
1 Preliminaries

1.1 The General Model

In a unit-demand auction there is a finite set of k items and a finite set of n bidders N where each
bidder is interested in receiving at most one item. We assume that n ≥ k ≥ 1. Every bidder i has
a private valuation vector vi = (vi(x))x∈K where vi(x) ≥ 0 denotes bidder i’s value for item x. In
addition every bidder i has a private budget bi > 0; bidder i cannot pay any amount equal or more
than bi.1 A pair ti = (vi, bi) is called a type. It is convenient to add a null item, denoted by φ, in
which its value for each bidder is zero. We assume that any bidder that does not get an item in K
gets the null item and pays zero.

With the absence of budget constraints, bidder’s i utility from receiving item x and paying pi
is equal to vi(x) − pi. However as budgets are incorporated in our model, we assume the utility
function for bidder i with type ti = (vi, bi) is given by

ui((vi, bi), x, pi) =
{
vi(x)− pi bi > pi
−1 bi ≤ pi

(1)

where the -1 utility for the case pi ≥ bi can be thought of as bidder i will not complete the
transaction if she is required to pay bi or more2.

An assignment is a tuple s = (si)i∈N where si ∈ K ∪ {φ} such that for every pair of bidders
i, j ∈ N if si, sj ∈ K then si 6= sj . An outcome in the auction is a tuple (si, pi)i∈N where (si)i∈N
is an assignment and pi is the payment for bidder i.

For simplicity we assume the seller has a reserve price 0 for each item. Note that at this point
nothing has been said about the rules of the auction, e.g. what are the possible strategies and how
the outcome is determined.

Throughout this paper we assume that all values and budgets are integers; similar results can
be obtained for the general case.

2 The DGS Ascending Auction

In this section we describe and analyze the ascending auction described by Demange et. al [?]3

generalized to budget constraints bidders. At each stage in the auction the auctioneer holds a
vector of prices q = (q1, . . . , qk) ∈ RK

+ where qx is the price for item x at stage r.
At the first stage the prices are q = (0, . . . , 0), and every bidder submits a subset of items

which she is interested in. We refer to this subset as a demand set.4 We say that a subset of items
(of K) is overdemanded if the number of bidders interested in/demanding only items in this set
is greater than the number of items in the set. If there is no overdemanded set (with respect to
the submitted demand sets) then it is possible to assign each item to a bidder who demands it the
auction is over; in this case if item x ∈ K is assigned to bidder i she pays qx and if i is assigned the
null object she pays zero. Otherwise the auctioneer computes a minimal overdemanded set (with
respect to the submitted subsets of the bidders) and for each item in this set it raises the price by
one unit. Again, each bidder announces a demand set at the new prices and the auctioneer either

1We do not include allow bi to be a feasible payment just for convenience.
2Replacing this with any other non positive utility does not alter the results.
3In [?] this auction is referred to as the the exact auction mechanism.
4Importantly, we do not assume here that the demand set i submits, necessarily maximizes i’s utility.
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can allocate the items (in the current prices), or otherwise computes a minimal overdemanded set
in which the prices of the items in this set are again raised by one unit, and so forth. Note that the
auctioneer will find a possible assignment eventually, since the prices are raised by a unit at each
stage.

2.1 Competitive Prices

Denote by D(q, (vi, bi)) the true demand set of a bidder at prices q when her type is (vi, bi), that is

D(q, (vi, bi)) = {x ∈ K ∪ φ|x ∈ arg max
y∈K∪{φ}

{vi(y)− qy : qy < bi}}. (2)

Let t = ((v1, b1), . . . , (vn, bn)) be a profile of types. A vector of prices q is competitive (with
respect to t) if there is an assignment s = (si)i∈N such that si ∈ D(q, (vi, bi)). Such an assignment
is said to be valid for q. A tuple (q, s) is called a competitive equilibrium if s is valid for q, and in
addition for any item x ∈ K, if si 6= x for every every bidder i, then qx = 0. In other words the
price of non allocated items in equilibrium is zero.

The following theorem given in [?] (without budget constraints) shows that if all bidders always
announce their true demand set, i.e. all items that maximize their utilities in the given prices, then
the auction terminates at the minimal competitive price vector. Formally,

Theorem 2.1. Let t = ((v1, b1), . . . , (vn, bn)) be the profile of types. Let qr be the prices at stage r
and let q be the price vector at the end of the auction. If at every stage r, each bidder submits her
true demand set D(qr, (vi, bi), then q is competitive and for any other competitive price vector q̃,
q ≤ q̃.

