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Abstract

Maximizing revenue in the presence of perfectly informed players is a well known goal in mechanism
design. Yet, all current mechanisms for this goal are extremely vulnerable to equilibrium selection. In this
paper we both clarify and rectify this situation by proving that

• No (even weakly) dominant-strategy mechanism can guarantee an arbitrarily small fraction of the
maximum possible revenue; while

• Surviving-strategy mechanisms, a new class of “equilibrium-less” mechanisms, can guarantee a frac-
tion arbitrarily close to 1 of the maximum possible revenue.

We thus provide the first separation result between dominant-strategy and surviving-strategy mechanisms.



1 Introduction

1.1 Classical Mechanism Design

Contexts and mechanisms. A context C describes the players, the outcomes and the players’ preferences
over the outcomes. A traditional and general for of context, indeed the one considered in our paper, is that
of quasi-linear utilities with non-negative valuations. Roughly, an outcome consists of a state ω (belonging
to a finite set Ω)and a price profile P (specifying a real number Pi for each player i). (For instance Ω may
consist of all possible ways of allocating a set of items to the players; which subset of 5 faculty candidates to
hire; or a set of possible ways to build a bridge across a given river.) Quasi-linearity means that the utility
that each player i has for an outcome (ω, P ) is the sum of two components, the non-negative value that i has
for the state ω and the price Pi he pays.

A mechanism M describes the strategies available to the players, and how strategies determine outcomes.
For instance, in our considered context, a player strategy may consist of a valuation, that is, of a table
specifying the value for each possible ω.

Notice that a context C together with a mechanism M defines a game G, G = (C,M), and thus each
rational player will endeavor to choose his own strategy so as to maximize his own utility.

The general goal of mechanism design. The goal of mechanism design is to find a mechanism M such
that, for a given context C, a desired property P holds for the outcomes obtained by having the players play
(C,M). The difficulty is that the designer of M does not known the players’ preferences. In the purest form
of mechanism design, all such knowledge is with the players themselves: the designer can only assume that
the players are rational when he endeavors to design M so as to “make it in the best interest of the players”
so satisfy P. In essence, therefore, mechanism design aims at guaranteeing a property P by leveraging the
players’ knowledge and the players’ rationality in the sense that at a rational play P holds. But: what is a
rational play and what is the players’ knowledge to be leveraged?

The classical interpretation. Let us provide the classical answer to both questions.
The classical interpretation of a rational play is an equilibrium, that is a profile of strategies σ = σ1, . . . , σn

such that no player i has an incentive to deviate from σi to an alternative strategy σ′i. But equilibria are
vastly different in their “quality.” The weakest form is that of a Nash equilibrium, simply stating that i
prefers σi to any alternative σ′i only if he believes that every other player j will stick to his specific σj. That
is, Nash equilibrium only guarantees that i prefers σ1, . . . , σi, . . . , σn to σ1, . . . , σ

′
i, . . . , σn. The strongest form

of equilibrium is a dominant-strategy equilibrium, where σi is the best strategy for i no matter what strategies
the other players may choose. More precisely, a dominant-strategy equilibrium σ is called strict (respectively,
weak) if, for any player i, any alternative strategy σ′i, and any strategy sub-profile τ−i for the other players,
i’s utility is strictly larger (respectively, larger or equal to) when i plays σi than when he plays σ′i.

The classical interpretation of player knowledge is self knowledge, that is classical mechanisms leverage
only the knowledge that every player i has about his own preferences. In the context we focus on, this is the
knowledge that i has about his own valuation for the possible states.

1.2 The Problem of Equilibrium Selection and Our Impossibility Result

It should be realized that designing a mechanism so as to guarantee a property P “at a Nash Equilibrium”
is a very weak guarantee, or no guarantee at all. First, because there may be several Nash equilibria, while
P holds for just some of them. Moreover, even if P held for all equilibria, P may not hold at all in a real
play. For instance, assume that there exist two equilibria, σ and τ , and that some players believe that σ
will be played out, while others believe that τ will. Then, because a mix-and-match of σ and τ may not
be an equilibrium, P may not hold at all. Of course, this problem worsens as the number of players and/or
equilibria grows.

