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Finding an upper limit in the presence of an unknown background

S. Yellin*
Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106

~Received 5 April 2002; published 20 August 2002!

Experimenters report an upper limit if the signal they are trying to detect is nonexistent or below their
experiment’s sensitivity. Such experiments may be contaminated with a background too poorly understood to
subtract. If the background is distributed differently in some parameter from the expected signal, it is possible
to take advantage of this difference to get a stronger limit than would be possible if the difference in distri-
bution were ignored. We discuss the ‘‘maximum gap’’ method, which finds the best gap between events for
setting an upper limit, and generalize to the ‘‘optimum interval’’ method, which uses intervals with especially
few events. These methods, which apply to the case of relatively small backgrounds, do not use binning, are
relatively insensitive to cuts on the range of the parameter, are parameter independent~i.e., do not change when
a one-one change of variables is made!, and provide true, though possibly conservative, classical one-sided
confidence intervals.

DOI: 10.1103/PhysRevD.66.032005 PACS number~s!: 06.20.Dk, 14.80.2j, 14.80.Ly, 95.35.1d
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I. INTRODUCTION

Suppose we have an experiment whose events are dis
uted along a one-dimensional interval. The events are
duced by a process for which the expected shape of the e
distribution is known, but with an unknown normalizatio
In addition to the signal, there may also be a backgrou
whose expectation value per unit interval is known, but o
cannot completely exclude the possibility of an addition
background whose expectation value per unit interval is n
negative, but is otherwise unknown. If the experiment
cannot exclude the possibility that the unknown backgrou
is large enough to account for all the events, they can o
report an upper limit on the signal. Even experimenters w
think they understand a background well enough to subt
it may wish to allow for the possibility that they are mistak
by also presenting results without subtraction. Metho
based on likelihood, such as the approach of Feldman
Cousins@1#, or Bayesian analysis, cannot be applied beca
the likelihood associated with an unknown background
unknown. An example of this situation is the analysis of
experiment which tries to detect recoil energiesErecoil depos-
ited by weakly interacting massive particles~WIMPs! bounc-
ing off atoms in a detector. For a given WIMP mass, a
assumed WIMP velocity distribution, the shape of the dis
bution in Erecoil can be computed, but the WIMP cross se
tion is unknown, and it is hard to be certain that all bac
grounds are understood. The simplest way of dealing w
such a situation is to pick an interval in, say,Erecoil, and take
as the upper limit the largest cross section that would hav
significant probability, say 10%, of giving as few events
were observed, assuming all observed events were f
WIMPs. One problem with this naive method is that it can
very sensitive to the interval chosen. It is typical for t
bottom of a detector’s range of sensitivity to be limited
noise or other backgrounds. Thus if the interval extends to
especially lowErecoil, there will be many events, leading to
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weaker~higher! upper limit than is required by the data. O
the other hand, experimenters could inadvertently bias
result by choosing the interval’s end points to give especia
few events, with an upper limit that is lower than is justifie
by the data. In order to avoid such a bias, it might be thou
best to avoid using the observed events to select the inte
used. But the procedures discussed here take the opp
approach. The range is carefully chosen to include espec
few events compared with the number expected from a
nal. The way the range is chosen makes the procedure e
cially insensitive to unknown background, which tends to
most harmful where there are especially many events c
pared with the number expected from a signal. It would b
mistake to compute the upper limit as if the interval we
selected without using the data; so the computation is
signed to be correct for the way the data are used.

While the methods described here cannot be used to id
tify a positive detection, they are appropriate for obtaini
upper limits from experiments whose backgrounds are v
low, but nonzero. These methods have been used by
CDMS experiment@2#.