The proof of Theorem 2.1 is identical to the proof of Theorem 1 by Demange et. al in [?] and
therefore is omitted. Their proof uses the celebrated Hall theorem which asserts that a possible
allocation exists if and only if there is no overdemanded set. Roughly speaking their proof only
remains in the ”higher level” of demand sets, and therefore the presence of budgets do not change
any of their arguments. For the exact details we refer the reader to [?].

Demange et. al also show that there exists an assignment such that the final prices together
with the final price vector is an equilibrium. Interestingly, as we show in the following example this
is not true in our context.

Example 2.2. Consider one item x and two bidders 1 and 2. Let b1 = b2 = 10 and v1 = 15,
v2 = 20. For any qx < 10 both bidders’ true demand contains x. Therefore any competitive price
is at least 10, but in any such price the item is not allocated.

Example 2.2 shows that if ties are allowed then there is no competitive equilibrium. The
following example shows that a competitive equilibrium does not exist even with no ties.

Example 2.3. Consider two items, x and y and three bidders 1, 2 and 3. Let b1 = 10, b2 = 11 and
b3 = 1000. Let v1(x) = 1000 , v2(y) = 1000, v3(x) = 20, v3(y) = 21 and all other values are zero.
Note that the final prices will be qx = 11 and qy = 12, bidder 3 will get either item x or item y,
and the other item will not be allocated.

Examples 2.2 and 2.3 motivate the following definition:
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Definition 2.4 (Independence). We say that n numbers x1, . . . , xn are in independent, if it is
not possible to find two different nonempty subsets containing positive numbers, that sum up to the
same number. Alternatively, for every linear combination

∑n
i=1 eixi where ei ∈ {−1, 0, 1} then if

ei 6= 0 then xi = 0.

For any profile of types t = ((v1, b1), . . . , (vn, bn)) we denote by H(t) the set of numbers
b1, . . . , bn, v1(1), v1(2), . . . , v1(k), v2(1), . . . , v2(k), . . . , . . . , vn(1), . . . , vn(k).
Independence Assumption: For every type profile t, the numbers in H(t) are independent5.

We will show:

Theorem 2.5. Under the independence assumption if q is the minimal competitive price vector
then there exist an assignment s such that (q, s) is a competitive equilibrium.

Before we prove Theorem 2.5 we provide a useful tool in the next lemma. First a definition is
needed:

Definition 2.6. Let t = ((v1, b1), . . . , (vn, bn)) be a profile of types. Let q be a minimal competitive
price vector and let s be a valid assignment for q. In a (q, s) − graph or an almost envy free
graph T = (V,E), the set of nodes is N , and there exist a directed edge (i, j) ∈ E if and only
if decreasing the price by one unit the price of sj will cause i to envy j, i.e. u((vi, bi)), si, pi) <
u((vi, bi)), sj , qsj − 1). An edge (i, j) ∈ E is colored green if qsj = bi and red otherwise.

Intuitively, a green edge from i to j capture the envy due the budget limit of bidder i, and a
red edge (i, j) implies that i has the budget for getting j’s item in her price but is indifferent to
such an outcome, i.e. vi(si)− pi = vi(sj)− pj .

Lemma 2.7. Let q be a minimal competitive price vector and let s be a valid assignment for q.
Let T be the (q, s)-graph and let pi = qsi.

1. If pi > 0 then the indegree of i is at least 1.

2. If pi > 0, then on every simple predecessors path to i either there is a node j such that pj = 0
or there exist a green edge (j, l) together with a path from l to i (l can be i).

3. T contains no cycles.

4. If pi > 0 then pi 6= vi(si).

Proof. 1. Let i be such that pi > 0 and suppose the indegree of i is zero. Then the price vector
q̃ in which q̃si = qi − 1 and q̃j = qj for all j 6= i is competitive since s is valid for q̃. This
contradicts the minimality of q.

2. Let i be such that pi > 0 and assume the claim doesn’t hold. This implies that there exists
a cycle of red edges. Let i1, i2, . . . , im, i1 be such cycle. Since for every l = 1, . . . ,m we have
pil − pil+1 = vi(sil)− vi(sil+1

) (l + 1 is taken modulo m) we obtain that

0 = pi1 − pi2 + pi2 − pi3 + · · ·+ pim − pi1 =

vi1(si1)− vi1(si2) + vi2(si2)− vi2(si3) + · · · vim(sim)− vim(si1),

contradicting the independence assumption.
5Unless specified otherwise we will have this assumption through the entire paper.

