaus Mönig

GAPP observables

Z pole: MZ, !Z, "had, Rl, Rq, AFB, ALR 

APV & lepton scattering: sin2#W ($ ! MZ)

low energy: g$!2, b%s&, ''  (new physics)

other: MW, mt
pole, sumrules for m(b & m(c,                                

!W ()s, CKM, new physics?)

4

4

αs(mZ)

δαs � 0.0004

!s from Z decays (EW)

determined by "Z, #had, Rl, but other measurements, 
SM parameters, and new physics enter indirectly

experimental correlations: small, known, included

parametric uncertainties: non-Gaussian (sin2$W), 
treated exactly in fits

theory errors (PQCD): 100% correlated (currently 
neglected), %theo!s = ±0.00009 

5

5

tiny
!s from Z decays: theory

sensitivity to MH: MH " 2!MH ⇒ #!s = +0.0004

massless non-singlet QCD corrections known to O(!s
4) 

Baikov, Chetyrkin, Kühn 2008 

FOPT " CIPT: #!s = ±0.00005 (opposite sign from $$)

O(!s
4) vector singlet terms Baikov, Chetyrkin, Kühn 2010 known 

up to singlet piece in Crewther relation ⇒ #!s # +10-5

axial-vector singlet: O(!s
2) Kniehl, Kühn 1990 #!s = +0.0027 

O(!s
3) Larin, v. Ritbergen, Vermaseren 1995 #!s = +0.00043 

O(!s
4) ~ O(!s

3)2%O(!s
2) ⇒ #!s = ±0.00007 (dominant)
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6αs(mZ) = 0.1192± 0.0028αs(mZ) = 0.1196± 0.0027

expt. errors dominate
8

the implementation of the b-mass and QED corrections.
Since we use data taken for energies close to the Z pole
we adopt i/(q2−m2

Z+i Q2Γz/mZ) as the Z-boson propa-
gator which is the form of the width term used for thrust
data analyses. The modifications of Eq. (11) required to
include QED effects are discussed in Sec. II H.
The hard factor HQ contains the hard QCD effects

that arise from the matching of the two-jet current in
SCET to full QCD. For µH = Q we have Hv

Q(Q,Q) =

1+
∑3

j=1 hj [αs(Q)/4π]j, and the full hard function with
ln(µH/Q) dependence is given in Eq. (A6). For the fla-
vor nonsinglet contributions where the final-state quarks
are directly produced by the current one can obtain
the matching coefficient from the on-shell quark vector
current form factor, which is known to O(α3

s) [42, 48–
52]. Converting the bare result in Ref. [52] (see also
Refs. [42, 53]) to the MS scheme and subtracting 1/εkIR
divergences present in SCET graphs, the three-loop non-
singlet constant, which is one of the new ingredients in
our analysis, is

h3 = C3
F

[
− 460ζ(3)− 140π2ζ(3)

3
+ 32ζ(3)2 + 1328ζ(5)

− 5599

6
+

4339π2

36
− 346π4

15
+

27403π6

17010

]

+ CAC
2
F

[
− 52564ζ(3)

27
+

1690π2ζ(3)

9
+

592ζ(3)2

3

− 5512ζ(5)

9
+

824281

324
− 406507π2

972
+

92237π4

2430

− 1478π6

1701

]
+ C2

ACF

[
505087ζ(3)

243
− 1168π2ζ(3)

9

− 2272ζ(3)2

9
− 868ζ(5)

9
− 51082685

26244
+

596513π2

2187

− 4303π4

4860
+

4784π6

25515

]
+ C2

Fnf

[
26080ζ(3)

81
− 148π2ζ(3)

9

− 832ζ(5)

9
− 56963

486
+

13705π2

243
− 1463π4

243

]

+ CACFnf

[
− 8576ζ(3)

27
+

148π2ζ(3)

9
− 8ζ(5)

3

+
3400342

6561
− 201749π2

2187
− 35π4

243

]
+ CFn

2
f

[
− 832ζ(3)

243

− 190931

6561
+

1612π2

243
+

86π4

1215

]

= 20060.0840− 2473.4051nf + 52.2009n2
f . (12)

For nf = 5 we have h3 = 8998.080, which is the value
used for our analysis.7

The axial-vector hard functions Hua
Q and Hda

Q are
equal to Hv

Q up to additional singlet corrections that

7 The analytic expression for h3 in Eq. (12) is consistent with
Eq. (7.3) given in Ref. [54].

t   , b t   , b

FIG. 2: Two-loop singlet correction to the axial current. Its
cuts contribute to the hard coefficient and nonsingular terms.

enter at O(α2
s) and O(α3

s). The fact that the SCET
hard functions have these singlet corrections was dis-
cussed in Ref. [55]. At O(α2

s) only the axial-vector cur-
rent gets a singlet correction. It arises from the axial-
vector anomaly, from suitable cuts of the graph shown in
Fig. 2 where each axial current is connected to a triangle.
Summing over the light quarks u, d, s, c gives a vanish-
ing contribution from this graph, but it does not vanish
for heavy quarks due to the large bottom-top mass split-
ting [56]. Since for the Qs we consider top-pairs are never
produced, the required terms can be obtained in the limit
mb/mt → 0. For the axial current the hard correction
arises from the bb̄ cut and gives Hua

Q = Hda
Q = Hv

Q, and

Hba
Q = Hv

Q +Hsinglet
Q , where

Hsinglet
Q (Q, rt, µH) =

1

3

(
αs(µH)

π

)2

I2(rt) . (13)

Here rt = Q2/(4m2
t ) and the function I2(rt) from

Ref. [56] is given in Eq. (A7). Throughout our analysis
we use mt = 172GeV. Hsinglet

Q is a percent level correc-
tion to the cross section at the Z peak and hence is non-
negligible at the level of precision of our analysis. (The
uncertainty in the top mass is numerically irrelevant.)
At O(α3

s) the singlet corrections for vector currents are
known [42], but they are numerically tiny. We therefore
neglect the O(α3

s) vector current singlet corrections to-
gether with the unknown O(α3

s) singlet corrections for
the axial-vector current. Likewise we do not account for
O(α3

s) singlet corrections to the nonsingular distributions
discussed in Sec. II E.
The full anomalous dimension ofHI

Q is known at three-
loops, O(α3

s) [49, 51, 57]. It contains the cusp anoma-
lous dimension, responsible for the resummation of the
Sudakov double logarithms, and the non-cusp anoma-
lous dimension. To determine the corresponding hard
renormalization group factor UH at the orders N3LL′

and N3LL we need the O(α4
s) cusp anomalous dimen-

sion Γcusp
3 which is still unknown and thus represents a

source of theory error in our analysis. We estimate the
size of Γcusp

3 from the order [1/1] Padé approximant in
αs built from the known lower order coefficients, which is
within 13% of the two other possible Padé approximants,
[0/2] and [0/1]. For our theory error analysis we assign
200% uncertainty to this estimate and hence scan over
values in the range Γcusp

3 = 1553.06± 3016.12.
The thrust jet function Jτ is the convolution of the two

hemisphere jet functions that describe collinear radiation
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mτ = 1.777 GeV !

δP ∼ 20%
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Notation

Adler function

D(1+0)
V (s) =

Nc

12π2

∞X

n=0

an
µ

n+1X

k=1

k cn,k lnk−1 −s
µ2 =

Nc

12π2

∞X

n=0

cn,1 an
Q

cn,1 known to n = 4 [Baikov, Chetyrkin, Kühn; 2008].

FOPT δ(0)
FO =

∞X

n=1

a(M2
τ )n

nX

k=1

k cn,k Jk−1 Jl ≡
1

2πi

I

|x|=1

dx
x

(1− x)3 (1 + x) lnl(−x)

CIPT δ(0)
CI =

∞X

n=1

cn,1 Ja
n(M2

τ ) Ja
n(M2

τ ) ≡
1

2πi

I

|x|=1

dx
x

(1− x)3 (1 + x) an(−M2
τ x)

M. Beneke (RWTH Aachen U.) αs Workshop, 9 February 2011 2 / 22

(Beneke,                           ) αs-workshop

The problem

Series expansions for αs(M2
τ ) = 0.34:

α1
s α2

s α3
s α4

s α5
s

δ(0)
FO = 0.1082 + 0.0609 + 0.0334 + 0.0174 (+ 0.0088 ) = 0.2200 (0.2288)

δ(0)
CI = 0.1479 + 0.0297 + 0.0122 + 0.0086 (+ 0.0038 ) = 0.1984 (0.2021)

[We will often use the estimate c5,1 = 283.]

FO/CI difference increases by adding more orders.

Systematic problem.

M. Beneke (RWTH Aachen U.) αs Workshop, 9 February 2011 3 / 22

Both methods appear
to converge, but to

different values.

15



Pro CIPT:

Arguments for CIPT ...