II. MAXIMUM GAP METHOD

Figure 1 illustrates the maximum gap method. Small re
angles along the horizontal axis represent events, with p
tion on the horizontal axis representing some measured
rameter, say, ‘‘energy,’’E. The curve shows the even
spectrumdN/dE expected from a proposed cross sections.
If there is a completely known background, it is included
dN/dE. But whether or not there is a completely know
background, we assume there is also an unknown ba
ground contaminating the data. To set an upper limit,
vary the proposed size ofs until it is just high enough to be
rejected as being too high. We seek a criterion for decidin
a proposed signal is too high. Since there are espec
many events at lowE, while dN/dE is not especially high
there, those events must be mostly from the unknown ba
ground. If we looked only at the low energy part of the da
we would have to set an especially weak~high! upper limit.
©2002 The American Physical Society05-1
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To find the strongest~lowest! possible upper limit, we should
look at energies where there are not many events, and th
fore there is not much background.

Between any two eventsEi andEi 11, there is a gap. Fo
a given value ofs, the ‘‘size’’ of the gap can be characte
ized by the value within the gap of the expected numbe
events,

xi5E
Ei

Ei 11dN

dE
dE. ~1!

The ‘‘maximum gap’’ is the one with the greatest ‘‘size;’’ it i
the largest of all thexi . The bigger we assumes to be, the
bigger will be the size of the maximum gap in the observ
event distribution. If we want, we can chooses so large that
there are millions of events expected in the maximum g
But such a larges would be experimentally excluded, fo
unless a mistake has been made, it is almost impossib
find zero events where millions are expected. To express
idea in a less extreme form, a particular choice ofs should
be rejected as too large if, with that choice ofs, there is a
gap between adjacent events with ‘‘too many’’ expec
events. The criterion for ‘‘too many’’ is that, if the choice o
s were correct, a random experiment would almost alw
give fewer expected events in its maximum gap. Callx the
size of the maximum gap in the random experiment. If
randomx is lower than the observed maximum gap size w
probability C0, the assumed value ofs is rejected as too
high with confidence levelC0. Sincex is unchanged under
one-one transformation of the variable in which events
distributed, one may make a transformation at a point fr
whatever variable is used, sayE, to a variable equal to the
total number of events expected in the interval between
point and the lowest allowed value ofE. No matter how

FIG. 1. Illustration of the maximum gap method. The horizon
axis is some parameter ‘‘E’’ measured for each event. The smoo
curve is the signal expected for the proposed cross section, inc
ing any known background. The events from signal, known ba
ground, and unknown background are the small rectangles alon
horizontal axis. The integral of the signal between two event
‘‘ xi . ’’
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events were expected to be distributed in the original v
able, in the new variable they are distributed uniformly w
unit density. Thus any event distribution is equivalent to
uniform distribution of unit density. The probability distribu
tion of x depends on the total length of this uniform un
density distribution, and in this new variable the total leng
of the distribution is equal to the total expected number
events,m, but it does not depend on the shape of the origi
event distribution.C0, the probability of the maximum gap
size being smaller than a particular value ofx, is a function
only of x andm:

C0~x,m!5 (
k50

m
~kx2m!ke2kx

k! S 11
k

m2kxD , ~2!

wherem is the greatest integer<m/x. For a 90% confidence
level upper limit, increases until m and the observedx are
such thatC0 reaches 0.90.

Equation~2! can be evaluated relatively quickly whenC0
is near 0.9. Whenm is small, so ism, and whenm is large,
the series can be truncated at relatively smallk without mak-
ing a significant error. Equation~2! is derived in Appendix A.

While this method can be used with an arbitrary numb
of events in the data, it is most appropriate when there
only a few events in the part of the range that seems r
tively free of background~small m). The method is not de-
pendent on a choice for binning because unbinned data
used. No Monte Carlo computation of the confidence leve
needed because the same formula forC0 applies independen
of the functional form for the shape of the expected ev
distribution. The result is a conservative upper limit that
not too badly weakened by a large unknown background
part of the region under consideration; the method effectiv
excludes regions where a large unknown background ca
events to be too close together for the maximum gap to
there.

III. OPTIMUM INTERVAL METHOD

If there is a relatively high density of events in the da
we may want to replace the ‘‘maximum gap’’ method by o
in which we consider, for example, the ‘‘maximum’’ interva
over which there is one event observed, or two events, on
events, instead of the zero events in a gap.