3



3. We first show that no node has an indegree larger than 1. Suppose towards a contradiction
that i has indegree i > 0. By part 2 of the lemma there exist two different predecessors paths
i1, i2, . . . , im and j1, j2, . . . , jr where im = jr = i with satisfy the conditions in part 2. We
choose these paths such that all edges are red perhaps but the first one, i.e. if the first is
green then it is close as possible to i. Consider the first path; either (i1, i2) is green or pi1 = 0.
Note that on the first path for every 2 < l < m pil+1 = vil(sil)− vil(sil+1

)− pil and for l = 2
either pi2 = vi1(si1) − vi1(si2) or pi2 = b1. Since the payments of the second path can be
written similarly, this implies that we can express pi in two different ways only with budgets
or values, contradicting the independence assumption.

Since by the first part of the lemma the maximum indegree is one, to complete the proof it is
enough to show that there does not exist a cycle in which all it nodes have exactly outdegree
1. Suppose that there exists such a cycle i1, i2, . . . , im, i1. Let q̃ be the price vector in which
for every j = 1, . . . ,m let q̃sij

= qsij
−1. and all other prices remain the same. We claim that

q̃ is a competitive price vector contradicting the minimality of q: let s̃ be the assignment for
every bidder j = 1, . . . ,m sij = sij+1 (where j+ 1) is taken modulo m). Note that s̃ is a valid
for q̃.

4. Suppose pi > 0 and assume pi = vi(si). By part 2 there exist a path i1, i2, . . . , im where
im = i where either pi1 = 0, or pi1 = bi1 . Similarly to part 2 we can express pi in a
linear combination of values and/or budgets, except i’s. But since pi also equals vi(si) this
contradicts the independence assumption.

Proof of Theorem 2.5: Let q be a minimal competitive price vector and s a valid assignment for
q. We show that (q, s) is an equilibrium. Suppose there exist an item x ∈ K such that qx > 0 and
no bidder gets this item. Observe that there exist two different bidders l, j ∈ N such that for each
i ∈ {l, j} either qx = bi or qx = vi(si)− vi(x)− pi. We first show that for each i ∈ {l, j} there is a
linear combination of elements in H(t) that sum up to qj . Fix some arbitrary i ∈ {l, j}. If qj = bi
we are done. Suppose qx = vi(si) − vi(x) − pi. If pi = 0 we are done. If pi > 0 then by part 2 of
Lemma 2.7 there exists a simple path i1, i2, . . . , im where im = i, such that either (i1, i2) is a green
edge or pi1 = 0. But this implies the existence of such a linear combination. It remains to show
that for each i the linear combination is different as this contradicts the independence assumption.
This follows since for each i ∈ {l, j} either qx = bi or −vi(x) appear only in the linear combination
we found for i. �

2.2 Truthfulness

2.3 Incentive Compatibility

In the previous section we analyzed the outcome of the auction when bidders always announce
their true demand sets. In this section we analyze the DGS auction when bidders can use different
strategies.

For any stage r let Hr be the history of demand sets of the bidders up to stage r. A bidding
strategy for i is a sequence τ1

i , τ
2
i , . . . , such that for each r ≥ 1, τ ri : Hr × RK

+ → 2K∪{φ} maps a
history in Hr and a vector of prices to a demand set. All our results do not depend on the histories’
structure. Thus, with a slight abuse of notation we write τ ri (q) to denote the demand set i submits
at round r under the strategy τi, when the price vector is q.
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We say that a strategy τi for i is consistent with type (vi, bi) if for every price vector q and
every stage r, τ ri (q) = Di(q, (vi, bi)). A strategy is consistent if there exist a type for which it is
consistent with it.6

Essentially, by limiting all bidders to use consistent strategies, the auction is a direct revelation
mechanism in which each bidder only submit a type and the auctioneer computes the outcome (e.g.
by simulating the whole process). We call this auction the direct DGS auction. Formally, the direct
DGS auction is defined as follows:

• Every player i, submits a bid (vi, bi).

• Let t = ((v1, b1), . . . , (vn, bn)). If H(t) do not satisfy the independence assumption the auction
is terminated.

