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ABSTRACT

The validity of the derivative expansion (DE) method for calculating one-loop

quantum vacuum densities is investigated. Source contributions from fermionic loops

in a nonuniform, spherically symmetric background scalar field are considered. The

convergence of a derivative expansion for the fermion vacuum scalar density is ex-

amined in 3+1 dimensions by means of a partial wave analysis. This is done by

comparing the contribution to the density from each partial wave with that of a nu-

merical calculation based on an exact evaluation of the fermionic Green function. For

cases where the expansion is not rapidly convergent, a method is introduced that en-

ables us to interpolate between the exact calculation and the full derivative expansion.

The procedure combines a derivative expansion for the contributions from large loop

energies and high partial waves with the numerical evaluation of the small energy and

low partial wave part. It is found that a diminishing sum of correction functions yield-

ing the exact result can be calculated and applied. The effect of including vacuum

corrections in self consistent models is then tested. For the quantum hadrodynamics

model of finite nuclei, including terms up to second order in the derivatives of the

background mean fields gives an accurate evaluation of the one-loop vacuum. It is

found that the DE terms have a large effect on the value of the fitted parameters.

Small effects are found on physical observables, in accordance with relatively small

corrections from the DE terms in a background where the expansion is convergent.

The convergence of the derivative expansion is also tested for a soliton solution of

fermions coupled to a scalar field for the case of large Yukawa coupling bag model. In

this case the derivative expansion does not converge rapidly, and we apply the cor-
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rection method to obtain the correct one-loop fermionic vacuum scalar source effect.

For a coupling of g = 10, we need 4 partial wave corrections to reach convergence.

We see a decrease in the scalar field depth of 27%, and the fermion energy levels and

scalar field change by 49% and 5%, respectively. However, the total energy of the

bag changes by only 0.6%. For a large coupling of g = 25, the fourth partial wave

correction gives a 103% change in the scalar field depth, while the total energy of the

bag changes by 2.6%. A small change in the total energy is important here because

for large coupling the energy of the bag is such that it is bound by less than 5%.
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Chapter 1

OVERVIEW

1.1 Introduction

In what is known as the standard model, physicists have devised a theory that has

the ability to account for a large portion of observable phenomena. The standard

model incorporates three of the four known interactions of nature: it includes Quan-

tum Chromodynamics (QCD), the theory accounting for strong interactions, and the

Electro-weak model in which the effects due to electromagnetic and weak forces are

unified. These interactions take place between quarks and leptons (which are the fun-

damental matter fields), and are mediated by gauge bosons (the force field quanta).

The standard model is a field theory, and therefore quantum fields play the part of

the underlying physical degrees of freedom. The accuracy of this model has been

repeatedly reaffirmed by experimental findings (such as the recent discovery of the

top quark).

Despite its many successes, the standard model is by no means complete or fully

understood. In fact there are many reasons that make an extension of the model a

necessity, such as unification, the hierarchy problem, reducing the number of input

parameters, and explaining phenomena such as the flavor structure and CP violation.

Also, many questions remain regarding the tractability of the model itself. A major

part of this problem lies in the difficulty of doing calculations in the strong coupling

regime, where perturbation theory is not applicable. One of the more important

manifestations of this problem is that of solving the bound state problem in QCD.
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For QCD at low energies, the dynamical quarks and gluons are strongly coupled

with three and four body forces, and large vacuum effects that have so far made

direct solution impossible. Even promising lattice gauge techniques have yet to yield

an accurate solution. It is in this context that it becomes useful to make solvable

approximations to the theory.

In the low energy domain, on the scale of a few fm, the hadronic particles and

their interactions are the items of physical observation. This is the realm of so called

nuclear interactions. One possible approach is to make use of hadronic field theories

— effective field theories which incorporate hadronic particles as the effective degrees

of freedom. Here we are really considering interactions mediated by bound states of

the exact theory. We attempt to gain an understanding of the bulk properties of the

nucleus by solving for interactions between nucleons using meson exchange fields. By

gaining an understanding of how far the phenomenology will fit with such a model,

we hope to gain a better understanding of the exact theory. Examples of such models

include the Walecka model of nucleons and neutral scalar and vector mesons, some-

times called Quantum Hadrodynamics (QHD) [3], and the linear sigma model (with

nucleons, pions and neutral scalar mesons) [4]. Other phenomenological theories are

often attempts to incorporate the exact QCD theory in a solvable manner. A proto-

type is the Friedberg-Lee non-topological soliton model, which models confinement

in QCD by adding a phenomenological scalar field that mimics the gluon condensate

and confines the quarks to color singlet states [5]. This model incorporates both the

MIT and SLAC bag models in appropriate limits.

The starting point in dealing with all such phenomenological theories is the La-

grangian density. For example, the QHD Lagrangian density is

LQHD = ψ̄[γµ(i∂
µ − gvV

µ)− (M − gsφ)]ψ + 12(∂µφ ∂
µφ−m2sφ

2)

−
1

4
FµνF

µν + 12m
2
vVµV

µ + δL, (1.1)

Here ψ is a two component nucleon spinor field (neutrons and protons), φ is a scalar
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field, Fµν = ∂µVν−∂νVµ is the field tensor for vector field Vµ, and gv, gs, mv, ms, and

M , are coupling and mass parameters. As is customary, δL is taken to represent the

terms necessary to renormalize the Lagrangian. Units are chosen so that h̄ = c = 1.

A further example is furnished by the Lagrangian density of the Friedberg-Lee non-

topological soliton model [5]

LFL = ψ̄[i/Dµ − (M − gsφ)]ψ −
1

4
βe(φ)F

c
µνF

µν
c

+12∂µφ ∂
µφ− 1

2m
2
sφ
2 −
κ

3!
φ3 −

λ

4!
φ4 + δL, (1.2)

where

Dµ = ∂µ −
i

2
gsλcA

c
µ,

F cµν = ∂µA
a
ν − ∂νA

a
µ + gsf

a
bcA

b
µA
c
nu. (1.3)

Here ψ represents the quark spinor fields (flavor indices are suppressed), φ is a scalar

field, Aaµ are the gluon fields, β(φ) a dielectric constant, and gs, κ, λ, ms are the

coupling and mass parameters. In the literature the scalar field may often be found

in one the following equivalent forms:

gs σ(x) =M − gsφ(x) = gs(φ0 − φ(x)). (1.4)

A general feature of the theories we consider is the appearance of large couplings

so that nonperturbative methods must be used if contributions from the vacuum are

to be included. A brief background of the relevant field theory formalism will be

given in the next section. In addition, the details of our notational convention can

be found in Appendix A.

This thesis investigates the calculation of vacuum effects in the context of including

them in self-consistent bound state solutions. In particular, we consider including

effects from the one-loop effective action, where our background source may have

arbitrary spherically symmetric form. For cases other than a constant background

field, the one-loop effective action cannot in general be evaluated analytically. For
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this reason it is important to investigate local approximations, such as the derivative

expansion, which make analytic methods possible. Often the validity of such an

expansion is taken for granted in a particular problem even though its convergence

properties have not been well determined. To remedy this, a systematic method is

provided for testing the degree of convergence and interpolating to the exact Green

function result. The manner in which this is done makes it suitable for inclusion in

self-consistent calculations. For simplicity we deal solely with the case of fermionic

loops coupled to a background scalar source. It is possible to generalize the method to

other background sources (in particular to a vector source). Including boson loops is

also a possibility, although the necessity of a self-consistent solution makes it harder

to study the density in this case.

1.2 Quantum field theory formalism

The following is a review of the main aspects of quantum field theory which will be

needed in the following text. Primary references include [3, 6, 7, 8, 9, 10]. In classical

field theory we work with the theory of a Lagrangian of a continuous parameterized

variable, where our canonical variables are not a discrete set, but are functions of

continuous parameter. The variables in our case are the quantum fields and their

conjugate momenta fields, and the parameter is taken as the four vector of position,

or spacetime. The Lagrangian here is a density, and the action is defined by

S =
∫
d4xL(φ(x), ∂µφ(x)). (1.5)

For illustration we limit ourselves here to the case of a Lagrangian depending on a

real scalar field φ(x). The dynamics are determined through Hamilton’s principle,

δS = 0, with suitable boundary conditions, and lead to the Euler-Lagrange equations

for the case of continuous media

∂L
∂φ
−
∂

∂xµ

∂L
∂(∂φ/∂xµ)

= 0. (1.6)
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The quantum nature of the field theory can be introduced by making our fields

into Heisenberg picture operators that obey equal time commutation relations. This

method is known as canonical quantization. For spin-0 and spin-12 fields, we have [7]

Bosonic Field: [φ(x⃗ , t), φ̇(x⃗ ′, t)] = iδ(3)(x⃗ − x⃗ ′), (1.7)

Spinor Field: {ψ(x⃗ , t),ψ†(x⃗ ′, t)} = iδ(3)(x⃗ − x⃗ ′). (1.8)

The quantum states here are elements of a Hilbert space known as Fock Space [11],

and are multiparticle states representing particle occupation. The ground state is

chosen to be the vacuum state with no real particles, and is written |0⟩. However,

interactions with this state are nontrivial, as it must be interpreted as representing

an infinite product of oscillator ground states which are self interacting through ex-

citations. Observables are then expressed as matrix elements of the field operators

between these particle states.

Another important concept for understanding the structure of quantum field the-

ory is that of the Feynman diagram expansion. By expressing an interaction dia-

grammatically we not only have a way of defining the interaction but also a method

of calculating the corresponding amplitude by applying the appropriate Feynman

rules. One important quantity to know when dealing with diagrams and calculating

observables are the n-point Green functions

G(n)(x1, . . . , xn). (1.9)

These are defined so they represent the sum of all Feynman diagrams with n external

legs [12]. In a free field theory, the two-point Green functions are simply the free field

propagators, and can be written in several equivalent forms [7]:

Free scalar theory propagator:

iD(x− y) = [φ(x),φ(y)] = ⟨0|T (φ(x)φ(y)) |0⟩

= i
∫

C

d4k

(2π)4
e−ik·(x−y)

k2 −m2s
= i
∫ ∞

−∞

d4k

(2π)4
e−ik·(x−y)

k2 −m2 + iϵ
, (1.10)
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Free fermionic theory propagator:

iS(x− y) = {ψ(x), ψ̄(y)} = ⟨0|T
(
ψ(x)ψ̄(y)

)
|0⟩

= (i/∂ +M)iD(x− y) = i
∫ ∞

−∞

d4p

(2π)4
e−ip·(x−y)

/p−M + iϵ
. (1.11)

T here is the time-ordering operator. The limits on the integrals are for p0, the energy

of the corresponding four-momentum. The curve C represents a closed path encom-

passing the poles of the integrand for this variable. This path is more simply dealt

with by introducing the iϵ shift in the pole, where ϵ is a positive infinitesimal, so that

the energy can run over real values. When dealing with bound states, the propagators

will no longer be free, as interactions with other fields are taken into account. The

bound state propagator may be calculated by including diagrams representing the

interactions to the prescribed order.

The following manipulations will show us how to deal with the n-point Green

functions in general, and will enable us to remove contributions from undesirable

disconnected diagrams. First of all we define the generating functional in the presence

of an interaction governed by an external source j(x). In the interaction picture this

contributes a term to the Hamiltonian density with the form H = φ(x)j(x), and the

generating functional may be written

W [j] = ⟨0|T exp i
∫
d4xφ(x)j(x)|0⟩ (1.12)

=
∞∑

n=0

in

n!

∫
d4x1 · · ·d

4xn j(x1) · · · j(xn)G
(n)(x1, . . . , xn). (1.13)

This expression allows us to determine the n-point Green functions by simple func-

tional differentiation

G(n)(x1, . . . , xn) = ⟨0|T (φ(x1) · · ·φ(xn)) |0⟩ (1.14)

= (−i)n
1

W [0]

δn

δj(x1) . . . δj(xn)
W [j]

∣∣∣∣∣
j=0

. (1.15)

To eliminate disconnected diagrams, we note that each is composed of a finite

number of connected diagrams which, when counted properly, can be removed by
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defining the generating functional for connected Green functions, G(n)c , as

iZ[j] = lnW [j]

=
∞∑

n=1

in

n!

∫
d4x1 · · ·d

4xn j(x1) · · · j(xn)G
(n)
c (x1, . . . , xn). (1.16)

A further reduction can then be made by considering truncated diagrams which essen-

tially have their external lines removed. These diagrams can then be further refined

to one-particle irreducible (denoted 1PI, and also called proper) diagrams by taking

the truncated diagrams which remain connected when an arbitrary internal line is

cut [6]. The importance of these one particle irreducible diagrams can be seen as

follows [12]. Let −iΠ(p2) be the sum of all such 1PI diagrams that have had two

external legs removed. If we wish to consider the full propagator of a theory, this can

be obtained by adding up a sum of contributions from these 1PI diagrams with free

particle external legs (a so called ring sum) to give

i

p2 −m2 − Π(p2) + iϵ
(1.17)

as the exact propagator.

The generating functional Γ for these proper diagrams is found by taking the

Legendre transformation of Z[j]. Defining

φc(x) =
δ

iδj(x)
Gc(j), (1.18)

iΓ[φc] =
(
Z[j]− i

∫
d4x j(x)φc(x)

)

j(x)=jc(x,φ)
, (1.19)

we find that

jc(x,φ) = −
δ

δφc(x)
Γ[φc]. (1.20)

It can then be shown that

Γ[φc] =
∞∑

n=1

1

n!

∫
d4x1 · · ·d

4xn Γ
(n)(x1, . . . , xn)φc(x1) · · ·φc(xn) (1.21)

is the generating functional for the proper Green functions Γ(n)(x1, . . . xn), which are

the sum of 1PI diagrams with n legs. For instance, in momentum space the two point
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function is found to be

Γ(2)(p,−p) = p2 −m2 −Σ(p2), (1.22)

which contains the contribution Σ(p2) from all two-point irreducible graphs.

Another useful formalism of quantum field theory can be made in terms of the path

integral approach. Here the fields remain complex-valued functions, but the theory

is formulated in terms of functional integration over all possible configurations of the

field. The generating functional here can be written

W [j] = N
∫
[dφ] exp

{
i
∫
d4x [L(φ, ∂φ) + j(x)φ(x)]

}
, (1.23)

where N is a normalization constant. In this approach, we define Z[j] and Γ[j] as

was done above, but use expression (1.23) for W [j]. This formalism is useful for

variational calculations such as the one-loop expansion, which we now consider.

1.3 The loop expansion for the quantum vacuum

Our objective in this section is to derive the form of the well known loop expansion

[3, 4, 6]. The expansion in this case is with respect to the number of loops appearing

in the irreducible Feynman graphs. Therefore it remains exact to all orders in the

coupling to external fields at each level of the expansion. This will allows us to

perturbatively include vacuum corrections to the classical equations of motion. We

will deviate slightly from our system of units here by leaving in the factors of h̄. This

is done because consideration of the following simple argument [4] reveals that h̄ is

the natural bookkeeping parameter.

As we are considering one particle irreducible diagrams, only internal factors are

relevant, and we have the following relation:

(#Loops) = (#internal lines)− (#internal vertices) + 1 (1.24)
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(where a line occurs between two vertices). In the Feynman rules, each propagator

has a factor h̄ and each vertex a factor h̄−1, plus an overall factor h̄ for each diagram.

Thus, for each additional loop we gain an additional power of h̄.

To illustrate the method of expansion, we consider a self interacting scalar theory

with the Lagrangian

L = 1
2(∂µφ∂

µφ−m2sφ
2) + jφ− V (φ). (1.25)

Here j is an external source and V (φ) is the self interaction potential. Taking φ0 to

be the solution to the classical equation of motion

(∂2 +m2s) φ0 + V
′(φ0) = j, (1.26)

where the prime denotes a functional derivative with respect to φ, we use the path

integral formalism and expand the action about φ0. We set φ = φ0 + φ̃, and make a

Taylor series expansion of V (φ) about φ0. The action functional is therefore

S[φ] =
∫
d4x

[
1
2(∂µφ∂

µφ−m2sφ
2) + jφ− V (φ)

]

=
∫
d4x
[
1
2(∂µφ0∂

µφ0 −m
2
sφ
2
0) + jφ0 − V (φ0) +O(φ̃)

+12(∂µφ̃∂
µφ̃−m2sφ̃

2)−
V ′′(φ0)

2!
φ̃2 −

∑

q>2

V (q)(φ0)

q!
φ̃q
]

= S[φ0] +
∫
d4x
[
1
2

(
∂µφ̃∂

µφ̃− (m2s + V
′′(φ0))φ̃

2
)

−
∑

q>2

V (q)(φ0)

q!
φ̃q
]
. (1.27)

The order O(φ̃) term vanishes because φ0 was defined to leave the action stationary.

Using Wick’s Theorem [6], contributions from odd powers of φ̃ in the action will

vanish when we calculate the generating functional. Omitting the normalization for

now, we have

W [j] =
∫
[dφ] exp

{
i

h̄
S[φ]

}
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= e
i
h̄
S[φ0]

∫
[dφ̃] exp

{
i

h̄

∫
d4x
[
1
2

(
∂µφ̃∂

µφ̃− (m2s + V
′′(φ0))φ̃

2
)

−
∑

q>1

V (2q)(φ0)

(2q)!
φ̃2q
]}
. (1.28)

The scalar field has h̄ dependence φ̃ ∼ h̄1/2. By rescaling the field to h̄1/2φ̃ we can

display this dependence explicitly:

W [j] = e
i
h̄
S[φ0]

∫
[dφ̃] exp

{
i
∫
d4x
[
1
2

(
∂µφ̃∂

µφ̃− (m2s + V
′′(φ0))φ̃

2
)

−
∑

q>1

h̄q−1
V (2q)(φ0)

(2q)!
φ̃2q
]}
. (1.29)

We see explicitly that our expansion is in powers of h̄. Keeping terms up to those

quadratic in the fluctuation from the classical field yields values valid to one-loop

order. After an integration by parts, we have

W [j] = e
i
h̄
S[φ0]

∫
[dφ̃] exp

{
i
∫
d4x 12 φ̃D

−1φ̃
}
. (1.30)

The interacting and free scalar propagators, D and D0, satisfy

(∂2x +m
2
s + V

′′(φ0)) D(x, x
′) = −δ(4)(x− x′), (1.31)

(∂2x +m
2
s) D0(x, x

′) = −δ(4)(x− x′). (1.32)

The path integral in (1.30) may be normalized by dividing out the free field result,

which is obtained by letting D−1 → D−10 . The path integral of the quadratic part

can then be performed, giving the normalized result

W [j] = e
i
h̄
S[φ0]

(
Det(D0D

−1)
)−1/2

+ . . . (1.33)

Making use of the identity

DetA = eTr lnA (1.34)

we can evaluate the generating functional for connected Green functions, Z[j], where

W [j] = exp
{
i

h̄
Z[j]

}
, (1.35)



11

as

Z[j] = S[φ0] +
i

2
h̄Tr ln(D0D

−1) +O(h̄2). (1.36)

To obtain the effective action from this connected generating functional, we make the

Legendre transformation

φ(x, j) =
δZ[j]

δj(x)
, (1.37)

Γ[φ] = Z[j]−
∫
d4x j(x)φ(x). (1.38)

Note that as we are expanding about the stationary point S(φ) = S(φ0)+O(h̄
2), and

φ = φ0 +O(h̄). Hence

Γ[φ] =
∫
d4x
[
1
2(∂µφ∂

µφ− (m2s + V
′′(φ))φ2

]

+
i

2
h̄Tr ln(D0D

−1) +O(h̄2), (1.39)

where the interacting scalar propagator D(x, x′) now satisfies

(∂2x +m
2
s + V

′′(φ)) D(x, x′) = −δ(4)(x− x′). (1.40)

As this expression does not explicitly contain the field φ0, we have the freedom of

choosing the ground state of our theory to include the one-loop vacuum effects. The

one-loop effective action contribution from scalar loops is therefore

Γvac[φ] =
i

2
h̄Tr ln(D0D

−1)

=
i

2
h̄
(
Tr ln(D−1)−Tr ln(D−10 )

)
. (1.41)

To see that this contribution includes one-loop diagrams with an arbitrary number

of external vertices, we may write [4]

Tr ln(D0D
−1) = Tr ln(1−D0V

′′(φ0))

= −Tr
∞∑

n=1

1

n
(D0V

′′(φ0))
n

= −
∫
d4xD0(x, x)V

′′(φ0(x))

−
∫
d4x

∫
d4x′D0(x, x

′)V ′′(φ0(x
′))D0(x

′, x)V ′′(φ0(x))

− . . . (1.42)



12

The fermionic contribution at the one-loop level can be evaluated in a manner

analogous to the boson case given above. One important difference is that here the

fields of our internal loop lines have a different background source field. To derive

an equation similar to (1.41), an assumption must be made about this source. In

general the path integral is over all the independent fields in the Lagrangian. In

the Relativistic Hartree Approximation (RHA) we treat the background fields that

appear as classical. Then the only difference in the derivation is that because of the

spin-12 nature of the fermions, the fields in the path integrals are Grassman valued

[3]. This leads to a quadratic path integral which evaluates to (Det(M)) rather than

(Det(M))−1/2. The final result for the effective action in a background of scalar and

vector fields is [3],

Γvac[ψ] = −ih̄(Tr ln(S
−1)− Tr ln(S−10 )), (1.43)

where the interacting and free fermion Green functions, S and S0, obey

(i/∂ − (M − gsφ)− gv/V )S(x, x
′) = δ4(x− x′), (1.44)

(i/∂ − (M − gsφ0)− gv/V 0)S0(x, x
′) = δ4(x− x′). (1.45)

The effective actions given in (1.41) and (1.43) will be applicable to any Yukawa

coupled scalar-fermion field theory. However, these expressions still require renor-

malization. The relevant counterterms will be discussed when we use the actions to

calculate physical quantities. To go beyond one-loop methods similar to those devel-

oped by Jackiw [13] may be employed. For instance, Coppens and Verchelde have

applied functional methods to calculate the 3-loop effective potential for scalar φ4

theory in 3 + 1 dimensions [14] .