• Better convergence, smaller scale dependence

Scale error on αs(M2
τ ) from variation of µ in [1,2.5] GeV is +0.010

−0.005 for FO and +0.005
−0.002 for CI.

• Expansion of the running coupling on the circle as used in FO has only a finite
radius of convergence [Le Diberder, Pich; 1992]

αs(M2
τ eiπ) =

αs(M2
τ )

1 + β0
4π iπαs(M2

τ )

Actual αs(M2
τ ) is close.

Not very compelling, because ...
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Pro FOPT:

Notation

Adler function

D(1+0)
V (s) =

Nc

12π2

∞X

n=0

an
µ

n+1X

k=1

k cn,k lnk−1 −s
µ2 =

Nc

12π2

∞X

n=0

cn,1 an
Q

cn,1 known to n = 4 [Baikov, Chetyrkin, Kühn; 2008].

FOPT δ(0)
FO =

∞X

n=1

a(M2
τ )n

nX

k=1

k cn,k Jk−1 Jl ≡
1

2πi

I

|x|=1

dx
x

(1− x)3 (1 + x) lnl(−x)

CIPT δ(0)
CI =

∞X

n=1

cn,1 Ja
n(M2

τ ) Ja
n(M2

τ ) ≡
1

2πi

I

|x|=1

dx
x

(1− x)3 (1 + x) an(−M2
τ x)

M. Beneke (RWTH Aachen U.) αs Workshop, 9 February 2011 2 / 22

(Beneke,                           ) αs-workshop

series are asymptotic. Models for 
higher terms with u=2 renormalon:

Convergence of Rτ

2 4 6 8 10 12 14 16
Perturbative order n

0.14

0.16

0.18

0.2

0.22

0.24

0.26

!(0
)

Borel sum
FO perturbation theory
CI perturbation theory
Smallest term

• FO converges to Borel sum
• CI smoother at low orders (better convergence, smaller scale dependence), but never reaches

the Borel sum (vanishing of Ja
n ).

• At n = 4, 5 FO is close to the true result, CI too small⇒ αs from CI too large.
(A similar observation has been made in the large-β0 approximation [Ball, MB, Braun, 1995].)

M. Beneke (RWTH Aachen U.) αs Workshop, 9 February 2011 12 / 22
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s from decays A. Pich  - Munich 2011

Recent   s(m )   Analyses
Reference Method P s(m ) s(m )
Baikov et al CIPT, FOPT 0.1998 (43) 0.332  (16) 0.1202  (19)

Davier et al CIPT 0.2066 (70) 0.344  (09) 0.1212  (11)

Beneke-Jamin BSR + FOPT 0.2042 (50) 0.316  (06) 0.1180  (08)

Maltman-Yavin PWM + CIPT 0.321  (13) 0.1187  (16)

Menke CIPT, FOPT 0.2042 (50) 0.342  (11) 0.1213  (12)

Narison CIPT, FOPT 0.324  (08) 0.1192  (10)

Caprini-Fischer BSR + CIPT 0.2042 (50) 0.321  (10)

et al exp + CIPT 0.2040 (40) 0.341  (08) 0.1211  (10)

Pich CIPT 0.1997 (35) 0.338  (12) 0.1209  (14)

CIPT:    Contour-improved perturbation theory
FOPT:   Fixed-order perturbation theory
BSR:     Borel summation of renormalon series
CIPTm:  Modified CIPT  (conformal mapping)
exp:     Expansion in derivatives of the coupling ( function)

PWM: Pinched-weight moments
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Lattice QCD

19



(A. Kronfeld,                         ) αs-workshop

Pertinent Synopsis

• The spectrum results suggest that the calibration step is understood:

• Continuum limit under control: 3–5 different lattice spacings—up to !3;

• Chiral extrapolation under control;

• Finite-volume effects small (as expected for masses of stable particles);

• Several groups (MILC, PACS-CS, BMW) with 2+1 spectrum and few % errors.

• Influential results: matrix elements for flavor physics (aids search for NP in B decays and 
mixing), thermodynamics (early universe, heavy ions), chiral condensate (Nambu’s pion), 
nucleon sigma term (relevant to DM search), nucleon structure (parton densities), nucleon 
interactions (neutron stars) ….

gold-
plated

25
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Hadron Spectrum
e.g., BMW Collaboration: Science 322 (2008) 1224

•  a = 0.125, 0.085, & 0.065 fm;

• tree O(a) Wilson;

• 6! stout smearing;

•  2ml < mq < 1.7ms;

•  !, K, " input.

QCD postdicts the low-lying hadron masses
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The QCD Lagrangian

• SU(3) gauge symmetry and 1 + nf + 1 parameters: 
! !
! !
! !
! !
! !
! !
! !
! !

• Observable CP violation ! " = ! – arg det mf (if all masses nonvanishing):

• neutron electric-dipole moment sets limit " ≲ 10–11.

LQCD =
1
g2

0
tr[FµνFµν]

− ∑
f

ψ̄ f (/D+m f )ψ f

+
iθ

32π2 εµνρσ tr[FµνFρσ]

14

m" or Y(2S-1S) or f# or r1 or ....

m#, mK, mDs or mJ/$, mBs or mY, ....

! = 0.

Friday, February 11, 2011

Fix parameters. Calibrate.

Extract αs(mZ) • small Wilson loops
• Current correlators
• Schrodinger functional
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cn αn
V (d/a)Small Wilson loops (P. Lepage,                         ) αs-workshop

staggered quarks

2

discuss finite-lattice-spacing errors and chiral corrections
in Section IV. In Section V, we describe how we combine
perturbation theory with simulation results using con-
strained (Bayesian) fitting methods. There we present
our results and discuss in detail the various uncertain-
ties that arise. Finally, in Section VI, we summarize our
results.

II. PERTURBATION THEORY

The simplest short-distance quantities to simulate are
vacuum expectation values of Wilson loop operators:

Wmn ≡ 1
3 〈0|Re TrP e−ig

H

nm
A·dx |0〉, (2)

where P denotes path ordering, Aµ is the QCD vector
potential, and the integral is over a closed ma×na rect-
angular path. Wilson loops should be calculable in (lat-
tice QCD) perturbation theory when ma and na are
small. We computed perturbative coefficients through
order n = 3 for six small, rectangular loops, and also for
two non-planar paths:

BR = !

"#"" $
%

&"'"" CC = !

"#""
$

%
"'""& . (3)

The coefficients for our various loops are derived in [8].
The results are for the gluon and quark actions used to
create the MILC gluon-configuration sets used in this
study. They also assume nf = 3 massless sea quarks.
The quarks in our simulations are not exactly massless,
but the masses are sufficiently small that the difference
is negligible, O(α2

V (am)2), in perturbation theory (but
less so nonperturbatively, as we will discuss).

Perturbation theory is more convergent for the loga-
rithm of a Wilson loop than it is for the loop itself. This
is because the perturbative expansion of a loop is dom-
inated by a self-energy contribution that is proportional
to the length of the loop, and this contribution expo-
nentiates for large loops. The length of the loop factors
out of the expansion when we take the logarithm. This
structure is evident in Table I where we tabulate the
perturbative coefficients for the logarithms of our loops.
The renormalization scales d/a for each quantity are de-
termined using the procedures described in [3, 4, 9].

The perturbative coefficients in log(W ), while greatly
reduced by the logarithm, are still rather large. They
can be further reduced in two ways. One is to “tadpole

improve” Wmn by dividing by u2(n+m)
0 where [3]

u0 ≡ (W11)
1/4. (4)

The other is to examine Creutz ratios of the loops rather
than the loops themselves [3]. Each procedure signifi-
cantly reduces the known high-order coefficients, as is
clear in Table I. We use seven tadpole-improved loops
and six Creutz ratios in our analysis. Each has smaller
α3

V coefficients, which improves convergence, but each

also has a significantly smaller scale d/a, which slows
convergence (since αV (d/a) is larger).

We also include in Table I the perturbative expan-
sion for the tadpole-improved bare coupling constant,
αlat/W11, where αlat is the coupling constant that ap-
pears in the gluon action for a given lattice spacing [3].
This is another, independent, short-distance quantity
from which αV can be determined.

We used Feynman diagrams to compute perturbative
coefficients cn for n ≤ 3. Higher-order coefficients can be
estimated by simultaneously fitting results from differ-
ent lattice spacings to the same perturbative formula [1].
This is possible because the coupling αV (d/a) changes
value with different lattice spacings a:

q2 dαV (q)

dq2
= −β0α

2
V − β1α

3
V − β2α

4
V − β3α

5
V (5)

where the βi are constants [6]. In this paper, we follow
our earlier analysis by parameterizing the running cou-
pling by its value at 7.5GeV,

α0 ≡ αV (7.5 GeV, nf =3). (6)

Given α0, the coupling at any other scale can be obtained
by integrating Eq. (5) (which we do numerically).

