
Breaking and making quantum money
Scott Aaronson1 Edward Farhi2 David Gosset3 Jonathan Kelner4 Avinatan

Hassidim5 Andrew Lutomirski6 Peter Shor7
1−7Massachusetts Institute of Technology, Cambridge, MA 02139

aaronson@csail.mit.edu farhi@mit.edu dgosset@mit.edu kelner@mit.edu
avinatanh@gmail.com luto@mit.edu shor@math.mit.edu

Abstract: Quantum money is a cryptographic protocol in which a bank can create quantum states
which anyone can verify but no one except possibly the bank can clone or forge. Aaronson [1] proposed
a scheme for this, which we show to be insecure.
On the positive side, we propose a new scheme, and conjecture that it is secure. Our scheme is inherently
quantum, in the sense that there are no classical secrets involved, and the only randomness comes from
measurements, whose results are made public. This new scheme has the additional property that not
even the bank can make two instances of quantum money with the same “serial number.”

Keywords: quantum money; cryptography; random matrices; and markov chains

1 Introduction

Ever since there’s been money, there have been
people trying to counterfeit it. Preventing coun-
terfeiting is one of the oldest “security problems”
facing human civilization. The problem attracted
the attention of no less than Isaac Newton, who,
in his role as Master of the Mint, redesigned En-
glish coins by adding milled edges that were diffi-
cult for counterfeiters to reproduce. (Newton also
personally oversaw the hangings of many counter-
feiters.) Today, paper money comes equipped with
an arsenal of anti-counterfeiting measures, includ-
ing holograms, embedded strips, “microprinting,”
and special inks that look different depending on
the angle.

Yet it should surprise no one that, as mints have
become more technically sophisticated, so have
counterfeiters—leading to an arms race with no
obvious winner. From a cryptographer’s perspec-
tive, the problem is that unforgeable cash seems
theoretically impossible—a criminal organization
could in principle copy whatever printing technol-
ogy a government can build. Furthermore, if we
abstract away the printing details, we can see a bill
as just a string of 1’s and 0’s, and we know that any
information that can be read and copied an unlim-
ited number of times. Of course, credit card com-
panies (and services such as PayPal) get around

this problem by having a trusted bank authorize
every transaction. But secure digital cash without
such a “middleman”—that is, with the same flex-
ibility and convenience as ordinary cash—would
seem to be a fundamental impossibility.

In 1969, Wiesner [2] wrote a remarkable pa-
per, pointing out that the No-Cloning Theorem
raises the possibility of uncopyable cash: bills
whose authenticity would be guaranteed by quan-
tum physics.1 Here’s how Wiesner’s scheme
works: besides an ordinary serial number, each
bill would contain (say) a few hundred photons,
which the central bank “polarized” in random di-
rections when it issued the note. The bank, in a
massive database, remembers the polarization of
every photon on every bill ever issued. If you want
to verify that a bill is genuine, you take it to the
bank, and the bank uses its knowledge of the po-
larizations to measure the photons. On the other
hand, the No-Cloning Theorem ensures that some-
one who doesn’t know the polarization of a photon
can’t produce more photons with the same polar-
izations. Indeed, copying a bill can succeed with
probability at most (5/6)n, where n is the number

1This is the same paper that introduced the idea of quan-
tum cryptography. Unfortunately, Wiesner’s paper was not
published until the 1980s; the field of quantum computing and
information (to which it naturally belonged) had not yet been
invented.

1

of photons per bill.
Wiesner’s scheme has a serious drawback,

namely that the bank is the only one who can ver-
ify that bill as genuine. Ideally, printing bills ought
to be the exclusive prerogative of the bank, but the
checking process ought to be open to anyone. But
is it possible, even in principle, to have quantum
money satisfying all three requirements:

(1) the bank can print it,

(2) anyone can verify it, and

(3) no one (except possibly the bank) can copy it.

We call such a scheme a public-key quantum
money scheme, by analogy with public-key cryp-
tography. Perhaps surprisingly, the question of
whether public-key quantum money schemes are
possible has remained open for forty years, from
Wiesner’s time till today.

Recently Aaronson [1] revisited the question,
and proposed an explicit candidate scheme (hence-
forth - Stabilizer Money) for public-key quantum
money. The scheme has quite a few parameters,
but its security is based on the assumption that
given a set of m stabilizer measurements which
is composed of a large set of random stabilizer
measurements and a small set of stabilizer mea-
surements which stabilize the same state (and thus
pairwise commute), it is hard to identify the small
set.

To make the success probability of the verifier
large, a quantum bill consists of ` independent
sets of measurements, and the bank has ` secrets,
namely which measurements form the small com-
muting subset of each one of the ` sets. The veri-
fier then does ` independent tests, and a Chernoff
bound shows that the verification works with high
probability.

We prove that the money is insecure, by show-
ing that one of two cases hold, for each one of the
` sets

1. If the small commuting set is “too small” (less
than

√
m/16) then the test performed by the

verifier on this set is too weak, and one can
find another money state which would pass
the test.

2. If the set of the small commuting set is “too
big” (more than

√
m/100) then one can find

it.

The hard part of the attack is the second regime,
and the tools we provide there may be of indepen-
dent interest. Consider the graph, whose vertices
are the m measurements, and two vertices share
an edge iff the measurements commute. The small
subset would correspond to a clique, and the large
set of measurements is pseudorandom. Unfortu-
nately, one can not apply the clique finding algo-
rithm of Alon, Krivelevich, and Sudakov [3], for
finding large planted cliques in random graphs - as
the graph is far from random2. The [3] algorithm
works by finding the second largest eigenvector of
the adjacency matrix of the graph. They require
a lemma from [5], which asserts that for random
graphs the second eigenvector is well behaved. We
prove a weaker variant of this lemma for graphs
which have logarithmic independence, and show
how to use the weaker lemma in Alon et al.’s proof
and get a slightly weaker result. We then argue
that with high probability the measurement graph
has the required independence properties, and thus
the clique can be found.

The main contribution of this paper is a new
quantum money scheme, which, unlike previous
schemes [1, 2, 6], is not based on any secret. In our
new scheme, the bank prepares quantum money
states by

(1) preparing a uniform superposition over all
n + mr-bit strings (here r is logarithmic in
m),

(2) measuring a collection of randomly-chosen
hash functions h1, . . . , hm with m ≈

√
n—

which collapses the state from a uniform su-
perposition over all x ∈ {0, 1}n+mr to a
uniform superposition over all x such that
h1 (x) , . . . , hm (x) take on their measured
values—and then

(3) distributing the partially-collapsed state |ψ〉
that remains, along with the m-bit string
h1 (x) , . . . , hm (x) and a digital signature
thereof.

Note that it is easy to generate a classical state
which satisfies all the hash functions. However,
we conjecture that it is hard to generate a uni-
form superposition over such states. To verify the

2One can not use [4] as well.