• The auctioneer computes a competitive equilibrium with (s,q) where q is a minimal price
vector, assigns si to bidder i and charges her qsi .

In the next theorem we show that bidding the direct DGS auction is incentive compatible. This
result has been proved independently by [?]. Our proof is simpler and provides an alternative
approach for understanding the problem.

Theorem 2.8. The direct DGS auction is truthful, that is for every bidder it is a dominant strategy
to report her true type.

We will assume w.l.o.g. that all bid profiles discussed in the proof satisfy the independence
assumption. Through out the proof we fix some bidder i and fix the submitted types of all bidders
but i, these are t−i = (tj)j∈N\{i}. For any type ti let µ(ti) = (q(ti), s(ti)) be the competitive
equilibrium when i bids ti, and let pi(ti) = qsi(ti) be her payment.

Lemma 2.9. For any ti, t′i in which si(ti) = si(t′i) (i is assigned the same item), pi(ti) = pi(t′i) (i
pays the same price).

Proof. Fix some type ti = (vi, bi) in which player i is assigned an item x ∈ K and let t̂i = (ṽi, b̃i)
be the type obtained by ti by letting ṽi(x) = vi(x), ṽi(y) = 0 for all other items, and b̃i = bi.
It is enough to show that si(t̃i) = si(ti) and pi(ti) = pi(t̃i): Suppose this is true. Let ti and t′i
be two different types in which bidder i obtains the same item x but pi(ti) < pi(t′i). Therefore
pi(t̃i) < pi(t̃′i). But q(t̃i) are competitive prices with respect to (t̃i, t−i) (as s(t̃i, t−i) is a valid
assignment) contradicting the minimality of q(t̃′i).

In the following sequence of claims we prove that si(t̃i) = si(ti) and pi(ti) = pi(t̃i).

Claim 2.10. For every item y, qy(t̃i) ≤ qy(ti).

Proof. Since q(ti) are competitive with respect to (t̃i), t−i), and the auction outputs the minimal
competitive prices this follows.

Claim 2.11. si(t̃i) = x, i.e. i is also assigned x when she reports t̃i.

Proof. Assume that this is not the case and let si(t̃i) = y 6= x. Since ṽi(y) = 0 and since by the
previous claim qx(t̃i) ≤ qx(ti) it must be that qx(t̃i) = qx(ti) = vi(x) otherwise this contradicts that
q(t̃i) are competitive. But qx(ti) = vi(x) contradicts part 4 of Lemma 2.7.

6Consistent strategies can be thought of bidding through a proxy bidder (see e.g. [?]).

5



For every item x ∈ K with qx > 0 denote by w(x) the winner of item x, and let z(x) be a bidder
such that (z(x), w(x)) is an edge in the µ-graph.

For the next claim we need some definitions. Let A denote the set of items in which their prices
decreased from the case that i bids ti to the case that i bids t̃i. That is

A = {y ∈ K : ˜qy(˜i)t < qy(ti)}.

We also define two functions from K to K ∪ {φ}.
We let δ(y) = z if sj(ti) = y and sj(t̃i) = z. We let γ(y) = z if there exist a pair of players j, l

and an item w, such that sj(ti) = w, sj(t̃i) = z sl(ti) = l and (j, l) is an edge in the µ(ti)-graph.

Claim 2.12. If y ∈ A, then δ(y) ∈ A. Moreover, if qy(ti) > 0, and γ(y) 6= x, then γ(y) ∈ A.

Proof. Assume sj(ti) = y and z = δ(y). Since q are competitive with respect to (ti, t−i), j does
not prefer z at qz(ti) to y at qy(ti). But this means that if qy(t̃i) < qy(ti), and qz(t̃i) = qz(ti), then
j would prefer y when i submits ĩ contradicting the competitiveness of q(t̃i).

To prove the second part suppose qy(ti) > 0 and z = γ(y) 6= x. Let j be such that sj(ti) = w
and sj(t̃i) = z, and l be such that sl(ti) = y. If (j, l) is red. Such a configuration exists by part 1
of Lemma 2.7. Thus, j is indifferent between getting w in qw(ti) and y in qy(ti). Therefore if y ∈ A
then j is strictly better off getting y in qy(t̃i) then getting any other item x′ in qx′(ti), implying that
w ∈ A. If (j, l) is green, then obtaining y in qy(t̃i)− 1 or less is strictly better for j than obtaining
any item x′ in qx′(ti), again implying that y ∈ A.