For the purposes of this paper, we define αV in fourth
order and beyond so that the evolution equation, Eq. (5),
is exact, with no higher-order terms beyond β3. This
definition gives precise meaning to the perturbative co-
efficients cn for n ≥ 4 that we determine by fitting the
a-dependence of our short-distance quantities [10].

Our main result is a value for α0. To facilitate com-
parisons with other analyses, we convert this result to
the MS scheme [6], add in c and b vacuum polarization
perturbatively [5], and then evolve to the mass of the
Z meson, again using perturbation theory [6].

III. QCD SIMULATIONS

The gluon-configuration sets we use were created by
the MILC collaboration [11]. The relevant simulation
parameters are listed in Table II.

The input parameters for a QCD simulation are the
bare coupling constant and bare quark masses. The cou-
pling constant is specified through the β parameter, listed
in Table II, where

αlat ≡
5

2πβ
. (7)

The bare quark masses, m0!(a) for u/d quarks and
m0s(a) for s quarks, used in the simulations are also
listed, in units of the lattice spacing and, following MILC
conventions, multiplied by u0 (Eq. (4)). The bare masses
corresponding to fixed physical masses (of, for example,
pions) vary with the lattice spacing. To facilitate com-
parisons between lattice spacings, we use first-order per-
turbation theory to evolve all of our masses to a common
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Current Correlators
This work is from ...

Feb 11, 2011Shoji Hashimoto (KEK)2

JLQCD collaboration 
!! running a project of dynamical overlap fermion (since 2006). 

Unique applications with exact chiral symmetry 
!! Dirac operator spectrum (and chiral condensate), topological 

susceptibility, VV-AA correlator, nucleon strange quark content, 

!! and alpha_s. 

!! E. Shintani et al. [JLQCD and TWQCD collaborations], arXiv:
0807.0556 [hep-lat], Phys. Rev. D79, 074510 (2009). 
!! Attempt of the method on two-flavor configs. 

!! E. Shintani et al. [JLQCD collaboration], arXiv:1002.0371 [hep-
lat], Phys. Rev. D80, 074505 (2010). 
!! Improved method with the conserved current. 

!! Physical 2+1-flavor result.

This work is from ...

Feb 11, 2011Shoji Hashimoto (KEK)2

JLQCD collaboration 
!! running a project of dynamical overlap fermion (since 2006). 

Unique applications with exact chiral symmetry 
!! Dirac operator spectrum (and chiral condensate), topological 

susceptibility, VV-AA correlator, nucleon strange quark content, 

!! and alpha_s. 

!! E. Shintani et al. [JLQCD and TWQCD collaborations], arXiv:
0807.0556 [hep-lat], Phys. Rev. D79, 074510 (2009). 
!! Attempt of the method on two-flavor configs. 

!! E. Shintani et al. [JLQCD collaboration], arXiv:1002.0371 [hep-
lat], Phys. Rev. D80, 074505 (2010). 
!! Improved method with the conserved current. 

!! Physical 2+1-flavor result.

(S.Hashimoto,                         ) αs-workshop
Vacuum polarization

Feb 11, 2011Shoji Hashimoto (KEK)4

!! As the “perturbative” quantity, we chose 

!! a, b :  isospin indices (we consider flavor non-singlet) 

!! J :  vector (V) or axial-vector (A) current 

!! !J
(1)(Q):  vacuum polarization function (transverse part) 

!! !J
(0)(Q):  vacuum polarization function (longitudinal part), 

vanish for V, proportional to m for A 

!! Q:  Euclidean (= space-like) momentum 

!! Perturbative expansion (+ OPE) known to "s
4 in the 

continuum theory.

d
4
xe

iQx

! 0 Jµ
a
(x)J"

b †
(0) 0 = # ab

(#µ"Q
2 $QµQ" )%J

(1)
(Q) $QµQ"%J

(0)
(Q)&' ()

Strategy

Feb 11, 2011Shoji Hashimoto (KEK)7

!! Simple, in principle 

1.! Calculate the V and A two-point functions on the lattice 

2.! Fit the data at high Q2 with the continuum perturbative formula.  

!! Fit parameters: c, !s(µ), and condensates. 

3.! Determine the scale 1/a from other quantities.  Then, !s(µ) is 
obtained. 

!! Need to be careful about 

!! Discretization effects? : more important at high Q2. how are they 
estimated? 

!! Window? : can we find the region where the pert formula safely 
applies while disc error is small enough? 

!! Enough sensitivity? :  can we get enough precision for !s(µ) to be 
interesting? 

Low end of Q2

Feb 11, 2011Shoji Hashimoto (KEK)12

!! Lattice - Pert

1/Q6 curve 
significant  
  below (1 GeV)2

used in the fit with 1/Q4

Low end of Q2

Feb 11, 2011Shoji Hashimoto (KEK)12

!! Lattice - Pert

1/Q6 curve 
significant  
  below (1 GeV)2

used in the fit with 1/Q4

Low end of Q2

Feb 11, 2011Shoji Hashimoto (KEK)12

!! Lattice - Pert

1/Q6 curve 
significant  
  below (1 GeV)2

used in the fit with 1/Q4

Low end of Q2

Feb 11, 2011Shoji Hashimoto (KEK)11

!! For 3 fit parameters with 1/Q4

without 1/Q4
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Systematic errors

Feb 11, 2011Shoji Hashimoto (KEK)16

!! Error to !s
(5)(MZ)

Dominant error: 
1/a= 
   1.83(1) GeV  r0=0.49 fm 

   1.97(4) GeV  f" 

   1.76(8) GeV  m#

Result and conclusion

Feb 11, 2011Shoji Hashimoto (KEK)17

!! Our result: 

!! consistent with other lattice groups 

!! similar in precision 

!! Final remarks: 

!! vacuum polarization function: 

!! much more useful than I initially thought.  (There is the window.) 

!! room for improvement (to the level of ±0.0005) 

!! every lattice groups would calculate this anyway.  Analytic formulae 
are available.  Should try!

!
s

(5)
(M

Z
) = 0.1181(3)(

"12

+14
)

Shintani et al., Phys. Rev. D82, 074505 (2010).
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Schroedinger Functional

Schrödinger Functional
Wolff, NPB 265 (1986) 506, 567; Lüscher, Narayanan, Weisz, Wolff, NPB 384 (1992) 168

33

• QCD in a can (well, on a 3-torus), typically L3!2L, Q = L–1.

• Apply boundary conditions at caps, filling the can with some 
sort of chromodynamic muck.  Femtoscale hadronization?!

• Parton-hadron duality says energy in can, for Q ≫ "QCD, can 

be computed with partons, i.e., with perturbation theory.

• Actually, R–1 = – L–1 d ln Z(A#)/dA# (removing an additive 

UV divergence; A# = boundary potential).

• Vary Q = L–1 over potentially enormous range: !103 [Alpha].

• No theory of effects suppressed by of (L"QCD)s.

Friday, February 11, 2011

(S. Aoki,                         ) αs-workshop

Our Goal

the parameter η introduced in the background field φi and define the SF coupling constant
as [18]

1

g2(L)
=

1

k

∂Γ[Vµ]

∂η

∣∣∣∣∣
η=0

, (II.18)

where

k = 12
(

L

a

)2

(c0 (sin ξ + sin 2ξ) + 4c1 (sin 2ξ + sin 4ξ)) , ξ =
1

3
π

(
a2

TL

)

(II.19)

is a normalization coefficient evaluated at tree level.

III. OUR STRATEGY

Our goal is to derive the renormalization group invariant (RGI) scale ΛQCD in physical
units and evaluate the running coupling constant αs(MZ) at high energy scale µ = MZ . The
RGI scale Λ is scheme dependent and we employ the commonly used definition for the SF
scheme,

ΛSF =
1

L
(b0g(L))

−
b1
2b2

0 exp

(

−
1

2b0g(L)

)

exp

(

−
∫ g(L)

0
dg

(
1

β(g)
+

1

b0g3
−

b1

b2
0g

))

, (III.1)

where g(L) is the SF renormalized coupling at the box scale L and β(g) is the renormalization
group β function in the same scheme whose perturbative expansion coefficients are given by
[27]

β(g) = −g3
(
b0 + b1g

2 + b2g
4 + · · ·

)
, (III.2)

b0 =
1

(4π)2

(
11 −

2

3
Nf

)
, (III.3)

b1 =
1

(4π)4

(
102 −

38

3
Nf

)
, (III.4)

b2 =
1

(4π)3

(
0.483(7) − 0.275(5)Nf + 0.0361(5)N2

f − 0.00175(1)N3
f

)
. (III.5)

The derivation of the RGI scale for the SF scheme proceeds in the following steps [18]:

(i) We start by calculating the step scaling function (SSF) Σ(u, a/L) on the lattice at
several box sizes and lattice spacings. The SSF gives the relation between the renor-
malized coupling constants when the renormalization scale is changed by some factor,
which is fixed to 2 in this paper,

Σ
(
u,

a

L

)
= g2(2L)

∣∣∣
u=g2(L)

. (III.6)

The scale is given by the box size L, and a/L represents the discretization error. We
take sufficient number of values for the coupling u to cover low to high energy scales.
Taking the continuum limit at each scale u

σ(u) = lim
a/L→0

Σ
(
u,

a

L

)
, (III.7)

and performing a polynomial fit we obtain a non-perturbative running of the coupling
constant in the SF scheme for the scale change of 2.
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ḡ(L): Schrödinger Functional (SF) coupling

L: special box size

T

L3

boundary gauge field

boundary gauge field

Advantages

A box size L gives the scale. No other scale is needed.
The continuum limit (a->0) can be taken.