2

money, one first checks that the hash functions give
the right values (and thus it is a superposition of
legal states). To verify that it’s the uniform su-
perposition, one applies a Markov process which
has the uniform distribution over the legal states
as its stationary distribution. One then verifies
that the state one is holding didn’t change by the
process. The main technical challenge here is to
prove that one can design a rapidly mixing Markov
chain which has the correct stationary distribution
(otherwise other superpositions may also pass the
test). We design such chain, and show how to
perform a polynomial-time quantum measurement
that projects onto the stationary distribution.

Let us now point out a conceptually novel fea-
ture of our money scheme: the bank never needed
any classical secret (that is, any private random
bits) to generate the state |ψ〉! So in particular,
any counterfeiting strategy based on “learning the
secret of how |ψ〉was generated”is doomed to fail-
ure here. Indeed, not even the bank itself knows
how to generate a second copy of |ψ〉 efficiently.
In other words, if we think of the measurement
outcomes h1 (x) , . . . , hm (x) as the classical “se-
rial number” of a bill, then the bank itself doesn’t
know the serial number of the bill it’s about to gen-
erate, nor can it generate two bills with the same
serial number (even if it wants to).

This feature of our money scheme has no clear
analogue in the classical world—depending as it
does on the fact that there is no way to “pull the
randomness out of a quantum algorithm,” in the
same way that one can pull the randomness out of
a classical randomized algorithm (and view it as
a deterministic algorithm with an auxiliary input).
Thus, our new scheme underscores just how differ-
ent the quantum money problem is from classical
cryptographic problems, despite superficial simi-
larities.

Related to that point, it remains a major chal-
lenge to base the security of a public-key quantum
money scheme on any previously-studied (or at
least “standard-looking”) cryptographic assump-
tion, for example, that some public-key cryptosys-
tem is secure against quantum attack. That chal-
lenge was not met for any previous money scheme,
nor do we meet it for our new one. Much as
we wish it were otherwise, it seems possible that
public-key quantum money intrinsically requires a

new mathematical “leap of faith,” just as public-
key cryptography required a new leap of faith
when it was first introduced in the 1970s. How-
ever, by evading all currently-known classes of at-
tacks, our new scheme increases our confidence
that public-key quantum money is possible at all.

2 Brute-force attack against Stabi-
lizer Money for ε ≤ 1

16
√

m

The brute-force attack against the Stabilizer
Money does not clone the money but rather attacks
the verification algorithm directly. To understand
the attack, it will be helpful to review the verifica-
tion algorithm.

2.1 Verification of the Stabilizer Money
The Stabilizer money is parameterized by inte-

gers n,m and l and by a real number ε ∈ [0, 1].
These are required to satisfy n

ε � m � 1
ε2 � l.

We assume that m = poly(n).
Any instance of quantum money is verified us-

ing a classical certificate, which consists of an
m × l table of n qubit Pauli group operators. The
(i, j)th element of the table is an operator

Eij = (−1)bijAij1 ⊗A
ij
2 ...⊗Aijn

where each Aijk ∈ {1, σx, σy, σz} and bij ∈
{0, 1}.

We will use one important property of the algo-
rithm that generates the table of Pauli operators:
with the exception of the fact that −I⊗n cannot
occur in the table, the distribution of the tables is
symmetric under negation of all of the operators.

The verification algorithm works by choosing,
for each i, a random j (i) ∈ [m]. The verifier then
measures

M =
1
l

∑
i

I⊗i−1 ⊗ Ei,j(i) ⊗ I⊗m−i. (1)

The algorithm accepts iff the outcome is greater
than or equal to ε

2 . Note that measuring the op-
erator M is equivalent to measuring the operator
Ei,j(i) for each register i ∈ [l] and then averag-
ing the results, since the measurements on differ-
ent registers commute.

To better understand the statistics of the operator
M , we consider measuring an operator Eij(i) on a
state ρi, where j(i) ∈ [m] is chosen uniformly at

3

random. The total probability p1(ρi) of measuring
a +1 is given by

p1(ρi) =
1
m

m∑
j=1

Tr

[(
1 + Eij(i)

2

)
ρi

]

=
1 + Tr

[
H(i)ρi

]
2

,

where (for each i ∈ [l]) we have defined the Hamil-
tonian

H(i) =
1
m

m∑
j=1

Eij .

2.2 Attacking the verifier
For ε ≤ 1

16
√
m

and with high probability in the
table of Pauli operators, we can efficiently generate
a state that passes verification with high probabil-
ity.

We assume we are given a table of operators
Eij generated as in Aaronson’s scheme, and our
goal will be to produce an nl qubit mixed state
ρ which is accepted by Aaronson’s verifier with
all but exponentially small (in n) probability. For
some choices of Eij our attack may fail but we
will show that the probability that such a table of
operators is selected in Aaronson’s scheme is ex-
ponentially small.

The idea of the attack is simple, and we now de-
scribe how it works in the overwhelmingly likely
event that the table of operators Eij does not cause
it to fail. We use an algorithm, described below, to
independently generate an n qubit mixed state ρi
on each register i ∈ [l]. At least 1/4 of these states
ρi will have the property that

Tr[H(i)ρi] ≥
1

4
√
m

+O(
1
m2

), (2)

and the rest have

p1(ρi) ≥
1
2

+O(
1
m

), (3)

which implies that,

E
i
p1(ρi) ≥

1
2

+
1

8
√
m

+O(
1
m2

).

We use the state

ρ = ρ1 ⊗ ρ2 ⊗ ...⊗ ρl

as our forged quantum money. The mean value
of the operator M (from equation 1) in this state
is at least 1

4 (1
4
√
m

+ O(1
m2)) + 3

4O(1
m), and the

probability of measuring an energy less than 1
32
√
m

(which is the case where the state is not accepted)
is exponentially small for m sufficiently large.
Therefore the forged money state ρ is accepted by
Aaronson’s verifier with probability that is expo-
nentially close to 1 if ε ≤ 1

16
√
m

.
Before describing our algorithm to generate the

states ρi, we must understand the statistics (in par-
ticular, we consider the first two moments) of each
H(i) on the fully mixed state I

2n . We will assume
that, for j 6= k, Ei,j 6= Ei,k. We also assume that
the operators±I⊗I⊗I...⊗I do not appear in the
list. Both of these assumptions are satisfied with
overwhelming probability. We then have for the
first and second moments of H(i)

Tr
[
H(i) I

2n

]
= 0,

and

Tr
[(
H(i)

)2 I

2n

]
(4)

= 2−n Tr

 1
m2

∑
j

(Ei,j)
2 +

1
m2

∑
j 6=k

Ei,jEi,k

=

1
m
. (5)

Now let us define fi to be the fraction (out of 2n)
of the eigenstates of H(i) which have eigenvalues
in the set [1

2
√
m
, 1]∪ [−1,− 1

2
√
m

]. Since the eigen-

values of H(i) are bounded between −1 and 1, we
have

Tr
[(
H(i)

)2 I

2n

]
≤ fi + (1− fi)

1
4m

.