Define Cn(x,m) to be the probability, for a given cros
section without background, that all intervals with<n
events have their expected number of events<x. As for C0
of the maximum gap method, so long asx andm are fixed,
Cn is independent of the shape of the cross section and
parameter in which events are distributed. ButCn(x,m) in-
creases whenx increases, and it increases whenn decreases.
Cn can be tabulated with the help of a Monte Carlo progra
although the special case ofn50 can be more accuratel
computed with Eq.~2!. Oncen is chosen,Cn can be used in
the same way asC0 for obtaining an upper limit: Forx equal
to the maximum expected number of events taken over
intervals with<n events,Cn(x,m) is the confidence leve
with which the assumed cross section is excluded as b
too high. But since we do not want to allown to be chosen in
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a way that skews results to conform with our prejudices,
optimum gap method includes automatic selection of wh
n to use.

For each interval within the total range of an actual e
periment, computeCn(x,m) for the observed number o
events,n, and expected number of events,x, in the interval.
The biggerCn is, the stronger will be the evidence that th
assumed cross section is too high. Thus for each poss
interval, one may quantify how strongly the proposed cr
section is excluded by the data. The ‘‘optimum interval’’
the interval that most strongly indicates that the propo
cross section is too high. The optimum interval tends to
one in which the unknown background is especially sm
The overall test quantity used for finding an upper limit
the cross section is thenCMax , the maximum over all pos
sible intervals ofCn(x,m). A 90% confidence level uppe
limit on the cross section is one for which the observedCMax
is higher than would be expected from 90% of random
periments with that cross section and no unknown ba
ground.

The definition ofCMax seems to imply that its determina
tion requires checking an infinite number of intervals. B
given any interval withn events,x, and henceCn(x,m), can
be increased without increasingn by expanding the interva
until it almost hits either another event or an end point of
total experimental range. For determination ofCMax one
need only consider intervals that are terminated by an e
or by an end point of the total experimental range. If t
experiment hasN events, then there are (N11)(N12)/2
such intervals, one of which hasCn(x,m)5CMax .

The functionC̄Max(C,m) is defined to be the value suc
that a fractionC of random experiments with thatm, and no
unknown background, will giveCMax,C̄Max(C,m). Thus the
90% confidence level upper limit on the cross section
whereCMax of the experiment equalsC̄Max(0.9,m), which is
plotted in Fig. 2.

A Monte Carlo program was used to tabulateCn(x,m). A
FORTRAN routine interpolates the table to computeCn(x,m)
whenn, x, andm are within the tabulated range. The routin
applies when 0,m,54.5 and when 0<n<50.

The functionC̄Max(C,m) has been computed by Mont
Carlo and tabulated form,54.5 and variousC. Certain pe-
culiarities of this function are discussed in Appendix B.

Routines to evaluate functions described in this pap
along with the tables they use, are available on the web@3#.

FIG. 2. Plot of C̄Max(0.9,m), the value ofCMax for which the
90% confidence level is reached, as a function of the total num
of eventsm expected in the experimental range.
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IV. COMPARISONS OF THE METHODS

We compare the maximum gap (C0) and optimum inter-
val (CMax) methods with each other, with the standard@4#
way of finding an upper limit~‘‘Poisson’’!, and with another
method (pMax) described in Appendix C.

The standard ‘‘Poisson’’ confidence levelC upper limit
cross section is the one whosem would result in a fractionC
of random experiments having more events in the entire
perimental range than then actually observed. This fraction
C is

P~m,n11![ (
k5n11

`
mk

k!
e2m5E

0

m

dt
tn

n!
e2t. ~3!

The last equality is proved by observing that both sides h
the same derivative, and they have the same value am
50. P(x,a), the incomplete gamma function, is i
CERNLIB @5# as GAPNC(a,x), DGAPNC(a,x), and GAM-
DIS(x,a).

The description of thepMax method is relegated to Appen
dix C because althoughpMax is somewhat easier to imple
ment thanCMax , it was found to be less powerful.