The problem of equilibrium selection is particularly acute for the classical goal of achieving perfect revenue
with perfectly informed players.
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Consider the context where there are finitely many possible states, ω1, . . . , ωk; each player i has a non-
negative value vi(ωj) for each state ωj ; each outcome consists of a state ω together with a price Pi for each
player i; and the utility of each player i for such an outcome is vi(ω) − Pi. Indeed, this is the setting of
non-negative valuation with quasi-linear utilities. How to maximize revenue in this setting assuming that
each player not only knows his own valuation but also those of the others?

An obvious mechanism is the following.

hope-for-the-best: Each player reports the valuations of all players (including himself). If all reports are
the same, then (1) choose the state ω maximizing the sum of the reported valuations and (2) for each
player i, choose the price Pi to consist of his reported value for ω (minus a small discount ε to encourage his
participation). If not all reports coincide, then choose the “null outcome” (which all players are assumed
to value 0) and the price 0 for every player.

It is trivial to see that the strategy profile in which each player reports everyone’s true valuations is a Nash
equilibrium for hope-for-the-best, the truthful equilibrium, that in this equilibrium the revenue is the
maximum possible (except for a negligible nε).

Notice too, however, that hope-for-the-best also has additional equilibria. A second equilibrium is
that in which all players report all valuations known to them divided by 2. In such an equilibrium the utility
of each player is much greater, but the revenue collected by the mechanism is roughly one half of that of the
truthful equilibrium. A third equilibrium is that in which all players report all valuations known to them
divided by 3, whose revenue is only a third of that of the truthful equilibrium. And so on. Thus:

If in the truthful equilibrium the designer is happy, but not the players, while in all other equilibria the
players are happy, but not the designer, which equilibrium is more likely to be selected?

Although the goal was revenue, these player-preferred equilibria at least maximize social welfare. But this is
not the case for other equilibria of hope-for-the-best. Indeed, for any state ω′ such that the true value of
every player i is at least v′ > 0, the strategy profile in which all players report v′ the value for ω′ and 0 for
all other states is an equilibrium.

Given the multitude of available equilibria and the fact that different equilibria are preferable to different
players: Will a play of hope-for-the-best result in equilibrium (and thus any revenue) at all?

Notice that the equilibrium selection problem disappears only if the mechanism is such that P holds at
a strictly dominant-strategy equilibrium. Some form of equilibrium selection is still a problem for weakly
dominant-strategy mechanisms.

1.3 Alternative Mechanism Design

In [1], Chen and Micali put forward an alternative notion of a rational play, surviving strategies, and advocate
leveraging (and indeed benchmarking against) an additional type of knowledge, external knowledge.

Clearly, no player i will play a strategy τi that is strictly dominated by another strategy σi. This means
that, for any strategy subprofile of the other players, σi gives i strictly greater utility than τi. This being
the case, a rational player i might as well eliminate τi from his strategy set. But if i trusts the rationality
of his opponents, then he may as well assume that they will eliminate their strictly dominated strategies.
This may further enable all players to iteratively eliminate further strategies. Any strategy that cannot be
eliminated is called surviving, and a strategy profile is surviving if each of its strategy is surviving. (A game
is said to be fully rationalizable if this iterative elimination yields a single surviving strategy σi for each
player. In this case, the profile σ = σ1, . . . , σn must be an equilibrium and, under the assumption of common
rationality, is a very strong prediction of how the game will be played.) A surviving-strategy mechanism
is one that guarantees its desired property P for every profile σ of surviving strategies. Notice that this is
different from guaranteeing P “at equilibrium” in that such a σ in general is not an equilibrium at all. That
is, surviving-strategy mechanisms cannot be used to predict accurately how the resulting game will be played,
but guarantee that the desired property holds as long as the players are rational, independent of what beliefs
they may have.
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Clearly again, a player knows his own preferences, but in many contexts he also has external knowledge,
that is, he knows valuable information about the preferences of other players as well. Thus, if mechanism
design wants to leverage the players’ knowledge, it should consider leveraging their external knowledge as
well. A player’s external knowledge may vary tremendously. At an extreme, in our context, i may know
the exact value vj(ω) that every player j has for each state ω (so called perfect knowledge). Alternatively,
he may know the distribution from which vj(ω) has been drawn. Alternatively yet, he may know a finite
interval [a, b] to which vj(ω) belongs. At another extreme, he may just know that vj(ω) is lower-bounded by
a (so called hard knowledge).