Plugging in equation 5 and rearranging we obtain

fi ≥
3

4m− 1
.

We also define gi to be the fraction of eigenstates
of H(i) that have eigenvalues in the set [1

2
√
m
, 1].

The distribution (for any fixed i) of Ei,j as gener-
ated by the bank is symmetric under negation of
all the Ei,j , so with probability at least 1/2 over the

4

choice of the operators in the row labeled by i, the
fraction gi satisfies

gi ≥
3

8m− 2
. (6)

We assume this last inequality is satisfied for at
least 1/4 of the indices i ∈ [l] , for the particular
table Eij that we are given. The probability that
this is not the case is exponentially small in l.

Ideally, we would generate the states ρi by
preparing the fully mixed state, measuring H(i),
keeping the result if the eigenvalue is at least 1

2
√
m
,

and otherwise trying again, up to some appropriate
maximum number of tries. After enough failures,
we would simply return the fully mixed state. It
is easy to see that outputs of this algorithm would
satisfy eq. 2.2 with high probability.

Unfortunately, we cannot efficiently measure
the exact eigenvalue of an arbitrary Hermi-
tian operator, but we can use phase estimation,
which gives polynomial error using polynomial re-
sources. In appendix A we review the phase es-
timation algorithm which is central to our proce-
dure for generating the states ρi. In section 2.3, we
describe an efficient algorithm to generate ρi us-
ing phase estimation, and, in appendix B, we show
that the resulting states, even in the presence of er-
rors due to polynomial-time phase estimation, are
accepted by the verifier with high probability, as-
suming that the table Eij has the appropriate prop-
erties.

2.3 Procedure to Generate ρi
We now fix a particular H(i) and define H =

1
4H

(i) so that all the eigenvalues of H lie in the
interval [− 1

4 ,
1
4]. We denote the eigenvectors of H

by {|ψj〉} and write

e2πiH |ψj〉 = e2πiφj |ψj〉,

where φj ∈ [0, 1
4] ∪ [3

4 , 1].
Our attack which can be used to forge Aaron-

son’s quantum money is to do the following pro-
cedure for each register i ∈ [l], producing mixed
state outputs {ρi}. We will analyze this procedure
in appendix B.

1. Set k = 1.

2. Prepare the completely mixed state I
2n .

3. Use the phase estimation circuit to measure
the operator e2πiH . Here the phase estimation
circuit (see appendix A) acts on the original
n qubits in addition to q = r + dlog(2 + 2

δ)e
ancilla qubits, where we choose

r = dlog(20m)e δ =
1
m3

.

4. Accept the resulting state (of the n qubit reg-
ister) if the measured phase φ′ .= z

2q is in the
interval [1

8
√
m
− 1

20m ,
1
2]. In this case stop and

output the state of the first register. Otherwise
set k = k + 1.

5. If k = m2 + 1 then stop and output the fully
mixed state. Otherwise go to step 2.

3 Insecurity of the Stabilizer Money
for ε ≥ c√

m

In this section, we will describe how to forge
the Stabilizer Money when the number of commut-
ing measurements is at least c

√
m for any constant

c > 0. We will consider each column of the table
separately. For the ith column, let M = Mi be the
list of possible measurements for ψ = ψi, and let
K = Ki denote the set of commuting measure-
ments that stabilize ψ. Set k = |K| and m = |M |.
We will first consider the case k > 100

√
m, and

we will then show how to reduce the case k >
c
√
m to this case for any constant c > 0. The algo-

rithm we present has success probability 4/5 over
the choice of the random measurements. We have
not attempted to optimize this probability, and it
could be improved with a more careful analysis.

We begin by casting our question as a graph
problem. Let G be a graph whose vertices cor-
respond to the m measurements, and connect ver-
tices i and j if and only if the corresponding mea-
surements commute. The set K now forms a
clique, and we aim to find it.

In general, it is intractable to find the largest
clique in a graph. In fact, it is NP-hard even to
approximate the size of the largest clique within
n1−ε, for any ε > 0 [7]. However, if the
graph is obtained by planting a clique of size
ε
√
m in an (Erdös-Rényi) random graph drawn

from G(m, 1/2), Alon, Krivelevich, and Sudakov
showed that one can find the clique in polyno-
mial time with high probability [3]. Unfortu-

5

nately, the measurement graph G is not drawn
from G(m, 1/2), so we cannot directly apply their
result. However, we shall show that G is suffi-
ciently random that a modified version of their ap-
proach can be made to go through.

3.1 Properties of the Measurement Graph
To analyze G, it will be convenient to use a lin-

ear algebraic description of its vertices and edges.
Recall that any stabilizer measurement on n qubits
can be described as a vector in F2n

2 as follows:
• for j ≤ n, set the jth coordinate to 1 if and

only if an X is applied to the jth coordinate,
and
• for n < j ≤ 2n, set the jth coordinate to 1

if and only if a Z is applied to the (j − n)th

coordinate.
For v, w ∈ F2n

2 , let

〈v, w〉 = vT
(

0n In
In 0n

)
w,

where In and 0n are the n×n identity and all-zeros
matrices, respectively. It is easy to check that the
measurements corresponding to v and w commute
if and only if 〈v, w〉 = 0 (over F2).

With this notation, we can associate a vector su
to each vertex u, and there is an edge between ver-
tices u and v inG if and only if 〈su, sv〉 = 0. From
this description, it follows that the edges of G are
dependent, so it is not drawn from G(m, 1/2). To
see this, suppose that there is some set of vertices
any new measurement v is completely determined
by the set of measurements in v1, . . . , v2n that
commute with v. In particular, for any other fixed
measurement u, the existence of an edge from u
to v is determined once we know the set of edges
between v and the vis. However, the following
lemma will allow us to bound the effect of these
dependencies when the number of variables being
considered is not too large.

Lemma 1. Let v1, . . . vt, u be measurements such
that sv1 , . . . svt , su are linearly independent, and
let x1, . . . , xt ∈ {0, 1} be arbitrary. Let v
be a random stabilizer measurement such that
〈sv, svi〉 = xi for every i and the vectors
sv1 , . . . , svt , su, sv are linearly independent. Then

Pr(〈sv, su〉 = 0) = 1/2±O
(

1
22(n−t)

)
.

Proof. The vector sv ∈ {0, 1}2n is chosen uni-
formly at random from the set of vectors satisfying
the following constraints:

1. For every i, we have 〈sv, svi〉 = xi.

2. The vectors sv1 , . . . svt , su, sv are linearly in-
dependent.

Let S0 denote the set of vectors that satisfy these
constraints and have 〈sv, su〉 = 0, and let S1 be
the set of vectors that satisfy these constraints and
have 〈sv, su〉 = 1. We have

Pr(〈sv, su〉 = 0) =
|S0|

|S0 + S1|
.

The vectors sv1 , . . . svt , su are linearly indepen-
dent, so there are 22n−t−1 solutions to the set of
equations 〈sv, su〉 = 1 and 〈sv, svi〉 = xi for all i.
This implies that |S1| ≤ 22n−t−1.