Two comparisons of the effectiveness of the metho
were performed: tests~a! and~b!. For test~a!, 500 000 zero-
background Monte Carlo experiments were generated
each of 40 assumed cross sections.C0 , pMax , CMax , and the
Poisson method were used to find the 90% confidence l
upper limits on the cross section. For a given true cross s
tion sTrue, there is a certain median valuesMed that is ex-
ceeded exactly 50% of the time by the computed upper lim
Figure 3~a! showssMed/sTrue as a function ofm. The dotted
curve usedC0 to determine the upper limit, the dash-dotte
curve usedpMax , the dashed one usedCMax , and the solid,
jagged, curve used the Poisson method. The Poisson me
gives a jagged curve because of the discrete nature of
variable used to calculate the upper limit, the total numbe
detected events. For any cross section shape, when the
no background,CMax gives a stronger limit thanpMax in most
random experiments, and both are stronger thanC0. Even
without background, for some values of the truem, CMax
gives a stronger~lower! upper limit than the Poisson method
This happens because the discrete nature of the Poi
method causes it to have greater than 90% coverage.

Although test~a! is presented as a comparison of metho
in the absence of background, it can also be considered t
a comparison of methods when the background is distribu
in the same way as the signal. If the unknown backgrou
happens to have the same distribution as the signal wo
have, essentially no sensitivity is lost by using the optimu
interval method withCMax instead of the Poisson method.

Test ~b! was similar to test~a!, but the Monte Carlo pro-
gram simulated a background unknown to the experiment
and distributed differently from the expected signal. The to
experimental region was split into a high part and a low pa
with background only in the low part. Half the expecte
signal was placed in the low part, where the simulated ba
ground was twice the expected signal. For this case, the
lowest curves are almost exactly on top of each other; F

er
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3~b! shows thatCMax andpMax get equally strong upper lim
its. C0 produces a weaker limit, and the Poisson method
weakest of all.

From the definition of the 90% confidence level upp
limit, test ~a! results in an upper limit that is lower than th
true value exactly 10% of the time; i.e., all methods exc
the Poisson make a mistake 10% of the time~the discrete
nature of the Poisson distribution results in its making m
takes less than 10% of the time!. But for test ~b! the un-
known background raises the upper limit; so all metho
make a mistake less than 10% of the time. Figure 4 sh
the fraction of mistakes with test~b! usingC0 ~dotted!, pMax
~dash-dotted!, and CMax ~dashed!. Although CMax and pMax
give equally strong upper limits for test~b!, CMax makes
fewer mistakes.C0 makes the most mistakes of the test
methods. Not shown is the Poisson method; because its
per limit is so high, it makes almost no mistakes.

FIG. 3. sMed/sTrue, the typical factor by which the upper limi
cross section exceeds the true cross section, whenC0 is used~dot-
ted lines!, whenpMax is used~dash-dotted lines!, whenCMax is used
~dashed lines!, and when the Poisson method is used~solid lines!.
These ratios are a function ofm, the total number of events ex
pected from the true cross section in the entire experimental ra
For the upper figure~a! there is no background, and for the low
figure ~b! there is just as much unknown background as there
signal, but the background is concentrated in a part of the exp
mental range that contains only half the total signal.

FIG. 4. Fraction of cases for test~b! ~see text! in which the true
cross section was higher than the upper limit on the cross sec
computed usingC0 ~dotted!, pMax ~dash-dotted!, andCMax ~dashed!.
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V. CONCLUSIONS

Judging from the tests shown in Fig. 3 and Fig. 4, the b
of the methods discussed here is the optimum inter
method, withCMax . This method is useful for experiment
with small numbers of events when it is not possible to ma
an accurate model of the background, and it can also be u
when experimenters want to show an especially reliable
per limit that does not depend on trusting their ability
model the background. Because the optimum inter
method automatically avoids parts of the data range in wh
there are large backgrounds, it is relatively insensitive
placement of the cuts limiting the experimental range. B
cause the optimum interval method does not use binned d
it cannot be biased by how experimenters choose to bin t
data. Unlike Bayesian upper limits with a uniform prior, th
result of the optimum interval method is unchanged whe
change in variable is made. The optimum interval meth
produces a true, though possibly conservative, classical~fre-
quentist! confidence interval; at least 90% of the time t
method is used its 90% confidence level upper limit will
correct, barring experimental systematic errors.
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APPENDIX A: DERIVATION OF THE EQUATION FOR C0

In order to derive Eq.~2!, let us first find the probability
that the maximum gap size is less thanx when there are
exactlyn events, then getC0 by averagingn over a Poisson
distribution.