Chen and Micali prove that surviving strategy mechanisms can leverage hard knowledge so as to guarantee
new revenue benchmarks in combinatorial auctions. They did not prove, however that such benchmarks could
not be guaranteed by more traditional methods. Thus a natural question arises:

Are surviving-strategy mechanism inherently more powerrful than dominant-strategy ones?

1.4 Our Results

We prove a strong separation result between implementation in surviving strategies and implementation in
dominant strategies for contexts of non-negative valuations and quasi-linear utilities. Essentially, we prove
that, when the players are perfectly informed about each other, then for any positive ε:

1. There exists a surviving-strategy mechanism guaranteeing a fraction 1− ε of the optimal revenue; while
2. No dominant-strategy mechanism can guarantee more than a fraction ε of the optimal revenue.

Above, by “optimal revenue” we mean revenue equal to the maximum social welfare, that is maxω
∑

i vi(ω).
(If a mechanism generates more revenue, then either some player must be irrational, since he acted to receive
a negative utility, or the mechanism must have the power of “taxing players unfairly.”)

We stress that our impossibility result applies even to weakly dominant-strategy mechanisms. Taken to-
gether, therefore our positive and our negative results demonstrates the power of implementation in surviving
strategies. Not only can it often be convenient, but can also be the only way to robustly achieve classical
properties in classical contexts.

2 Preliminaries

Contexts. In our paper we work with reasonably general contexts with semi-linear utilities. Namely, our
context is defined by the following items:

• N , the finite set of players: N = {1, . . . , n}
• Ω× Rn, the set of possible outcomes, where Ω is finite.

A member ω of Ω is referred to as a state and a member P of Rn is referred to as a price profile. Set Ω
is required to include the empty state, denoted by ⊥.
• V is the set of all possible profiles of (non-negative) player types or valuations.

Each type is a function from the set of states to the set N of natural numbers mapping ⊥ to 0.
We consistently denote by TV the profile of the true types (that is, for each player i, TVi describes i’s
actual value for each possible state).
• ui, for each player i, is i’s utility function, mapping outcomes to real numbers as follows: ui(ω, P ) =
TVi(ω)− Pi. That is, i’s utility is i’s true value for the state minus the price he pays.

Accordingly, to specify a context C, it suffices to specify just its “variable” components, that is, C =
(N,Ω, TV ). As usual, each player i knows his own type.

We say that a context is perfect-knowledge if the entire true-valuation profile TV is common knowledge to
all players. (We stress, however, that the mechanism designer has no knowledge about TV ! In other words,
we adhere to the classic spirit of mechanism design, where all knowledge lies with just the players.)

3



Strategies and Mechanisms. We now must specify the players’strategies, and how these lead to outcomes.
Traditionally, thanks to the revelation principle, one can restrict attention to mechanisms in which each player,
simultaneously with the others, announces a type for himself (which may or may not coincide with his true
valuation function). Thus, without loss of generality, a player’s set of strategies consists of the set of all
possible valuations.

In our case, however, the players do not only know their own types, but also those of the others. And to
leverage this extra knowledge, it is crucial that the players be able to announce types for all players. That
is, a player’s strategy consists of a profile of valuations (in other words, it is a member of V ). The empty
strategy is the one whose valuations map every possible state to 0.

A mechanism for a context (N,Ω, TV ) consists of a (possibly probabilistic) function M : V n → Ω × Rn

satisfying the following

Opt-Out Condition: For any strategy profile v = v1, . . . , vn, if M(v) = (ω, P ) then Pi = 0 whenever
vi is the empty strategy.

(By defining our mechanisms in “normal form” we loose no generality. However, to make our mechanisms
more intuitive and “communication efficient” we prefer to describe them in extensive-form.)

Social Welfare, Revenue, and Our Goal. The social welfare and the revenue of an outcome (ω, p)
are respectively defined to be

∑
i TVi(ω) and

∑
i pi.

The maximum rational revenue for a context C = (N,Ω, TV ) is defined to coincide with the maximum
social welfare (MSW for short), that is, max

ω

∑
i TVi(ω).