Constraint 2 rules out precisely the set of vectors
in the span of sv1 , . . . , svt , su. This is a (t + 1)-
dimensional subspace, so it contains 2t+1 points,
and thus |S0| ≥ 22n−t−1 − 2t+1. It follows that

Pr(〈sv, su〉 = 0) ≥ 22n−t−1 − 2t+1

22n−t − 2t+1

=
1
2
− 1

22n−2t − 1

=
1
2
−O

(
1

22(n−t)

)
.

Repeating this argument gives the same bound for
Pr(〈sv, su〉 = 1), from which the desired result
follows.

3.2 Finding Planted Cliques in Random
Graphs

Our algorithm for finding the clique K will be
identical to that of Alon, Krivelevich, and Su-
dakov [3], but we will need to modify the proof of
correctness to show that it still works in our setting.
In this section, we shall give a high level descrip-
tion of [3] and explain the modifications necessary
to apply it to G. The fundamental difference is
that Alon et al. rely on results from random ma-
trix theory that use the complete independence of
the matrix entries to bound mixed moments of ar-
bitrarily high degree, but we only have guarantees
about moments of degree O(logm). As such, we

6

must adapt the proof to use only these lower order
moments.

Let G(m, 1/2, k) be a random graph from
G(m, 1/2) augmented with a planted clique of
size k, and let A be its adjacency matrix. Let
λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of A,
and let v1, . . . , vm be the corresponding eigenvec-
tors. To find the clique, Alon et al. find the set
W of vertices with the k largest coordinates in v2.
They then prove that, with high probability, the set
of vertices that have at least 3k/4 neighbors in W
precisely comprise the planted clique.

The analysis of their algorithm proceeds by ana-
lyzing the largest eigenvalues of A. They begin by
proving that the following two bounds hold with
high probability:

• λ1 ≥
(

1
2 + o(1)

)
m, and

• λi ≤ (1 + o(1))
√
m for all i ≥ 3.

The second of these bounds relies heavily on a re-
sult by Füredi and Komlós about the eigenvalues
of matrices with independent entries. The inde-
pendence assumption will not apply in our setting,
and thus we will need to reprove this bound for our
graphG. This is the main modification that we will
require to the analysis of [3].

They then introduce a vector z that has zi =
(m − k) when vertex i belongs to the planted
clique, and has zi = −k otherwise. Using
the above bounds, they prove that, when one ex-
pands z in the eigenbasis of A, the coefficients of
v1, v3, . . . , vm are all small compared to ||z||, so
z has most of its norm coming from its projection
onto v2. This means that v2 has most of its weight
on the planted clique, which enables them to prove
the correctness of their algorithm.

Other than the bound on λ3, . . . , λm, the proof
goes through with only minor changes. The bound
on λ1 = (1 + o(1))m/2, follows from a simple
analysis of the average degree, which holds for the
measurement graph as well. The rest of their proof
does not make heavy use of the structure of the
graph. The only change necessary is to replace var-
ious tail bounds on the binomial distribution and
Chebyschev bounds with Markov bounds. These
weaker bounds result in a constant failure proba-
bility and weaker constants, but they otherwise do
not affect the proof. (For brevity, we omit the de-
tails.) As such, our remaining task is to bound λi

for i ≥ 3.

3.3 Bounding λ3, . . . , λm

To bound the higher eigenvalues of the adja-
cency matrix, Alon et al. apply the following theo-
rem of Füredi and Komlós [5]:

Lemma 2. Let R be a random symmetric m ×m
matrix in whichRi,i = 0 for all i, and the other en-
tries are independently set to ±1 with Pr(Ri,j =
1) = Pr(Ri,j = −1) = 1

2 . The largest eigenvalue
ofR is at mostm+O(m1/3 logm) with high prob-
ability.

We will prove a slightly weaker variant of this
lemma for random measurement graphs. Let B be
a matrix that is generated by picking m random
stabilizer measurements M1, . . . ,Mm and setting
Bi,i = 0, Bi,j = 1 if Mi commutes with Mj ,
and Bi,j = −1 if Mi anticommutes with Mj . The
main technical result of this section will be the fol-
lowing:

Theorem 3. With high probability, the largest
eigenvalue of B is at most 10

√
m.

Alon et al.[3] show how to transform a bound
on the eigenvalues of R into a bound on the third
largest eigenvalue of A. This reduction does not
depend on the properties of G, and it works in our
case when applied to B. This gives a bound of
10
√
m on the third largest eigenvalue of the adja-

cency matrix of G.
The proof of Theorem 3 will rely on the follow-

ing lemma, which shows that the entries of small
powers of the matrix B have expectations quite
close to those of R.

Lemma 4. For t ≤ O(logm),

E
[
(Bt)i,j

]
= E

[
(Rt)i,j

]
± 1

2Ω(n−t) .

Proof of Lemma 4. With high probability, for ev-
ery subset of vertices U such that |U | < t ≤
O(logm), we have that the set {su |u ∈ U} is lin-
early independent over F2. We condition the rest
of our analysis on this high probability event.

We begin by expanding the quantity we aim to

7

bound:

E
[
(Bt)i,j

]
= E

 ∑
`2,...`t

t+1∏
α=1

B`α,`α+1

=
∑
`2,...`t

E

[
t+1∏
α=1

B`α,`α+1

]
, (7)

where we take set `1 = i and `t+1 = j, and
we sum over all possible values of the indices
`2, . . . , `t.

We break the nonzero terms in this summation
into two types of monomials: those in which every
matrix element appears an even number of times,
and those in which at least one element appears
an odd number of times. In the former case, the
monomial is the square of a ±1-valued random
variable, so we have

E

[∏
α

B`α,`α+1

]
= E

[∏
α

R`α,`α+1

]
= 1,

and it suffices to focus on the latter case. By the
same reasoning, we can drop any even number of
occurrences of an element, so it suffices to estimate
the expectations of monomials of degree at most t
in which all of the variables are distinct.

Any such monomial in the Ri,j has expectation
zero by symmetry, so we need to provide an upper
bound on terms of the form

∏q
α=1B`α,`α+1 , where

q ≤ t ≤ r and each matrix element appears at most
once.

Consider the probability thatBq−1,q = 1, where
we take the probability over the choice of the
2n bit string sq , given that for any α ≤ q, we
have Bα,α+1 = xα for some value xα. We are
computing this expectation conditioned on the the
su being linearly independent, so we can apply
Lemma 1. This gives us that

E
q∏

α=1

B`α,`α+1

=
∑

x1,...xq−1

Pr(〈s`α , s`α+1〉 = xα)

×
{

Pr(〈sq−1, sq〉 = 1|x1, . . . xq−1)

− Pr(〈sq−1, sq〉 = −1|x1, . . . xq−1)
}

≤O
(

1
22(n−t)

)
·
∑

x1,...xq−1

Pr(〈s`α , s`α+1〉 = xα)

=O
(

1
22(n−t)

)
.