When we attempt to solve a model with effective fields the question arises whether

we should include interactions that occur beyond tree level. Should we include loop

effects if the field in question is not fundamental? Proponents [15] argue that their

inclusion makes the theory physically complete. It seems hard to justify the case for
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formulating a relativistically covariant model while ignoring some of the dynamics

which the model predicts. In any case, it is interesting to include the loop terms to

see what effect they have on the dynamics of the effective phenomenological theory.

This will be our ideology when we examine loop effects in QHD for finite nuclei.

1.4 Bound state calculations with interacting fields

For the calculation of scattering processes where the interaction occurs for a limited

time with a small coupling, a valid assumption is to use the analytically known free

wave functions for the external lines of the various diagrams contributing to a par-

ticular amplitude. This is the usual Feynman perturbation expansion, and in the

case of small couplings calculations can be extended to many orders perturbatively.

However, when the problem we are dealing with has the form of a bound state we

must use wave functions that are solved with source terms from the other fields. The

calculations are in general no longer possible analytically. When vacuum corrections

are included they must also be calculated with respect to the interacting wave func-

tion, yet these corrections will in turn affect the wave function solution, so they must

be included in a self-consistent manner. Also, for cases where the coupling is large,

expansions with respect to the coupling are no longer valid and methods such as the

one-loop approximation must be employed. This expansion is still, however, pertur-

bative in the number of loops. Below some methods that are used to deal with bound

state problems are outlined.

To attempt a steady state solution of an effective field theory model we begin by

working at tree level. Writing down the Euler-Lagrange equations from the appro-

priate Lagrangian gives us equations which are quantum in nature and represent the

interactions of many body states. As an example, we consider the Walecka model

Lagrangian (1.1). The field equations here are:

(∂2 +m2s)φ = gsψ̄ψ, (1.46)
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∂νF
νµ +m2vV

µ = gvψ̄γ
µψ, (1.47)

[γµ(i∂µ − gvVµ)− (M − gsφ)]ψ = 0. (1.48)

The first approximation we consider in solving these equations is the Mean Field

Approximation (MFA). Here the scalar and vector field equations are evaluated at

their classical expectation values [3]. Our dependent variables are

φ→ ⟨φ⟩ = φ0, Vµ → ⟨Vµ⟩ = δµ0V0. (1.49)

It is simplest to begin by considering the case of a spatially uniform system. The

spacelike component of the vector field vanishes due to rotational invariance. The

field equations then become

φ0 =
gs
m2s
⟨ψ̄ψ⟩ ≡

gs
m2s
ρs, (1.50)

V0 =
gv
m2v
⟨ψ̄γ0ψ⟩ ≡

gv
m2v
ρv, (1.51)

[i/∂ − gvγ
0V0 − (M − gsφ0)]ψ = 0. (1.52)

Equation (1.52) for the nucleon fields is the only remaining quantum equation. Be-

cause of the classical nature of the potentials, the fermionic operator can be expanded

in a normal mode sum. This reduces the equation to a single particle equation for

the mode wave functions, which can be identified as the Dirac equation with shifted

mass and energy. The solutions are therefore known analytic functions. The scalar

and vector fields are fixed by the fermion source expectation values, which define the

scalar and vector fermion densities ρs and ρv, respectively.

In a uniform system the conservation of baryon number density fixes the value of

V0. However, the equation (1.50) for the scalar field must be solved self-consistently

with the nucleon equation (1.52). This approximation is physically valid for the case

of media with an infinite extent, such as infinite nuclear or neutron matter. The

ground state is obtained by filling states of the MFA Hamiltonian up to the Fermi

momentum kF . In terms of diagrammatic techniques the MFT involves modifying the
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free propagators by adding the effect of tadpole diagrams self-consistently. However,

only contributions from nucleons in the levels filled up to kF are included, and effects

from the negative energy sea are neglected.

The MFA can be extended to apply to systems that are nonuniform in space

such as finite nuclei. If the scalar and vector fields are allowed spherically symmetric

spatial dependence, their field equations become Poisson like equations with source

terms from the fermionic densities:

∇ 2φ(r)−m2sφ(r) = −gsρ
s(r), (1.53)

∇ 2V0(r)−m
2
vV0(r) = −gvρ

v(r), (1.54)

[i/∂ − gvγ
0V0(r)− (M − gsφ(r))]ψ = 0. (1.55)

The densities are derived in the same way as in the uniform MFA — from the ex-

pectation value of the appropriate fermionic fields with respect to the corresponding

state. The nucleon equation can again be reduced because the field equation allows

normal mode solutions. The angular momentum dependence in the equation for the

mode wave functions can be factored out in the standard manner [16], leaving a ra-

dial Dirac equation. Because the potential terms are now radially dependent, we have

three coupled equations to solve for a self-consistent solution.

To include the vacuum contributions in a self-consistent calculation we desire an

analytic form for the contributions that can be included in the field equations. To do

this we make use of the effective action formalism and one-loop approximation given

in section 1.3. Extending the MFT by including contributions from this approxima-

tion is known in nuclear physics as the Relativistic Hartree Approximation (RHA).

Note that the expression for the one-loop fermion action (1.43) is derived under the

assumption of the fields interacting at tree level. When the scalar field is constant,

the one-loop contributions can be evaluated exactly. We will see how to do this cal-

culation in section 2.3. When the scalar field is radially dependent, the zero-point

corrections can be calculated under the Local Density Approximation (LDA), which
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simply replaces the constant potential in the MFA vacuum result with the radially

dependent potential. This essentially evaluates the one-loop level contribution under

the assumption of a locally uniform source field configuration.

To improve on the Local Density Approximation, we consider adding in one-loop

level terms that depend on derivatives of the field. This gives the so called Derivative

Expansion (DE) approximation. The exact one-loop quantity is expanded in a series

of derivatives of the source field, which is also an expansion in inverse powers of the

effective mass (i.e. the local scalar field value). This follows in a straightforward

manner from dimensional considerations [17]. These two expansions are not identical

as essentially the choice of the expansion parameter defines what terms are included

at each order. Here we consider the order of the derivatives as they will be the

important factor in determining a solution self-consistently, and seem to have better

convergence properties [17]. The termwise convergence of this series will give some

indication as to the validity of the expansion, although a much better method is

through comparison with the exact “brute force” result.

The convergence has been studied by several authors. In 1+1 dimensions, Li,

Perry and Wilets [18] utilized the numerical Green function method to study the DE

convergence of the vacuum energy in soliton theories for both fermionic and bosonic

loops in a background scalar field. Blunden [19] has studied the convergence of

fermionic scalar and vector densities at the one-loop level for both scalar and vector

background fields in 1+1 dimensions by also comparing the results with exact Green

function calculations. To improve the speed of convergence of the exact calculation,

Wasson and Koonin [20] considered using the DE and WKB methods to account for

the high energy loops. Wasson [21] has devised a method of interpolating the 1+1

dimension loop results in a background scalar potential by incorporating the exact

calculation up to a cutoff. In 3+1 dimensions, DE results for the energy have been

tested by Perry through partial wave analysis of fermionic loops in a background

scalar theory [22]. These calculations have been extended to both fermionic and
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bosonic loops with an improved numerical method by Li, Wilets and Perry [2, 23].

In this work these results are extended to include a calculation in 3+1 dimensions

of the fermionic vacuum scalar density in a background scalar field. This derivative

expansion is then tested for each partial wave. The advantage here is that using

the vacuum density allows the one-loop contribution to be included directly in the

equations of motion. This is an improvement over the method used by Li [24] who

attempts to gain self-consistency by minimizing the energy of the system with respect

to parameters in a postulated background field. Also, when we examine the conver-

gence of the derivative expansion energy, some of the information may be lost in

the spatial integration. Using the density, we can naturally examine the convergence

at different spatial locations. When the density is not convergent, methods devised

along a similar line to those of Wasson [21] can be implemented to interpolate the

DE to the exact result. The result will be a derivative expansion improved exact

calculation of the dynamic vacuum density in 3+1 dimensions.
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Chapter 2

DERIVATIVE EXPANSIONS

2.1 Methods of derivation

The idea of a derivative expansion consists of writing the one-loop contribution to

the effective action as a series in an increasing order of spacetime derivatives of the

background field. Consider a theory with Yukawa interactions between fermions and

scalar and vector bosons as well as three and four body scalar self interactions. We

write the Lagrangian as

L = ψ̄[γµ(i∂
µ − gvV

µ)− (M − gsφ)]ψ + 12∂µ φ∂
µφ− U(φ)

−
1

4
FµνF

µν + 12m
2
vVµV

µ + δL, (2.1)

where

U(φ) =
m2s
2
φ2 +

κ

3!
φ3 +

λ

4!
φ4. (2.2)

The vacuum contributions arise from fermion loops in a background of scalar and

vector fields, as well as boson loops from the scalar self interactions. We therefore

have contributions to the effective action under the one-loop approximation from

both equations (1.41) and (1.43). The general form of the derivative expansion of the

effective action follows from Lorentz covariance, and to fourth order is:

Γvac =
∫
d4x
[
−Us(φ) + 12Z1s(φ) ∂µφ ∂

µφ+ 12Z2s(φ)(∂
2φ)2

+12Z3s(φ)(∂µφ)
2(∂2φ) + 12Z4s(φ)(∂µφ)

4 + . . .

+14Z1v(φ)FµνF
µν + 12Z2v(φ)(∂αF

αµ)(∂βFβµ) + . . .

−Ub(φ) + 12Z1b(φ) ∂µφ ∂
µφ+ 12Z2b(φ)(∂

2φ)2
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+12Z3b(φ)(∂µφ)
2(∂2φ) + 12Z4b(φ)(∂µφ)

4 + . . .
]
. (2.3)

Some effort is required to find the expansion coefficients. For the effective action they

have been evaluated by many authors. For most applications, considering the effects

of terms of up to fourth order is sufficient, although terms up to sixth order have

appeared in the literature [25]. In practical self-consistent calculations the expan-

sion is found to be useful only when the second order terms dominate higher order

terms, because including the fourth order derivatives tends to make the self-consistent

solution numerically unstable [26].

We define

gsσ(x)→ σ(x) =M − gsφ(x), gsσ0 → σ0 =M. (2.4)

The coupling has been absorbed into the definition of the effective scalar field σ(x)

to simplify the form of the following equations. This convention will be followed until

the end of section 2.2. Results for the expansion in 3+ 1 dimensions with derivatives

up to 4th order of the scalar field, and 2nd order in the vector field are given below

(some terms can be found in [15, 23, 24, 27, 28, 29], a general method is discussed in

Appendix B):

Fermion Loops:

Us = −
λ

16π2

{
σ4(x) ln

(
σ2(x)

σ20

)

+
4∑

k=0

fnσ
4−k
0 (σ0 − σ(x))

k
}
, (2.5)

Z1s = −
λ

8π2

{

ln

(
σ2(x)

σ20

)

+ z1s

}

, (2.6)

Z2s =
λ

80π2

{
1

σ2(x)
+
z2s
σ20

}

, (2.7)

Z3s = −
11λ

720π2

{
1

σ3(x)

}

, (2.8)

Z4s =
11λ

1440π2

{
1

σ4(x)

}

, (2.9)
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Z1v =
λ

12π2

{

ln

(
σ2(x)

σ20

)

+ z1v

}

, (2.10)

Z2v = −
λ

60π2

{
1

σ2(x)
+
z2v
σ20

}

, (2.11)

Boson Loops:

Ub =
1

64π2

{
W 2(x) ln

(
W (x)

W0

)

−
1

2
(W (x)−W0)(3W (x)−W0)

+fb(φ)
}
, (2.12)

Z1b =
1

192π2

{
(W ′)2

W

}

, (2.13)

Z2b =
1

1920π2

{
(W ′)2

W 2

}

, (2.14)

Z3b = −
1

480π2

{
(W ′)3

3W 3
−
(W ′)(W ′′)

2W 2

}

, (2.15)

Z4b =
1

480π2

{
(W ′)4

8W 4
+−
(W ′)2(W ′′)

3W 3
+
(W ′′)2

4W 2

}

, (2.16)

where W (x) = U ′′s (φ), primes denote differentiation with respect to φ, and λ is

the degeneracy parameter of the field ψ. The parameters fn, z1s, z2s, z1v, z2v, and the

function fb(φ), are fixed by the choice of renormalization, and are written to facilitate

the different models we consider. In this expansion the terms with no field derivatives,

Us(φ) and Ub(φ), give the local density approximation. The LDA is therefore the first

term in the derivative expansion. The next orders in the expansion are given by the

Z1(φ) and Z2(φ) terms respectively. The analogous results in 1 + 1 dimensions can

be found in [18].

There are several variations of the methods by which the above expansion(s) can

be derived that have grown from early work on the subject [27, 30, 31, 32, 33]. One

method by which we can quickly arrive at the expansion is that based on the knowl-

edge of the polarization insertion (Π(p2)) calculated for the appropriate Feynman

diagrams [22, 34]. Often in a problem the form of the polarization insertions for a

particular diagrams or set of diagrams has been calculated. In this case it becomes a
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straight forward exercise to calculate vacuum contributions to the effective potential

by simply expanding the momentum space polarization about zero momenta. For ex-

ample, Furnstahl and Horowitz [35] give a scalar polarization function due to fermion

loops whose momentum dependent terms are

Πs(q) =
3λg2s
4π2

(

−
q2

6
−
∫ 1

0
dz (σ(x)2 − z(1− z)q2) ln

(
σ(x)2 − z(1− z)q2

σ20

))

.

(2.17)

The derivative coefficients can then be determined using

Z1 = −
∂ Πs(q2)

∂(q2)

∣∣∣∣∣
q2=0

Z2 = −
1

2

∂2Πs(q2)

∂(q2)2

∣∣∣∣∣
q2=0

. (2.18)

As the expression (2.17) has previously been renormalized, the effective action with

these coefficients will obey the same normalization conditions.

An alternative approach to the derivation starts directly from the equation for the

one-loop effective action. In this method we work in momentum space and expand

the log of the inverse Green function in various derivative orders. Often, some sim-

plifying manipulations are made depending on the exact form of the quantity being

calculated. Some authors [24, 29, 32], for instance, find it useful to introduce ad-

ditional parameters into the expansion. This involves making use of identities such

as

Tr ln(X + Y ) = Tr lnX +
∫ 1

0
dz

1

A+ zB
B, (2.19)

where X and Y are operators. A rather elegant derivation [25] makes use of the

identity

Tr ln(XY ) = Tr (lnX + lnY ) . (2.20)

which follows from the Campbell-Hausdorff relation and contains no additional pa-

rameters. Special attention is made to the gauge invariance and symmetries in this

derivation, allowing the authors to obtain results for the bosonic expansion to 6th

order in the the derivatives. At this order 28 terms were found. In a later section

of this thesis a similar calculation will be made for the fermionic fields. However,
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we choose to expand the Green function directly instead of using either of the above

identities.

Before doing this we consider how the effective action expansion can be used to

give us the quantities of interest. The full effective quantum action is given by

Γ =
∫
d4xL+ Γvac

=
∫
d4x (L+ Lvac)

=
∫
d4xLeff . (2.21)

This defines the effective Lagrangian Leff (where the renormalization still needs to

be defined). The energy functional is related to the effective action by

E[Φ] = −
Γ[Φ]
∫
dt
, (2.22)

where Φ is a general source field. The ground state of the system Φc is then defined

at the minimum of E[Φ], where

δE[Φ]

δΦ

∣∣∣∣∣
Φ=Φc

= 0 . (2.23)

In this expression we see how the nature of the one-loop expansion allows us the

freedom of choosing the true ground state about which we are expanding after the

expansion has been made.

The expression (2.23) is essentially equivalent to applying the Euler-Lagrange

equation to the effective Lagrangian. However, the effective Lagrangian depends on

higher order derivatives of the field so we reapply Hamilton’s principle to generalize

equation (1.6) to

∂L
∂Φ
− ∂µ

(
∂L
∂(∂µΦ)

)

+ ∂2
(
∂L
∂(∂2Φ)

)

+ . . . = 0, (2.24)

where L = L(Φ, ∂µΦ, ∂2Φ, ...). Recall that terms beyond the first two only have

contributions from the vacuum part of the effective Lagrangian. To group the vacuum
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contributions together in the Euler-Lagrange equations we may define

ρvac =
∂Lvac
∂Φ

− ∂µ

(
∂Lvac
∂(∂µΦ)

)

+ ∂2
(
∂Lvac
∂(∂2Φ)

)

+ . . . (2.25)

This is one way in which the vacuum density can be defined. As a result the vacuum

density can be represented in the field equations as a source term. We see that the

derivative expansions for the energy and the density can thus be derived from the

effective action derivative expansion using a combination of equations (2.21), (2.22),

and (2.25).

2.2 QED vacuum polarization

As a simple example of the effective Lagrangian formalism and the validity of the

derivative expansion we consider the vacuum polarization process in Quantum Elec-

trodynamics (QED). Abundant evidence exists that supports the idea that QED is

the fundamental theory of electromagnetic interactions below 100 GeV. As well, it is

usually considered to be the most well understood physical field theory. The simplest

form is that of a theory of spin-12 charged fermions with field ψ, mass M , and charge

e, with interactions mediated by the spin-1 massless gauge field for photons, Aµ. The

QED Lagrangian in the Feynman gauge is

LQED = ψ̄[γµ(i∂
µ − eAµ)−M ]ψ −

1

4
FµνF

µν − 1
2(∂µA

µ)2 + δL, (2.26)

where Fµν = ∂µAν − ∂νAµ. We treat a case which may be evaluated perturbatively

about the free particle solution. In this setting we will clearly be able to see the

effects of the shape of the source density in a calculation that has the same flavor

as the DE approximation. The analysis is simplified here by treating the interaction

perturbatively in the coupling and comparing quantities only to O(α), where α =

e2/4π is the usual fine structure constant. This is accomplished by considering the

modification of the free photon propagator by theO(α) vacuum polarization insertion.
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In momentum space the propagator iDαβ(q) then becomes

iDαβ(q) = iD0αβ(q) + iD0αµ(q) iΠ
µν(q) iD0νβ(q). (2.27)

Note that from gauge invariance qµΠµν(q) = 0, which dictates the Lorentz invariant

form

Πµν = (gµν −
qµqν

q2
)Π(q2), (2.28)

so that

iDαβ(q) = −
igαβ
q2 + iϵ

−
igαβ

(q2 + iϵ)2
Π(q2). (2.29)

From the well known Feynman rules of QED with the usual charge renormalization,

the propagator’s polarization insertion is found to be [8]

Π(q2) =
2α

π
q2
∫ 1

0
dz z(1− z) ln

(

1− z(1− z)
q2

M2

)

. (2.30)

This integral can be evaluated, and for the case of a stationary source the momentum

is spacelike, q2 = −q⃗ 2, and

ΠR(−q⃗
2) = −

αq⃗ 2

3π

⎛

⎜⎜⎝−
5

3
+
4M2

q⃗ 2
+ (1−

2M2

q⃗ 2
)

√√√√1 +
4M2

q⃗ 2
ln

⎛

⎜⎜⎝

√
1 + 4M

2

q⃗ 2
+ 1

√
1 + 4M

2

q⃗ 2
− 1

⎞

⎟⎟⎠

⎞

⎟⎟⎠ .