Disadvantages
Separate simulations have to be performed.

Non-perturbative.
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The scale is given by the box size L, and a/L represents the discretization error. We
take sufficient number of values for the coupling u to cover low to high energy scales.
Taking the continuum limit at each scale u

σ(u) = lim
a/L→0

Σ
(
u,

a

L

)
, (III.7)

and performing a polynomial fit we obtain a non-perturbative running of the coupling
constant in the SF scheme for the scale change of 2.

5
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(2) define a reference scale Lmax through a fixed value of ḡ2(Lmax)
non-perturbative a/Lmax ! 1
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non-perturbative perturbativeSSF( n times)
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units and evaluate the running coupling constant αs(MZ) at high energy scale µ = MZ . The
RGI scale Λ is scheme dependent and we employ the commonly used definition for the SF
scheme,
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where g(L) is the SF renormalized coupling at the box scale L and β(g) is the renormalization
group β function in the same scheme whose perturbative expansion coefficients are given by
[27]
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)
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The derivation of the RGI scale for the SF scheme proceeds in the following steps [18]:

(i) We start by calculating the step scaling function (SSF) Σ(u, a/L) on the lattice at
several box sizes and lattice spacings. The SSF gives the relation between the renor-
malized coupling constants when the renormalization scale is changed by some factor,
which is fixed to 2 in this paper,

Σ
(
u,

a

L

)
= g2(2L)

∣∣∣
u=g2(L)

. (III.6)

The scale is given by the box size L, and a/L represents the discretization error. We
take sufficient number of values for the coupling u to cover low to high energy scales.
Taking the continuum limit at each scale u

σ(u) = lim
a/L→0

Σ
(
u,

a

L

)
, (III.7)

and performing a polynomial fit we obtain a non-perturbative running of the coupling
constant in the SF scheme for the scale change of 2.

5

g2(L) with L = 2−nLmax

3-loop

(4) Lmax in physical unit from hadron mass
an independent large scale simulation at some a is required.  

(ii) In the second step we define a reference scale Lmax through a fixed value of the renor-
malized coupling constant g2(Lmax). The value of g2(Lmax) is arbitrary as long as it
is well in low energy region to suppress lattice artifacts with a/Lmax ! 1. We then
start from Lmax and follow the non-perturbative RG flow in the SF scheme into the
high energy region. A typical scale turns out to be 1/Lmax ∼ 0.5 GeV in this paper
so that after n ∼ 5 iterations the scale 1/L = 2n/Lmax ∼ 16 GeV is already in the
perturbative region where the difference between perturbative and non-perturbative
RG runnings is negligible.

(iii) Substituting g2(L) and L = 2−nLmax into the definition (III.1) and evaluating the
integral with three loops β-function in the SF scheme [27] for the weak coupling region
we obtain the RGI scale ΛSFLmax in terms of the reference scale.

(iv) In the last step we need some physical input measured in an independent large scale
simulation at some lattice spacing a to quote Lmax in physical units. The requirement
for the lattice spacing and the reference scale is that the magnitude of lattice artifacts
a/Lmax should be kept small. In this paper we employ hadron masses for physical input
and use the lattice spacing determined from them in physical units as the intermediate
scale. We then obtain the RGI scale ΛSF in physical units. The transformation into
the MS scheme is given exactly at one-loop order via

ΛMS = 2.61192ΛSF (III.8)

for three flavors.

The RGI scale ΛMS measured so far is for three flavors (Λ(3)

MS
). In order to evaluate the

coupling constant αs(MZ) at high energy we need to change the number of flavors at charm

and bottom quark mass thresholds, obtaining Λ(5)

MS
for five flavors. For this purpose we

used the matching formula near mass thresholds for the MS scheme at three-loop order in
Refs. [28, 29, 30]. The evaluation of αs(MZ) will proceed in the following steps in this paper.

(i) Introduce the physical scale through hadron masses and evaluate Lmax in units of GeV.

(ii) Perform the non-perturbative step scaling n = 5 times and reach deep into the per-
turbative region q ∼ 16 GeV.

(iii) Change the scheme to MS according to the two-loop relation [27]

αMS(sq) = αSF(q) + c1(s)α
2
SF(q) + c2(s)α

3
SF(q) + · · · , (III.9)

c1(s) = −8πb0 ln(s) + 1.255621(2) + 0.0398629(2)Nf , (III.10)

c2(s) = c1(s)
2 − 32π2b1 ln(s) + 1.197(10) + 0.140(6)Nf − 0.0330(2)Nf

2.

(III.11)

We may set the scale boost factor s = 2.61192 so that c1(s) = 0. A systematic error
due to higher loops correction is less than 0.1 % and negligible here.

(iv) Running back to the charm quark mass threshold µ = mc with the four loop β-
function in the MS scheme we change the number of flavors to four using the three-loop

6

for 3 flavors

(2) define a reference scale Lmax through a fixed value of ḡ2(Lmax)
non-perturbative a/Lmax ! 1

1/Lmax ∼ 0.5 GeV 1/L = 2n/Lmax ∼ 16 GeV
non-perturbative perturbativeSSF( n times)

(3) ΛSFLmax from

the parameter η introduced in the background field φi and define the SF coupling constant
as [18]
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is a normalization coefficient evaluated at tree level.

III. OUR STRATEGY

Our goal is to derive the renormalization group invariant (RGI) scale ΛQCD in physical
units and evaluate the running coupling constant αs(MZ) at high energy scale µ = MZ . The
RGI scale Λ is scheme dependent and we employ the commonly used definition for the SF
scheme,
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where g(L) is the SF renormalized coupling at the box scale L and β(g) is the renormalization
group β function in the same scheme whose perturbative expansion coefficients are given by
[27]
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)
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The derivation of the RGI scale for the SF scheme proceeds in the following steps [18]:

(i) We start by calculating the step scaling function (SSF) Σ(u, a/L) on the lattice at
several box sizes and lattice spacings. The SSF gives the relation between the renor-
malized coupling constants when the renormalization scale is changed by some factor,
which is fixed to 2 in this paper,

Σ
(
u,

a

L

)
= g2(2L)

∣∣∣
u=g2(L)

. (III.6)

The scale is given by the box size L, and a/L represents the discretization error. We
take sufficient number of values for the coupling u to cover low to high energy scales.
Taking the continuum limit at each scale u

σ(u) = lim
a/L→0

Σ
(
u,

a

L

)
, (III.7)

and performing a polynomial fit we obtain a non-perturbative running of the coupling
constant in the SF scheme for the scale change of 2.

5

g2(L) with L = 2−nLmax

3-loop

(4) Lmax in physical unit from hadron mass
an independent large scale simulation at some a is required.  

(ii) In the second step we define a reference scale Lmax through a fixed value of the renor-
malized coupling constant g2(Lmax). The value of g2(Lmax) is arbitrary as long as it
is well in low energy region to suppress lattice artifacts with a/Lmax ! 1. We then
start from Lmax and follow the non-perturbative RG flow in the SF scheme into the
high energy region. A typical scale turns out to be 1/Lmax ∼ 0.5 GeV in this paper
so that after n ∼ 5 iterations the scale 1/L = 2n/Lmax ∼ 16 GeV is already in the
perturbative region where the difference between perturbative and non-perturbative
RG runnings is negligible.

(iii) Substituting g2(L) and L = 2−nLmax into the definition (III.1) and evaluating the
integral with three loops β-function in the SF scheme [27] for the weak coupling region
we obtain the RGI scale ΛSFLmax in terms of the reference scale.

(iv) In the last step we need some physical input measured in an independent large scale
simulation at some lattice spacing a to quote Lmax in physical units. The requirement
for the lattice spacing and the reference scale is that the magnitude of lattice artifacts
a/Lmax should be kept small. In this paper we employ hadron masses for physical input
and use the lattice spacing determined from them in physical units as the intermediate
scale. We then obtain the RGI scale ΛSF in physical units. The transformation into
the MS scheme is given exactly at one-loop order via

ΛMS = 2.61192ΛSF (III.8)

for three flavors.