To finish the proof we need to show that pi(ti) = pi(t̃i). Suppose that pi(ti) > pi(t̃i). Hence
x ∈ A. Therefore since there are no cycles in µ(ti)-graph, by the last claim it must be that some
item whose price is zero when i submits ti belongs to A - a contradiction.

We now show that i gets the item x which maximizes her welfare. Assume this is not the case,
and by bidding truthfully i gets another item. Let G denote the game where i bids truthfully, and
let y 6= x denote the item that i gets in G, for py. Assume that there is another game G̃, in which
i lies, and gets x for p̃x. As i is not envious in G, we must have that px > p̃x, where px is the price
of x in G.

We define another game G′, in which i bids the same values for x, y, the same budget, but all
the other valuations are zero (the other players bid the same).

Claim 2.13. For every item z, p′z ≤ pz

Proof. Stems from minimality (every envy free allocation in G is envy free in G′).

Claim 2.14. i gets y in G′.

Proof. If i gets something which is not x and not y, he is envious in the player who gets y for
p′y < py (if there is equality i paid her valuation in G).

If i gets x, note that px − p′x ≥ 0. If px − p′x > 0, then let

A = {y ∈ K : ˜qy(˜i)t < qy(ti)}.

As b ∈ A, this gets to a contradiction.
If px − p′x = 0, then there is a red edge between b and a. In this case, the player before i in the

DAG (which we denote by j) got b, and we have p′b = pb. Iterating this argument for j and b, we

6



get that a player which paid zero before now pays her valuation (which contradicts independence),
or we are stuck in a green edge (and can’t continue).

Note that as a menu exists, p′y = py. Moreover, as i is not envious in G′, p′x > p̃x.
The following claim is a simple corollary of the way we run each stage in the mechanism

Claim 2.15. If a player increases all her valuations by a constant, and she doesn’t get to the budget
limit, then she gets the same set of items for the same price

We know that vx−p̃x > vy−p̃y = vy−py. Thus, the constant δ = vx−vy−px+py > 0. Let c > 1
be any constant such that δ/c < py Now consider a game G′′, in which i bids v′′x = vx−vy+py−δ/c,
v′′y = vy − vy + py − δ/c = py − δ/c.

Since G′′ and G′ are off by a constant, the mechanism is run in the same way, and i should get
y for py. But this is more than he values the item, and is thus impossible.

Lemma 2.16. Player i gets the best deal.

Proof. Suppose player i prefers b but gets a.
Claims: (i) If i drops all values to 0 but vi(a) and vi(b) still gets a.
Proof - suppose i gets b. the price of b cannot increase because of minimal competitive prices.
Next we show it cannot be that the price of b didn’t change and you got b. Suppose in

contradiction that this is the case. This means that i had an edge to b before and the price of a
didn’t drop otherwise in the new instance i envies the player that got a. Therefore the player, say
j, that had a red edge to i in the original graph got a (there is one player since the graph is a dag).
But this means that the player that pointed to j get what j got and so on. We will end in a player
that paid zero (since it is a dag). But in the new graph since everything is shifted this player that
paid zero now pays something positive which is exactly his value (since all edges were red). But
this means that some player points to this player in the new graph implying a contradiction to
the independence assumption. (one cannot pay his value and budget because of the independence
assumptions - make it a separate lemma).

Next we show it cannot be that the price of b didn’t drop and you got b. Let A be the set of
items in which their prices dropped..... get a contradiction by showing that A can grow (it can’t
be that A is everything).

(ii) After dropping if you add a constant to both you get the same item. (the proof is similar
to the previous one).

(iii) in (v(a)′, v(b)′) = (v(a) − v(b) + pb + ε
2 ,∞) and budget ∞ i gets b and pays pb because of

the menu. If i drops b to pb + ε
2 . Now add both values in to v(a) and v(b) by the same constant.

Thus you get b (contradicting that you ever got a).
v(a)− v(b) + pb + ε

2 can be negative but it is not good for us....

Theorem 2.17. If all players but i are restricted to be consistent then it is a dominant strategy
for i to be truthful (even allowing him non consistent strategies).