There are nO(logm) terms in the summation of (7),
and we have shown that each term is at most
O
(
1/22(n−t)), so we obtain

E
[
(Bt)i,j

]
≤ O

(
nO(logm)

22(n−t)

)
=

1
2Ω(n)

,

as desired.

We can now use this lemma to prove Theorem 3.

Proof of Theorem 3. Consider a random matrixR,
with Ri,i = 0 and each other cell distributed inde-
pendently at random according to Pr(Ri,j = 1) =
Pr(Ri,j = −1) = 1

2 . Lemma 3.2 of [5] shows
that, for t < m1/3,

Tr(E(Rt)) = mt/2+14t.

For t ≥ 10 logm, Lemma 4 implies that

Tr(E(Bt)) = Tr(E(Rt))± 1
2Ω(n−t)

= mt/2+14t ± 1
2Ω(n−t) .

Let λ1 ≥ · · · ≥ λn be the eigenvalues of B. For
any even t, one has that

TrBt =
∑
i

λti ≥ λt1.

Applying this relation with t = 10 logm gives:

Pr(λ1 ≥ 10
√
m) = Pr

(
λt1 ≥ (10

√
m)t

)
≤ (10

√
m)−tEλt1 ≤ (10

√
m)−tmt/2+14t

= m

(
4
10

)t
< 1/m4.

Plugging the bound from Theorem 3 into the ar-
gument from the section 3.2 and computing the
correct constants yields that the algorithm finds a
planted clique in G of size at least 100

√
m with

probability 4/5.

3.4 Finding Cliques of Size c
√
m

To fully break Aaronson’s quantum money
scheme, we need to find cliques of size c

√
m for

any c > 0. In [3], Alon et al. show how to boot-
strap the above scheme to work for any c.

8

The procedure used by Alon et al. is to iterate
over all sets of vertices of size log(100/c), and,
for each such set S, to try to find a clique in the
graph GS of the vertices that are connected to all
of the vertices in S.

When S is in the planted clique, GS also con-
tains the clique. However, |GS | ≈ c|G|/100, as
most of the vertices that are outside the clique are
removed. AsGS behaves like a random graph with
a planted clique of size 100

√
|GS |, one can find it

using the second largest eigenvector.
To use the same algorithm in our case, we ap-

ply Lemma 4 with parameter k + log 100/c. This
shows that, up to a small additive error, the ex-
pected value of the kth power of the adjacency
matrix of GS behaves like the expected value of
the kth power of the adjacency matrix of a random
graph, which was all that we used in the proof.

4 Quantum money based on random
constraint satisfaction

4.1 Definitions and generation of quantum
money

We propose a new quantum money protocol.
Our quantum money consists of a classical de-
scription of a random instance of a constraint sat-
isfaction problem (CSP), a digital signature of the
description of the instance, and a quantum state
which is the uniform superposition of the solu-
tions of the CSP. In our CSP, some of the bits
are covered by 10 clauses and the rest are cov-
ered by only one clause; this structure enables
us to verify the money. While the CSP we use
can be easily solved—in fact, we can even effi-
ciently sample its solutions—we conjecture that
generating the uniform superposition of the solu-
tions is hard. Nonetheless, an efficient algorithm
can project onto the uniform superposition of so-
lutions, allowing us to efficiently verify the state
and ensure that so other state passes verification
with better than exponentially small probability.

Our quantum money scheme has several global
parameters. These are: a key pair for a digital
signature protocol (the bank publishes the public
key); a security parameter n; related parameters m
and r; a graph G which describes the clause struc-
ture of the CSP; and a sequence (h1, . . . , hm) of
random well-balanced (in the sense of appendix
C.1) binary-valued functions. We suggest using

cryptographic hashes for the hj and setting m =
d10
√
ne and r = d2 log2 (m+ r)e, which ensures

that random functions are well-balanced whp. We
generate a random 10-regular hypergraph G on
with n vertices andm edges. (We suggest that each
vertex be incident to 10 hyperedges selected uni-
formly at random without repetition.) We say that
the hyperedge ei is incident to the vertices with in-
dices

{
ei,(1), . . . ei,(|ei|)

}
. All of these parameters

can be shared between multiple instances of quan-
tum money without weakening the security of the
protocol.

An instance of quantum money is a classical
vector y ∈ Zm2 , a quantum state |ψy〉 on n + mr
qubits, and the bank’s digital signature Sig (y).
Using the graph G and the functions h1, . . . , hm,
we define a (classical) constraint satisfaction prob-
lem on n+mr bits arranged into a vector v ∈ Zn2
and a matrix w ∈ Zm×r2 . The bits in v (the inner
bits) correspond to the vertices of G and the bits
in w (the outer bits) do not. The constraints are
∀j.hj

(
vej,(1) , . . . , vej,(|ei|)

, wj,1, . . . , wj,r

)
= yj .

This is a random CSP where each clause allows
approximately half of the possible assignments of
its bits. We refer to the set of satisfying assign-
ments of the CSP as S. We use the classical states
of (v, w) as our computational basis, and we define

|ψy〉 =
1√
|S|

∑
(v,w)∈S

| (v, w)〉.

The bank can efficiently produce tuples
(y,Sig (y) , |ψy〉) by generating the uniform su-
perposition |+〉⊗(n+mr) over all states, measuring
yi = hi (· · ·) for each i, and then signing the
resulting vector y. (Note that any adversary
can use the same procedure to generate pairs
(y, |ψy〉) without the signature, so the bank does
not weaken the money by reusing the graph and
random functions.)

To verify the quantum money, anyone can
project onto |ψy〉 using an approximation with ex-
ponentially small error, described below.

The quantum state |ψy〉 is the uniform super-
position of a random CSP. Although the CSP can
be solved easily, we conjecture that no computa-
tionally bounded algorithm can generate the state
|ψy〉 ⊗ |ψy〉 for any y; this means that no one can
clone the quantum money and, in fact, that not
even the bank can generate two identical-looking

9

pieces of quantum money. We further conjec-
ture that replacing the random functions hj with
(different) cryptographic hashes does not weaken
the protocol’s security. The generic approach to
creating such a uniform superposition is a prob-
lem known as Q-sampling, which is SZK-hard and
therefore conjectured to require exponential time,
even on a quantum computer [8].

4.2 A rapidly mixing Markov chain over
CSP solutions

The core of our verification algorithm is a
rapidly mixing Markov chain over CSP solutions
with a uniform stationary state. Each state is a so-
lution to the CSP, and the transition rule is:

1. With probability 1
4 , choose an inner bit i uni-

formly at random. If the current state with vi
negated is a solution to the CSP, then negate
that bit; otherwise, no nothing. (The bit i is
covered by 10 clauses, so the new trial state
will be a solution to the CSP with probability
approximately 1

1024 .)