(2.31)

To write an expression for the vacuum polarization potential we fold a background

spherically symmetric charge charge density source, ρch(r), over the new part of

the propagator. This is most easily done in momentum space, where for a time

independent source

V Evac(x⃗ ) =
∫ d3q

(2π)3
eiq⃗ ·x⃗

ΠR(−q⃗
2)

|q⃗ |4
ρch(q⃗ ). (2.32)

The angular part may be integrated, leaving

V Evac(r) =
2α

π

∫ ∞

0
dq
sin(qr)

qr

ΠR(−q2)
q2

ρch(q), (2.33)

where

ρch(q) =
∫
d3x e−iq⃗ ·x⃗ρch(x⃗ ) = 4π

∫ ∞

0
dr r2

sin(qr)

qr
ρch(r). (2.34)
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This expression gives the “exact” effect of vacuum polarization in our theory (to

O(α)).

For comparison, the derivative expansion coefficients can be evaluated using equa-

tion (2.18) and the integral form (2.30), giving

Z1 = 0, Z2 =
α

15πM2
. (2.35)

The result Z1 = 0 is a manifestation of charge conservation, which implies that

corrections to the charge density are total derivatives that vanish under a spatial

integration. This allows us to write an effective Lagrangian for low energy photons

that takes into account the vacuum polarization loop in an additional derivative

term. The full effective one-loop Lagrangian will contain contributions for the photon-

electron vertex correction that are of order α2. It is referred to as the Euler and

Heisenberg Effective Lagrangian [4]. Here we are interested in the order α part (only

the vacuum polarization)

Leff = −
1

4
FµνF

µν −
α

30πM2
(∂µF

µλ)(∂νFνλ)− j
µAµ. (2.36)

The fermion part of the Lagrangian has been dropped here, and an external

source current jµ is included. The gauge fixing term can be dropped because we will

restrict ourselves to the time like part of the vector potential in the case where it is

independent of time. The suitable form for the Euler-Lagrange equations are

∂L
∂Aµ

− ∂λ

(
∂L

∂ (∂λAµ)

)

+ ∂2
(
∂L

∂ (∂2Aµ)

)

= 0. (2.37)

Considering the time-like part of the potential A0 and a source current jµ = δµ0j0,

we obtain a modified form of Maxwell’s equation

∂2A0 = j0 +
α

15πM2
∂4A0, (2.38)

which for a time independent potential becomes

∇ 2A0 = −j0 −
α

15πM2
∇4A0. (2.39)
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Making use of the identity ∇ 21/|x⃗ | = −4πδ(x⃗ ) this can be written as an integro-

differential equation:

A0(x⃗ ) =
1

4π

∫
d3x′

1

|x⃗ ′ − x⃗ |

(
j0(x⃗

′) +
α

15πM2
∇4A0(x⃗

′)
)

=
1

4π

∫
d3x′

1

|x⃗ ′ − x⃗ |
j0(x⃗

′) +
α

60π2M2

∫
d3x′

(

∇ 2
1

|x⃗ ′ − x⃗ |

)

∇ 2A0(x⃗
′)

=
1

4π

∫
d3x′

1

|x⃗ ′ − x⃗ |
j0(x⃗

′)−
α

15πM2
∇ 2A0(x⃗ ). (2.40)

As the electromagnetic coupling α is small, we can solve this equation iteratively by

substituting for the RHS A0 with the LHS A0 in an iterative manner. For example,

with a point-like source with charge −Ze we have j0(x⃗ ) = −Ze δ(3)(x⃗ ), so

A0(x⃗ ) = −
Ze2

4π|x⃗ |
−

α

15πM2
∇ 2A0(x⃗ )

= −
Zα

|x⃗ |
− αZα

4δ(3)(x⃗ )

15M2
. (2.41)

This is the familiar term which contributes to the Lamb shift in hydrogen [8].

To understand how useful the effective Lagrangian is here we consider the spher-

ically symmetric charge density, j0 = ρch(r). Solving (2.40) iteratively we have for

the vacuum polarization contribution to the potential

V Dvac(r) =
4α2

15M2
ρch(r). (2.42)

This expression can be compared to the exact result which we also calculated to

O(α2) (2.33). For simplicity, we choose a Gaussian source density

ρch(r) =
1

π3/2a3
e−(r/a)

2
, ρch(q) = e

−a2q2/4, (2.43)

where the parameter a controls the shape of the potential. (This potential has a height

of π−3/2a−3, a width at half max of a
√
ln 2, and is normalized to unity). Equations

(2.33) and (2.42) can then be compared for different values of a, as seen in figures 2.1

and 2.2.
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Figure 2.1: Validity of the DE level QED vacuum potential for large a.
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Figure 2.2: Validity of the DE level QED vacuum potential for small a.
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We see that for large a (small height, big width) the derivative procedure gives

a valid description of the vacuum. For smaller a, the height increases and depth

decreases, and the approximation loses its validity. It is important to remember that

a is large or small compared with the length scale 1/M . In other words, we expect

the derivative expansion to be valid for fields that fall off slowly compared with a

length scale determined by the inverse of the fermion mass. Here we have used the

mass of the electron, with m−1e = 386 fm, and observe that the derivative expansion

breaks down for a comparable or small than this value. For muon loops, we would

expect the derivative expansion to be valid down to length scales of m−1µ = 1.88 fm.

2.3 Direct expansion

2.3.1 Expressions for the energy and density

As an alternative method to deriving the derivative expansion for the effective action,

we can derive equations for the energy and density in terms of the Green function and

expand the Green function directly. To see how this is done, consider the one-loop

fermionic contribution to the effective action for a scalar background:

Γvac = −iTrintx
(
lnS−1(φc)− lnS

−1
0 (φc)

)

= −i
∫
d4x tr ⟨x|

(
lnS−1(φc(x))− lnS

−1
0 (φc(x))

)
|x⟩. (2.44)

Here Trintx denotes a trace taken over spacetime as well as the internal degrees of free-

dom (such as spin, isospin etc.) whereas tr denotes simply the trace over the internal

degrees of freedom. This action has not yet been renormalized and is technically an

infinite quantity. To deal with the renormalization we consider all four dimensional

integrals in D dimensions. This is the method of Dimensional Regularization which

allows us to consider finite quantities in our intermediate steps and take care of the

renormalization at the end. As an even further simplification we drop the contribu-

tion from the free Green function S0, and will pick it up again when performing the
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renormalization, so that

Γvac = −iTr
int
x

(
lnS−1(φc)

)
. (2.45)

The fermion Green function S(φc) can be written symbolically as

S(φc) =
1

i/∂ − σc(x) + iϵ
, (2.46)

where σc(x) = M − gs φc(x). Because the scalar field is independent of time we can

equivalently use the Fourier transformed Green function

S(p0) =
∫
dt S(φc)e

−ip0t. (2.47)

Also, the energy functional E(φc) = −Γ/
∫
dt, so we have

Evac = −
i

2π

∫
dp0Tr

int
x⃗ lnS

−1(p0). (2.48)

A Wick rotation of the p0 contour integral to the imaginary axis can be made by the

replacement p0 → iω, where ω is taken to be real. This alleviates the necessity of the

iϵ prescription for getting the path right, so

S(iω) =
1

iγ0ω + iγ⃗ ·∇− σc(x)
. (2.49)

Using this expression in (2.48) and an integration by parts of the resulting line in-

tegral, we obtain the following result for the energy in terms of the fermion Green

function

Evac = −
i

2π

∫
dω ωTrintx⃗ (γ0S(iω)). (2.50)

The scalar vacuum density can be obtained from the energy by taking the functional

derivative

ρsvac(x) =
δEvac
δgφc(x)

= −
δEvac
δσc(x)

. (2.51)

When this result is used in the expression forEvac, the spatial integral part of the trace

is removed, leaving simply the diagonal spatial matrix element, denoted S(x, x; iω).

The result can be further simplified by making using of the identity [21]

tr γ0
∂

∂σc
S(iω) = −tr i

∂

∂ω
S(iω). (2.52)
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This expression can easily be derived from the form of the Green function (2.46). An

integration by parts will then give the result for the scalar density,

ρsvac(x) = −
1

2π

∫
dω tr(S(x, x; iω)). (2.53)

One possible advantage of using equations (2.50) and (2.53) is that from a derivative

expansion of the Green function we obtain the expansion directly in terms of physical

quantities we are interested in. The importance of this will become clear when we

consider numerical calculations. Although formally the vacuum density as given in

equation (2.53) is equivalent to that derived from the vacuum Lagrangian or energy

functional using (2.25) or (2.51), these expressions will differ when a finite numerical

cutoff is imposed on the ω integral. This cutoff is in no way related to our method

of renormalization but is simply imposed by a numerical solution. Essentially the

formalisms will differ by a total derivative under the ω integral, which will not vanish

when a finite cutoff is imposed. Therefore, the convergence versus the cutoff becomes

an important issue. In 1 + 1 dimensions the connection between the two methods is

cited by Wasson [21]. However, no attempt is made to compare the the difference

of the two methods for cutoff convergence. A comparison of the convergence versus

the form of the expansion will be given in section 3.1. Similar things happen in

3 + 1 dimensions. When a partial wave decomposition is made, we find that the

value of a particular partial wave term may differ if a total momentum divergence

is added before the decomposition is made. The calculation of each of the partial

wave terms involves imposing a cutoff which is again another dependence on any

derivative added under the ω integral. Thus here the form of the expansion may

affect the convergence with respect to both the partial waves and cutoff. The hope

is that by direct application of equation (2.53) to the Green function expansion and

careful manipulation of intermediate terms we will obtain a form of the density that

will converge rapidly with cutoff.
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2.3.2 Fermion Green function expansion

The method used here to derive the derivative expansion involves an explicit ex-

pansion of the fermion Green function in momentum space. This method was first

introduced by Chan [27], who used it to calculate the expansion for the boson Green

function up to terms with four derivatives. Since then many others have made use

of this technique in different forms. Wasson [21], for instance, used this method to

expand the energy trace of the fermion Green function in 1 + 1 dimensions. Another

benefit of this method is that the terms are represented in momentum space in a

simple manner, which makes it easy to expanded in a partial wave sum in 3 + 1

dimensions. This method is necessary not only to improve numerical convergence

but also to allow extrapolation away from the DE result in cases where it does not

rapidly converge. Here we make an explicit expansion of the fermion Green function

in arbitrary dimension under the influence of a background scalar field. The necessary

traces are evaluated at the end of the calculation, so that the expansion can be used

to directly give either the energy or the density.

As only the diagonal spatial elements of the fermion Green Function are required,

we can write

S(x, x; iω) = ⟨x|S(iω)|x⟩

= −⟨x|
1

(−i/∂ + σ(x))
|x⟩

= −
1

(2π)2d

∫
ddp ddp′ ⟨x|p⟩⟨p|

1

−i/∂ + σ(x)
|p′⟩⟨p′|x⟩

= −
1

(2π)d

∫
ddp eipx

1

−/p + σ(i ∂
∂p
)
e−ipx

= −Tr p⃗ (e
ipx 1

−/p + σ(i ∂∂p)
e−ipx). (2.54)

Here the d denotes the number of spatial dimensions, d = D − 1, and the sign in

the denominator is introduced for later convenience. To proceed we note that the



33

translation operator e−ipx obeys the following relation:

f(i
d

dp
) e−ipx = e−ipx f(x+ i

d

dp
). (2.55)

This can be easily proven by doing a Taylor series expansion of the function f .

Therefore,

S(x, x; iω) = −Tr p⃗
1

−/p+ σ(x+ i ∂
∂p
)
. (2.56)

Next the following two expansion equations are introduced:

f(x+ i
∂

∂p
) =

∞∑

m=0

im

m!

(
∂

∂xµ1
· · ·

∂

∂xµm
f(x)

)
∂m

∂pµ1 · · ·∂pµm
(2.57)

= f(x) + i(∂µf(x))
∂

∂pµ
−
1

2!
(∂µ∂νf(x))

∂2

∂pµ∂pν
+ . . .

1

X + Y
=

∞∑

m=0

1

X

(
−Y
1

X

)m
(2.58)

=
1

X
−
1

X
Y
1

X
+
1

X
Y
1

X
Y
1

X
+ . . .

Equation (2.57) is the covariant Taylor series expansion for the function f about

x, while equation (2.59) is an inverse operator series expansion where X and Y are

operators. The choice of the separation of an operator into X and Y defines the

nature of the expansion being made. With respect to (2.56), two useful choices are

given below.

(i) For instance, to expand the interacting fermion Green function about the free

field configuration, where σ(x) = σ0 is simply the mass of the fermion, we let

X = −/p + σ0,

Y = σ(x+ i
∂

∂p
)− σ0 ≡ σ̃(x+ i

∂

∂p
). (2.59)

Then −1/X = S0(iω), the free fermion Green Function, and

S(x, x; iω) = Trp⃗
(
S0(iω) + S0(iω) σ̃(x+ i

∂

∂p
) S0(iω)

+ S0(iω) σ̃(x+ i
∂

∂p
) S0(iω) σ̃(x+ i

∂

∂p
)S0(iω) + . . .

)
. (2.60)
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This form of the expansion will be useful for deriving the necessary counterterms

in momentum space.

(ii) The derivative expansion is obtained by a slightly different choice of X and Y :

X = −/p + σ(x),

Y = σ(x+ i
∂

∂p
)− σ(x) (2.61)

= i(∂µσ(x))
∂

∂pµ
−
1

2!
(∂µ∂νσ(x))

∂2

∂pµ∂pν
+ . . .

In fact both of the above expansions can be handled simultaneously. Before pro-

ceeding with the expansion we convert to a slightly different form of the Green func-

tion S. This is done to reduce the number of terms that must be kept in the inverse

operator expansion (2.59), as well as to bring the spin structure to the numerator,

which makes taking internal traces straightforward. We put

S(x, x; iω) = −⟨x|
1

(−i/∂ + σ(x))
|x⟩

= −⟨x|
(i/∂ + σ(x))

(i/∂ + σ(x))

1

(−i/∂ + σ(x))
|x⟩

= −⟨x|
i/∂ + σ(x)

∂2 + σ2(x) + i [/∂, σ(x)]
|x⟩ = . . .

= −Trp⃗

⎡

⎣
(

/p+ σ(x+ i
∂

∂p
)

)
1

−p2 + σ2(x+ i ∂∂p) + i/∂σ(x+ i
∂
∂p)

⎤

⎦ , (2.62)

where p2 = p20 − p⃗
2 = −ω2 − p⃗ 2. Again we will make use of the expansion (2.59)

for the inverse operator term. The two expansions (i) and (ii) can be obtained by

setting:

Counterterm Expn. Derivative Expn.

X : −p2 + σ20 −p2 + σ(x)2

Y : σ2(x+ i
∂

∂p
)− σ20 + i/∂σ(x+ i

∂

∂p
) σ2(x+ i

∂

∂p
)− σ(x)2 + i/∂σ(x+ i

∂

∂p
)

(2.63)
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By using equation (2.57), the contributions in the Y term can be written as a

series in momentum derivatives. To treat both cases in the table simultaneously, we

work with the following notation:

X → ∆−1

Y →

(

A+Bµ
∂

∂pµ
+ Cµν

∂2

∂pµ∂pν
+O(

d3σ(x)

dx3
) + . . .

)

(2.64)

where

∆ =
1

−p2 + σ20
or ∆ =

1

−p2 + σ(x)2

A = σ2(x)− σ20 + i/∂σ(x) or A = i/∂σ(x)

Bµ = 2iσ(x)∂µσ(x)− γ
ν∂ν∂µσ(x) (2.65)

Cµν = − (∂µσ(x)) (∂νσ(x))− σ(x) ∂µ∂νσ(x) +O(
d3σ(x)

dx3
)

With this formulation only three terms in the inverse operator expansion must be

retained to derive the counterterms and obtain the derivative expansion up to second

order. To see this we can count powers of momentum and notice that the first

convergent piece (under
∫
d4p) has p−5 dependence. Terms beyond the third are of

order p−6 or higher and are therefore not relevant to finding the counterterms. For the

derivative expansion we see that each factor of Y contributes at least one derivative,

so terms beyond the third (which has two Y ’s) are order (d3/dx3) and higher. In fact,

due to the covariance of the expansion, only even numbers of derivatives appear, so

that the next terms will be of order (d4/dx4).

Looking again at our definitions in (2.65) we see that ∆ contains all of the p

dependence. Spacetime derivatives of ∆ can be taken easily, and to simplify our

formula we will denote a pµ derivative of ∆ by ∆µ. The coefficients A,Bµ, Cµν and

the factor /p + σ(x + i ∂∂p) contain the scalar field derivatives as well as the spinor

matrix structure. Using equations (2.57), (2.59), and (2.64) in (2.62), we have
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S(x, x; iω)

= −Trp⃗
(
/p+ σ(x+ i

∂

∂p
)
)
{∆−∆Y∆+∆Y∆Y∆+ . . .}

= −Trp⃗
[(
/p+ σ(x+ i

∂

∂p
)
)

×
{
∆− ∆2A−∆∆µBµ −∆∆

µνCµν +∆
3A2 +∆2∆µABµ

+∆2∆µνACµν +∆(∆
2)µBµA+∆(∆

2)µνCµνA+∆(∆∆
µ)νBµBν

}

+O(
d3

dx3
)
]

= −Trp⃗
[

(/p+ σ(x))
{
∆− ∆2A−∆∆µBµ −∆∆

µνCµν +∆
3A2 +∆2∆µABµ

+∆2∆µνACµν +∆(∆
2)µBµA+∆(∆

2)µνCµνA+∆(∆∆
µ)νBµBν

}

+(i∂λσ(x))
{
∆λ − (∆2)λA− (∆∆µ)λBµ + (∆

3)λA2

+(∆2∆µ)λABµ + (∆(∆
2)µ)λBµA

}

+(i∂λ∂τσ(x))
{
∆λτ − (∆2)λτA+ (∆3)λτA2

}
+ O(

d3

dx3
)
]
. (2.66)

Recall that the scalar field is time independent, so when the four-momenta that

appear in the derivatives are contracted with the corresponding field derivatives they

contribute only through the spacelike part. After simplifying the multiple p deriva-

tives we can reduce the above equation by noting that under the momentum trace

Trp⃗ terms with odd powers of p⃗ vanish. Hence

S(x, x; iω)

= −Trp⃗
[

/p
{
∆− ∆2A−∆∆µBµ −∆∆

µνCµν +∆
3A2 + 3∆2∆µABµ

+3∆2∆µνACµν + 2∆∆
µ∆νACµν +∆

2∆µνBµBν +∆∆
µ∆νBµBν

}

+σ(x)
{
∆− ∆2A−∆∆µνCµν +∆

3A2 +∆2∆µνACµν + 2∆
2∆µνACµν
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+2∆∆µ∆νACµν +∆
2∆µνBµBν +∆∆

µ∆νBµBν

}

+(i∂λσ(x))
{
−∆µ∆λBµ −∆∆

µλBµ + 8∆∆
µ∆λABµ + 3∆

2∆µλABµ
}

+(i∂λ∂τσ(x))
{
∆λτ − 2∆λ∆τA− 2∆∆λτA+ 6∆∆λ∆τA2 + 3∆2∆λτA2

}

+O(
d3

dx3
)
]
. (2.67)

From this equation we can derive the general expansions for both the energy and the

density using equations (2.50) and (2.53).

2.3.3 Energy and density expansions

For the energy (2.50), we see that by incorporating the ω integral into the trace we

have an overall four-momentum trace of the form Trp,x (ω γ0S(iω)). Consider the

reduction caused by the internal trace here. This can easily be done by recalling

some well known trace theorems for the gamma matrices [7]:

γµγν + γνγµ = 2gµν , (2.68)

tr(γµ1 · · ·γµn) = 0 (n odd), (2.69)

tr(γµγν) = Dgµν . (2.70)

The γ matrices that appear in the coefficients A,Bµ, Cµν do not include γ0 because

this matrix appears multiplied by the vanishing time derivative of the scalar field.

