

We Americans of ATLAS

Overview

- LHC Program is focused on finding 'next' piece of Standard Model
 - Origin of EW symmetry breaking Higgs particle
 - Explore possible connections of EW with Gravity
 - Many extensions of the SM proposed little experimental input to date
- LHC Machine @ √s = 7 TeV
 - In commissioning & early running with short-term goal of L $^{\sim}$ 10 32 cm $^{2}\text{s}^{\text{-1}}$ by end of CY10
 - Longer-term to accumulate $\Sigma L \simeq 1 \text{ fb}^{-1}$ by end of 2011
 - Physics reach will be 'deeper' than Tevatron for some heavy channels
- ATLAS Detector
 - Commissioned & working well & efficiently operating
 - More refined alignment & timing corrections under way
 - Several hardware deficiencies uncovered mitigation being planned

Cross sections vs. Vs

Some discussion CERN management of running LHC @ \sqrt{s} = 8 TeV in 2011

ATLAS reach 2010-2011/New Physics Benchmarks

Z' (SSM): Tevatron limit ~ 1 TeV (95% C 50 pb^{-1} : exclusion ~ 1 TeV (95% C.L.) 100 pb^{-1} : discovery ~ 1 TeV 300 pb^{-1} : exclusion ~ 1.5 TeV 1 fb ^{-1} : discovery ~ 1.5 TeV	C.L) W' (SSM): Tevatron limit ~ 1 TeV (95% C.L) 10 pb ⁻¹ : exclusion ~ 1 TeV 20 pb ⁻¹ : discovery ~ 1 TeV 50 pb ⁻¹ : exclusion ~ 1.5 TeV 100 pb ⁻¹ : discovery ~ 1.5 TeV 1 fb ⁻¹ : discovery ~ 2 TeV
SUSY(\tilde{q}, \tilde{g}): Tevatron limit ~ 400 GeV (95% C.L) 200 pb ⁻¹ : discovery up to ~ 480 GeV L fb ⁻¹ : discovery up to ~ 700 GeV	Higgs H \rightarrow WW, m _H ~ 160 GeV 300 pb ⁻¹ per experiment : ~ 3 σ sensitivity combining ATLAS and CMS (similar to Tevatron) 1 fb ⁻¹ per experiment: could exclude 130 < m _H < 190 GeV and ~ 4.5 σ combining ATLAS and CMS

LHC will start to compete with the Tevatron in 2010, and should take over in 2011 in most cases. (Fabiola Gianotti – ICHEP2010)

Integrated Luminosity

ATLAS in Overview

ATLAS Channel Efficiency

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.4%
SCT Silicon Strips	6.3 M	99.2%
TRT Transition Radiation Tracker	350 k	98.0%
LAr EM Calorimeter	170 k	98.5%
Tile calorimeter	9800	97.3%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trigger	370 k	99.5%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Chambers	370 k	97.0%
TGC Endcap Muon Chambers	320 k	98.6%

ATLAS Works Well

Tracking & Vertexing

Ionization Energy Loss - Hadron ID @ Low P

Arbitrary units 80'0 o Time over Threshold is proportional to collected Data charge so is sensitive to the ionization energy loss 0.1- Monte Carlo o Specific energy loss due to ionization is modeled p>3 GeV, SCT Hit>=6 by Bethe-Bloch function. Parameters depend on Good Pixel clusters>=3 mass of ionizing particle. 0.06 Mean = 1.240 Sigma = 0.147 o Tracks with three pixel hits provide a useful dE/dx 0.04 measurement 0.02 ATLAS Preliminary 10⁵ dE/dx (MeV g⁻¹ cm²) 2.5 9 0.5 1.5 2 3 3.5 1 Good Pixels>=3 Track dE/dx (MeV g⁻¹ cm²) 10⁴ Number of Events / 2 MeV 500 ATLAS Preliminary MC signal Data 2009 √s=900GeV MC background 10³ Data 400 — Fit Mean : 1019.5 ± 0.3 MeV 300 σ_{exp}: 2.5 ± 0.5 MeV 10² 200 10 100 ∠K+K--1.5 -1 -0.5 0 0.5 1.5 2.5 2 1 1000 980 1020 1040 1060 1080 1100 p (GeV) Invariant Mass (MeV)

Kinematics of K_s^0 and Λ^0 at $\sqrt{s}=7$ TeV

ID Commissioning & Test of Understanding

Look for flaws in material modeling Test the magnetic field modeling of the ID Check the alignment

Study fragmentation model of strange quarks, $\Lambda^{0/}\Lambda^{0}$ ratio

Selections (L~190 µb⁻¹)

Oppositely charged tracks, $p_T > 100$ MeV, Decay vertex fit, Transverse distance L_T between PV and K_s^0 , Λ^0 vtx cos(line of flight, momentum K_s^0 / Λ^0) ~ 1

Ξ^{-} , Ω^{-} baryons and K*(890) meson production

Test performance of the ATLAS ID and tracking software Basis for more advanced B-physics analyses