2. With probability 1
4 , choose a clause j at ran-

dom and a bit string
(
w′j,1, . . . , w

′
j,r

)
uni-

formly at random. If the current state with the
jth row of w set to

(
w′j,1, . . . , w

′
j,r

)
is a solu-

tion to the CSP, then make that change; other-
wise, do nothing. (The new trial state will be
a solution with probability approximately 1

2 .)

3. With probability 1
2 , do nothing. This rule en-

sures that the Markov chain is lazy.

Intuitively, the presence of the auxiliary bits w
ensures that the rule that flips bits in v does not get
stuck. In appendix C.2, we prove that this Markov
chain mixes rapidly in the sense that it has a spec-
tral gap of at least 1/ (poly(n,m, r)).

4.3 From a rapidly mixing Markov chain to
a projector

The first step of projecting onto |ψy〉 is to mea-
sure all of the hash functions—this projects onto
the span of all states of our Markov chain. It re-
mains to project onto the stationary state |ψy〉.

Our Markov chain’s Markov operator M has
a large spectral gap, so all but one eigenvalue is
bounded in [−1 + ε, 1 − ε] for some known xε.
We would like to implement a measurement that
projects onto the +1 eigenvector.

We can easily represent the Markov update rule
as a uniform selection over permutations in the
computational basis. We do this by selecting, uni-
formly at random, an integer α from 1 to 4, an in-
teger i from 1 to n, an integer j from 1 to m, and
an r-bit string z. If α = 1 and the current state
with bit i flipped satisfies the CSP, then we flip
bit i. If α = 2 and the current state with the jth
row of w xored by z satisfies the CSP, xor the jth
row of w by z. If α ≥ 3, do nothing. For any
s = (α, i, j, z), this operation is its own inverse,
so we can efficiently implement it unitarily on a
quantum computer. We refer to this unitary oper-
ation as Us, and we note that M = 1

N

∑N
s=1 Us,

where N is the size of the domain of s. We de-
fine a new unitary operator on two registers U =∑
s(I⊗|s〉)Us(I⊗〈s|), which is just an update of

the first register controlled by the second register.
Given some initial state, we can add an ancilla in

a uniform superposition over all s, update the reg-
ister, and project the ancilla back into the uniform
superposition, aborting if the ancilla is found to be
orthogonal to the uniform superposition. This im-
plements the operator(

I ⊗ 1√
N

∑
s

〈s|

)
U

(
I ⊗ 1√

N

∑
s

|s〉

)

=
1
N

∑
s

Us = M

This operation can be implemented with one
call to controlled-Us and overhead logarithmic in
N . If we repeat this process t/ε times, we obtain
M t/ε = |π〉〈π|+O(e−t), where |π〉 is the station-
ary state of the Markov operator, which is what we
wanted.

This construction has the caveat that, if the pro-
jection fails (i.e. the input |ψ〉 is orthogonal to |π〉),
the final state is not (1 − |π〉〈π|)|ψ〉. This can be
corrected by copying the answer and uncomputing
the measurement, but, as we do not care about the
final state of bad quantum money, we do not need
this correction.

We have ε =[
3 · 218 (n+ 2mn+ 2)m (n+ 1)

]−1
, so we

can verify quantum money with error O (e−t)
using t

[
3 · 218 (n+ 2mn+ 2)m (n+ 1)

]
calls to

controlled-Us, which can be implemented in time
polynomial in all of the parameters of interest.

10

References
[1] S. Aaronson. Quantum copy-protection and

quantum money. In Computational Complex-
ity, Annual IEEE Conference on, pages 229–
242, 2009.

[2] S. Wiesner. Conjugate coding. SIGACT
News, 15(1):78–88, 1983. Original
manuscript written circa 1970.

[3] N. Alon, M. Krivelevich, and B. Sudakov.
Finding a large hidden clique in a random
graph. In Proceedings of the ninth an-
nual ACM-SIAM symposium on Discrete al-
gorithms, pages 594–598. Society for Indus-
trial and Applied Mathematics Philadelphia,
PA, USA, 1998.

[4] Uriel Feige and Robert Krauthgamer. Find-
ing and certifying a large hidden clique in
a semirandom graph. Random Struct. Algo-
rithms, 16(2):195–208, 2000.

[5] Z. Füredi and J. Komlos. The eigenvalues of
random symmetric matrices. Combinatorica,
1(3):233–241, 1981.

[6] C.H. Bennett, G. Brassard, S. Breidbart,
and S. Wiesner. Quantum cryptography, or
unforgeable subway tokens. In Advances
in Cryptology–Proceedings of Crypto, vol-
ume 82, pages 267–275, 1983.

[7] David Zuckerman. Linear degree extractors
and the inapproximability of max clique and
chromatic number. Theory of Computing,
3(1):103–128, 2007.

[8] D. Aharonov and A. Ta-Shma. Adiabatic
Quantum State Generation. SIAM Journal on
Computing, 37:47, 2007.

[9] M.A. Nielsen and I.L. Chuang. Quan-
tum computation and quantum information.
2000.

[10] R. Matwani and P. Raghavan. Randomized
Algorithms, 1995.

[11] P. Diaconis and D. Stroock. Geometric
bounds for eigenvalues of Markov chains.
The Annals of Applied Probability, pages 36–
61, 1991.

A Review of the Phase Estimation Al-
gorithm

In this section we review the phase estimation
algorithm as described in [9]. We are interested in

using this algorithm to measure the eigenvalues of
the operator e2πiH . The phase estimation circuit
takes as input an integer r and a parameter δ and
uses

q = r + dlog(2 +
2
δ
)e

ancilla qubits. When used to measure the opera-
tor e2πiH , phase estimation requires as a subrou-
tine a circuit which implements the unitary opera-
tor e2πiHt for t ≤ 2r, which can be approximated
efficiently if 2r = poly(n). This approximation
of the Hamiltonian time evolution incurs an error
which can be made polynomially small in n using
polynomial resources (see for example [9]). We
therefore neglect this error in the remainder of the
discussion. The phase estimation circuit, when ap-
plied to an eigenstate |ψj〉 of H such that

e2πiH |ψj〉 = e2πiφj |ψj〉,

and with the q ancillas initialized in the state |0〉⊗q ,
outputs a state

|ψj〉 ⊗ |aj〉
where |aj〉 is a state of the ancillas. If this ancilla
register is then measured in the computational ba-
sis, the resulting q bit string z will be an approxi-
mation to φj which is accurate to r bits , with prob-
ability of failure ≤ δ in the sense that

Pr

(
|φj −

z

2q
| > 1

2r

)
≤ δ. (8)

In order for this algorithm to be efficient in this
case we must choose r and δ so that 2r = poly(n)
and δ = 1

poly(n) .

B Analysis of the Procedure to Gener-
ate ρi

In section 2.2 we considered two cases depend-
ing on whether or not the inequality 6 is satisfied
for a given register i. Our analysis of the proce-
dure outlined in section 2.3 considers these two
cases separately. The first case is when, choosing
φp uniformly

Pr
(

1
4
≥ φp ≥

1
8
√
m

)
≥ 3

8m− 2
(9)

The second case is when this is not true. This in-
equality is satisfied for at least 1/4 of the indices
i ∈ [l] with all but exponential probability.