The trace of γ0 times any number of γi (i = 1, 2, 3) vanishes so these terms cannot

contribute to the trace. The only remaining terms come from the iω part of the /p

terms. These are further reduced by the fact that some of the terms are now odd

with respect to p⃗ . The remaining contributions come from the following terms

Evac = −iTrintp,x ω γ0 S(x, x; iω)

= Trintp,x ω
2
[
∆− ∆2A′ +∆3(A2) ′ −∆∆µνC ′µν + 3∆

2∆µν(ACµν)
′

+2∆∆µ∆ν(ACµν)
′ +∆2∆µν(BµBν)

′ +∆∆µ∆ν(BµBν)
′
]
. (2.71)
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The prime here denotes the parts of the coefficient(s) with an even number of gamma

matrices.

Now consider the scalar density. Including the ω integral as part of the momentum

trace we see from equation (2.53) that the density involves the factor Trp S(iω). The

expression (2.67) can be reduced under this trace by vanishing internal traces as well

as factors that are odd in p⃗ . The remaining terms are

ρsvac(x) = −Trintp S(x, x; iω)

= −Trintp

[

/p
{
−∆∆µBµ + 3∆

2∆µABµ + 3∆
2∆µνACµν + 2∆∆

µ∆νACµν
}

+σ(x)
{
∆− ∆2A′ +∆3(A2) ′ −∆∆µνCµν

′ +∆2∆µν(ACµν)
′

+2∆2∆µν(ACµν)
′ + 2∆∆µ∆ν(ACµν)

′

+∆2∆µν(BµBν)
′ +∆∆µ∆ν(BµBν)

′
}

+(i∂λσ(x))
{
−∆µ∆λBµ

′ −∆∆µλBµ
′ + 8∆∆λ∆µ(ABµ)

′

+3∆2∆µλ(ABµ)
′
}

+(i∂λ∂τσ(x))
{
∆λτ − 2∆λ∆τA′ − 2∆∆λτA′

+6∆∆λ∆τ (A2) ′ + 3∆2∆λτ (A2) ′
}

+O(
d3

dx3
)
]
. (2.72)

The prime again denotes the part of the coefficient that has an even number of gamma

matrices.

To go further we must insert a form for the coefficients. We choose to insert

the counterterm form of the coefficients, as it will be a simple exercise to obtain the

derivative expansion form from the resulting equations, so that we then have both

expansions. We note that since

∆ = ∆0 =
1

(−p2 + σ20)
, (2.73)
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we have

∆µ = 2pµ∆2. (2.74)

Using this expression to evaluate derivatives, and taking all internal traces, we find

the following form upon grouping like terms:

Evac = Trp,x D ω
2
[

{
∆0 − (σ

2(x)− σ20) ∆
2
0 + (σ

2(x)− σ20)
2 ∆30 + . . .

}

+σ(x)(∂µ∂νσ(x))
{(
8pµpν ∆40 + 2g

µν ∆30
)

+(σ2(x)− σ20)
(
32pµpν ∆50 + 6g

µν ∆40
)
+ . . .

}

+(∂µσ(x))(∂νσ(x))
{(
8pµpν∆40 + g

µν∆30
)

−4σ2(x)
(
12pµpν∆50 + 2g

µν∆40
)

−(σ2(x)− σ20)
(
32pµpν∆50 + 6g

µν∆40
)} ]

, (2.75)

ρsvac(x) = −Trp D
[

{
σ(x) ∆0 − σ(x)(σ

2(x)− σ20) ∆
2
0 + σ(x)(σ

2(x)− σ20)
2 ∆30 + . . .

}

+(∂µ∂νσ(x))
{
−
(
2pµpν ∆30 + g

µν ∆20
)
+ σ2(x)

(
8pµpν ∆40 + 2g

µν ∆30
)

+(σ2(x)− σ20)
(
6pµpν ∆40 + 2g

µν ∆30
)
+ . . .

}

+(∂µσ(x))(∂νσ(x))
{
σ(x)

(
20pµpν ∆40 + 5g

µν ∆30
)

−σ3(x)
(
48pµpν ∆50 + 8g

µν ∆40
)

−σ(x)(σ2(x)− σ20)
(
128pµpν ∆50 + 17g

µν ∆40
)} ]

. (2.76)

The form of these equations can now be simplified using various transformations

that are valid under the momentum space trace. We must proceed with caution,
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however, as making use of a transformation under the ω part of this trace will affect

the convergence when a finite cutoff is placed on this integral. Any transformation

that vanishes under the p⃗ trace will affect the termwise form of any partial wave

expansion. This dependence will in fact allow us to consider which form converges

the most rapidly. For purpose of illustration we consider the density. The first thing

to note is that none of the terms pµ will have an energy part contributing because

the time derivative of the scalar field ∂0 σ(x) vanishes. This allows us to reduce the

dependence pµpν as follows:

Trp(p
µpν ∆n) = gµi gνj Trp(pi pj ∆

n)

= gµigνj
δij
D − 1

Trp(p⃗
2∆n)

= −
gµν

D − 1
Trp(p⃗

2∆n). (2.77)

To make the partial wave expansion, we will find that it is useful to remove the p⃗ 2

dependence from the numerator. This may be done by noting that

p⃗ 2 = (∆)−1 − ω2 − σ2. (2.78)

The equation for the density is then

ρsvac(x) = −Trp D
[

{
σ(x) ∆− σ(x)(σ2(x)− σ20) ∆

2 + σ(x)(σ2(x)− σ20)
2 ∆3 + . . .

}

+(∂2σ(x))
{
−
(
1

3
∆3 +

2

3
(ω2 + σ2(x))∆3

)
−
2

3
σ2(x)

(
∆3 − 4(ω2 + σ2(x))∆

)

+2(σ2(x)− σ20)
(
(ω2 + σ2(x))∆4

)
+ . . .

}

+(∂µσ(x))
2
{
−
5

3
σ(x)

(
∆3 − 4(ω2 + σ2(x))∆4

)

+8σ3(x)
(
∆4 − 2(ω2 + σ2(x))∆5

)

+
1

3
σ(x)(σ2(x)− σ20)

(
77∆4 − 128(ω2 + σ2(x))∆5

)} ]
.(2.79)
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So far we have done nothing to affect the convergence with cutoff or partial wave.

We now consider a reduction that affects the partial waves but not the cutoff. Effec-

tively what we do is to add the total divergence of a function under the p⃗ integral

where the function is such that it vanishes at infinity. Although this term makes

no net contribution, it’s individual partial wave contributions may be nonzero. This

mechanism may be implemented by letting

(ω2 + σ2)∆n = ∆n−1 − p⃗ 2∆n, (2.80)

and then taking

∫
dnp

(p⃗ 2)β

(p⃗ 2 +M2)α
=
(n+ 2β − 2)
2(α− 1)

∫
dnp

1

(p⃗ 2 +M2)α−1
, (2.81)

where the integral is over the n dimensional Euclidean p⃗ 2. This gives us

ρsvac(x) = −Trp D
[

{
σ(x) ∆0 − σ(x)(σ

2(x)− σ20) ∆
2
0 + σ(x)(σ

2(x)− σ20)
2 ∆30 + . . .

}

+(∂2σ(x))
{
−
1

2
∆20 +

2

3
σ2(x)∆30 + (σ

2(x)− σ20) ∆
3
0 + . . .

}

+(∂µσ(x))
2
{
5

3
σ(x)∆30 − 2σ

3(x) ∆40 − σ(x)(σ
2(x)− σ20)∆

4
0

} ]
. (2.82)

The purpose of the manipulations between (2.79) and (2.82) should be, however,

to maximize the convergence of the partial wave series. It will be seen in the next

section that in fact the expression (2.82) is the most useful. The purpose of these

manipulations has been simply to allow us to consider other forms. In particular,

once this choice has been established we see that expression (2.82) could have been

obtained in a much simpler manner by simply using the following formula

∫
ddk

kikj

(ω2 + k2 +M2)α
=

δ ij

2(α− 1)

∫
ddk

1

(ω2 + k2 +M2)α−1
. (2.83)

to reduce the form of the spatial part of the p integrals in (2.76).

It is important to note that we are not making use of the ω part of the p integration,

so this reduction again affects only the partial waves. Also, as the energy contractions



42

vanish, formula (2.83) can be implemented by letting

pµpν

(−p2 +M2)α
→ −

gµν

2(α− 1)
1

(−p2 +M2)α−1
. (2.84)

Applying this shortcut to the energy expression (2.75) gives

Evac = Trp,x D ω
2
[

{
∆0 − (σ

2(x)− σ20)∆
2
0 + (σ

2(x)− σ20)
2 ∆30 + . . .

}

+σ(x)(∂2σ(x))
{
2

3
∆30 + 2(σ

2(x)− σ20) ∆
4
0 + . . .

}

+(∂µσ(x))
2
{
−
1

3
∆30 − 2σ

2(x)∆40 − 2(σ
2(x)− σ20)∆

4
0

} ]
. (2.85)

2.3.4 Counterterms

To see which of the terms in the expressions (2.82) and (2.85) are divergent, we can

count powers of p and consider whether the integral over all p space will converge

in the dimension we are considering. Alternatively we can make use of the following

formulas (see [3] for method of derivation ):

1

(2π)D

∫
dDp

ω2

(−p2 +M2)α
=
−i(−1)απ−D/2

2M2α−D−2
Γ(α− 1−D/2)

Γ(α)
, (2.86)

1

(2π)D

∫
dDp

1

(−p2 +M2)α
=
i(−1)απ−D/2

M2α−D
Γ(α−D/2)
Γ(α)

(2.87)

Terms that may diverge in 4 or fewer dimensions are

Evac = −
i

2
D π−D/2 MD+2 Trx

[

{
−Γ(−D/2)
M2

− (σ2(x)− σ20)
Γ(1−D/2)
M4

− (σ2(x)− σ20)
2Γ(2−D/2)
2M6

}

+σ(x)(∂2σ(x))

{

−
Γ(2−D/2)
3M6

}

+ (∂µσ(x))
2

{
Γ(2−D/2)
6M6

} ]
, (2.88)

ρsvac(x) = −i D π−D/2 MD
[

{

−σ(x)
Γ(1−D/2)
M2

− σ(x)(σ2(x)− σ20)
Γ(2−D/2)
M4

}

+(∂2σ(x))

{

−
Γ(2−D/2)
2M4

} ]
. (2.89)
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Divergent terms are then the terms where a Γ function will be evaluated at a pole. If

we regularize our expressions under the p integral, the terms that must be included

in the counter term expression are the terms in (2.85) and (2.82) that correspond to

the divergent terms in (2.88) and (2.89). Depending on the renormalization scheme,

other finite terms may also be included in the subtraction. The mechanism for deter-

mining a scheme is simply to make our expressions reduce to those which satisfy the

appropriate relations placed upon the coefficients in equation (2.3). This reduction

is accomplished by evaluating the renormalized momentum integral.

2.3.5 Derivative expansion expressions

Looking back at (2.64) we see that expressions for the derivative expansion can easily

be determined from the above counterterm equations by simply replacing (−p2+ σ20)

with (−p2+σ2(x)) and removing all factors containing (σ2(x)−σ20). From (2.85) and

(2.82) we have

Evac = Tr p,x D ω
2
[

1

(−p2 + σ2(x))
+
2

3

σ(x)∂2σ(x)

(−p2 + σ2(x))3

−
1

3

(∂µσ(x))2

(−p2 + σ2(x))3
− 2
σ2(x)(∂µσ(x))2

(−p2 + σ2(x))4

]
, (2.90)

ρsvac(x) = −Trp D
[

σ(x)

(−p2 + σ(x)2)
−
1

2

∂2σ(x)

(−p2 + σ(x)2)2
+
2

3

σ2(x)∂2σ(x)

(−p2 + σ(x)2)3

+
5

3

σ(x)(∂µσ(x))2

(−p2 + σ(x)2)3
− 2
σ3(x)(∂µσ(x))2

(−p2 + σ(x)2)4

} ]
. (2.91)

These expressions agree with [19, 21] in 1 + 1 dimensions, and in 3 + 1 dimensions

the energy agrees with the results of [23, 24]. The new expression here is that for the

3 + 1 dimension density in momentum space.

2.4 Termwise convergence

In this section we evaluate the momentum integrals obtained above. When this is

done, we regain the original expressions which we quoted in section 2.1. The results
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obtained will agree with any other method that may have been used to derive the DE

energy and density. Our purpose here is to consider the termwise convergence of our

derivative expansion expressions for the energy and the density in 3 + 1 dimensions.

The direct derivative expansion for the energy can be evaluated by choosing the

counterterms that correspond to the 3 + 1 dimensional divergences in (2.88) and

subtracting them from (2.90). We obtain a result for which the p trace can be

evaluated and which agrees with the value given in section (2.1) with the choice:

f0 = 0, f1 = 2, f2 = −7, f3 = 6, f4 = −
3

2
. (2.92)

Including the fourth order derivative terms from section (2.1), and writing the energy

grouped in orders of the derivatives, we have

Evac(σ) = E0(σ) + E2(σ) + E4(σ), (2.93)

E0 = Tr x⃗
−1
16π2

(

σ4 ln(
σ2

σ20
)−
1

2
(3σ2 − σ20)(σ

2 − σ20)

)

, (2.94)

E2 = Tr x⃗
−1
16π2

ln(
σ2

σ20
)(∇σ)2, (2.95)

E4 = Tr x⃗
−1
160π2

(
(∇ 2σ)2

σ2
−
11(∇σ)2(∇ 2σ)

9σ3
+
11(∇σ)4

18σ4

)

, (2.96)

where σ = σ(x). Note that the method of renormalization is such that

E0(σ0) = 0,
dE0(σ0)

dσ
= 0,

d2E0(σ0)

d2σ
= 0, E2(σ0) = 0. (2.97)

The derivative expansion for the density can be evaluated by subtracting the

counterterms corresponding to those in (2.89) from (2.91). A finite term given by the

term in (2.82) with σ2(x)∂2σ(x) dependence is also subtracted. By doing this we will

see that our expressions agree up to second order with the ones found by applying

equation (2.25) or (2.51) to the energy. As the fourth order derivative term is not

subject to renormalization and all traces have been performed, we can obtain the

fourth order density term from the energy by using equation (2.25) or (2.51):

ρsvac(r) = ρ0(r) + ρ2(r) + ρ4(r), (2.98)
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ρ0(r) = −
1

4π2

(

σ3 ln(
σ2

σ20
)− σ3 + σσ20

)

, (2.99)

ρ2(r) =
1

8π2

(
(∇σ)2

σ
+∇ 2σ ln(

σ2

σ20
)

)

, (2.100)

ρ4(r) = −
1

80π2σ2

(
∇4σ −

4∇σ ·∇(∇ 2σ)
σ

−
16(∇ 2σ)2

9σ

−
11(∂2σ/∂2r)2

9σ
+
43(∇σ)2(∇ 2σ)

9σ2

+
44(∇σ)2(∂2σ/∂2r)

9σ2
−
11(∇σ)4

3σ3

)
. (2.101)

Note that the terms in ρ4(r) with second derivatives of r appear from covariant

expressions like (∂µ∂νσ)2 etc. All operators ∇ are derivatives with respect to r, and

all operators ∇ 2 indicate the radial part of the Laplacian.

We could now put the coupling explicitly back into these expressions for the

energy and density. However, we find it more useful to simply rescale these equations

in terms of the free field mass, M = g σ0, so that all quantities are dimensionless and

explicitly coupling free:

σ(x)′ =
σ(x)

σ0
, x′ = xσ0. (2.102)

With this choice our energy is expressed in units of M4 and density in units of M3.

Also, the explicit dependence on the coupling has been folded into the x′ variable and

will thus only appear in the rescaled field as σ′(x)→ σ′(x′). (The rescaling in (2.102)

may be implemented by simply setting gσ0 = 1.) To test the convergence of these

derivative expansions we pick a representative analytic form for the field. We choose

a spherically symmetric field potential, σ′(r), which has a form similar to that of a

shifted hyperbolic secant:

σ(r) = σ0 −
a(1 + f)

eb rn + fe−b rn
→ σ′(r′) = 1−

a′(1 + f)

eb′ r′n + fe−b′ r′n
, (2.103)

where a′ = a and b′ = b/(gσ0)n are positive numbers, and n is an integer greater than

0. Note that σ′(0) = 0 in all cases (n ≥ 1) and that σ′(r → ∞) = 1. This choice of
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boundary conditions ensures that our field σ remains smooth at r = 0, and decays

to a constant value at infinity (the fermion mass). The effect of the parameters in

(2.103) are that

• a′ controls the depth of the potential at the origin,

• b′ affects the width and maximum slope of the potential,

• n controls how long the potential remains flat near the origin,

• f affects the “slope” of this flat piece near the origin.

From the definition of b′ we see an implicit dependence on the coupling g. For a fixed

background field, increasing g effectively decreases b′ and therefore gives a potential

with larger radius of effect. As g is a coupling this behavior is as expected. The

parameter f is included to make the Laplacian of the potential nonzero at r′ = 0.

The interesting case is where n = 2, as

∇ 2σ′(r′ = 0) =
12ab(1− f)
(1 + f)

. (2.104)

For the purposes of the figures in this section, g was fixed at a value of 25. As

mentioned, a different value of g amounts to a redefinition of the given b’s.

We begin by examining how the terms in the energy contribute as compared to

those in the density. For this purpose we look at the value of the density at the

origin r = 0. In figure 2.3 we see that for the energy the expansion appears to

be convergent for all a whereas for the density it definitely is not. Notice that the

expansion is increasingly divergent as we increase the depth of the potential.

This behavior of the energy versus the density is of fundamental importance to

remember when solving the Euler-Lagrange equations. In this case it is the density

which is the quantity of interest. Even though we are minimizing the energy functional
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Figure 2.3: Comparison of the energy and density DE versus depth of the scalar

background potential. The solid line is LDA, small dashes are DE to 2nd order and

large dashes include the DE 4th order term.
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by our choice of scalar field, to do so in an exact manner we must solve the equations

of motion which involve the density. We now confine our interest to the density terms.

In figure 2.4 we consider the termwise behavior for potentials of different width

and fixed a = .5. Small values of b give convergent behavior in a similar manner to

what was found for small values of a. In the figure the plots shown are concentrated

in the region of small widths (large b). At the origin the behavior is predictable, with

steeper potentials having larger and larger contributions from the higher derivatives.

At a nonzero value of r, increasing b is effectively pushing this point from a location

on the flat part of the potential near the origin, up the steep boundary and then into

the asymptotic region. Here this has been done for the point r = .1, which is fairly

close to the origin. Notice that for smaller b the DE shows oscillatory convergence,

but that this behavior disappears as our point moves out. In the asymptotic region

the dominant contribution is that of the fourth order derivative terms.

To complete the analysis of our potential parameters we give plots of the density

at a fixed spatial point versus n and f , figure 2.5. The depth and width are fixed at

the reasonable values a = .5 and b = 30. In the first plot we see a similar effect

for n as was seen for parameter b at r = .1. The points with n ≥ 2 are on the flat

part at the bottom of the potential, while smaller n start up the slope. Looking at

the f plot, we see the value of f can completely control how different terms in the

DE contribute to ρsvac(r = 0). A value f = 1 makes derivatives of second and higher

order zero at the origin, so that the 4th and higher DE terms can not contribute.

Smaller values of f make the flat piece of the potential at the origin slightly convex,

while larger values of f make it concave. We will favor a value of f = .8 for our

fixed backgrounds as giving representative behavior while not suppressing the effects

of higher derivatives.

Finally, consider the shape of the entire vacuum density ρsvac(r). An interesting

question is what effect the width of our potential has on the termwise convergence

at various points. In figures 2.6 and 2.7 we see three plots of ρsvac(r) versus r. As
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Figure 2.4: Density at the fixed values r = 0, 0.1 versus width parameter b.
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Figure 2.5: The density at the origin for the parameters n and f in our background

potential.
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Figure 2.6: DE density terms for a background where the DE converges at all points.

the width is decreased higher derivative terms contribute substantially to the vacuum

density at the origin. In the b = 30 plot of figure 2.7 the 2nd order expansion is still

qualitatively correct. For higher b we definitely need more terms.

We may also ask what effect the potential depth has on the pointwise convergence.

Starting with the parameters of figure 2.6 and increasing a we see in figure 2.8 that

again the higher order terms contribute near the origin. Notice that keeping only the

2nd order terms gives an anomalous parabolic form which is removed at 4th order.

In this case we are on the borderline of being able to see what the vacuum density

looks like using only the derivative expansion.