Proof. All players but i are not envy. Raise the value of the i for the slot he got to ∞. Thus i is
also not envy. ........
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3 Uniqueness

Let G denote our mechanism, and let M denote another truthful envy free mechanism (assuming
such mechanism exists). Assume that if the players bid bi, vi then the outcome (or prices) are
different between M , and G. We let p1, . . . pk denote the prices in G, and q1, . . . qk denote the
prices in M . As G is point wise minimal, we have that for every item x, px ≤ qx.

Lemma 3.1. The same set of players paid zero in G,M .

Proof. Assume the converse. Let i1 be a player which paid zero in G, but received some item x1

and paid qx1 > 0 for it in M . Let i2 be the player which i1 points to at the envy graph of G. As M
as envy free, it must be that px1 = qx1 , and i2 received x1 in G (there was a red edge from i1 to i2).
If i2 doesn’t receive any item in M , then since he is not envious at i1 it must be that qx1 = vi2(x1)
which is a contradiction since px1 = qx1 . Otherwise, i2 received another item x2 in M . A similar
argument shows that px2 = qx2 , and that if i3 received x2 in G, then i2 has a red edge to i3. As
the number of players is finite, some player ij which received xij−1 in G will now get no item and
pay nothing, which is a contradiction.

Let x1 be an item which maximizes qx1 − px1 , and i1 the player which received x1 in G. We
show that i1 still gets x1 in M :

Lemma 3.2. i1 gets x1 in M .

Proof. Denote d = qx1 − px1 Assume that i1 doesn’t get x1. According to Lemma 3.1, i1 gets an
item x2 in M . As i is not envious in M , we have qx2 − px2 = d, and there is a red edge from x1

to x2 in the envy graph of G. Let ij denote the player which got xj in G. An inductive argument
shows that ij must get an item in M , and that if that item is xj+1, then qxj+1− pxj+1 = d, and xj
points at xj + 1 in the envy graph of G. Since the set of players is finite, one of the players which
received an item in G will not receive an item in M , which is a contradiction.

We now define a new input to our mechanism and to M , and consider the behavior of both
mechanisms on the new input. Let x be the item which maximized qx − px, and i be the player
which received x in G,M , we define

∀j 6= i, ṽj(y) = vj(y), b̃j = bj

ṽi(x) =
px + qx

2
, ∀y 6= x, ṽi(y) = 0, b̃i = bi

that is, all the players bid the same, except player i which only wants x, and wants it for (px+qx)/2.
Denote the allocation and prices of our mechanism on the new bids by G̃, and the allocation and
prices of the new mechanism by M̃ .

Claim 3.3. Player i gets x in M̃ .

Proof. Since every allocation in G is also envy free in G̃, for every item y, p̃y ≤ py. Thus by the
envy free on G̃, i must get x in G̃. As our mechanism is truthful, p̃x = px > 0, and i pays in G̃.
According to Lemma 3.1, i also pays in M̃ . However, as i is only interested in x, it must be that i
gets x in M̃ .

Claim 3.3 is a contradiction. If i pays strictly less than qx, then it is better for her to lie and
report ṽi and not vi. If she pays qx or more, than she pays more than her value for the item, as
(qx + px)/2 < qx.
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4 Uniqueness

Lemma 4.1. In M̃ , the set of players that pay a positive price are the same players as in M .

Proof. Suppose this is not the case. Start from some player p that doesn’t get an item in M and
gets in M̃ . Therefore p got an item a slot that he pointed at in our graph and so on. It will cause
that someone will point to an empty slot which means his price is vi contradicting the independence
assumption. Note that by minimality all prices didn’t drop. From this player there is an edge to a
some another player (their items). A cycle will close...

Lemma 4.2. Suppose an item s sold for Q̃s > Qs in M̃ . Playerp gets it in M̃ (same that was in
M).

Proof. Let s be the item that increased the most.

Example 4.3. Bad Example (not every slot is sold, or 5 slots and 5 players and every one pays).
b2 = 10, b4 = 11, bi =∞ for others.
All values but the following are zero:
vA1 = 30, vC1 = 29, vA2 = ∞ , vB2 = 20 , vB3 = 13, vC2 = 14, vD3 = 12,, vD4 = 20, vD4 = ∞,

vA5 = 20, vE5 = 21.
The prices at the end will be pA = 10, pB = 8, pC = 9, pD = 7, pE = 11.
Another bad example: If only players 5, 4, 2 exists and the only slots are A and E then only one

of the slots will be sold.
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