The RGI scale ΛMS measured so far is for three flavors (Λ(3)

MS
). In order to evaluate the

coupling constant αs(MZ) at high energy we need to change the number of flavors at charm

and bottom quark mass thresholds, obtaining Λ(5)

MS
for five flavors. For this purpose we

used the matching formula near mass thresholds for the MS scheme at three-loop order in
Refs. [28, 29, 30]. The evaluation of αs(MZ) will proceed in the following steps in this paper.

(i) Introduce the physical scale through hadron masses and evaluate Lmax in units of GeV.

(ii) Perform the non-perturbative step scaling n = 5 times and reach deep into the per-
turbative region q ∼ 16 GeV.

(iii) Change the scheme to MS according to the two-loop relation [27]

αMS(sq) = αSF(q) + c1(s)α
2
SF(q) + c2(s)α

3
SF(q) + · · · , (III.9)

c1(s) = −8πb0 ln(s) + 1.255621(2) + 0.0398629(2)Nf , (III.10)

c2(s) = c1(s)
2 − 32π2b1 ln(s) + 1.197(10) + 0.140(6)Nf − 0.0330(2)Nf

2.

(III.11)

We may set the scale boost factor s = 2.61192 so that c1(s) = 0. A systematic error
due to higher loops correction is less than 0.1 % and negligible here.

(iv) Running back to the charm quark mass threshold µ = mc with the four loop β-
function in the MS scheme we change the number of flavors to four using the three-loop

6

for 3 flavors

(2) define a reference scale Lmax through a fixed value of ḡ2(Lmax)
non-perturbative a/Lmax ! 1

1/Lmax ∼ 0.5 GeV 1/L = 2n/Lmax ∼ 16 GeV
non-perturbative perturbativeSSF( n times)

(3) ΛSFLmax from

the parameter η introduced in the background field φi and define the SF coupling constant
as [18]
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is a normalization coefficient evaluated at tree level.

III. OUR STRATEGY

Our goal is to derive the renormalization group invariant (RGI) scale ΛQCD in physical
units and evaluate the running coupling constant αs(MZ) at high energy scale µ = MZ . The
RGI scale Λ is scheme dependent and we employ the commonly used definition for the SF
scheme,
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where g(L) is the SF renormalized coupling at the box scale L and β(g) is the renormalization
group β function in the same scheme whose perturbative expansion coefficients are given by
[27]
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The derivation of the RGI scale for the SF scheme proceeds in the following steps [18]:

(i) We start by calculating the step scaling function (SSF) Σ(u, a/L) on the lattice at
several box sizes and lattice spacings. The SSF gives the relation between the renor-
malized coupling constants when the renormalization scale is changed by some factor,
which is fixed to 2 in this paper,

Σ
(
u,

a

L

)
= g2(2L)

∣∣∣
u=g2(L)

. (III.6)

The scale is given by the box size L, and a/L represents the discretization error. We
take sufficient number of values for the coupling u to cover low to high energy scales.
Taking the continuum limit at each scale u

σ(u) = lim
a/L→0

Σ
(
u,

a

L

)
, (III.7)

and performing a polynomial fit we obtain a non-perturbative running of the coupling
constant in the SF scheme for the scale change of 2.

5

g2(L) with L = 2−nLmax

3-loop

(4) Lmax in physical unit from hadron mass
an independent large scale simulation at some a is required.  

(ii) In the second step we define a reference scale Lmax through a fixed value of the renor-
malized coupling constant g2(Lmax). The value of g2(Lmax) is arbitrary as long as it
is well in low energy region to suppress lattice artifacts with a/Lmax ! 1. We then
start from Lmax and follow the non-perturbative RG flow in the SF scheme into the
high energy region. A typical scale turns out to be 1/Lmax ∼ 0.5 GeV in this paper
so that after n ∼ 5 iterations the scale 1/L = 2n/Lmax ∼ 16 GeV is already in the
perturbative region where the difference between perturbative and non-perturbative
RG runnings is negligible.

(iii) Substituting g2(L) and L = 2−nLmax into the definition (III.1) and evaluating the
integral with three loops β-function in the SF scheme [27] for the weak coupling region
we obtain the RGI scale ΛSFLmax in terms of the reference scale.

(iv) In the last step we need some physical input measured in an independent large scale
simulation at some lattice spacing a to quote Lmax in physical units. The requirement
for the lattice spacing and the reference scale is that the magnitude of lattice artifacts
a/Lmax should be kept small. In this paper we employ hadron masses for physical input
and use the lattice spacing determined from them in physical units as the intermediate
scale. We then obtain the RGI scale ΛSF in physical units. The transformation into
the MS scheme is given exactly at one-loop order via

ΛMS = 2.61192ΛSF (III.8)

for three flavors.

The RGI scale ΛMS measured so far is for three flavors (Λ(3)

MS
). In order to evaluate the

coupling constant αs(MZ) at high energy we need to change the number of flavors at charm

and bottom quark mass thresholds, obtaining Λ(5)

MS
for five flavors. For this purpose we

used the matching formula near mass thresholds for the MS scheme at three-loop order in
Refs. [28, 29, 30]. The evaluation of αs(MZ) will proceed in the following steps in this paper.

(i) Introduce the physical scale through hadron masses and evaluate Lmax in units of GeV.

(ii) Perform the non-perturbative step scaling n = 5 times and reach deep into the per-
turbative region q ∼ 16 GeV.

(iii) Change the scheme to MS according to the two-loop relation [27]

αMS(sq) = αSF(q) + c1(s)α
2
SF(q) + c2(s)α

3
SF(q) + · · · , (III.9)

c1(s) = −8πb0 ln(s) + 1.255621(2) + 0.0398629(2)Nf , (III.10)

c2(s) = c1(s)
2 − 32π2b1 ln(s) + 1.197(10) + 0.140(6)Nf − 0.0330(2)Nf

2.

(III.11)

We may set the scale boost factor s = 2.61192 so that c1(s) = 0. A systematic error
due to higher loops correction is less than 0.1 % and negligible here.

(iv) Running back to the charm quark mass threshold µ = mc with the four loop β-
function in the MS scheme we change the number of flavors to four using the three-loop
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for 3 flavors

(2) define a reference scale Lmax through a fixed value of ḡ2(Lmax)
non-perturbative a/Lmax ! 1

1/Lmax ∼ 0.5 GeV 1/L = 2n/Lmax ∼ 16 GeV
non-perturbative perturbativeSSF( n times)

(3) ΛSFLmax from

the parameter η introduced in the background field φi and define the SF coupling constant
as [18]
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is a normalization coefficient evaluated at tree level.

III. OUR STRATEGY

Our goal is to derive the renormalization group invariant (RGI) scale ΛQCD in physical
units and evaluate the running coupling constant αs(MZ) at high energy scale µ = MZ . The
RGI scale Λ is scheme dependent and we employ the commonly used definition for the SF
scheme,
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where g(L) is the SF renormalized coupling at the box scale L and β(g) is the renormalization
group β function in the same scheme whose perturbative expansion coefficients are given by
[27]
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The derivation of the RGI scale for the SF scheme proceeds in the following steps [18]:

(i) We start by calculating the step scaling function (SSF) Σ(u, a/L) on the lattice at
several box sizes and lattice spacings. The SSF gives the relation between the renor-
malized coupling constants when the renormalization scale is changed by some factor,
which is fixed to 2 in this paper,

Σ
(
u,

a
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)
= g2(2L)

∣∣∣
u=g2(L)

. (III.6)

The scale is given by the box size L, and a/L represents the discretization error. We
take sufficient number of values for the coupling u to cover low to high energy scales.
Taking the continuum limit at each scale u

σ(u) = lim
a/L→0

Σ
(
u,

a

L

)
, (III.7)

and performing a polynomial fit we obtain a non-perturbative running of the coupling
constant in the SF scheme for the scale change of 2.

5

g2(L) with L = 2−nLmax

3-loop

(4) Lmax in physical unit from hadron mass
an independent large scale simulation at some a is required.  

(ii) In the second step we define a reference scale Lmax through a fixed value of the renor-
malized coupling constant g2(Lmax). The value of g2(Lmax) is arbitrary as long as it
is well in low energy region to suppress lattice artifacts with a/Lmax ! 1. We then
start from Lmax and follow the non-perturbative RG flow in the SF scheme into the
high energy region. A typical scale turns out to be 1/Lmax ∼ 0.5 GeV in this paper
so that after n ∼ 5 iterations the scale 1/L = 2n/Lmax ∼ 16 GeV is already in the
perturbative region where the difference between perturbative and non-perturbative
RG runnings is negligible.

(iii) Substituting g2(L) and L = 2−nLmax into the definition (III.1) and evaluating the
integral with three loops β-function in the SF scheme [27] for the weak coupling region
we obtain the RGI scale ΛSFLmax in terms of the reference scale.