We assumen events are distributed in some variabley
according to a density distribution that integrates to a tota
m expected events, and defineP(x;n,m) to be the probabil-
ity that the maximum gap size is less thanx. As explained in
Sec. II, one may make a change of variables toz(y) such
that the density distribution is uniform over 0,z,m.
P(x;n,m) is the probability that the maximumz coordinate
distance between adjacent events is less thanx given that
there are exactlyn events distributed randomly, indepen
dently, and uniformly betweenz50 andz5m. The function
P depends only onx, n, andm, but not on the shape of th
original density distribution.

The problem of findingP(x;n,m) can be simplified by
making a coordinate changew(z)5z/m. The new coordinate
runs from 0 to 1 instead of 0 tom. With this coordinate
change, any set ofn events withx equal to the maximum gap
between adjacent events becomes a set ofn events, still uni-
formly distributed, but with maximum new coordinate di
tance between adjacent events equal tox/m. It follows that
P(x/m;n,1)5P(x;n,m), and we need only solve the prob
lem of findingP for m51 to get the solution for any value o
m. Whenm is understood to be 1, it will be dropped, and w
will write P(x;n) to mean the same asP(x;n,1). The prob-
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lem has been reduced to one in whichn points have been
scattered randomly in independent uniform probability d
tributions on the interval (0,1). We want to find the probab
ity that the maximum empty interval has length less thanx.
We do this with the help of a recursion relation that allo
one to computeP(x;n11) from knowledge ofP(x;n).

P(x;n11) is the integral overt,x of the probability that
the lowest event is betweent and t1dt and that the rest o
the n events in the remaining 12t range has no gap greate
thanx. The probability that the lowest event is betweent and
t1dt is ~number of ways of choosing one particular event
the n11 events! times ~probability that the particular even
will be betweent and t1dt) times ~probability that each of
the othern events will be greater thant). We get a factor in
the integrand (n11)3dt3(12t)n. The other factor in the
integrand is the probability that there is no gap greater thax
for the remainingn events: P(x;n,12t)5P„x/(12t);n….
The recursion relation for 0,x,1 is

P~x;n11!5E
0

x

dt~n11!~12t !nPS x

12t
;nD . ~A1!

It is convenient to distinguish between various pieces
the x range between 0 andm, for it will turn out that
P(x;n,m) takes on different forms in different pieces of th
range. If x is in the rangem/(m11),x,m/m, we say
P(x;n,m)5Pm(x;n,m), and we sayx is in the mth range.
Let us again restrict ourselves tom51 and consider Eq
~A1!. If x is in themth range and, as in Eq.~A1!, 0,t,x,
then x/(12t) is in either rangem or range (m21). The
boundary between these two ranges is atx/(12t)51/m; so
t512mx. For m.0 Eq. ~A1! becomes

Pm~x;n11!

n11
5E

0

12mx

dt~12t !nPmS x

12t
;nD

1E
12mx

x

dt~12t !nPm21S x

12t
;nD .

~A2!

The appearance ofm21 brings up the question of what hap
pens ifm50. Let us interpret them50 range to be the one
with 1/1,x,1/05`. Since the empty space between eve
is certainly less than the length of the whole interv
P0(x;n)51.

For m>0 it can be shown that

Pm~x;n!5 (
k50

m

~21!kS n11

k D ~12kx!n. ~A3!

In this equation, we interpret (k
n ) as

S n
kD5

n!

k! ~n2k!!
[

G~n11!

G~k11!G~n2k11!
.