11

We label each eigenstate of H as either “good”
or “bad” according to its energy. We say an eigen-
state |ψj〉 is good if φj ∈ [1

16
√
m
, 1

4]. Otherwise
we say it is bad (which corresponds to the case
where φj ∈ [0, 1

16
√
m

] ∪ [3
4 , 1]). In our analysis of

the procedure described in the previous section we
will use the fact that starting with the completely
mixed state I

2n is completely equivalent to start-
ing with an equal probabilistic mixture of all of
the eigenstates of H . We will imagine that in the
step 2 of the procedure one selects an eigenstate
|ψp〉 uniformly at random since the density matrix
of the output will be the same.

Case 1: Register i does not satisfy inequality
6

On one iteration of steps 2,3, and 4, the proba-
bility pb that you pick a bad state and then accept
it is

Pr (|ψp〉 is bad and you accept)
.= pb

≤ Pr (accept| |ψp〉 was bad)

≤ Pr

(
|φp − φ′| >

1
16
√
m
− 1

20m

)
≤ Pr

(
|φp − φ′| >

1
20m

)
≤ δ

=
1
m3

,

by equation 8. So the total probability of accepting
a bad state at any point is

Pr (accept a bad state ever) ≤
m2∑
k=1

δ =
1
m
. (10)

So if register i does not satisfy inequality 6 then the
state ρi which is the output of the above procedure
will satisfy

Tr[H(i)ρi]

≥ Tr

[
H(i) 1

2n

]
− Pr (accept a bad state ever)

= 0− 1
m
.

Case 2: Register i satisfies inequality 6
The probability pg that you pick a good state (in

one iteration of steps 2, 3, and 4) and then accept

it is at least

Pr (|ψp〉 is good and you accept)
.= pg

≥ Pr

(
1
4
≥ φp ≥

1
8
√
m

and you accept
)

= Pr

(
1
4
≥ φp ≥

1
8
√
m

)
Pr

(
accept |

1
4
≥ φp ≥

1
8
√
m

)
≥ Pr

(
1
4
≥ φp ≥

1
8
√
m

)
(1− δ)

≥ 3
8m− 2

(
1− 1

m3

)
≥ 1

4m
, for m sufficiently large.

The total probability of outputting a good state is

Pr(output a good state) (11)

=
m2∑
k=1

pg(1− pg − pb)k−1

=
pg

pg + pb

(
1− (1− pg − pb)m

2
)

≥ pg
pg + pb

(
1− (1− pg)m

2
)

≥ pg
pg + δ

(
1− (1− pg)m

2
)
.

≥ pg
pg + δ

(
1− e−pgm

2
)

(12)

≥ 1
1 + 4

m2

(
1− e−pgm

2
)

for m sufficiently large.

= 1−O(
1
m2

)

So in the case that register i satisfies inequality 6
then the state ρi will satisfy

Tr
[
H(i)ρi

]
≥ Pr (output a good state)

1
4
√
m

− (1− Pr (output a good state))

=
1

4
√
m

+O(
1
m2

).

We have thus shown that equation 2 holds for all
indices i which satisfy inequality 6 and that equa-
tion 3 holds for the rest of the indices. As dis-
cussed in section 2.2, this guarantees (assuming at

12

least 1/4 of the indices i satisfy inequality 6) that
our state ρ = ρ1⊗ρ2⊗...⊗ρl is accepted by Aaron-
son’s verifier with high probability, if ε ≤ 1

16
√
m

.

C Rapid mixing of the Markov chain
over CSP solutions

C.1 Random functions are well-balanced
Our algorithm for verifying quantum money as-

sumes that the hash functions are well-balanced in
the sense that the number of satisfying assignments
subject to certain types of constants is within a
factor of two of the expected number. Letting
W (v) = {w| (v, w) ∈ S}, we demand that four
properties hold:

1. For any v, we expect half of the 2r values of
each row of w to satisfy the CSP, for a total of
2m(r−1), so we demand that

∀i, v. |W (v)| ≤ 2 · 2m(r−1). (13)

2. For any pair of values of v differing in exactly
one bit, we expect 2m(r−1) values of w to sat-
isfy the constraints for one of the values of
v. Each of the 10 constraints on the bit that
differs will exclude around half of those val-
ues of w when v is changed, so we expect
2m(r−1)−10 values of w to satisfy the con-
straints for both values of v. We demand that

∀v, v′ with Hamming distance 1.

|W (v) ∩W (v′)| ≥ 2m(r−1)−11. (14)

3. We refer to the number of assignments to the
jth row of w that satisfy the constraints for
some value of v and yj as av,yj ,j . That is,

av,yj ,j = |{(wj,1, . . . , wj,r) |hj (· · ·) = yj}| .
(15)

We expect half of the 2r possible assignments
to satisfy the constraints, so we demand that

∀v, j, yj .av,yj ,j ≥ 2r−2. (16)

4. We expect a 2−m fraction of assignments
(v, w) to satisfy the CSP. We demand that

|S| ≥ 2mr+n−m−1. (17)

These properties hold with high probability in
the choice of random functions {hi} for 2r ≥
2 log2 (m+ r). We prove them using union
bounds.

For properties (13) and (16), we can write
av,yj ,j as a sum of random variables indicating
whether any particular value of the jth row of w
satisfies the constraints:

av,yj ,j =
∑

wj,1,...,wj,r

1hj(···)=yj .

The total number |W (v)| of assignments to all
rows of w that satisfy the constraints is thus∏
j av,yj ,j . Under uniform selection of hj and

for any yj , each av,yj ,j is i.i.d. Binom
(
2r, 1

2

)
.

By a Chernoff bound, with probability at least

1− exp
(
− 1

4

(
1 + log 2

m

)2

2r
)

,

av,yj ,j ≤
(

1 +
log 2
m

)
2r−1. (18)

Taking a union bound, (18) holds for all v and j

w.p. at least 1−m2n exp
(
− 1

4

(
1 + log 2

m

)2

2r
)

,

giving property (16). The same bound gives∏
j σv,j ≤ 2·2m(r−1), which proves property (13).
The proof of properties (17) and (14) follow

similar arguments. The latter picks up a factor of
2−10 because each element of W (v) is in W (v′)
with probability 2−10—it must satisfy one addi-
tional constraint for each clause covering the bit in
which v and v′ differ.

Because a collection of random functions is
well-balanced with high probability, any good col-
lection of cryptographic hashes will also be well-
balanced.

C.2 For any well-balanced set hj , the
Markov chain mixes rapidly

We refer to the (directed, symmetric) graph on
which this Markov chain walks as G̃, and we refer
to the non-self-loop edges resulting from the first
rule as inner edges (because they flip inner bits)
and to the non-self-loop edges resulting from the
second rule as outer edges. Our Markov chain is
symmetric; hence the uniform distribution over all
CSP solutions is a stationary solution.