(iv) In the last step we need some physical input measured in an independent large scale
simulation at some lattice spacing a to quote Lmax in physical units. The requirement
for the lattice spacing and the reference scale is that the magnitude of lattice artifacts
a/Lmax should be kept small. In this paper we employ hadron masses for physical input
and use the lattice spacing determined from them in physical units as the intermediate
scale. We then obtain the RGI scale ΛSF in physical units. The transformation into
the MS scheme is given exactly at one-loop order via

ΛMS = 2.61192ΛSF (III.8)

for three flavors.

The RGI scale ΛMS measured so far is for three flavors (Λ(3)

MS
). In order to evaluate the

coupling constant αs(MZ) at high energy we need to change the number of flavors at charm

and bottom quark mass thresholds, obtaining Λ(5)

MS
for five flavors. For this purpose we

used the matching formula near mass thresholds for the MS scheme at three-loop order in
Refs. [28, 29, 30]. The evaluation of αs(MZ) will proceed in the following steps in this paper.

(i) Introduce the physical scale through hadron masses and evaluate Lmax in units of GeV.

(ii) Perform the non-perturbative step scaling n = 5 times and reach deep into the per-
turbative region q ∼ 16 GeV.

(iii) Change the scheme to MS according to the two-loop relation [27]

αMS(sq) = αSF(q) + c1(s)α
2
SF(q) + c2(s)α

3
SF(q) + · · · , (III.9)

c1(s) = −8πb0 ln(s) + 1.255621(2) + 0.0398629(2)Nf , (III.10)

c2(s) = c1(s)
2 − 32π2b1 ln(s) + 1.197(10) + 0.140(6)Nf − 0.0330(2)Nf

2.

(III.11)

We may set the scale boost factor s = 2.61192 so that c1(s) = 0. A systematic error
due to higher loops correction is less than 0.1 % and negligible here.

(iv) Running back to the charm quark mass threshold µ = mc with the four loop β-
function in the MS scheme we change the number of flavors to four using the three-loop
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(2) define a reference scale Lmax through a fixed value of ḡ2(Lmax)
non-perturbative a/Lmax ! 1

1/Lmax ∼ 0.5 GeV 1/L = 2n/Lmax ∼ 16 GeV
non-perturbative perturbativeSSF( n times)

(3) ΛSFLmax from

the parameter η introduced in the background field φi and define the SF coupling constant
as [18]
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is a normalization coefficient evaluated at tree level.

III. OUR STRATEGY

Our goal is to derive the renormalization group invariant (RGI) scale ΛQCD in physical
units and evaluate the running coupling constant αs(MZ) at high energy scale µ = MZ . The
RGI scale Λ is scheme dependent and we employ the commonly used definition for the SF
scheme,
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where g(L) is the SF renormalized coupling at the box scale L and β(g) is the renormalization
group β function in the same scheme whose perturbative expansion coefficients are given by
[27]
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The derivation of the RGI scale for the SF scheme proceeds in the following steps [18]:

(i) We start by calculating the step scaling function (SSF) Σ(u, a/L) on the lattice at
several box sizes and lattice spacings. The SSF gives the relation between the renor-
malized coupling constants when the renormalization scale is changed by some factor,
which is fixed to 2 in this paper,

Σ
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)
= g2(2L)

∣∣∣
u=g2(L)

. (III.6)

The scale is given by the box size L, and a/L represents the discretization error. We
take sufficient number of values for the coupling u to cover low to high energy scales.
Taking the continuum limit at each scale u

σ(u) = lim
a/L→0

Σ
(
u,

a

L

)
, (III.7)

and performing a polynomial fit we obtain a non-perturbative running of the coupling
constant in the SF scheme for the scale change of 2.

5

g2(L) with L = 2−nLmax

3-loop

(4) Lmax in physical unit from hadron mass
an independent large scale simulation at some a is required.  

(ii) In the second step we define a reference scale Lmax through a fixed value of the renor-
malized coupling constant g2(Lmax). The value of g2(Lmax) is arbitrary as long as it
is well in low energy region to suppress lattice artifacts with a/Lmax ! 1. We then
start from Lmax and follow the non-perturbative RG flow in the SF scheme into the
high energy region. A typical scale turns out to be 1/Lmax ∼ 0.5 GeV in this paper
so that after n ∼ 5 iterations the scale 1/L = 2n/Lmax ∼ 16 GeV is already in the
perturbative region where the difference between perturbative and non-perturbative
RG runnings is negligible.

(iii) Substituting g2(L) and L = 2−nLmax into the definition (III.1) and evaluating the
integral with three loops β-function in the SF scheme [27] for the weak coupling region
we obtain the RGI scale ΛSFLmax in terms of the reference scale.

(iv) In the last step we need some physical input measured in an independent large scale
simulation at some lattice spacing a to quote Lmax in physical units. The requirement
for the lattice spacing and the reference scale is that the magnitude of lattice artifacts
a/Lmax should be kept small. In this paper we employ hadron masses for physical input
and use the lattice spacing determined from them in physical units as the intermediate
scale. We then obtain the RGI scale ΛSF in physical units. The transformation into
the MS scheme is given exactly at one-loop order via

ΛMS = 2.61192ΛSF (III.8)

for three flavors.

The RGI scale ΛMS measured so far is for three flavors (Λ(3)

MS
). In order to evaluate the

coupling constant αs(MZ) at high energy we need to change the number of flavors at charm

and bottom quark mass thresholds, obtaining Λ(5)

MS
for five flavors. For this purpose we

used the matching formula near mass thresholds for the MS scheme at three-loop order in
Refs. [28, 29, 30]. The evaluation of αs(MZ) will proceed in the following steps in this paper.

(i) Introduce the physical scale through hadron masses and evaluate Lmax in units of GeV.

(ii) Perform the non-perturbative step scaling n = 5 times and reach deep into the per-
turbative region q ∼ 16 GeV.

(iii) Change the scheme to MS according to the two-loop relation [27]

αMS(sq) = αSF(q) + c1(s)α
2
SF(q) + c2(s)α

3
SF(q) + · · · , (III.9)

c1(s) = −8πb0 ln(s) + 1.255621(2) + 0.0398629(2)Nf , (III.10)

c2(s) = c1(s)
2 − 32π2b1 ln(s) + 1.197(10) + 0.140(6)Nf − 0.0330(2)Nf

2.

(III.11)

We may set the scale boost factor s = 2.61192 so that c1(s) = 0. A systematic error
due to higher loops correction is less than 0.1 % and negligible here.

(iv) Running back to the charm quark mass threshold µ = mc with the four loop β-
function in the MS scheme we change the number of flavors to four using the three-loop
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(2) define a reference scale Lmax through a fixed value of ḡ2(Lmax)
non-perturbative a/Lmax ! 1

1/Lmax ∼ 0.5 GeV 1/L = 2n/Lmax ∼ 16 GeV
non-perturbative perturbativeSSF( n times)

(3) ΛSFLmax from

the parameter η introduced in the background field φi and define the SF coupling constant
as [18]
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where
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a2
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is a normalization coefficient evaluated at tree level.

III. OUR STRATEGY
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where g(L) is the SF renormalized coupling at the box scale L and β(g) is the renormalization
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. (III.5)

The derivation of the RGI scale for the SF scheme proceeds in the following steps [18]:
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scale from mπ, mK and mΩ (2+1 full QCD, CP-PACS/JLQCD)

exp(c1(1)/(8πb0)). Then running back to the scale µ = mc(mc) with three-flavor 4-loop β-
function the coupling constant is matched to that for four flavors at three-loop order using
(III.12). We repeat the same operation at the threshold µ = mb(mb) and obtain the five flavor
coupling constant. We finally run to µ = MZ with the four-loop β-function for five flavors
and find αs(MZ). The QCD parameter Λ(5)

MS
is given by substituting µ = MZ = 1/L and

αs(MZ) in (III.1) for the MS scheme with 4-loop β(g). The results are listed in Table X. For
an estimate of the systematic error due to perturbation theory, results using three- and two-
loop formula in (III.12) are listed. The error includes the statistical error of the renormalized
couplings, which is propagated into that of the SSF, in addition to the statistical error of
the lattice spacing. The experimental errors of mc, mb and MZ are also included.

As the last step we take the continuum limit using the three lattice spacings from Ref. [1].

The scaling behavior of αs(MZ) and Λ(5)

MS
is plotted in Fig. 6. Since the results in the

continuum limit do not depend on Lmax, we adopt the result for L = 6 as the central value
for β = 2.05.