The gamma function is meaningful when analytically cont
ued, in which case (k

n ) is zero if k is an integer that is les
than zero or greater thann. In P(x;0), the maximum ~and
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only! gap is always 1; soP0(x;0)51 for x.1, while for
m.0, when 0,x,1, Pm(x;0)50. Since Eq.~A3! is easily
verified to be correct for allm>0 whenn50, one may use
induction with Eq.~A2! to prove Eq.~A3! for all other n
.0. The simple but somewhat tedious manipulations
sums will not be given here, except for a useful identity
the induction step:

S n
kD 1S n

k21D 5S n11

k D .

It follows from Eq. ~A3! that

Pm~x;n,m!5 (
k50

m

~21!kS n11

k D ~12kx/m!n. ~A4!

Let us now computeC0, the probability for the maximum
empty space between events in (0,m) being less thanx given
only that events are thrown according to a uniform unit de
sity. Average Eq.~A4! over a Poisson distribution with mea
m to get

C05 (
k50

m

(
n50

`

e2m
mn

n!
~21!kS n11

k D ~12kx/m!n,

~A5!

which can be summed overn ~again the manipulations wil
not be shown here! to give Eq.~2!.

APPENDIX B: PECULIARITIES OF C̄Max

The function C̄Max(0.9,m) has certain peculiarities. Fo
example, it cannot be defined form,2.3026. Random ex-
periments withm,2.3026 either give the largest possib
value ofCMax , which occurs for zero events, with probab
ity e2m.10%, or give smaller values with probabilit
12e2m,90%. There is therefore no numberC̄Max(0.9,m)
for which there is exactly 90% probability o
CMax,C̄Max(0.9,m). No cross section resulting in
m,2.3026 can be excluded to as high a confidence leve
90%.

Another peculiarity ofC̄Max(0.9,m) is that it is not espe-
cially smooth; it tends to increase rapidly near certain val
of m. To understand this behavior, note that for a given va
of m, the maximum possible value ofx is x5m. Thus the
maximum possible value over allx of Cn(x,m) is Cn(m,m).
If Cn(m,m) is less thanC̄Max(0.9,m) then intervals withn
events cannot haveCMax5Cn for that value ofm. Further-
more, sinceCn(x,m) decreases with increasingn, intervals
with m.n events also haveCm,CMax . For low enoughm,
only intervals withn50 need be considered. In this case, t
90% confidence upper limit forCMax occurs whenx in
C0(x,m) is equal tox0(0.9,m), wherex0(C,m) is the inverse
of C0(x,m); it is defined as the value ofx0 for which
C0(x0 ,m)5C. Thus for low enoughm ~but above 2.3026!

C̄Max~0.9,m!5C0„x0~0.9,m!,m…. ~B1!
5-5
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S. YELLIN PHYSICAL REVIEW D 66, 032005 ~2002!
C0„x0(0.9,m),m…50.9 from the definitions ofC0 and x0.
This formula for C̄Max breaks down as soon asm is large
enough to haveC1(m,m).C̄Max(0.9,m), for at this value of
m it is possible for an interval withn51 to be CMax . In
general, the thresholdm for intervals withn points being able
to produceCMax for confidence levelC is where

Cn~m,m!5C̄Max~C,m!. ~B2!

Every time a threshold inm is passed that allows anothe
value of n to participate in producingCMax , the value of
C̄Max(C,m) spurts upward.

If one considers all intervals with<n events, then the
largest expected number of events is less thanm if and only
if there are more thann events in the entire experiment
range. ThusCn(m,m) is the probability of.n events in the
entire experimental range:Cn(m,m)5P(m,n11) of Eq.~3!.
This equation, with Eq.~B2!, can be used to compute th
thresholds inm where n events first need to be include
when trying to findCMax in a calculation of the 90% confi
dence level. These thresholds are tabulated in Table I. A
example of usage of this table, if you are evaluatingCMax for
a 90% confidence level calculation withm520, you can ig-
nore intervals with more than 11 events.

The many rapid increases inC̄Max(0.9,m) of Fig. 2 occur
when thresholds given in Table I are crossed.