Quantity (MeV)	ATLAS (stat only)	PDG (stat(+)syst)
E ⁻ mass	1322.22±0.07	1321.71±0.07
Ω ⁻ mass	1672.78±0.33	1672.45±0.29
K*(890) mass	892.1±0.7	891.66±0.26
K*(890) width	49.8±2.1	50.8±0.9

Reasonable agreement at this stage with PDG 09

Impact Parameter Tagging for Jets

F.E. Taylor Status of ATLAS 09-Aug-10

Track Counting Tagger Simple and robust tagger Use d_0 (transverse impact parameter) and $S_{d0} = d_0$ / uncertainty V_0 filter

Tag if 2nd highest S_{d0}>*Threshold* to tag jet

ATLAS Calorimetry

Electron Detection

Material mapping with conversions (500µb⁻¹)

600

500

က 2

-1.752 < η < -1.304

Pixel support

Radial map of converted photons

Identified / 2 silicon tracks Select electrons with TRT

Small discrepancies identified and will be adjusted in simulation

Di-Electron Resonances

F.E. Taylor Status of ATLAS 09-Aug-10

$J/\psi \rightarrow e^+e^-$ - Important Reconstruction Test

Analysis is challenging due to large background, small signal and Bremsstrahlung of the electrons. Important handle for electron ID and trigger studies 2 electrons with $p_T > 2$, 4 GeV + Shower shapes and track quality cuts

High fraction of HT TRT hits on the tracks

Mass is based on track properties Not corrected for Bremsstrahlung

Physics with Jets

New Physics:

Measure distribution of number of jets, Jet-Jet mass distribution, Search for large missing energy – first check with SM expectations. Jet energy scale $\sim 7\%$

Massive Di-Jets 400 < $m_a * < 1290 \text{ GeV}$

F.E. Taylor Status of ATLAS 09-Aug-10

Observed event with hardest jet

ATLAS Muon System

F.E. Taylor Status of ATLAS 09-Aug-10

Muon Identification Algorithms

M. Woudstra ICHEP 22 July 2010

4

Muon Identification Performance

High pT muons key signature of high pT physics: W / Z / top and new physics

At low pT dominated by hadron decays, At intermiediate pT mainly heavy flavor decay Rate of fake standalone muons $(> 6 \text{ GeV}) \sim 10^{-4} - 10^{-5} \text{ per}$ random trigger and 10⁻⁶ for combined muons.

Efficiency of combined muon wrt to tagged muons

Di-Muon Signals J/ ψ , Y, Z

F.E. Taylor Status of ATLAS 09-Aug-10

J/ ψ is good for commissioning & early physics (B-physics, QCD). Get low-p_T muons to study μ trigger and identification efficiency, resolution and absolute momentum scale in the few GeV range

Simple analysis: LVL1 muon trigger ($p_T \sim 6$ GeV threshold), 2 opposite-sign muons reconstructed by combining tracker and muon spectrometer both muons with |z|<1 cm from primary vertex

F.E. Taylor Status of ATLAS 09-Aug-10

W[±] and Z Physics at 7 TeV/ICHEP 2010

Jan Kretzschmar, 23.7.2010 - p.19

LVL1 Triggers-Calormetric & Tracking

F.E. Taylor Status of ATLAS 09-Aug-10

World Wide Data Processing

F.E. Taylor Status of ATLAS 09-Aug-10

Many Physics Results Already

<u>Soft QCD</u> - <u>Hard QCD</u> - <u>Electroweak</u> - <u>b</u> and <u>c</u> Physics - <u>Top</u> - <u>Searches</u> -<u>Luminosity and beamspot</u> - <u>Performance - trigger</u> - <u>Performance - tracking</u> -<u>Performance - flavour tagging</u> - <u>Performance - e/gamma</u> - <u>Performance - muons</u> - <u>Performance - jets and missing-Et</u> - <u>Performance - taus</u> - <u>Soft QCD</u>

ATLAS Results for Summer 2010

See also: <u>ATLAS Public Results page</u> and links there from, which contain supplementary material such as

performance-related plots

Long Term Plans – Nessi (CERN)

Shutdown requirements:

Phase-0 : 15 months (defined by the LHC consolidation) : **2012 to spring 2013** Phase-1 : 12 months (time necessary to install the new pixel b-layer) : **2016** Phase-2 : 18-20 months to install and debug the new ID detector : **2020-2021** + 2 months technical stop at Xmas

Conclusions

- ATLAS is working well
 - All the major functionalities are working ~ 95% efficiency
 - LVL1 Trigger, Tracking, Calorimetry, Particle ID, LVL2 Trigger, DAQ
 - Event reconstruction
 - Analysis can be done in a short time after data taken
 - Prospects for interesting physics @ 7 TeV good
 - Confirm SM predictions
 - Fine-tune detector
 - Search for anomalies none so far
 - Many interesting results already
- Detector 'consolidation' during 2011 pause & 2012 shutdown
 - Several areas of concern (LVPSs & Optical Couplers)

F.E. Taylor Status of ATLAS 09-Aug-10