We are interested in designing mechanisms (essentially) guaranteeing the maximum rational revenue.

3 Two Notions of Implementation

A play σ of a mechanism M consists of a profile of strategies. If M is probabilistic, then M(σ) is a distribution
over outcomes, and ui(M(σ)) is the expected utility of player i over such distribution, that is, it is short
hand for E[ui(M(σ))].

3.1 Implementation in Dominant Strategies

Dominant Plays. A play σ of a mechanism M is said to be weakly dominant if, for each player i, each
possible alternative strategy σ′i for player i, and each possible strategy sub-profile τ−i for the other players,
we respectively have (in expectation if M is probabilistic)

ui(M(σi t τ−i)) ≥ ui(M(σ′i t τ−i)).

If the above inequality is always strict, σ is a strictly dominant play of M .

Implementation in dominant strategies. Let P be a property defined over the outcomes of a context
C = (N,Ω, v). We say that P is implementable in weakly (strictly) dominant strategies if there is a mechanism
M for C such that P holds for M(σ) for each weakly (strictly) dominant play σ of M .

DST mechanisms. The revelation principle guarantees that, whenever a property P is implementable in
strictly/weakly dominant strategies, then P is so implementable by a mechanism M∗ for which vn is a
strictly/weakly dominant play. Such an M∗ is called dominant-strategy truthful, or DST for short. Thus,
to prove that a property P is not implementable in dominant strategies, it suffices to show that P is not
implementable by any DST mechanism.

(Notice that we have generalized the traditional notion of a DST mechanism to “incorporate the players’
knowledge in their types.”)
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3.2 Implementation in Surviving Strategies

Here we simplify the general notion of [1] which was applicable to settings where some players are collusive.

Distinguishable domination. Let Σ be a set of plays of a mechanism M , Σ =
∏
i Σi, where each Σi is a

set of strategies for player i. We say that σi is distinguishably dominated (by σ′i) over Σ, if

1. Both σi and σ′i belong to Σi

2. ∃τ−i ∈ Σ−i such that M(σi t τ−i) 6= M(σ′i t τ−i)
(we refer to such a τ−i as a strategy distinguishing σi and σ′i over Σ)

3. ui(M(σi t τ−i)) < ui(M(σ′i t τ−i)) for any τ−i distinguishing σi and σ′i over Σ.

Surviving Plays. Let Σ0
i be the set of all possible strategies of each player i, and let Σk =

∏
i Σk

i for any
k ≥ 0. For each player i, Σk+1

i is the set of strategies in Σk
i that are not distinguishably dominated over

Σk, and Σ∞i ⊆ Σk
i for any k ≥ 0 is the set of strategies such that no strategy σi ∈ Σ∞i is distinguishably

dominated over Σ∞ =
∏
i Σ∞i . A play σ is said to be surviving if it belongs to Σ∞.

Implementation in Surviving Strategies. We say that a property P is implementable in surviving
strategies if there exists a mechanism M such that P holds for M(σ) for each surviving play σ of M . We say
that P is implementable in Σk plays if it holds for M(σ) for each σ ∈ Σk.

3.3 Remarks

The main result of our paper consists of proving that implementation in surviving strategies has wider
applicability than implementation in dominant strategies. But it is useful to make right away a few points
enabling some simpler comparisons.

1. Strict Generalization. To begin with, it should be realized that if a property is implementable in strict
dominant strategies, then it is implementable in surviving strategies as well. In fact, it is implementable
in Σ1 plays. (More precisely, Σ1 will consist of a single play.)

As we shall soon see, however, the converse is not true in a very strong sense. Namely there are
properties implementable in surviving strategies that cannot be implemented even in weakly dominant
strategies.

2. “Strict elimination.” It is well known that iterated elimination of strategies is much more meaningful
when one eliminates only strictly dominates strategies rather than weakly dominated strategies. In
fact, only in the first case the final set of strategies is not affected by the order of elimination. Notice
that implementation in surviving strategies does not call for the iterative elimination of just strictly
dominated strategies. (Doing so would severely limit its applicability.) Rather, the notion calls for
iteratively eliminate strategies that are distinguishably weaker, so as to maintain wide applicability
while guaranteeing the independence of the elimination order. In essence, the set of surviving strategies
is unique up to “renaming indistinguishable strategies.”1

4 Impossibility Result for DST mechanisms

Let us prove that DST mechanisms are incapable of properly leveraging external knowledge: namely, in a
perfect-knowledge context, they cannot guarantee even a minuscule fraction of the maximum rational revenue.