We tested three types of continuum extrapolation; a constant fit with three or two data
points, or a linear extrapolation 1. These results agree with each other and we adopt the
constant fit with three data points for our final results since there is almost no scaling
violation. Our final results are

αs(MZ) = 0.12047(81)(48)(+0
−173), (VI.1)

Λ(5)

MS
= 239(10)(6)(+0

−22) MeV, (VI.2)

where the first parenthesis is statistical error and the second is systematic error of per-
turbative matching of different flavors, which is estimated as a difference between results
with three- and two- loop matching relation for (III.12) and may be overestimated. The
last parenthesis is a difference between the constant and a linear extrapolation and is a
systematic error due to finite lattice spacing for physical inputs.

VII. CONCLUSION

We have presented a calculation of the running coupling constant for the Nf = 2+1 QCD
in the mass independent Schrödinger functional scheme in the chiral limit. We used seven
scales to cover low to high energy regions and three lattice spacings to take the continuum
limit at each scale.

After tuning β and κ to fix seven scales in the massless limit we evaluated the step scaling
function in the continuum limit. We notice that deviation (IV.10) from the continuum SSF
is rather large at one loop for our choice of the Iwasaki gauge action and the tree level
improvement for boundary coefficient cP/R

t . Since the one loop formula could not reproduce
the numerical data except for very high β ≥ 10 we adopted “two loops” formula extracted
from numerical data with quadratic fit. With the “perturbative” improvement the SSF shows
good scaling behavior and the continuum limit seems to be taken safely with a constant
extrapolation of the finest two lattice spacings.

1 O(g2
0a/L) error is expected from boundary terms in temporal direction in the SF scheme, which may

propagate to αs(MZ) through g2(Lmax).
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QCD fit in NNLO (solid line) and the contributions from target mass corrections TMC (dashed
line) and higher twist HT (dashed–dotted line). The arrows indicate the regions with W 2 >
12.5 GeV2. The shaded areas represent the fully correlated 1σ statistical error bands.
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3. ΛQCD and αs(M 2
Z)

older values: <
∼
2007

NLO αs(M2

Z
) expt theory Ref.

CTEQ6 0.1165 ±0.0065 [1]
MRST03 0.1165 ±0.0020 ±0.0030 [2]
A02 0.1171 ±0.0015 ±0.0033 [3]
ZEUS 0.1166 ±0.0049 [4]
H1 0.1150 ±0.0017 ±0.0050 [5]
BCDMS 0.110 ±0.006 [6]
GRS 0.112 [10]
BBG 0.1148 ±0.0019 [9]
BB (pol) 0.113 ±0.004 +0.009

−0.006
[7]

NLO at least: scale errors of
±0.0050

NNLO αs(M2

Z
) expt theory Ref.

MRST03 0.1153 ±0.0020 ±0.0030 [2]
A02 0.1143 ±0.0014 ±0.0009 [3]
SY01(ep) 0.1166 ±0.0013 [8]
SY01(νN) 0.1153 ±0.0063 [8]
GRS 0.111 [10]
A06 0.1128 ±0.0015 [11]
BBG 0.1134 +0.0019/ − 0.0021 [9]

N3LO αs(M2

Z
) expt theory Ref.

BBG 0.1141 +0.0020/ − 0.0022 [9]

NNLO systematic shifts down

N3LO slight upward shift

BBG: Nf = 4: non-singlet data-analysis at O(α4
s): Λ = 234± 26MeV

Earlier lattice results :

Alpha Collab: Nf = 2 Lattice; non-pert. renormalization Λ = 245± 16± 16MeV

QCDSF Collab: Nf = 2 Lattice, pert. reno. Λ = 261± 17± 26MeV

J. Blümlein αs-Workshop Munich, February 9th 2011 – p.13
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αs(M 2
Z)

S. Alekhin, J.B., S. Klein, S. Moch, Phys. Rev. D81 (2010) 014032

δαs(M
2
Z)/αs(M

2
Z) ≈ 1%

αs(M2
Z)

BBG (2006) 0.1134
+0.0019

−0.0021
valence analysis, NNLO

ABKM 0.1135± 0.0014 HQ: FFSNf = 3

ABKM 0.1129± 0.0014 HQ: BSMN-approach
JR (2008) 0.1124± 0.0020 dynamical approach
MSTW (2008) 0.1171± 0.0014

HERAPDF (2010) 0.1145 (combined H1/ZEUS data, prelimiary)

ABM (2010) 0.1147± 0.0012 (FFN, combined H1/ZEUS data in)

A.Hoang et al. 0.1135± 0.0011± 0.0006 e+e− thrust

BBG (2006) 0.1141
+0.0020

−0.0022
valence analysis, N3LO

WA (2009) 0.1184± 0.0007

J. Blümlein αs-Workshop Munich, February 9th 2011 – p.14

DIS Why is MSTW’s αs(M 2
Z) so high ?

αs(M2
Z) with σNMC with FNMC

2 difference

NLO 0.1179(16) 0.1195(17) +0.0026 ! 1σ

NNLO 0.1135(14) 0.1170(15) +0.0035 ! 2.3σ

NNLO +FLO(α3
s) 0.1122(14) 0.1171(14) +0.0050 ! 3.6σ

S. Alekhin, J.B., S. Moch, arXiv:1101.5261.

=⇒ also fixed target data shall be analyzed using σ.
=⇒ This applies to NMC in particular.
• Wrong treatment of FL(x,Q2) in NMC F2 extraction.
=⇒ also necessary for BCDMS, see BBG (2006).
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Effect on the Gluon density
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Global fits:

CTEQ 2010 (CT10.AS)•

Full fit with floating αs in CT10.AS Series

The Minimal χ2 found from a full fit with floating αs in CT10.AS
series.
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MSTW have highest s from DIS fits    --- why?

1.   More flexible low x parametrization of gluon
needed by data ( 2 ~ 80) --- shape confirmed by NNPDF 
without         s(NLO)      0.1202 0.1175
flexibility       s(NNLO)   0.1171 0.1157

2. Inclusion of Tevatron jet data
Jet data themselves prefer s slightly lower than global s
However jets demand more high x gluon  (less low x gluon)   
which turn a low s into a better constrained high s

s gluon correlation
scaling violation:    dF/dlogQ2 ~   s g

1.+2. smaller gluon at low x  larger s
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Conclusion
--- PDFs must be used with corresponding s

--- We studied correlations between PDF and s
uncertainties within a global fit.  

--- s(MZ) stable to 0.001 to removal of any data set

Graeme Watt has prepared plots of W,Z,
tt(bar),H production on  hepforge pdf4lhc
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ONE MORE RESULT: HERA DATA ONLY

NLO NNPDF2.1 HERA DATA ONLY
PER VALUE OF

HERA DATA FAVOR LOWER WITH LARGER UNCERTAINTY

LIKELY CONSISTENT WITH GLOBAL WITHIN TOTAL UNCERTAINTY

POSSIBLE ISSUES WITH INADEQUATE NLO THEORY FOR SMALL HERA DATA?

WOULD BE WORSE AT NNLO
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e+e− → jets
Event shapes
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Also builds on work done in SCET community.
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  Thrust is a classic example of an “event-shape”
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t̂
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Sum Large Logarithms
Thrust Factorization Theorem:

To minimize large logs we want to evaluate these functions at different scales

dσ

dτ
= σ0H(Q,µ) Q

�
d� JT

�
Q

2τ −Q�, µ
�
ST (�, µ)

p2 ∼ Q2 p2 ∼ Q2τ p2 ∼ Q2τ2

∼ µ2
S∼ µ2

J∼ µ2
Q

Match & Run: µQ

µJ

µS

ΛQCD

match QCD to SCET

integrate out Jet Modes

soft function OPE

run H

run J
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Our Three Regions:

peak

tail

multijet
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Q2 � Q2τ � (Qτ)2 ∼ Λ2
QCD

Q2 � Q2τ � (Qτ)2 � Λ2
QCD

Q2 ∼ Q2τ ∼ (Qτ)2 � Λ2
QCD

sum the logs

sum the logs

universal Ω1

Qτ power correction

nonperturbative ST

small power corrections
do not sum the logs(!)
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softIn the tail region  
and we can expand the soft function
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In Ref. [62] a convenient scheme for δ(R, µS) was de-
rived (based on a scheme proposed in Ref. [71]) where

δ(R, µ) =
R

2
eγE d

d ln(ix)

[
lnSτ (x, µ)

]∣∣∣
x=(iReγE )−1

. (36)

Here Sτ (x, µ) is the position space partonic soft function,
and the fact that we write this result for Sτ rather than
for the hemisphere soft function explains the extra factor
of 1/2 relative to the formula in Ref. [62]. The cutoff pa-
rameter R, having mass dimension 1, is a scale associated
with the removal of the infrared renormalon. To achieve
the proper cancellation of the renormalon in Eq. (32) one
has to expand δ(R, µS) together with Spart

τ (k, µS) order
by order in αs(µS). The perturbative series for the sub-
traction is