Finally, in figure 2.9 the potential is taken to be a very deep well. Note the

interesting appearance of a local maximum and two minima in the density structure
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Figure 2.7: DE density terms for fixed potentials of smaller width.
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Figure 2.8: DE density terms for a fixed potential of larger depth.
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Figure 2.9: DE density terms for a very deep potential.

when the 4th order terms are included. However, at this point it is entirely unclear

that we can interpret the form of the vacuum density using just terms from the DE.

It is interesting to note that the 2nd order DE seems to do qualitatively quite well

at approximating the vacuum scalar density. We can see the essential shape of the

vacuum density for potentials of depth of up to a = 0.8.
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Chapter 3

EXACT CALCULATIONS AND DERIVATIVE

EXPANSION IMPROVED CONVERGENCE

3.1 Exact fermion vacuum scalar density in 1 + 1 dimensions

As the next step in our formalism, we consider testing and improving the derivative

expansion series with exact calculations. In this section we restrict ourselves to the

1+1 dimensional case. The usefulness of the 1+1 dimensional DE has been considered

previously by several authors [18, 19, 20, 21]. Our purpose here will be to illustrate an

important idea about the numerical convergence of calculations with a finite cutoff.

This is done by making use of the framework given by Wasson [21], where calculation

of the 1+1 dimensional scalar fermion density is discussed. To evaluate the one-loop

vacuum contributions exactly we must solve for the full interacting fermion Green

function. Thus we must solve the equation

(iγ0ω + iγ1∂x − gσ(x))S(x, x
′; iω) = δ(x− x′), (3.1)

where gσ(x) = M − gsφ(x) is the background scalar field contribution, and γ0 = σy

and γ1 = iσz following the notation in [21]. The Wick-rotated Green function in

momentum space may then be written,

S(iω) =
1

iγ0ω + iγ1∂x − g σ(x)
. (3.2)

The propagator S(x, x′) can be written in terms of the homogeneous solutions of

this equation [19] by the Wichmann-Kroll method [36]. (This is often referred to as

the Green function method.) This will allows us to solve for the trace in equation
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(2.53) for each value of ω. Then, by subtracting the appropriate counterterms and

integrating over all ω, obtain a solution for ρs(x).

To consider the convergence of this exact method Wasson [21] works with a fixed

classical kink soliton background given by

σ(x) = tanh(x/
√
2). (3.3)

As σ(∞) = 1, the fermion has a bare mass g. Thus the convergence of the DE at

large distances depends on the size of 1/g. Also, this field has a zero at x = 0,

so the derivative expansion is divergent at this point. Therefore, we subtract the

appropriate counterterms and calculate the vacuum density exactly up to a cutoff Λ

in the ω integral. Wasson’s expression for this contribution in our notation is

ρs,Evac(Λ, x) = −
1

2π

∫ Λ

−Λ
dω

(

trS(iω)− gσ(x)
ω2

(ω2 + (gσ0)2)3/2

)

−
1

2π
Λ tr [S(iΛ) + S(−iΛ)] . (3.4)

The renormalization terms are displayed explicitly here. The superscript E denotes

that this is the exact result, up to the cutoff Λ.

The tail of the integral was then calculated using the derivative expansion, which

will not diverge over this interval because the integrand is bounded away from zero.

Wasson derives his derivative expansion density by first calculating the energy DE

expression and then taking its variation, δE/δφ (see equations (2.25) and 2.51)).

As this is a one dimensional calculation, the ω integral can be evaluated exactly.

This gives an analytic form with respect to cutoff for the tail of the density under

the derivative expansion approximation. However, because we are dealing with a

cutoff parameter, the way in which the derivative expansion is derived may effect

its convergence — the differences being total derivatives under the integrand. This

density can also be calculated using the Green function expansion, equation (2.91),

in 1 + 1 dimensions. Including the same counterterm as in (3.4) above, this latter
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method gives

ρs,DEvac (x) = −
1

2π

∫
dω
(

gσ(x)

(ω2 + (gσ(x)2))1/2
+
1

4

g ω2∂2σ(x)

(ω2 + g2σ2(x))5/2

−
5

8

g3ω2σ(x)(∂µσ(x))2

(ω2 + g2σ2(x))7/2

)
. (3.5)

Evaluating this expression over the tails (−∞,−Λ) and (Λ,∞), and adding in the

exact contribution (3.4) for the interval (−Λ,Λ), we have the derivative expansion

improved result

ρs,E+DEvac (Λ, x) = ρs,E(Λ, x) +
1

π

[

gσ(x) ln

⎛

⎝
Λ+

√
Λ2 + g2σ2(x)

Λ+
√
Λ2 + g2σ20

⎞

⎠

−
∂2σ(x)

12gσ2(x)

(

1−
Λ3

(Λ2 + g2σ2(x))3/2

)

+
(∂µσ(x))2

g2σ3(x)

(

1−
Λ3(2Λ2 + 5g2σ2(x))

2(Λ2 + σ2(x))5/2

)]

. (3.6)

This expression can be regarded as an interpolation scheme between the full DE

result, corresponding to Λ = 0, and the exact Green function result, corresponding

to Λ → ∞. When (3.6) is used rather than equation (3.15) of Wasson’s paper [21],

the convergence with cutoff Λ is improved1. This can be seen in table 3.1. The first

two columns of this table reproduce the results found in table 1 of reference [21].

The last column shows the results using (3.6). Notice that at a cutoff of Λ/G = 0.5,

the variational method gets only 27% of the way to the exact result, whereas the

direct Green function method gets 80% of the way there. The direct Green function

method becomes asymptotic at a lower value of Λ. We anticipate that this result will

be even more important in 3 + 1 dimensions, as higher partial waves converge at a

higher cutoff. In light of this result, we will use the direct expression (2.53) in 3 + 1

dimensions rather than taking the functional derivative of an energy expression.

1A special thanks to Peter Blunden for writing the numerical code for this calculation in one

dimension.
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Table 3.1: Convergence of various methods for calculating the fermion scalar density

of the kink soliton. Shown is density at x = 0.5 with coupling G = g/
√
2 = 2.

Λ/G ρs(x = 0.5)

ρs,E ρs,E+DE (δE/δφ) ρs,E+DE (trS)

0.0 0.0000 0.0713 0.0713

0.5 -0.0069 0.0344 -0.0357

1.0 -0.0249 -0.0495 -0.0589

2.0 -0.0463 -0.0606 -0.0612

5.0 -0.0584 -0.0613 -0.0613

10.0 -0.0606 -0.0613 -0.0613

20.0 -0.0611 -0.0613 -0.0613

We can see the importance of using the DE density term to evaluate the high

energy tails by comparing figures 3.1 and 3.2. The former shows the convergence

with cutoff when just the exact calculation is performed. The latter includes equation

(3.6) to evaluate the tail and obtains much more rapid convergence. Also shown are

the LDA and 2nd order DE approximation. It is clear that neither can adequately

describe the density for this kink soliton. In fact, we see explicitly that the DE blows

up at the origin as mentioned previously.
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Figure 3.1: Convergence of the exact density expression (3.4) with cutoff for the kink

soliton. (G = g/
√
2)
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Figure 3.2: Convergence of the DE improved density expression (3.6) with cutoff for

the kink soliton. (G = g/
√
2)



61

3.2 Convergence in 3 + 1 dimensions

3.2.1 Exact calculation by partial waves

In 3 + 1 dimensions we may attempt to carry out a procedure analogous to that of

the last section for calculating the exact one-loop density. The solution, however, is

now complicated by the presence of angular momentum states. Here we must solve

(iγ0ω + iγ⃗ ·∇− gσ(x) ) S(x⃗ , x⃗
′; iω) = δ(3)(x⃗ − x⃗ ′). (3.7)

For a spherically symmetric scalar potential σ = σ(r), equation (3.7) can only be

solved exactly for each partial wave. The full Green function is then expressed as

a sum of the contribution from each partial wave. This exact solution in partial

waves was previously considered by Li, Perry, and Wilets in their examination of the

effective energy [18, 24]. Here it is the density that we are interested in, so we review

the method of partial wave expansion in this context. To expand equation (3.7) in

partial waves, we use

S(x⃗ , x⃗ ′; iω) =
1

rr′
∑

κ,m

Sκ(r, r
′; iω)⊗ YκmY

†
κm, (3.8)

δ(3)(x⃗ − x⃗ ′) =
1

rr′
δ(r − r′)

∑

κm

YκmY
†
κm. (3.9)

With the conventions of reference [3], we have

(σ⃗ · ∇⃗ )

(
G(r)

r
Yκm

)

= −
1

r

(
d

dr
+
κ

r

)

G(r)Y−κm. (3.10)

The upper components of the 4×4 matrix Sκ(r, r′; iω) couple to Yκm, while the lower

components couple with Y−κm. The result is the following equation for the radial

Green function:
⎛

⎜⎜⎝
iω − gσ −

d

dr
+
κ

r

−
d

dr
−
κ

r
−iω − gσ

⎞

⎟⎟⎠Sκ(r, r
′; iω) = δ(r − r′). (3.11)
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The Wichmann and Kroll reduction of equation (3.11) can be written

S−κ(r, r
′; iω) =

−γ0
(
Uκ(r)V ⊤κ (r

′)θ(r′ − r) + Vκ(r)U⊤κ (r
′)θ(r − r′)

)

Wκ(ω)
, (3.12)

where Wκ(ω) is the r independent Wronskian

Wκ(ω) = U
2
κ(r)V

1
κ (r)− U

1
κ(r)V

2
κ (r), (3.13)

(1 and 2 representing the upper and lower components respectively). The homoge-

neous solutions satisfied by Uκ and Vκ are:

⎛

⎜⎜⎝
−iω + gσ −

d

dr
−
κ

r
d

dr
−
κ

r
−iω − gσ

⎞

⎟⎟⎠ (Uκ or Vκ) = 0. (3.14)

The boundary conditions are fixed by the conditions on the scalar field

(i) outward solution Uκ :
dσ(r)

dr

∣∣∣∣∣
r=0

= 0,

(ii) inward solution Vκ : σ(r→∞) = σ0.

(3.15)

To smooth the singular nature of the homogeneous solutions we follow the method

given in [2], and scale the solutions componentwise by dividing out the known free

solutions:
⎛

⎜⎝
U1κ

U2κ

⎞

⎟⎠ =

⎛

⎜⎝
U1κ0 Ũ

1
κ

U2κ0 Ũ
2
κ

⎞

⎟⎠ ,

⎛

⎜⎝
V 1κ

V 2κ

⎞

⎟⎠ =

⎛

⎜⎝
V 1κ0 Ṽ

1
κ

V 2κ0 Ṽ
2
κ

⎞

⎟⎠ , (3.16)

where

Uκ0 =

⎛

⎜⎜⎝
riκ−1(z0ωr)
rz0ωiκ(z0ωr)

gσ0 + iω

⎞

⎟⎟⎠ , Vκ0 =

⎛

⎜⎜⎝
rkκ−1(z0ωr)
−rz0ωkκ(z0ωr)
gσ0 + iω

⎞

⎟⎟⎠ . (3.17)

Here z0ω =
√
g2σ20 + ω2, and iκ, kκ are modified spherical Bessel functions of order

κ. This scaling is an important step for the density calculation, as it turns out that
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the solution must be extremely accurate near the origin (r = 0). This is a result of

the fact that the Green function solution and r-dependent counterterms blow up as

r→ 0. For the scaled solutions, the new equations we must solve are
⎛

⎜⎜⎜⎝

(gσ(r)− iω) F(r,ω) −
d

dr
− (gσ0 − iω) F(r,ω)

d

dr
+
(gσ0 + iω)

F(r,ω)
−
(gσ(r) + iω)

F(r,ω)

⎞

⎟⎟⎟⎠

(
Ũκ or Ṽκ

)
= 0, (3.18)

where

F(r,ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(gσ0 + iω)

z0ω

iκ−1(z0ωr)

iκ(z0ωr)
outward,

−
(gσ0 + iω)

z0ω

kκ−1(z0ωr)

kκ(z0ωr)
inward.

(3.19)

The boundary conditions for this new differential equation can be derived from

the boundary conditions on the scalar field (3.15). For the outward solution we solve

the equations near the origin by making Taylor series expansions of the r-dependent

terms. This is necessary as the function F(r) is singular at the origin. With

U1κ(r → 0) = a0 + a1r + a2r
2 + a3r

3 + a4r
4 + . . .

U2κ(r → 0) = b0 + b1r + b2r
2 + b3r

3 + b4r
4 + . . . (3.20)

σ(r→ 0)± iω = s±0 + s1r + s2r
2 + s3r

3 + s4r
4 + . . .

we find

a0 = 1, a1 = 0, a2 =
(s+0 s

−
0 − z

2
0ω)

2(2κ+ 1)
,

a3 =
(b1s

+
0 + b0s1)z

2
0ω

3(2κ+ 1)(φ0 + iω)
,

a4 =

z20ω

(
(b1s1 + b0s2 + b2s

+
0 )

(φ0 + iω)
− a2

)

4(2κ+ 1)
+

z40ω

(

1 +
b0s
+
0

(φ0 + iω)

)

4(2κ+ 1)2(2κ+ 3)
, (3.21)

and
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b0 =
s−0 (gφ0 + iω)

z20ω
, b1 =

(2κ+ 1)(gφ0 + iω)s1
(2κ+ 2)z20ω

,

b2 =
(2κ+ 1)(gφ0 + iω)(a2s

−
0 + s2)

(2κ+ 3)z20ω
,

b3 =
(s1(φ0 + iω)− b1z20ω)
(2κ+ 3)(2κ+ 4)

+
(2κ+ 1)(φ0 + iω)

(2κ+ 4)z20ω
(s3 + a3s

+
0 + a2s1),

b4 =
((φ0 + iω)(s2 + a2s

−
0 )− b2C

2
ω)

(2κ+ 3)(2κ+ 5)
.

+
(2κ+ 1)(φ0 + iω)

(2κ+ 5)C2ω
(s4 + s3a2 + s1a3 + s

−
0 a4). (3.22)

The boundary condition (i) corresponds to setting s1 = 0 in these equations. This

extends the results in [2], which gives a0 and b0. The large number of terms will

enable us to find the components of the Green function with great precision near

the origin. Also, it is possible to test the sensitivity to the boundary condition near

the origin by including a certain number of these terms. The reason for which such

accuracy is necessary is because when we solve for the Green function components by

making a Taylor series expansion near the origin, it is found that the leading order

terms to the density under the ω integral are

1

3π

σ(r)

r
+

(
ℜ(W−1) c1
z0ω

− σ(r) z0ω

)

+O(r), (3.23)

where ℜ is the real part. Here c1 and W are unknown quantities (the former is the

upper component of Vκ at the origin). By making similar expansions of the DE and

counter term densities we find that an identical 1/r piece appears. Therefore the

true information for the density at the origin comes from the next term in (3.23),

and depends on the numerically determined c1, and W. This requires a numerical

evaluation of the Green function that is valid to 12 digits, and therefore a very

accurate boundary condition near r = 0.

We solve the equations for r→∞ by similarly making an expansion in 1/r of the

the r-dependent terms

V 1κ (r→∞) = a0 + a1/r + . . .
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V 2κ (r→∞) = b0 + b1/r + . . . (3.24)

σ(r→∞)± iω = c±0 + c1/r + . . .

and find

a0 = 1, b0 = 1, (3.25)

to be sufficient if these conditions are applied at fairly large r. This specifies the

boundary conditions for the incoming solution.

To define the partial wave contribution to the density, we combine (2.53) and (3.8)

to find

ρs,Evac(r) = −
1

2π

∫ ∞

−∞
dω

∞∑

κ=−∞

2|κ|
4πr2

trSκ(r, r; iω). (3.26)

Here the angular integral and sum over magnetic substates m have been collapsed to

give the factor 2|κ|/4πr2. We proceed by noting that

Sκ(r, r
′;−iω) = σ1 S−κ(r, r

′; iω) σ1, (3.27)

trSκ(r, r
′;−iω) = trS−κ(r, r

′; iω), (3.28)

tr (Sκ(r, r
′; iω) + S−κ(r, r

′; iω)) = 2ℜ trSκ(r, r
′; iω). (3.29)

The first equation here can easily be seen from (3.11) by multiplying by σ1 on the left

and right, and by introducing a σ21 term between the operator matrix and the Green

function. The second then follows immediately, while the third can be seen by taking

the complex conjugate of (3.11). With this reduction, we can express the result for

the exact density as

ρs,Evac(r) =
∞∑

κ=1

κρEκ (r), (3.30)

ρEκ (r) = −
1

2π
4
∫ ∞

−∞
dω

1

4πr2
ℜ trSκ(r, r; iω). (3.31)
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3.2.2 Partial wave DE expansion

Next we turn to the evaluating the derivative expansion as given by equation (2.91).

In 3 + 1 dimensions

ρs,DEvac (x) = −Trp 4
[

σ(x)

(−p2 + σ(x)2)
+
1

2

∇ 2σ(x)
(−p2 + σ(x)2)2

−
2

3

σ2(x)∇ 2σ(x)
(−p2 + σ(x)2)3

−
5

3

σ(x)(∇σ(x))2

(−p2 + σ(x)2)3
+ 2
σ3(x)(∇σ(x))2

(−p2 + σ(x)2)4

]
. (3.32)

As the exact density in 3 + 1 dimensions could only be calculated in a partial wave

sum we must also decompose the derivative expansion in order to test its validity.

This can be done for a radially dependent potential σ(r) which is assumed in our

form of the RHA. To decompose our expression (3.32) for the density we again follow

the method used by Li, Perry and Wilets [2, 23]. The utility of their method can be

summed up in the following manner. For a constant scalar field σ = σ0 the second

order form of the radial Dirac equation is diagonal, and the partial wave solutions

are known. Therefore the form of the radial Green function can be written explicitly.

The Green function can also be expressed as a spectral sum [37]

S(x, x′; p0) =
∑

α

ψα(x)ψ̄α(x′)

p0 − ϵα
, (3.33)

from which we derive the expression for higher powers of the Green function

Sn(x, x′; p0) =
∑

α

ψα(x)ψ̄α(x′)

(p0 − ϵα)n
=
(−1)n−1

(n− 1)!
d(n−1)

dp(n−1)0

S(x, x′; p0). (3.34)

An equation for the momentum space factors can then be written using the following

procedure [23]. First we take the trace of expression (3.34) for Sn in momentum space

and then make use of equation (3.8) to expand this in partial waves. This implements

the same partial wave expansion that we did for the exact Green function. We then

use equation (3.12) evaluated for the free particle solutions (3.17), whereupon taking

the trace we obtain the sum ∆nκ−1+∆
n
κ given in equation (3.37) below. We then have
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∫
d3p

1

(w2 + p⃗ 2 + σ2)n
= (−1)n

∞∑

κ=1

κΥnκ, (3.35)

Υnκ =
1

4πr2
(∆nκ−1 +∆

n
κ), (3.36)

∆nκ = −
1

(n− 1)!

(
1

2zω

d

dzω

)n−1
zωr

2iκ(zωr)kκ(zωr), (3.37)

where zω = (ω2 + σ2)1/2, and iκ, kκ are the modified spherical Bessel functions of

order κ. The free particle Wronskian is

W(ω) =
z0ω

gσ0 + iω
. (3.38)

Note that when σ is radially dependent we still require only the value of the density

at a fixed radial point, say r′, specified on the LHS of equation (3.37). Therefore any

potential that agrees with σ(r) at point r′ will give the same result. In particular,

we can make the simplest choice of a constant potential σ = σ(r′). Actually we are

just restating the fact that the derivative expansion is local. Therefore (3.36) can be

used without regard to the radial dependence of σ. The derivative expansion density

is therefore

ρs,DEvac (r) =
∞∑

κ=1

κ ρDEκ (r), (3.39)

ρDEκ (r) = −
1

2π
4
∫
dω
(
−σ(r)Υ1κ +

1

2
∇ 2σ(r)Υ2κ +

2

3
σ(r)2∇ 2σ(r)Υ3κ

+
5

3
σ(r)(σ′(r))2Υ3κ + 2σ

3(r)(σ′(r))2Υ4κ

)
, (3.40)

where zω is now dependent on both ω and r. This differs from the 1 + 1 dimensional

case in that here we cannot easily evaluate the ω integral over a particular range of

ω. This is a result of the more complex form of the integrand as products of mod-

ified spherical Bessel functions, along with derivatives of such products. Numerical

evaluation, however, is possible.

The same partial wave expansion as was done for the DE can be made for the

counterterm expansion in an identical manner. We take the terms in (2.82) that
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correspond to the divergent terms from (2.89) in 3 + 1 dimensions. This gives the

following counter term expression which must be subtracted from the DE and Exact

expressions (3.40), (3.31) to give a finite result.