1Note that if the mechanism is normal-form and the outcome space coincides with the set of all strategies profiles, then every
two strategies of the same player are distinguishable. However, things are different when the outcome space is “more limited” or
when the mechanism is of extensive form. For instance, consider the case where the game is full information and consists of two
moves: first player 1 chooses between Left and Right, and then player 2 does the same. Then, if choosing Left is strictly dominant
for player 1, any two strategies of player 2 that differ only when player 1 chooses Right ought to be considered equivalent from
a rationality analysis.
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Definition 1. A DST mechanism M guarantees a fraction ε of the maximum rational revenue if for any
context C = (N,Ω, TV ) we have

(∗) M(TV, . . . , TV ) = (x, P ) implies
∑
Pi ≥ ε ·MSW .

Note that, in proposition (∗), each TV is not just the true valuation of a single player, but the profile of
all such valuations, because a player’s strategy includes his declaration about the others’ valuations as well.

Note too that the mechanism is not required to choose the outcome which maximizes the social welfare.
Moreover, when not all the players are telling the truth, there is no requirement on the behavior of the
mechanism.

Finally note the following immediate corollary of the opt-out condition. Namely,

Non-negative utility property: if M is a DST mechanism and M(v1, . . . , vn) = (ω, P ), then Pi ≤ vii(ω).

Theorem 1. For any ε > 0 no DST mechanism M guarantees a fraction ε of the maximum rational revenue.

Proof. We actually prove our result even for contexts with just two players and only two possible outcomes.
Without loss of generality, consider the context (N,Ω, TV ) where N = {1, 2} and Ω = {⊥, ω}. In such a
context, a valuation vi of a player i coincides with a single number vi(ω) (because vi(⊥) is bound to be 0),
and so a strategy v for i coincides with a pair of numbers, v = (c1, c2), where c1 is the declared value for
player 1 and c2 the declared value for player 2.

Our proof is by contradiction. We start by analyzing the behavior of M when the two players make
identical and positive (but not necessarily truthful) declarations. More precisely, we prove the following
proposition:

(?) if c1, c2 > 0, then M( (c1, c2) , (c1, c2) ) = (x, (P1, P2)) where

?1: P1 + P2 ≥ ε · (c1 + c2)
?2: x = ω

To see that proposition (?) holds, assume the players bid truthfully; that is assume that c1 = TV1(ω) and
c2 = TV2(ω). In this case, according to (∗) the mechanism must extract a revenue of at least ε ·MSW =
ε · (c1 + c2), and thus P1 + P2 ≥ ε · (c1 + c2), in agreement with inequality ?1.

Now, the hypothesis c1 + c2 > 0 implies P1 + P2 > 0. Thus, in light of the non-negative utility property,
the state returned by M cannot be ⊥. Since ω is the only other state, M has to return ω in agreement with
equality ?2.

Consider now the declaration K = (1, 1) and let M(K,K) = (y,Q). Then proposition (?) guarantees
that y = ω and that Q1 + Q2 ≥ 2ε. This implies that Qi ≥ ε for at least a player i. Thus, without loss of
generality, we can assume Q1 ≥ ε.

Consider now the strategy K̃ = (ε/2, ε/2), and let us analyze the behavior of M(K̃,K). Let M(K̃,K) =
(x, P ).

We start by proving that x = ω. Assume for contradiction purposes that x =⊥. Then, when TV = K
(and thus player 1 is not truthful), player 2 has an incentive to lie. Indeed, by being truthful, under the
current assumption, his utility is 0. However, if player 2 chose the strategy K̃, then according to (?), the
outcome would be (ω, P1, P2). In this case, according to the non-negative utility property, since player 2’s
self-valuation is ε/2, P2 ≤ ε/2. Thus player 2’s utility would be at least 1− ε/2. Since this utility is positive,
while his utility of being truthful is 0, player 2 has an incentive to lie when TV = K and player 1’s strategy
is K̃. Therefore we must have x 6=⊥, or equivalently x = ω.