δ(R, µS) = eγER
∞∑

i=1

αi
s(µS) δi(R, µS) , (37)

where the δi≥2 depend on both the adjoint Casmir CA =
3 and the number of light flavors in combinations that
are unrelated to the QCD beta function. For five light
flavors the one, two, and three-loop coefficients are [62]

δ1(R, µS) = −0.848826LR ,

δ2(R, µS) = −0.156279− 0.46663LR − 0.517864L2
R ,

δ3(R, µS) = 0.0756831+ 0.01545386 s2 − 0.622467LR

− 0.777219L2
R − 0.421261L3

R , (38)

with LR = ln(µS/R). We will refer to the scheme defined
by Eq. (36) as the R-gap scheme for Ω1.
From the power counting Ω̄1 ∼ ΛQCD one expects that

a cutoff R ∼ 1GeV should be used, such that Ω1 ∼ ΛQCD

and perturbation theory in αs(R) remains applicable.
We refer to this as the power counting criterion for R.
Since in the tail region µS ∼ Qτ # 1 GeV the factors
of LR in Eq. (38) are then large logs. To avoid large
logarithms in the subtractions δi(R, µS) it is essential to
choose R ∼ µS , so that the subtraction scale R is de-
pendent on τ much like the soft scale µS . We refer to
this as the large-log criterion for R. To resolve the con-
flict between these two criteria, and sum the large logs
while keeping ∆̄(R, µS ∼ R) renormalon-free, we make
use of R-evolution [39, 40]. Formulas for the gap case
were given in Ref. [62] and are reviewed here. In this
scheme ∆̄(R, µ) satisfies an R-RGE and µ-RGE

R
d

dR
∆̄(R,R) = −R

∞∑

n=0

γR
n

(αs(R)

4π

)n+1
,

µ
d

dµ
∆̄(R, µ) = 2ReγE

∞∑

n=0

Γcusp
n

(αs(µ)

4π

)n+1
, (39)

so that γµ
∆ = −2eγEΓcusp[αs]. For five flavors the anoma-

lous dimension coefficients up to three loops are

γR
0 = 0 , γR

1 = −43.954260 ,
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FIG. 6: The running of Ω1(R,R) with R = R(τ ), plotted as
a function of τ for Q = 35, 91.2, 207GeV.

γR
2 = 1615.42228+ 54.6195541 s2 , (40)

while the coefficients Γcusp
n are given in Eq. (A26). The

solution of Eq. (39) at NkLL is

∆̄(R, µ) = ∆̄(R∆, µ∆) +ReγEω[Γcusp, µ, R]

+ R∆e
γEω[Γcusp, R∆, µ∆]

+ Λ(k)
QCDD(k)

[
αs(R),αs(R∆)

]
, (41)

where the resummed ω[Γcusp, µ, µ0] is given in Eq. (A23)
and the resummed D(k)[αs(R),αs(R∆)] is given in
Eq. (A31). Both the gap subtraction and R-evolution
equations at O(α3

s) depend on the constant s2 which
we vary within its errors in our theory error scan. In
our analysis, when quoting numerical results, we always
use the parameter ∆̄(R∆, µ∆) at the reference scales
R∆ = µ∆ = 2 GeV to satisfy the power counting cri-
terion for R. We then use Eq. (41) to run up to the
scale R ∼ µS in order to satisfy the large-log criterion.
The precise R value is a function of τ , R = R(τ), and
given in Sec. III with our discussion of the profile func-
tions. The RGE solution for ∆̄(R, µS) in Eq. (41) yields a
similar solution for a running Ω1(R, µS) using Eq. (34).
In Fig. 6 we show the result for the running Ω1(R,R)
with the boundary value Ω1(R∆, µ∆) = 0.323GeV. The
anomalous dimension and R(τ) profile function cause an
increase in the size of the power correction for increasing
τ and for increasing Q.
Note that our R-gap subtraction scheme differs from

the subtractions in the low-scale effective coupling model
of Ref. [35], which is not based on the factorization of
the soft large angle radiation but on the assumption that
the O(ΛQCD) renormalon ambiguity is related entirely
to the low-energy behavior of the strong coupling αs. In
the effective coupling model the subtractions involve log-
arithms, ln(µ/µI), where µ is the usual renormalization
scale of perturbation theory and µI is the low-momentum
subtraction scale, which is set to µI = 2GeV. The scale

Ω1(R0, R0)

boundary 
value is the
unknown 

parameter:
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26

order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.
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FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green
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FIG. 20: Comparison of selected determinations of αs(mZ) defined in the MS scheme.

Here the respective total 1-sigma errors are shown. The
results with individual 1-sigma errors quoted separately
for the different sources of uncertainties are given in
Eq. (68). Neglecting the nonperturbative effects incor-
porated in the soft function, and in particular Ω1, from
the fits gives αs(mZ) = 0.1241 which exceeds the result
in Eq. (70) by 9%. This is consistent with a simple scal-
ing argument one can derive from experimental data, see
Eq. (3) in Sec. I.
Analyses of event shapes with a simultaneous fit of

αs and a power correction have been carried out earlier
with the effective coupling model. Davison and Web-
ber [23] analyzed the thrust distribution and determined
αs(mZ) = 0.1164 ± 0.0028 also using O(α3

s) fixed-order
input, but implementing the summation of logarithms
only at NLL order (for further discussion see Sec. IX).
Recently Gehrmann et al. [95] analyzed moments of dif-
ferent event shape distributions, also with the effective
coupling model, and obtained αs(mZ) = 0.1153± 0.0029
using fixed-order perturbation theory at O(α3

s). Both
analyses neglected bottom mass and QED corrections.
Our result in Eq. (70) is compatible with these analyses
at 1-sigma, but has smaller uncertainties.
These results and our result for αs(mZ) in Eq. (70)

are substantially smaller than the results of event shape
analyses employing input from Monte Carlo generators
to determine nonperturbative effects. We emphasize that
using parton-to-hadron level transfer matrices obtained
from Monte Carlo generators to incorporate nonpertur-
bative effects is not compatible with a high-order theo-
retical analysis such as ours, and thus analyses relying on
such Monte Carlo input contain systematic errors in the
determination of αs from thrust data. The small effect
of hadronization corrections on thrust observed in Monte
Carlo generators at Q = mZ and the corresponding small
shift in αs(mZ) do not agree with the 9% shift we have
obtained from our fits as mentioned above. For the rea-
sons discussed earlier, we believe Monte Carlo should not

be used for hadronization uncertainties in higher order
analyses.
Although our theoretical approach represents the most

complete treatment of thrust at this time, and all sources
of uncertainties known to us have been incorporated in
our error budget, there are a number of theoretical is-
sues related to subleading contributions that deserve fur-
ther investigation. These issues include (i) the summa-
tion of logarithms for the nonsingular partonic cross sec-
tion, (ii) the structure of the O(αsΛQCD/Q) power cor-
rections, (iii) analytic perturbative computations of the
O(α2

s) and O(α3
s) nonlogarithmic coefficients s2 and s3

in the partonic soft function, the O(α3
s) nonlogarithmic

coefficient j3 in the partonic jet function, and the 4-loop
QCD cusp anomalous dimension Γcusp

3 . Concerning is-
sue (i) we have incorporated in our analysis the non-
singular contributions in fixed-order perturbation theory
and estimated the uncertainty related to the higher order
logarithms through the usual renormalization scale vari-
ation. Further theoretical work is needed to derive the
renormalization group structure of subleading jet, soft,
and hard functions in the nonsingular contributions and
to use these results to sum the corresponding logarithms.
Concerning issue (ii) we have shown that our theoretical
description for the thrust distribution contains a remain-
ing theoretical uncertainty from nonperturbative effects
of order O(αsΛQCD/Q). Parametrically, this uncertainty
is substantially smaller than the perturbative error of
about 1.7% for the thrust distribution in the tail region
at LEP-I energies that is contained in our best theory
code. Furthermore, our predictions in the far-tail region
at Q = mZ appear to indicate that the dominant cor-
rections of this order are already captured in our setup.
Nevertheless a systematic analysis of these subleading ef-
fects is certainly warranted.
Apart from investigating these theoretical issues, it is

also warranted to apply the high-precision approach us-
ing soft-collinear effective theory to other event shape

Result from jets differs by 3.5σ from the HPQCD lattice result
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Summary & Outlook
αs(mZ) • Tau Decays (FOPT vs. CIPT;   Duality violation)

• Lattice QCD (multiple actions; trustworthy errors)

• DIS & Global (NMC data;  gluon pdf parameterization;
                           theory error analysis)

• R ratio & Precision EW (Giga Z?  Super B?)

Thrust & Event Shapes
• The Soft-Collinear Effective Theory provides a powerful formalism 

for deriving factorization theorems and analyzing processes with Jets
• Important to account for nonperturbative effects (not with MC)
• Consistency checks with other event shapes at perturbative level, 

consistency check for full analysis on the near horizon

• Results are systematically smaller than (some) other extractions
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The End
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