δρsvac(r) =
∞∑

κ=1

κ δρκ(r),

δρκ(r) = −
1

2π
4
∫
dω
(
−σ(r)Υ10κ − (σ(r)

2 − σ20) Υ
2
0κ

+
1

2
∇ 2σ(r)Υ20κ −

2

3
σ20Υ

3
0κ

)
, (3.41)

where Υ0κ is the Υ in (3.37) with z0ω = (ω2 + σ20)
1/2 for zω.

3.2.3 Interpolation scheme and the numerical procedure

Now that equations for both the exact and derivative expansion densities have been

derived, we are interested in the numerical convergence of our expressions. The aim

in this subsection is to observe how the finite quantity

ρ̃s,Evac(r) = ρ
s,E
vac(r)− δρ

s
vac(r), (3.42)

can be determined with the least amount of numerical effort. The way in which

the actual shape of the background potential affects the convergence and size of the

correction will be discussed in the next subsection. The quantity ρ̃s,Evac(r) can be

written as follows:

ρ̃s,Evac(r) =
∞∑

κ=1

(
ρEκ (r)− δρκ(r)

)
(3.43)

= ρ̃s,DEvac (r) +
∞∑

κ=1

(
ρEκ (r)− ρ

DE
κ (r)

)
, (3.44)

where the tilde indicates a renormalized expression. Note that in the latter of the two

expressions the difference between the exact and derivative expansion partial wave

densities gives a result that is independent of renormalization. The renormalization

is entirely taken care of in the DE term ρ̃s,DEvac (r). Writing ∆ρκ = ρ
E
κ − ρ

DE
κ , and
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inserting a finite cutoff on the ω integral, we have that

∆ρκ(Λ, r) = −
1

2π2

∫ Λ

−Λ
dω
(
1

r2
ℜ trSκ(r, r

′; iω) + σ(r)Υ1κ −
1

2
∇ 2σ(r)Υ2κ

−
2

3
σ(r)2∇ 2σ(r)Υ3κ −

5

3
σ(r)(σ′(r))2Υ3κ − 2σ

3(r)(σ′(r))2Υ4κ

)
. (3.45)

All quantities here are even with respect to ω, so

∆ρκ(Λ, r) = −
1

π2

∫ Λ

0
dω
(
1

r2
ℜ trSκ(r, r

′; iω) + σ(r)Υ1κ −
1

2
σ′′(r)Υ2κ

−
2

3
σ(r)2σ′′(r)Υ3κ −

5

3
σ(r)(σ′(r))2Υ3κ − 2σ

3(r)(σ′(r))2Υ4κ

)
. (3.46)

The exact one-loop density is then

ρ̃s,Evac(r) = ρ̃
s,DE
vac (r) +

∞∑

κ=1

lim
Λ→∞

∆ρκ(Λ, r). (3.47)

The renormalization for the exact density is accounted for in the expression for the

DE, and the partial wave sum acts as a correction. Since the former is analytically

known (c.f. section 2.1) the problem is simply to calculate the latter.

The form of our numerical calculation of (3.46) is as follows. For a fixed κ we

evaluate the ω integral numerically. For each value of ω we must solve a set of

complex coupled first order equations (the Wick rotated radial Dirac equation in the

presence of a scalar source). This calculation is performed twice, once going in from

the boundary condition at ∞ and once out from the condition at the origin. We

must also calculate both the modified spherical Bessel functions and their derivatives

because these appear as coefficients in the differential equations as well as explicitly

in the integrand through the factors Υnκ. Note that for each value ω the integrand is

determined by this procedure for all r. Finally, we calculate the ω integral out from

the origin to a value of the cutoff where convergence has occurred for all r. This

entire process may then be repeated for the next value of κ.

Because of the large degree of cancelation between terms in (3.46) our calculations

must be very accurate. In particular the differential equations are solved with 12
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significant figures, and all the modified spherical Bessel functions are also calculated

to greater than 12 digits accuracy. This has been found to give sufficient accuracy,

after various manipulations, to determine the integrand over a wide range of r and ω.

The required programs were written using double numerical precision in Fortran. The

code is essentially an adaptation of standard routines from [38]. The ω integration is

performed through a Romberg integration over a particular interval in ω, refining the

value by the nth stage of the extended trapezoidal rule, and then extrapolating to zero

step size using Neville’s algorithm. This process is repeated over another such interval

until the contributions are shown to be asymptotic. (An estimate may then be made

for the remainder by fitting a second order polynomial in 1/ω2 if this is desired.) The

Bessel functions are calculated using the standard iterative procedures, where special

attention is paid to the required accuracy. In particular, large and small values of the

argument are found by using the appropriate series expansions. Derivatives are also

found using iteration, and when this proves unreliable, by expansion. Finally, the

differential equations are solved using an adaptive stepsize 5th order Runge Kutta

routine [38]. Modifications are made to incorporate a minimum r mesh on which

the Green function must be found. In particular, the entire routine will run on

any predetermined minimum mesh in r. All of these routines are combined into a

correction subroutine which, given a background scalar potential, derives a corrected

vacuum density. This makes the routine portable enough for inclusion in a self-

consistent calculation (which is done in chapter 5).

One method by which we can test our numerical code is to recall that our partial

wave method is based on that of [2]. Therefore, with our code, it is a simple matter to

evaluate the expressions that these authors give for the energy of the DE and exact

calculation in each partial wave. Doing this, we obtain the numbers in table 3.2,

which at most disagree by 1 or 2 in the last digit of the numbers quoted in reference

[2].
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Table 3.2: Partial wave energies for the soliton potential of reference [2]. (Consistency

check)

κ DE Energy Exact Energy

1 0.2240459× 100 0.221799× 100

2 0.1496159× 100 0.148745× 100

3 0.1027586× 100 0.102322× 100

4 0.7202294× 10−1 0.717738× 10−1

5 0.5136474× 10−1 0.512104× 10−1

6 0.3721826× 10−1 0.371170× 10−1

7 0.2737292× 10−1 0.273035× 10−1

8 0.2041825× 10−1 0.203691× 10−1

9 0.1543499× 10−1 0.154003× 10−1

10 0.1181852× 10−1 0.117921× 10−1

11 0.9158048× 10−2 0.913817× 10−2

12 0.7177235× 10−2 0.716210× 10−2

3.2.4 Examining the convergence

The overall goal for testing the convergence of the correction is to see how many

partial waves and what value of the cutoff Λ are sufficient to correct ρs,DEvac to give

the exact result within a required accuracy. Consider the convergence with cutoff

Λ. In figure 3.3, the benefit of using the expression (3.44) with ∆ρκ(r) rather than

calculating the full exact ρ̃κ in (3.43) can be seen. The derivative expansion corrected

series is seen to converge to an asymptotic form faster with respect to the cutoff. This

behavior is also seen in the second and higher partial waves.

The finite cutoff in equation (3.47) can alternatively be viewed as a parameter that
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makes a continuous smooth extrapolation from the DE result at Λ = 0 to the exact

result as Λ → ∞. In 1 + 1 dimensions this was the view exploited by Wasson [21],

as explained in section 3.1 . In 3 + 1 for a given partial wave this provides a smooth

extrapolation for including the exact correction for that partial wave. In figure 3.4,

plotting the density for various values of cutoff Λ, we can see how the density function

converges at different values of r. This figure shows the extrapolation mechanism for

κ = 1. Note that the largest cutoff curve plotted is a factor of ten bigger than the

preceding curve. This interpolation mechanism turns out to be an important tool

when self-consistent solutions are attempted (see chapter 5).

The final issue of convergence is that of the partial wave series. In particular, it
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was noted that the form of the derivative expansion was at one point manipulated in

a way that affected the termwise definition of partial wave contributions (although

not the entire sum). We can make use of this manipulation by considering three

different forms of the partial wave derivative expansion and examining the partial

wave convergence of these. Two of these forms were derived above, one being (3.40)

(form 1), and the second being the analogous partial wave decomposition of (2.79)

(form 5). The third is a partial wave decomposition that was made of a form obtained

by Blunden [26] (form 4) by expanding the first order form (2.56). The equations for

these three forms are given here for reference:

Form 1:

ρDEκ (r) = −
1

2π
4
∫
dω
(
−σΥ1κ +∇

2σ
{1
2
Υ2κ +

2

3
σ2Υ3κ

}

+(σ′)2
{
5

3
σΥ3κ + 2σ

3(r)Υ4κ

})
, (3.48)

Form 4:

ρDEκ (r) = −
1

2π
4
∫
dω
(
−σΥ1κ +∇

2σ
{
5

24
Υ2κ − (

2

3
ω2 + σ2)Υ3κ + (ω

4 − σ4)Υ4κ

}

+ (σ′)2
{
−
25

48
σΥ3κ −

1

4
(17ω2 + 5σ2)σΥ4κ − σ(5ω

4 + 2σ2ω2 − 3ω4)Υ5κ

})
, (3.49)

Form 5:

ρDEκ (r) = −
1

2π
4
∫
dω
(
−σΥ1κ +∇

2σ
{
1

3
Υ2κ −

2

3
(ω2 + 2σ2)Υ3κ −

8

3
(ω2 + σ2)σ2Υ4κ

}

− (σ′)2
{
5

3
σΥ3κ +

4

3
(5ω2 + 11σ2)σΥ4κ + 16σ

3(ω2 + σ2)Υ5κ

})
. (3.50)

Using these expressions we may now form the corresponding density correction

to (3.46). In figures 3.5 to 3.10 the partial wave terms from these forms are shown

for two different background potentials. The DE is only mildly divergent for the

a = .5 case and is quite divergent for a = .8 case. It appears that forms 4 and 5 may

converge faster with partial wave than the reduced form 1 does. However, form 1

has the advantage of being the simplest form and also does not contain any Υ5κ term.

Due to this numerical advantage, form 1 will be used exclusively here. Form 1 gives
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one less derivative of the modified spherical Bessel functions that we must calculate

to 12 significant digits. Another feature to notice is that the solutions pictured in

figures 3.8 to 3.10 have at most one zero crossing unlike the situation in figure 2.9

with the fourth order derivatives.
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Figure 3.11: Vanishing correction when the DE is convergent. The partial wave

corrections are shown to be consistent, with essentially zero correction for a case

where we expect the 2nd order DE to be convergent

3.2.5 Size of the correction for different background fields

Here we consider how varying the shape of the background field affects the size of

the correction. The graphic approach here is analogous to the approach taken in

section 2.4. In particular, we will be able to pinpoint the region where the derivative

expansion is convergent by second order. The shape of the potential is varied by

changing the parameters (a and b) while (g = 25, n = 2, f = .8) are fixed. For

consistency we first consider the case analogous to figure 2.6, where we expect that

the DE will have converged for all r by second order. In figure 3.11 we see the result

of correcting the 2nd order DE (in the manner of equation (3.47)) with two partial

wave terms is essentially no change.
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Figure 3.12: Partial wave corrections for a narrow potential.

Now consider changing the width of the potential for a fixed depth of a = .5. As

we decrease the width, figure 3.12, the DE begins to break down near the origin and

a nonzero correction appears. In figure 3.13 we squeeze the potential even more and

see that the correction is needed even further out from r = 0. The densities here have

at most one internal zero.

Finally consider what happens when we increase the depth. The sequence of

plots in figures 3.14 and 3.15 have a fixed b = 30 and various a. Notice that for many

potentials we require more partial wave contributions than the two shown to obtain

the exact result. However, we do obtain the exact result at r = 0 as only ∆ρ1 is

nonzero there.
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Figure 3.13: Partial wave corrections for very narrow potentials.
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Figure 3.14: Partial wave contributions for deep potentials.
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Figure 3.15: Partial wave corrections for a very deep potential.



87

Chapter 4

QHD SELF-CONSISTENT CALCULATION

Here we consider the effect of including the one-loop vacuum effects via the DE

in the context of a relativistic bound state calculation. In this chapter we consider

a case where the DE expansion is convergent when terms up to second order in the

derivatives are included. This enables us to investigate the vacuum effects in a non-

trivial model, while dealing directly with the coupled nonlinear dynamical equations.

We consider a renormalizable relativistic meson exchange theory with interacting

fermions (nucleons ψ), scalar bosons (sigma φ), and vector bosons (omega V0, rho

b0, and photon A0) referred to as QHDII [3]. The size of DE effects for finite nuclei

was first considered by Perry [17] for the fixed background field obtained from a LDA

self-consistent solution (often referred to as the relativistic Hartree approximation,

RHA). Self consistent solutions including the derivative terms have been performed

by Wasson [39]. Though unpublished, it is known that these effects were also con-

sidered by Fox1. The aim of using this model to describe finite nuclei here will be to

generalize the results of references [39] and [40]. These previous results are extended

by including the nonlinear scalar interaction terms along with their associated deriva-

tive expansion, and the use of a more general renormalization method. We also take

the photon as coupling to the charge of the protons in nuclei (as opposed to the

method of [39]). It is important to keep in mind the aim of observing the effect of

the vacuum terms in a self-consistent calculation. We will reduce the number of free

parameters in the finite nuclei model by requiring the energy per nucleon to saturate

1W. R. Fox, Ph.D. thesis, referred to by [15].
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at a specified Fermi level in nuclear matter.

Current phenomenological models of finite nuclei and nuclear matter often take

more complicated forms than this older prototype model. For example, more recent

relativistic models of finite nuclei often include the pion and other mesons, and pos-

sibly the effects of chiral symmetry [41, 42]. Note that even though the pion is the

lightest meson, no pions are included here. This is acceptable because the neutral

scalar and vector mesons are the most important for modeling bulk properties [15].

For models of infinite nuclear matter, higher orders in the loop expansion have been

considered [43]. Also, the possibility of forming neutral or charged kaon condensates

is of theoretical interest [44]. It is in the interest of illustrating the one-loop effects

that we choose not to overcomplicate the model described below.

4.1 QHD model

A model of finite nuclei is desired that can reproduce the shell structure of bound

valence nucleons. Essentially we will extend the model used by Fox [40] by including

the derivative terms in the vacuum densities derived from both fermionic and bosonic

loops. Also, in the manner of Rudaz et. al. [45], we will vary the choice of our three

and four body renormalization point for the fermion loops. The Lagrangian density

for finite nuclei is [3]

LQHDII = ψ̄[i/∂ − gvγ0V0 − gρτ3γ0b0 − e12(1 + τ3)γ0A0 − (M − gsφ)]ψ

+
(
(12∂µφ)

2 − U(φ)
)
− 1
2

(
(∂µV0)

2 −m2vV
2
0

)
− 1
2(∂µA0)

2

−12
(
(∂µb0)

2 −m2ρb
2
0

)
. (4.1)

Here the scalar field interaction is written

U(φ) =
m2s
2
φ2 +

κ

3!
φ3 +

λ

4!
φ4. (4.2)
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An extension is made here of the field equations given in [3] by including vacuum

density terms, as well as the general scalar interactions via U(φ):

∇ 2φ− U ′(φ) = −gs(ρ
s
val + ρ

s
vac + ρ

nl
vac) (4.3)

∇ 2V0 −m
2
vV0 = −gv(ρ

v
val + ρ

v
vac) (4.4)

∇ 2b0 −m
2
ρb0 = −gρ(ρ

b
val) (4.5)

∇ 2A0 = −e(ργval) (4.6)

Mr

⎛

⎜⎝
Gκ(r)

Fκ(r)

⎞

⎟⎠ = 0 with
∫ ∞

0
dr
(
|Gκ|

2 + |Fκ|
2
)
= 1. (4.7)

HereMr is the 2× 2 operator which implements the radial Dirac equation,

Mr = 1
d

dr
+ σ3

κ

r
− iσ2(E − gvV0 − tagρbo − (ta + 12)eA0)− σ1(M − gsφ). (4.8)

The valence fermion density contributions are

ρsval =
∑

a

(
2ja + 1

4πr2

) [
|Gκ|

2 − |Fκ|
2
]

(4.9)

ρvval =
∑

a

(
2ja + 1

4πr2

) [
|Gκ|

2 + |Fκ|
2
]

(4.10)

ρbval =
∑

a

(
2ja + 1

4πr2

) [
|Gκ|

2 + |Fκ|
2
]
(−1)ta−1/2 (4.11)

ργval =
∑

a

(
2ja + 1

4πr2

) [
|Gκ|

2 + |Fκ|
2
]
(ta +

1
2). (4.12)

The filled shells are characterized by the quantum numbers a = (n,κ, t) and j =

|κ|− 12 . The isospin parameter ta = ±
1
2 differentiates between the proton and neutron

states.

Note in (4.6) that only the scalar sigma meson and the vector omega meson have

terms representing vacuum contributions. The sigma meson equation is the only

one whose vacuum contribution will contribute at the LDA level. The others don’t

contribute as a consequence of isovector and electromagnetic current conservation

and the conservation of baryon number. For the derivative expansion there will
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be contributions to all of the boson equations, however only the sigma and omega

contributions will be significant [15].

It is sufficient to evaluate the vacuum density contributions using the DE to second

order. The validity of this statement can easily be seen from the characteristic size

of the scalar field. It turns out that the size of this field can be modeled by the

parameters from section 2.4 as (a=.3, b=.005, f=.7, n=2, g=1). Thus, the depth is

approximately one-third the mass of a nucleon and the width corresponds to about

3 fm, or 0.6 M−1. In figures 2.6 and 3.11 we saw that even for a deeper narrower

potential no corrections beyond the 2nd order DE are necessary.

The choice of renormalization here is as follows. For the self interactions of the

scalar sigma field, we renormalize in such a way so that the first nonzero contributions

occur beyond the four body term,

dnUB(φ0)

dφn
= 0, n = 0, 1, . . . , 4. (4.13)

The parameters in (2.13) are therefore [15]

W (x) = m2s + κφ+
λ

2
φ2,

W0 = m2s,

fb(φ) = −
1

3

(
κφ

m2s

)2 (
κφ

m2s
+
3λφ2

2m2s

)

+
1

12

(
κφ

m2s

)4
. (4.14)

Thus the couplings κ and λ will not be shifted by the self interacting scalar vacuum.

For the fermionic contribution we renormalize following [45]:

dnUs(φ0)

dφn
= 0 (n = 0, 1, 2),

d3Us(µ)

dφ3
= 0,

d4Us(µ)

dφ4
= 0, Z1s(σ = σ0) = 0. (4.15)

This fixes the parameters in (2.6) as

f0 = ln(µ/σ0), f1 = 1− 4 ln(µ/σ0), f2 = −
7

2
+ 6 ln(µ/σ0),

f3 =
25

3
− 4
µ

σ0
, f4 = −

25

12
, z1s = 0. (4.16)
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Here and in the following we will make use of the notation

σ(x) =M − gsφ(x), and σ0 =M, (4.17)

to simplify and connect the form of the equations to our previous results. The utility

of the renormalization (4.16) is essentially to allow three and four body effective vac-

uum forces to contribute along with the nuclear matter mean field many body terms.

Note that we have reduced the generality of the model by allowing contributions here

from only fermionic and not bosonic loops. The parameter µ is now not independent

of κ and λ, but really gives a one-loop renormalization of their values. With these

specifications the vacuum densities to 2nd order in the DE are

ρsvac(r) = −
1

4π2

(
σ3(4 ln(

σ

µ
) + 1)− f1M

3 − 2f2M
2gsφ

−3f3M(gsφ)
2 − 4f4(gsφ)

3
)

−
1

4π2

(
2 ln(

σ

M
)g2sφ

′′(r)−
1

σ
((gsφ

′(r))2 +
2

3
(gvV

′
0(r))

2)
)
, (4.18)

ρvvac(r) = −
1

3π2

(
ln(
σ

M
)gvV

′′
0 (r)−

1

σ
gvgsV

′
0(r)φ

′(r)
)
, (4.19)

ρnlvac(r) = −
m4s
64π2gs

{
2

(
κ+ λφ

m2s

)[(
1 + κφ+ 12λφ

2

m2s

)

ln

(
1 + κφ+ 12λφ

2

m2s

)]

−

(
κφ+ 12λφ

2

m2s

)

−

(
κφ

m2s

)(
κφ+ 12λφ

2
)
+
1

3

(
κ

m2s

)4
φ3
}

−
1

48π2gs

(κ+ λφ)

(m2s + κφ+
1
2λφ

2)

(

−
(2λm2s − κ

2)(φ′(r))2

(m2s + κφ+
1
2λφ

2)
− 2(κ+ λφ)φ′′(r)

)

. (4.20)

Now that all quantities have been specified, we can proceed with the solution of

the equations of this section. The method employed is that of relatively straight

forward iteration. The radial Dirac equation is solved using 4th order Runge-Kutta

techniques to shoot to a matching point. Continuity at this point enables us to obtain

a new estimate for the appropriate eigenvalue. The Poisson-like equations are solved

using finite difference methods, while iteratively including nonlinear terms. Some
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degree of technique is required to keep the routine stable, but as a whole the method

is very successful.