We use the method of canonical paths to prove
that our Markov chain mixes rapidly. For each pair

13

of states
((
v(start), w(start)

)
,
(
v(end), w(end)

))
,

we define a canonical path on the graph G̃. Each
such path traverses a number of inner edges ex-
actly equal to the Hamming distance between
v(start) and v(end). The first inner edge sets the
first bit in which the v(start) and v(end) differ,
the second inner edge sets the second bit, and so
on. For each pair (v, v′) that differ in exactly one
bit, a total of at most 22m(r−1)+n canonical paths
traverses any inner edge of the form (v, w) →
(v′, w)—there are 2n−2 pairs

(
v(start), v(end)

)
be-

tween which canonical paths traverse an edge
changing the inner bits from v to v′, and, by (13),
each pair

(
v(start), v(end)

)
corresponds to at most(

2 · 2m(r−1)
)2

paths. For each inner edge from v
to v′ on a canonical path, we are free to choose
any w ∈ W (v) ∩W (v′), of which, by (14), there
are at least 2m(r−1)−11. We evenly distribute these
inner edges among such w, giving at most

2m(r−1)+n+11 + 1 (19)

canonical paths traversing each inner edge.
We now address how we route the portions of

the canonical paths that use outer edges. We re-
fer to a maximal subpath of a canonical path that
uses only outer edges as an outer subpath (so each
canonical path contains at most n + 1 outer sub-
paths). The subgraphs Ov induced by all ver-
tices with a given v contain all outer edges in
G̃ of the form (v, w) → (v, w′) where w and
w′ differ in exactly one row, and each outer sub-
path traverses only edges in Ov for one value of
v. Counting outer subpaths that start at a state
(v, w), there are, by (13) at most 2m(r−1)+n+1

canonical paths that begin at that state and at
most n · 2m(r−1)+n+11 + n that arrive by an in-
ner edge, so at most

(
n+ 2−10

)
2m(r−1)+n+11 +

n+n ≤ (n+ 1) 2m(r−1)+n+11 outer subpaths be-
gin at any state. By the same counting at most
(n+ 1) 2m(r−1)+n+11 outer subpaths end at any
state.

We define an outer subgraph Ov as a subgraph
induced by all states sharing a given value of v.
We route outer subpaths on each outer subgraph
by choosing a good outcome of a randomized al-
gorithm. First, add dummy outer subpaths such
that exactly (n+ 1) 2m(r−1)+n+11 subpaths be-
gin and the same number end at each state. Al-
lowing m self-loops per state (one for each row

of w) that we will remove later, each outer sub-
path from

(
v, w(init)

)
to
(
v, w(final)

)
traverses ex-

actly 2m outer edges: for the first pass, sequen-
tially set the first through last rows of w to ran-
dom values that satisfy the CSP, and then, for the
second pass, sequentially set the first through last
rows to their desired values. We wish to compute
the expected number µv,w1,w2 of outer subpaths
containing the edge (v, w1) → (v, w2). By lin-
earity of expectation, µv,w1,w2 is the total num-
ber of outer subpaths (including dummies) times
the expected number of times that an outer sub-
path, selected uniformly at random, traverses any
given edge. But every outer subpath traverses ex-
actly two edges affecting a given but of w, and,
on both passes, the marginal distribution of which
such edge that path takes is uniform. So a 2a−1

v,yj ,j

fraction of outer subpaths traverses any given edge,
so µv,w1,w2 = 2a−1

v,yj ,j
(n+ 1) 2m(r−1)+n+11. By

(16), av,yj ,j ≥ 2r−2, giving

µv,w1,w2 ≤= (n+ 1) 2mr−m−r+n+14.

On the other hand, the number of outer sub-
paths (after pruning dummy subpaths) containing
any given edge is the sum of independent random
binary variables, each of which indicates whether
a particular outer subpath contains that edge. This
allows us to apply a Chernoff bound: for any outer
edge and for any x > 2e·(n+ 1) 2mr−m−r+n+14,
Pr [paths containing that edge ≥ x] ≤ 2−x (see,
for example, ex. 4.1 in [10]). Choosing, for con-
creteness, x = 6 · (n+ 1) 2mr−m−r+n+14, and
applying a union bound over all edges in Ov , there
is a nonzero probability that none of the edges are
on more than

6 · (n+ 1) 2mr−m−r+n+14 (20)

canonical paths. This implies that at least one rout-
ing of the outer subpaths satisfies has this property,
so we can derandomize our algorithm by choosing
any such routing.

All that remains is to bound the spectral gap of
our Markov chain. For consistency with the litera-
ture, we let π (x) be the stationary probability on a

state x. In our case, π (x) =
∣∣∣G̃∣∣∣−1

for all x. Since
all of our canonical paths can be routed as above,
our Markov chain is irreducible. Inner edges have
weight P (e) = 1

4n and outer edges have weight

14

P (e) = 1
4m2r . A canonical path γxy from x to

y traverses at most n inner edges and 2 (n+ 1)m
outer edges, so length |γxy| of any path is bounded
above by n+2 (n+ 1)m. We define a measure of
congestion K:

K = max
e
P (e)−1

∣∣∣G̃∣∣∣ ∑
γxy3e

|γxy|π (x)π (y)

=
∣∣∣G̃∣∣∣−1

max
e
P (e)−1

∑
γxy3e

|γxy|

≤
∣∣∣G̃∣∣∣−1

(n+ 2 (n+ 1)m) max
e
g(e).

where g(e) = P (e)−1 |{γxy|e ∈ γxy}|. By (19),
inner edges have g(e) ≤ 213 (n+ 1) 2mr+n−m

and by (20), outer edges have g(e) ≤ 3 ·
217m (n+ 1) 2mr+n−m. By (17), we know that∣∣∣G̃∣∣∣ ≥ 2mr+n−m−1. The bound on inner edges is
strictly stronger than on outer edges, so we have

K ≤ 3 · 218 (n+ 2mn+ 2)m (n+ 1) .

By a standard theorem about conges-
tion of canonical paths [11], the spec-
tral gap of our Markov chain is at least
1
K =

[
3 · 218 (n+ 2mn+ 2)m (n+ 1)

]−1
.

15

	Introduction
	Brute-force attack against Stabilizer Money for 116m
	Verification of the Stabilizer Money
	Attacking the verifier
	Procedure to Generate i

	Insecurity of the Stabilizer Money for cm
	Properties of the Measurement Graph
	Finding Planted Cliques in Random Graphs
	Bounding 3,…,m
	Finding Cliques of Size c m

	Quantum money based on random constraint satisfaction
	Definitions and generation of quantum money
	A rapidly mixing Markov chain over CSP solutions
	From a rapidly mixing Markov chain to a projector

	Review of the Phase Estimation Algorithm
	Analysis of the Procedure to Generate i
	Rapid mixing of the Markov chain over CSP solutions
	Random functions are well-balanced
	For any well-balanced set hj, the Markov chain mixes rapidly