APPENDIX C: PROBABILITY OF MORE EVENTS THAN
OBSERVED IN AN INTERVAL

Instead of usingCn(x,m) as a measure of how strongly
given interval withn events excludes a given cross sectio
one may usepn(x), the calculated Poisson probability o
there being more events in a random interval of that size t
were actually observed. This probability isP(x,n11), as
defined in Eq.~3!. If pn is too large, then the cross sectio
used in the calculation must have been too large. For a g
cross section, find the interval that excludes the cross sec
most strongly; i.e., find the interval that gives the larg
calculated probability of there being more events in the
terval than were actually observed. In other words, as
done withCMax of the optimum interval method, definepMax
to be the maximum over thepn for all possible intervals. If
random experiments for the same given cross section w

TABLE I. Thresholdm for which intervals with>n events need
not be considered when computingCMax .

n m(n) m(n11) m(n12) m(n13) m(n14)

0 2.303 3.890 5.800 7.491 9.059
5 10.548 12.009 13.433 14.824 16.196
10 17.540 18.891 20.208 21.520 22.821
15 24.119 25.400 26.669 27.926 29.197
20 30.457 31.690 32.972 34.203 35.422
25 36.632 37.849 39.108 40.333 41.546
30 42.768 43.978 45.164 46.351 47.544
35 48.734 49.944 51.139 52.314 53.488
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give a smallerpMax 90% of the time, then the cross section
rejected as too high with 90% confidence level. The funct
p̄Max(C,m) is defined as thepMax for which the confidence
level C is reached at the givenm.

Although this method may not be as effective as the
timum gap method, it is much easier to calculatepn(x)
5P(x,n11) than it is to calculateCn(x,m).

Much of the reasoning applied to the optimum interv
method applies here. As was the case for the optimum in
val method,p̄Max(C,m) depends only onC and m, but not
otherwise on the shape of the cross section. As for the o
mum interval method,p̄Max(0.9,m) is not defined for
m,2.3026. For sufficiently lowm above 2.3026 Eq.~B1!
becomes

p̄Max~0.9,m!5p0„x0~0.9,m!…5e2x0(0.9,m). ~C1!

For the thresholdm at which intervals withn points become
able to contribute topMax for confidence levelC, Eq. ~B2!
becomes

P~m,n11![pn~m!5 p̄Max~C,m!. ~C2!

A Monte Carlo program was used to compute a table
p̄Max(0.9,m) for m<70, and the function is plotted in Fig. 5

Table II shows approximate values of the thresholdm
calculated using Eq.~C2! with C50.9 for eachn from 0 to

FIG. 5. Plot of p̄Max(0.9,m), the value ofpMax for which the
90% confidence level is reached, as a function of the total num
of eventsm expected in the experimental range.

TABLE II. Thresholdm below which intervals with>n events
need not be considered when computingpMax for the 90% confi-
dence level.

n m(n) m(n11) m(n12) m(n13) m(n14)

0 2.303 5.156 7.584 9.661 11.599
5 13.427 15.193 16.900 18.559 20.176
10 21.771 23.355 24.880 26.419 27.922
15 29.428 30.891 32.359 33.808 35.251
20 36.701 38.100 39.519 40.913 42.317
25 43.700 45.091 46.465 47.827 49.193
30 50.561 51.902 53.255 54.589 55.926
35 57.264 58.603 59.920 61.237 62.549
40 63.868 65.179 66.478 67.791 69.080
5-6



ed
ed

ls

FINDING AN UPPER LIMIT IN THE PRESENCE OF . . . PHYSICAL REVIEW D 66, 032005 ~2002!
44. The third digit ofm does not really deserve to be trust
since p̄Max was computed from a Monte Carlo generat
table.

Appendix B explained why the value ofC̄Max(0.9,m)
spurts upward whenm crosses a threshold where interva
with more points can contribute toCMax . A much less obvi-
Pa
is

03200
ous similar effect occurs withp̄Max(0.9,m). Notice the ir-
regularity in the curve of Fig. 5 just afterm55.156, where
n51 first begins to contribute. Betweenm52.3026 andm
55.156, Eq.~C1! applies, but afterm55.156, p̄Max shoots
above this form. The smaller irregularity abovem57.584,
wheren52 begins to contribute, is barely visible.
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