4.2 Fitting the parameters

Having completed the specification of our model we now consider the requirements

that are imposed on the parameters (M,ms,mv,mρ, gs, gv, gρ, e,κ, and λ). Of these,

the following masses are fixed at their experimental values:

M = 939 MeV, mv = 783 MeV, mρ = 770 MeV, (4.21)

with the exception that we use the true nucleon masses for the proton and neutron

(Mp=938.28 MeV, Mn=939.57 MeV) when solving the radial Dirac equation. Two

couplings are also fixed:

α =
e2

4π
=

1

137.035
, and gρ = 4.038. (4.22)

The first is the accepted value (at our energy scale) for the electromagnetic coupling,

while the latter is the value fit from requiring a symmetry energy of 35 MeV for the

Mean Field Model of nuclear matter [15, 40]. As these previous models have found

very little sensitivity to the parameter gρ, we simplify our description by fixing it at

this value, even though, for complete generality gρ should be fit self-consistently with

the other parameters that are determined in nuclear matter.

In nuclear matter for a given ms we fit the couplings gs and gv by requiring a bind-

ing energy per nucleon of −15.75 MeV at kF = 1.30 fm−1. To model infinite nuclear

matter (an equal infinite number of neutrons and protons) several simplifications can

be made to the model of finite nuclei described in the last section. We may neglect

electromagnetic effects and, as mentioned above, also the rho meson. The remaining

scalar and vector mesons fields are then fixed at constant values by the translational

symmetry of the infinite medium. The field equations fix the vector meson field in

terms of the baryon number density. The nucleon equation has the standard form of
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a plane wave solution with shifted mass and energy, as noted previously (section 1.4).

The only equation that remains to be solved is the specification of the scalar field.

The scalar field will depend on the nucleon field solution, which also has nontrivial

scalar field dependence. Therefore, there remains a single transcendental equation to

solve for φ which minimizes the effective energy. Note that the LDA vacuum densities

contribute to this equation, but the higher order DE terms do not. The equation may

be written [15]

σ = M −
g2s
m2s2π2

(
σ3 ln(σ) + kFσ(k

2
F + σ

2)
1
2 − σ3 ln(kF + (k

2
F + σ

2))
1
2

)

−
g2s
m2s
(ρvacs + ρ

vac
nl ) with no derivative terms

+
gss
m2s

(
κφ2

2g3s
+
λφ3

6g4s

)

. (4.23)

Finally, we fix one parameter in finite nuclei, the scalar mass ms. The parameter

ms is set to a value that gives the correct charge radius for 40Ca. When the nonlinear

couplings κ and λ are nonzero, the nuclear matter calculation will depend explicitly

on the value of ms, and we must iterate the two calculations to reach final values.

This is not a problem when the nonlinear terms are left out. In this case the coupling

gs will scale with ms in the same manner throughout the nuclear matter equations,

so that the value of ms may then be independently determined in the finite nucleus

calculation.

The remaining unspecified parameters in this model are the many body couplings

(κ,λ, µ), which as we mentioned above, can be regrouped into renormalized couplings

at the one-loop level

κ′ = κ+
6g3s
π2M

(
1−

µ

M
+ ln(

µ

M
)
)
, (4.24)

λ′ = λ−
6g3s
π2
ln(
µ

M
). (4.25)

Usually in a renormalization procedure, we have a physical idea or quantity which we

use to fix the meaning of the parameters in our model. (For example, we renormalize
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so that a mass m is the physically observable mass, which from unitarity must be

taken as the pole in the exact propagator [12].) However, here we have not made

such a choice to define the physical meaning of the parameters κ and λ. Instead they

are treated as an additional manner in which we can adjust the model. If a physical

specification had been made, then the original coupling parameters of the theory

may be modified at one-loop, giving us new couplings κ′ and λ′ which satisfy this

specification. The value of the parameter µ would then telling us how the original

couplings were modified to maintain our specification.

Equations (4.24) and (4.25) allows us the freedom of removing the µ dependence

in the fermion renormalization by including it explicitly in the new parameters κ′ and

λ′. Instead we choose to use the equations as given previously, and simply note that

this functional inter-dependence exists.

4.3 Nuclear matter

The quality of different models (κ,λ, µ) can be assessed by looking at experimentally

determined quantities. A representative range of models is given in table 4.1.

The first four models do not include nonlinear scalar terms, and simply consider

the effect of µ. The fifth model is the MFA, and is the only model which does not

include any vacuum terms. Models six through eight have nonlinear self-coupling

terms and both fermionic and bosonic one-loop contributions. Two of the parameter

sets here (6,7) were chosen to correspond to the most promising nonlinear models

considered in [40]. The last model, number 9, has nontrivial µ (µ/M = 1.2), as well

as nonlinear terms (nonzero κ and λ). All of the values in table 4.1 are a result of

the fit to nuclear matter and finite nuclei using a value of rchrms = 3.483±0.001 fm for

the root mean square charge radius of 40Ca.

In nuclear matter we have extracted the compressibility K, and skewness S/K
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[45]

K = k2F
d2

dk2F
(E/A), S = k3F

d3

dk3F
(E/A), (4.26)

as well as the effective mass ratio σ/M . We may then determine for which models

they approach the experimentally favored ranges [15]

200 MeV < K < 350 MeV, 0.58 <
σ

M
< 0.65, (4.27)

and where S/K fits breathing mode data [45]. Rudaz et. al. [45] have noted that

for κ = 0, λ = 0 the effect of varying the parameter µ is to prescribe a semicircle in

the K, S/K plane. The results for the models we are considering are summarized in

figure 4.1. From this figure we see that models 4, 6, and 9 are favorable. However,

when we examine the effective mass ratio σ/M in table 4.1, we see that these three

models all fall outside the desired range. The models which have a more acceptable

effective mass (2 and 5) do not satisfy both of the restrictions on K and S/K. This

is known to be a generic feature of this type of finite nuclei model [15, 40].

As a result of the nuclear matter fit we would choose to favor models (2, 4, 6, and

9). Note that the limits from K and S/K make both the MFA and RHA unfavorable.

The conclusion of [45] was to favor a value of µ = 1.2, as not only does this value agree

with the experimental limits, but also gives the most stable minimum for the effective

scalar field potential. There is yet another aspect of this stability, which appears when

we consider the effect of nonzero κ and λ. Changing these parameters has the effect

of shrinking and shifting the µ semicircle, however the points corresponding to µ

around 1.2 remain highly stationary. This can be seen in figure 4.2. This fact gives

us an extra amount of freedom in the evaluation of this model for finite nuclei. With

a value of µ = 1.2 we can essentially adjust κ and λ for the finite nuclei without

having much effect on K and S/K in nuclear matter. As a result of this, model 9

has been introduced. Since we are not that interested in finding a rigorous fit to the

nuclei here, the nonlinear couplings of 9 were simply chosen.
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4.4 Finite nuclei with derivative corrections

Consider the effect that the second order DE terms have in fitting the charge radius

of 40Ca. In figure 4.3 and table 4.2 we see the magnitude of the DE effects.

A generic feature of the solution for all models is that the DE terms smooth out

the form of the bosonic fields. This can be seen in the first plot of figure 4.3, which

shows the scalar field of model 3 and the change in this model when the DE terms

are dropped with the parameters left fixed. The second plot of this figure shows

the separate contributions to the fermion scalar vacuum density at the point of self-

consistent solution. The results are for model 7. One place where the effect of the

DE terms can be physically seen is in the single particle nucleon energies in table 4.2.

The energy results here are in qualitative agreement with what was found previously

for model 3 [39]. We see in our table, that the DE terms have caused the nucleons to

become more bound for models 6 and 4. Note that we have refit the models at the

LDA level. The DE is observed to have only a small effect on the results in this table.

This also shows up in the charge density distribution; for model 3 the DE effect was

considered by Wasson, and was also found to be small [39].

The reason for this behavior is that the fields must rearrange themselves to satisfy

a new parameter fit in the LDA. In particular, the couplings and scalar mass had to

be changed as follows:

LDA DE

Model 6 gs = 4.4555 gs = 8.6330

gv = 5.9842 gv = 8.8253

ms = 310. ms = 560.

Model 4 gs = 5.7565 gs = 6.2436

ms = 390. ms = 423.

We see that the internal setup of a model is changed to a great extent by the DE,

but that the physical predictions are comparable in the end.
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Table 4.2: Effect of the DE on the single particle nucleon self-consistent energies (in

MeV) for models 6 and 4.

Particles Level Model 6 Model 4

LDA DE (2nd order) LDA DE (2nd order)

protons: 1s 1
2

−33.3355 −35.1092 −34.2227 −34.3206

1p 3
2

−22.7095 −23.8810 −23.1299 −23.3027

1p 1
2

−22.0688 −22.5072 −21.9989 −22.1817

1d 5
2

−11.2440 −11.7730 −11.2361 −11.4091

1s 1
2

−8.5722 −7.7375 −7.8065 −7.8260

1d 3
2

−10.1577 −9.4602 −9.3347 −9.5188

neutrons: 1s 1
2

−41.3730 −43.2126 −42.2908 −42.4019

1p 3
2

−30.4489 −31.6770 −30.8943 −31.0806

1p 1
2

−29.8193 −30.3201 −29.7779 −29.9744

1d 5
2

−18.6638 −19.2512 −18.6774 −18.8686

1s 1
2

−15.9263 −15.1593 −15.1722 −15.2224

1d 3
2

−17.5819 −16.9375 −16.7739 −16.9785

To examine the usefulness of models we consider a standard complement of even-

even nuclei: 16O, 40Ca, and 208Pb. Using the parameters in 4.1, we resolve the

differential equations (4.3–4.7) for the nuclei 16O, and 208Pb. To see how well all three

nuclei are modeled, we consider the nuclear charge density. This density is obtained

by folding the nuclear charge form factors over the densities we have determined for

point like constituents. We use the form factor parameterization found in reference

[46]2. These may then be compared with the experimental data. This has been done

2 A special thanks to P. Blunden for supplying the form factor folding code.
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in the past for models 6 and 7 [40] without the derivative terms. In figure 4.4 we see

how models with different µ do at determining the charge density of 40Ca. Notice

in particular that the model 4 with µ = 1.2 does considerably better than the RHA

model 3. It is interesting to note that model 1 seems to model the charge density

near the origin even better than model 4.

In figures 4.5 and 4.6 we see how well the models we favored in nuclear matter do

at reproducing the charge densities of the nuclei 16O and 208Pb respectively. These

models include all DE terms, and also have different µ values. For 16O we see that

models 3 and 4 give essentially the same results. The nonlinear models do slightly

worse, although this situation could likely be improved by doing a careful retuning

of κ, and λ. Finally, for 208Pb we see that model 3 gives the best results. Model 4

here has developed a spurious local minimum in the charge density, making it highly

unrealistic. Note that model 9, which also has µ = 1.2, does not suffer from this effect.

The charge density of model 6 is found to be very similar to the charge density found

by Fox [40] in his analogous Set J, using the LDA. The main difference is that the

DE terms have increased the charge density at the origin away from the experimental

curve.

In summary, we emphasize that the main result that appears from the analysis of

the DE in a self-consistent calculation seems to be that it effects the parameters of the

model in a non-trivial way. On the other hand, the DE terms do not seem to effect

the physical predictions of the model very much, as when we refit our parameters

the difference from the LDA is very small. Recall however, that the effect of the DE

terms for this size of scalar background is known to be small in the first place. In

this sense, it is not surprising that the physical quantities are changed by so little. It

is more surprising that the requirement of self-consistency causes the parameters gs,

gv, and ms to change by so much.
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Figure 4.4: µ model comparison with the experimental charge radius for 40Ca.
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Figure 4.5: Modeling the charge density of 16O.
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Figure 4.6: Modeling the charge density of 208Pb.
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Chapter 5

VACUUM EFFECTS IN A STRONG COUPLING

SOLITON MODEL

Here we consider the nontopological soliton model of Bagger and Naculich [1, 47].

They consider solving for the bound states of fermions with a large Yukawa coupling

to a scalar field, while including the effects of the one-loop fermion vacuum. There

are N flavors of fermions in this model, and the region considered is the large N

limit. Physically, this model gives an indication of the relevance of quantum bag

formation for Higgs particles in the presence of heavy fermions. The scalar field here

generates mass for the fermions through spontaneous symmetry breaking. Currently,

we know that the top quark has a mass of 180± 12 GeV, and that the mass of the

lightest Higgs particle must be greater than 58.4 GeV (95% confidence) [48]. Also,

in supersymmetric extensions of the standard model there are predictions of spin-12

particles (gluinos, neutralinos, and charginos) with masses that may be a fair amount

larger than the lightest scalar Higgs particle.

In their model, Bagger and Naculich [1, 47] account for quantum fermionic vacuum

fluctuations by using the second order DE of the one-loop effective action. However,

we have found that for the size of scalar fields considered in this problem, the DE

will not always converge by second order. This convergence depends on the value of

the coupling g in the model, becoming worse for larger g as the self-consistent scalar

field of the bag shrinks. Although the authors checked the convergence by looking at

the relative size of the fourth order terms in the expansion, they did so only for the

energy. As we found in section 2.4, the energy expansion often hides the true nature
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of the convergence that shows up in the dynamical Euler-Lagrange equations. Our

purpose therefore, is to reconsider this model and make use of the correction method

devised above to be able to account for the fermionic vacuum in an exact manner.

The defining characteristics of this model will be left unchanged, with the equations

changing only by inclusion of our density correction term (3.46).

5.1 Bagger-Naculich soliton model

The choice of Lagrangian density is [47]

L =
N∑

i=1

ψ̄i

[

i/∂ −
g
√
N
σ

]

ψi +
1
2(∂µσ)

2 + 12M
2
0σ
2 −

λ

8N
σ4. (5.1)

The utility of the large N parameterization here is to suppress the effect of scalar

loops by 1/N , validating the assumption of a classical scalar field. Note that our

notation has been kept consistent at the expense of differing in some cases from that

of Bagger and Naculich. To display the method by which the fermions acquire mass,

we observe that the scalar field will have a nonzero vacuum expectation value. In

terms of the shift from this value, we have σ =
√
Nυ + φ . Identifying the fermion

mass asM = gυ now makes sense, as the fermion part of the Lagrangian has become

L =
N∑

i=1

ψ̄i

[

i/∂ − gυ −
g
√
N
φ

]

ψi. (5.2)

The renormalization and reparametrization of this model is discussed in detail in

[47]. The conditions that are applied correspond to fixing υ as the vacuum expectation

value, and renormalizing the scalar mass, wave function and coupling g. Also, the

inverse fermion propagator for two points is taken to be that of the free field. This

renormalization prescription is enforced at the one fermion loop level by the choices:

Γ(1)φ = 0, Γ(2)σσ
∣∣∣
p2=0
= −µ2,

dΓ(2)σσ
dp2

∣∣∣∣∣
p2=0

= 1,

Γ(3)
σψψ̄

∣∣∣
pi=0
=
−g
√
N
, Γ(2)

ψψ̄
(p) = /p−M. (5.3)
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These one, two and three 1PI generating functionals are analogous to those in equa-

tion (1.21), where the subscript here denotes the form of the interaction term in the

Hamiltonian density. This prescription will fix (M,µ, g), as the finite parameters of

the model.

To examine their model, Bagger and Naculich consider the simple case of states of

N fermions which all appear in the lowest single particle energy state. By rescaling

the scalar field to

ϕ =
σ
√
N
, (5.4)

the N dependence in the Lagrangian density now contributes as an overall factor. In

the unrenormalized Lagrangian, this would read

L = N

(

ψ̄[i/∂ − gϕ]ψ + 12(∂µϕ)
2 + 12M

2
0ϕ
2 −
λ

8
ϕ4
)

. (5.5)

For consistency with our notation of chapter 4, we take G(r) and F (r) to denote the

upper and lower κ = −1 radial Dirac components of the fermion field ψ, respectively.

We find it useful to make further redefinitions so that all variables are dimensionless.

This can be accomplished by the following transformations:

gϕ

M
→ ϕ,

4π

M
G 2 → G 2,

4π

M
F 2 → F 2,

rM → r,
µ

M
→ µ,

ϵ1
M
→ ϵ1. (5.6)

We may then write the equations for the fermions as

dG

dr
=
G

r
+ (ϵ1 + ϕ)F, (5.7)

dF

dr
=
−F
r
− (ϵ1 − ϕ)G, (5.8)

subject to the constraint
∫ ∞

0
dr(G2 + F 2) = 1. (5.9)

The scalar field satisfies the equation

∇ 2ϕ = ρnl + ρval + η1 ρ
LDA
vac + η2 ρ

DE
vac + η3

g2

Z
∆ρcorr[ϕ], (5.10)
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where the source terms are defined to be

ρnl =
λ

2Z
(ϕ3 − ϕ), (5.11)

ρval =
g2

4πr2
(G2 − F 2), (5.12)

ρLDAvac = −
g2

4π2

(
ϕ3 ln(ϕ2)− ϕ3 + ϕ

)
, (5.13)

ρDEvac =
g2

8π2

⎛

⎝ 1
ϕ

(
dϕ

dr

)2
+ ln(ϕ2)∇ 2ϕ

⎞

⎠ . (5.14)

As written, these equations facilitate examining different levels of approximation:

(i) Classical: η1 = 0, η2 = 0, η3 = 0;

(ii) LDA : η1 = 1, η2 = 0, η3 = 0;

(iii) DE : η1 = 1 η2 = 1 η3 = 0;

(iv) Exact : η1 = 1, η2 = 1, η3 = 1.

(5.15)

Note that only (i) and (iii) were considered by Bagger and Naculich.

For the numerical solution, it is useful to proceed in the following manner. We

begin by rewriting equation (5.10) so that the coefficient in front of ϕ′′ is unity:

∇ 2ϕ =
λ

2Z
(ϕ3 − ϕ) +

g2

4πr2Z
(G2 − F 2)− η1

g2

4π2Z

(
ϕ3 ln(ϕ2)− ϕ3 + ϕ

)

+η2
g2

4π2Z

1

2ϕ

(
dϕ

dr

)2
+ η3

g2

Z
∆ρcorr[ϕ], (5.16)

where

Z = 1− η2
g2

8π2
ln(ϕ2). (5.17)

It is also useful to be able to treat our equations entirely as a boundary value problem.

This can be done by treating ϵ1 as a field, and also introducing a field χ for the
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auxiliary equation (5.9) [49], so that

dϵ1
dr

= 0, (5.18)

dχ

dr
= G2 + F 2. (5.19)

The boundary conditions applied here are then

dϕ(r)

dr

∣∣∣∣∣
r→0

= 0,
dϕ(R)

dr
= (µ+

1

R
)(1− ϕ(R)),

F (r)

rG(r)

∣∣∣∣∣
r→0

=
1

3
(ϕ(0)− ϵ1),

F (R)

G(R)
= −

(
ϕ(R)− ϵ1
ϕ(R) + ϵ1

)1/2
, (5.20)

χ(0) = 0 χ(R) = 1,

where R is large compared to the length scale of the problem. For N fermions the

energy per fermion (in units of M) is

E

N
= Eeff (ϕ) + ϵ1(ϕ), (5.21)

Eeff (ϕ) =
1

g2

∫
d3x

[
1

2
Z (ϕ(r)′)2 +

µ2

8
(ϕ2 − 1)2

+ η1
g2

16π2

(
1

2
(ϕ2 − 1) (3ϕ2 − 1)− ϕ4 ln(ϕ2)

)]

. (5.22)

As we noted above, it was found in [47] that we do not need to correct the second

order terms of the DE in this energy expression.

5.2 Addressing the numerical problem

Next we consider a method for solving the equations (5.7), (5.8), (5.9), (5.16), (5.18)

and (5.19), subject to the boundary conditions (5.20). For this purpose, the solver

COLNEW by Ascher and Bader [50] is used. This version improves upon the orig-

inal solver COLSYS devised by Ascher, Christiansen and Russell [51] by using an

improved solution strategy and a different spline basis. The general purpose of the

package is to solve mixed order coupled nonlinear ordinary differential equations. The
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program implements a finite element method which approximates the solution with

collocation at Gaussian points. The nonlinear equations for the splines are solved us-

ing relaxation and Newton’s method. This method gives us the advantage of solving

the coupled nonlinear equations simultaneously. It enables us to handle cases where

large contributions arise from the nonlinear vacuum pieces, in particular large DE

contributions. Another important aspect of this program is that it keeps track of the

error in the solution at all times. This is accomplished through careful application of

adaptive mesh selection [52]. The routine COLSYS has been applied previously to

soliton bag models. (see [1, 53]).

As in many nonlinear problems, the ability to obtain a solution in reasonable

time hinges on ones ability to provide the solver with a reasonable starting point.

Here the initial guess for the solutions to the fields is obtained by specifying a initial

scalar field of the form (2.103), with f = 1. The initial Dirac spinor fields are then

calculated by integrating the coupled equations (5.7 and 5.8) out from the origin

and in from infinity to some matching point rm, with an initial guess for the energy

eigenvalue. The matching point is chosen to be close to the zero crossing of the

effective potential (ϕ− ϵ). The solutions are then rescaled to match at rm, and the

energy is adjusted in accordance with that match. The procedure is then repeated

with this new energy. When the true energy eigenvalue is reached, the boundary

conditions will be simultaneously satisfied and the necessary rescaling factor will

approach unity. The solutions obtained from this method can then be normalized by

calculating the integral (5.9). The initial auxiliary fields are then specified from this

spinor solution. For the cases in (5.15) where η4 = 0, providing COLNEW with these

initial fields is enough to obtain an exact solution to the nonlinear equations in a

timely fashion. We may then calculate all quantities of interest, such as the different

contributions to the energy and density expressions.

Unfortunately, in the most interesting of the situations, η4 ̸= 0, we cannot simply

apply the COLNEW routine as given. The reason is that with the inclusion of the cor-
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rection our equations are now actually integro-differential equations which COLNEW

cannot solve. To facilitate this, the code provided by Ascher and Bader was modified

so that the scalar field solution and its derivative can be extracted at intermediate

stages of the calculation to evaluate the correction functional (3.46). The calculation

now becomes internally iterative, with the density correction treated as a source term

that is reevaluated at each new iteration. We found that this could be accomplished

with minimum change to the COLNEW code by simply passing more variables to

the procedure GSUB (which is provided externally to evaluate the boundary value

conditions). This procedure is called at the beginning of each new iteration, and it

is a simple manner to make additional calls to extract the current scalar potential

solution from the splines and evaluate the correction. However, evaluating the cor-

rection in this manner proves to be costly in terms of solution time. In fact the speed

of the entire strategy is limited almost entirely by the number of times the correction

is evaluated. The evaluation of each partial wave correction (given by (3.46)) takes

roughly one minute on a DEC Alpha AXP 3000 Model 300 server. To take this into

account, code has been incorporated to only reevaluate the correction if the solution

is deemed to have changed by a significant amount.

Another issue we should consider is that the scalar field for which we are evaluating

the correction is only a preliminary solution to the dynamical equations. The only

real problem with this is that the boundary conditions (5.20) may not be valid with

high enough accuracy to satisfy the correction routine. The largest effect here occurs

with the condition at r = 0. To adapt to this situation we can use the equations

(3.22) with s1 ̸= 0, and because the higher order derivatives are not too smooth,

we set the factors s3 and s4 (proportional to the third and fourth derivatives of the

scalar field at the origin) to zero. This places a restriction on the minimum value of

r at which we can safely apply the correction, but this restriction turns out to be

unimportant for determining the solution here.

A final issue we must address is the manner in which the COLNEW routine
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attempts to improve its solution at each iteration. This is done by making use of

information extracted from the Jacobian of the differential equations and boundary

value equations. If the correction is to be the driving factor in the equations, it may

be useful to have some information as to how this term contributes to the Jacobian.

Unfortunately, this involves evaluating the derivative of the correction term with

respect to the functions ϕ(r), and ϕ′(r). As the correction is actually a nonlocal

function of ϕ (recall ϕ occurs in the differential equation that had to be solved to

determine the integrand) this in general is a nontrivial procedure. Several ways in

which this information may be included were considered, but no method has been

found that gives faster convergence than simply ignoring these contributions to the

Jacobian.

We start the η4 ̸= 0 cycle with the solution obtained from solving the equations at

the DE level. To allow the aforementioned method of solution to succeed we use the

cutoff parameter Λ to control how much of the correction is included. As mentioned

in section 3.4, and shown in figure 3.4, we can use the cutoff to extrapolate toward

the full correction for each partial wave. This is done in the following manner. We

start by picking a number of partial waves to include, κmax, and cutoffs Λκ in such a

manner that the solution converges. Then the solution to this step may be used as

the starting point of another step with different κmax and Λκ. This allows us to test

the convergence of the correction calculation in the self-consistent solution. Another

applicaton of the cutoffs here is to use them to keep the change in the correction

source term small relative to the solution obtained so far. Stepping out in the cutoffs

then allows us the full correction to be included while keeping the iterative procedure

rapidly convergent. Close track should then be kept of the solution mesh size each

time κmax and Λκ are changed, so that it does not overflow the routine/machine swap

space. The numerical results presented here do not make use of this latter cutoff

application.
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5.3 Solutions using different levels of approximation.

Having outlined the procedure, we are now in a position to look at the solutions. We

will consider the effect of working at different levels of the approximation as indicated

in (5.15). The quantities obtained from the solution which are of interest include the

wave function solutions (ϕ, G and F ), contributions from different density terms at

the point of solution (ρnl, ρval, ρLDAvac , ρ
DE
vac ,∆ρcorr), and the contributions of different

terms in the energy expressions (5.21 and 5.22). Our goal is to quantify the effect

of the correction on the solution as the coupling becomes large and the DE breaks

down.

We begin by discussing the nature of the solutions obtained for different levels of

the approximation. The case g = 10, µ = 1 will serve as an example. For this value

of g, the effects of the correction are just beginning to show up. This enables us to

examine the robustness of our method for a case where the correction should only

have a fairly small effect. From this solution we also obtain an idea of the directions

in which the scalar potential and energy will shift. For cases (i) and (iii), we repeat

below some of the general solution features discussed in [47].

For the Classical approximation (i), LDA (ii), and DE (iii), the scalar field ϕ

and spinor component field G and F self-consistent solutions are shown in figure 5.1.

The contributions from the fermions and scalar field to the overall bag energy are

summarized in table 5.1.

Approximation (i):

Here the equations are treated at the quasi-classical level (no vacuum terms). This

approximation is quite limited as scalar fluctuations are expected to be important

for small g, while for large g the fermionic fluctuations are important. For small

coupling (g < 3), weak shallow bag solutions do exist at this level (see [47] for details).

For larger coupling the bag becomes deeper and the scalar field obtains a zero and

becomes negative for a finite interval out from r = 0. The spinor fields G and F give
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Figure 5.1: Self-consistent solutions of the Bagger-Naculich model for different levels

of local approximations to the vacuum densities.
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Table 5.1: Contributions to the energy per fermion in the system for the g = 10,

λ = 1 self-consistent solutions. Values are expressed in units of the fermion mass M .

Approximation Energy per fermion φ(r = 0)

Fermi level Scalar field Total

Classical 0.3829 0.2373 0.6201 −0.2837

LDA 0.8628 0.0973 0.9601 0.3683

DE 0.9080 0.0594 0.9674 0.6635

Exact (κ = 1, Λ = 3) 0.8962 0.0718 0.9680 0.6014

Exact (κ = 1, Λ = 4) 0.8950 0.0731 0.9681 0.5948

Exact (κ = 1, Λ = 5) 0.8945 0.0737 0.9682 0.5902

Exact (κ = 2, Λ = 3) 0.8819 0.0880 0.9699 0.5515

Exact (κ = 3, Λ = 3) 0.8698 0.1025 0.9734 0.5212

Exact (κ = 4, Λ = 3) 0.8650 0.1085 0.9735 0.5177

concentrated probability for the fermions near the region with the largest slope for

the scalar field potential. This behavior can be identified in figure 5.1. The dominant

source density term for the scalar potential equation are the valence fermions.

Approximation (ii):

For relatively small couplings, adding in the local density terms has the effect of

reducing the depth of the scalar potential, so that a zero no longer appears. The

spinor fields are again peaked in the region of the largest scalar potential slope. The

energy of the solution state has been dramatically changed from that of the classical

approximation. This can be seen in table 5.1. This is the behavior that was noticed

by [47]. In their words, the “quantum corrections deflate the bag”, meaning that the

total energy per fermion in the bag is approaching the free value (M). The largest
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Figure 5.2: The dominant source density terms for the self-consistent LDA solution

at g = 10.

source density contributions in equation (5.10) are displayed in figure 5.2. Notice

that there is a fair amount of cancelation between the valence density and vacuum

density terms.

For g > 10.4 the LDA approximation is divergent. The reason for this is that

solutions which include vacuum terms tend to have a fair amount of cancelation be-

tween the vacuum density and density contributions from valence fermions. Looking

at the expression for the LDA contribution in (5.13), we see that this function is odd

with respect to the scalar field. Increasing the coupling drives the potential deeper,

and at some point the solution becomes negative at r = 0. At this point the LDA

contributions begin to contribute in the opposite direction, driving the solution to

more negative depth. At a critical coupling, near g = 10.4, the equations no longer

support a solution. The reason for introducing the LDA at all is to have an extra



118

-600

-400

-200

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1

D
en

si
ty

 (f
m

^-
3)

r (M^-1)

Source densities for the DE approximation at g=10

Valence density
Vacuum density

Total density

Figure 5.3: The dominant source density terms for the self-consistent DE solution at

g = 10.

indicator which enables us to consider, for g < 10.4, the effect that different terms in

the vacuum density have on the solution.

Approximation (iii):

For smaller couplings, the DE acts essentially like the LDA. However, as the cou-

pling is increased we still obtain a solution, as now the derivative terms prevent the

vacuum density from changing signs. This allows further cancelation of the vacuum

density with the valence fermionic density to occur. For the example we are consid-

ering, this cancelation is displayed in figure 5.3. In figure 5.1 we see that the shape

of the scalar potential is even shallower than the LDA, and also that the width has

decreased. An interesting feature, seen in table 5.1, is that the the energy contribu-

tions have changed in such a manner that the overall energy per fermion is relatively

unchanged from the LDA result. This is reminiscent of the behavior we observed for
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finite nuclei.

Approximation (iv):

We now examine what happens when the density correction term κ = 1 is in-

cluded. In figure 5.4 both the scalar and spinor fields are shown. Note that the scalar

solutions are given for two values of the cutoff to indicate that a value of Λ = L = 3

is sufficient for convergence of the correction integral. The energy values for the exact

solutions are also included in table 5.1. We notice that despite the fact that the depth

of the scalar field has changed, the overall energy is affected very little.

The effect of using the exact vacuum density does not follow the progression

of the following three steps but instead favors a deeper potential than in the DE.

This behavior is a manifestation of further terms in the derivative expansion having

oscillatory convergence. We find that to get the exact correction it is sufficient to use

partial waves up to κ = 4. This can be seen in figure 5.5, where the self-consistent

solution is shown for calculations including an increasing number of partial waves.

Note that the time for the numerical self-consistent solution grows linearly with κ.

By κ = 4 the series is convergent. Energies for the higher partial wave solutions are

shown in table 5.1. We see that the scalar potential is becoming deeper, so that the

energy of the scalar field grows and Fermi level drops away from M . However, the

total energy is rising, making the bag even more unstable. The exact calculation has

reduced the binding energy to only 2.7%, from the 3.3% of the DE.
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Figure 5.5: Self-consistent solutions with increasing number of terms in the partial

wave correction series for g = 10.
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Table 5.2: Contributions to the energy of the system in the g = 25 self-consistent

solutions. Values are expressed in units of the fermion mass M .

Approximation Energy per fermion φ(r = 0)

Fermi level Scalar field Total

Classical 0.1345 0.1182 0.2527 −0.4217

LDA − − − −

DE 0.8764 0.0772 0.9536 0.5307

Exact (κ = 1, Λ = 3) 0.8433 0.1143 0.9576 0.3638

Exact (κ = 1, Λ = 4) 0.8408 0.1174 0.9582 0.3513

Exact (κ = 2, Λ = 3) 0.8118 0.1555 0.9673 0.2865

Exact (κ = 3, Λ = 3) 0.7903 0.1866 0.9770 0.2423

Exact (κ = 4, Λ = 3) 0.7851 0.1940 0.9792 0.2612

5.4 Large coupling regime

To further examine the breakdown of the DE result, we now consider a case where

the coupling is even larger. We take the parameters used by Bagger and Naculich,

(g = 25, µ = 1). In figure 5.6 we have reproduced the field solutions given by Bagger

and Naculich [1]. Note that our normalization for the spinor fields differs from these

authors. For physical reasons (a Landau pole, tachyon, and vacuum instability) [47],

g must be less than 30 in this model, so that g = 25 is close to the upper limit. The

numerical results for the solutions here are displayed in table 5.2.

In figure 5.7, we see that the first partial wave correction is much larger for g = 25.

Also, note that by a cutoff of Λ = L = 3 the correction is convergent. In table 5.2,

we see that, in a similar manner as for g = 10, the g = 25, κ = 1 correction has a

large effect on the depth of the scalar field, but a much lesser effect on the energy.
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Figure 5.6: Reproduction of the results of Bagger and Naculich [1] at g = 25. Fields

are shown for the classical and quantum solutions. Note that the normalization choice

for our spinor wave functions differs from theirs.
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The results for κ = 2, 3 and 4 are also shown in the table and figure. Notice that

the correction is close to convergence for κ = 4. The effect of higher partial waves

for g = 25 has yet to be considered1. Another thing to note is that when higher

partial wave corrections are included the scalar fields develop a small dip very close

to the origin. This is a numerical effect that results from the intermediate boundary

condition issue discussed in section 5.2. To remove this small numerical feature it

would likely be necessary to implement the application of the cutoff that is discussed

at the end of that section. In any case this effect will only slightly increase the value

of the scalar field at the origin.

In this chapter we have learned that in a case where the correction is large it

can substantially affect self-consistent solutions. By being careful with our cutoff

dependence, we have managed to obtain acceptable convergence by Λ = 3. It is

also promising to see that the partial wave series of corrections for g = 10 converges

under the self-consistent calculation by κ = 4. Also, as only a small number of partial

waves are needed, it is possible to obtain the exact solution with the one-loop vacuum

polarization in this model.

1Work in progress.
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Chapter 6

CONCLUSIONS

A method has been devised whereby the exact fermionic one-loop vacuum polar-

ization may be calculated for a scalar background field in 3+1 dimensions. Using the

method of derivative expansion to calculate contributions from large loop energies,

and high angular momentum partial waves, yields an efficient numerical procedure

for determining the exact one-loop result. One benefit of this procedure is that we

can determine, in an exact manner, whether the DE is convergent for a particular

nontrivial background. More importantly, the procedure can be used to evaluate vac-

uum polarization effects when local methods, like the DE, are not convergent in parts

of phase space. In general, the speed of the calculation is limited by the number of

partial waves of the DE that must be corrected, growing linearly in time with κ. The

desired numerical accuracy is also influential, as it determines the energy mesh and

maximum cutoff that must be used.

The correction procedure devised here can be extended to fermionic loops in differ-

ent bilinear backgrounds (e.g. vector background fields) in a straightforward manner.

A similar procedure could also be used to find the exact bosonic loop density contri-

butions at the one-loop level.

In terms of using the correction in a self-consistent calculation, the work here has

been restricted to the case of interacting fermion and scalar fields where there are N

flavors of fermions found in the ground state. For this case, we examined the manner

in which using the correct one-loop vacuum polarization effects the self-consistent

solution. The way in which a more structurally complex self-consistent calculation

may be done was also described, but for a case in which the DE converges. The case
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considered involved several mean fields, both bosonic and fermionic loops, as well as

different valence fermionic levels. For a more general theory, where the DE is not

convergent, the correction routine devised here could be used to obtain the correct

vacuum results in an analogous manner.
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Appendix A

CONVENTIONS

The conventions used in this thesis are as follows. The dimensionality of the

applicable spacetime will often be denoted in the form 3 + 1 dimensions, meaning 3

spatial dimensions and 1 time dimension. When a generic spacetime is considered,

the dimension will be denoted by D. The dimension of the spatial part of a generic

spacetime will then be referred to as d, where d = D − 1. The spacetime variables

will be written in regular mathematical text, such as position x and momentum p.

The spatial part of a spacetime variable will be distinguished by an arrow over top,

such as x⃗ and p⃗ . All spacetime indices are denoted by lowercase Greek letters, while

Roman letters are used for spatial indices.

The usual notation for a function of a variable is used, such as ρ(x), and functionals

are distinguished by using square brackets, such as Γ[φ]. We will often suppress some

of the function and functional dependencies for the sake of clarity. Operators will

generally be identified by capital Roman letters, such as A, and path integral measures

will be enclosed in square brackets, such as [dφ].

When primes are used to denote the derivative of a function or functional this

will be explicitly noted in the following text. Also, note that Lorentz invariant con-

tractions are implicit on derivative expressions, such as

∂2 = ∂µ ∂
µ, (∂µσ)

2 = (∂µσ)(∂
µσ). (A.1)

The metric tensor here is chosen so that tr gαβ = −d+1, so that in 3+1 dimensions
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the three spatial diagonal elements are negative,

gαβ = g
αβ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.2)

Hence for a particle of mass m with momentum p, p2 = m2.

Traces that involve at least one continuous variable are denoted by Tr, whereas

traces over purely internal spaces are denoted by tr. To keep track of the variables

over which a Tr is taken, we use subscripts to list the continuous variables and a

superscript int to remind us if internal traces are also included. All position space

traces are integrals over spacetime, whereas momentum space traces are integrals

with a normalization factor of (2π)−D. Two examples are:

Trx =
∫
dDx, Trp⃗ =

∫ ddp

(2π)d
. (A.3)

Superscripts and subscripts are also used on quantities to denote different types

of the same basic object. In particular, ρs denotes a scalar density, while ρsvac denotes

the scalar density from fermionic loops.

When a particular representation of gamma matrices is required we use

γ0 =

⎡

⎢⎣
1 0

0 −1

⎤

⎥⎦ , γi =

⎡

⎢⎣
0 σi

−σi 0

⎤

⎥⎦ , (A.4)

where i = 1, 2, 3, and σi are the Pauli spin matrices.

Finally, our notation for Dirac angular momentum states follows that of reference

[3], and in particular is simply specified by the separation of variables in the form

G(r)

r
Yκm(θ,φ), (A.5)

and the relation (3.10).
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Appendix B

GENERAL EFFECTIVE ACTION DERIVATIVE

EXPANSION

A general method for finding the derivative expansion for either bosonic or fermi-

onic loops can be given as follows. This method was devised by Chan [54] to fourth

order in the background fields, while an extension of the necessary expressions to

sixth order may be found in [25]. To fourth order in our notation the result is

Γvac[ , V ] = iTrintx ln
(
−P 2 + (X)

)
(B.1)

= iTrintx, p

[
ln(Θ−1) +

p2

D
Θ2µ +

2p4

D(D + 2)

(
2Θ4µ − (ΘµΘν)

2

−2(ΘΘµµ)
2 + (FµνΘ

2)2 + 4iΘF µνΘΘµΘΘν

)]
, (B.2)

where

Θ−1 = −p2 + (X), Θµ = DµΘ,

Dµ = Pµ = i∂µ + λaV
a
µ (X), Fµν = [Dµ,Dν ]. (B.3)

The subscripted Greek indices on Θ denote covariant derivatives, and Dµ, and λa are

generators of a spin-1 gauge group. The background field (X) can have arbitrary

internal finite group structure. With this expression we can find the DE, to 4th order

in the background field derivatives, for quite a general class of theories that share the

one-loop functional form (B.1). We stress here the manner in which the fermionic

results can be placed in this form. The key is manipulating the expression for the

action as follows:

Γvac[ψ] = −Trintx ln (±/P − σ(X)) (B.4)
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= −
1

2
Trintx

[
ln(−/P − σ(X)) + ln(/P − σ(X))

]

= −
1

2
Trintx

[
−P 2 + σ2(X) + [/P , σ(X)]

]
. (B.5)

In (B.4) the sign of the /P term is irrelevant, as the internal spin trace allows only

terms that are even in the number of γ matrices to survive. So from the form (B.5),

with

(X) = σ2(X) + [/P , σ(X)], (B.6)

we may use equation (B.2) for fermionic actions too.
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