Let us now analyze the possible values for P1 and derive a contradiction in every case.

1. Case 1: P1 < ε. In this case, assume that TV = K and compute player 1’s utility under the following
two strategy profiles: (K,K) and (K̃,K). In the first case we already know that M(K,K) = (ω,Q),
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Algorithm 1: The global partitioning algorithm with parameters k and δ

(π1, . . . , πn) := random permutation of vertices;1

P := ∅;2

for i = 1, . . . , n do3

if πi still in the graph then4

if there exists a (k, δ)-isolated neighborhood of πi in the remaining graph then5

S := this neighborhood6

else7

S := {πi}8

P := P ∪ {S};9

remove vertices in S from the graph10

where Q1 ≥ ε. Therefore player 1’s utility when being truthful is 1 − Q1 which is at most 1 − ε. On
the other hand, under the strategy profile (K̃,K), player 1’s utility is equal to 1− P1 and thus strictly
greater than 1−ε by hypothesis. Thus, the context ({1, 2}, {⊥, ω},K) contradicts the dominant-strategy
truthfulness of M .

2. Case 2: P1 > ε/2. In this case, since M(K̃,K) = (ω, P ) and K̃ = (ε/2, ε/2), the non-negative utility
property implies that P1 ≤ ε/2, and thus a contradiction.

In sum, if M guarantees an ε fraction of the maximum possible revenue, no price profile exists for M(K̃,K)
that does not contradict the dominant-strategy truthfulness of M . Since we have not assumed any property
of M beyond its being DST, this establishes our theorem. Q.E.D.

5 Aggregate Knowledge

ε and ε1 are two constants such that 0 < 5nε1 < ε < 1/5;
Each player announces his external knowledge Ki(j).
Let

6 Our Mechanism

In the description of our mechanism,

- B is an upperbound of the players’ valuations, that is, vi(ω) < B for each player i and each state ω;

- ε and ε1 are two constants such that 0 < 5nε1 < ε < 1/5;

- numbered steps are taken by the players, while steps marked by letters are taken by the mechanism.

Mechanism M

a. Set ω = ⊥, and Pi = 0 for each player i.

(ω and P will respectively be the final state and price profile.)

1. Each player i simultaneously and publicly announces “his alleged knowledge” a valuation profile Ki

such that for each player j and each state s, Ki
j(s) < B.
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b. For each s ∈ Ω and each player i, define “the maximum knowledge of i about s as follows” MKi(s) =
maxj 6=iK

j
i (s).

For each s ∈ Ω, define “the known revenue about s to be” Rs =
∑

iMKi(s).

Publicly select the “provisional” state ω? as follows: with probability ε, ω? is uniformly selected in Ω,
and with complementary probability ω? = argmaxs∈ΩRs, with ties broken lexicographically.

2. Each player i simultaneously and publicly “suggests a raise of the price for each player, that is,”
announces a profile of natural numbers ∆i such that MKj(ω?) + ∆i

j < B for each player j.

c. For each player i, publicly select bipi “the best informed player about i” and the “provisional” price
P ?i as follows.

If the set of players j other than i for which ∆j
i > 0 is non-empty, then:

• with probability ε, bipi is uniformly chosen in this set; and with complementary probability bipi =
argmaxj 6=i ∆j

i (with ties broken lexicographically);

• Set P ?i = MKi(ω?) + ∆bipi
i .

Else, if the set of players j other than i for which Kj
i (ω

?) > 0 is non-empty, then:

• with probability ε, bipi is uniformly chosen among the players j 6= i such that Kj
i (ω

?) > 0; and
with complementary probability bipi = argmaxj 6=iK

j
i (ω

?) (with ties broken lexicographically);

• Set P ?i = Kbipi
i (ω?).

Else, bipi is undefined and P ?i = 0.

“We refer to (ω?, P ?) as the provisional outcome.”

3. Each player i such that P ?i > 0 simultaneously and publicly announces YES or NO “to the price
P ?i − ε1.” Each player i such that P ?i = 0 announces YES “by default.”

d. Let Y be the number of players announcing YES. Publicly flip two biased coins, c1 and c2, such that
Pr[c1 = Heads] = 1− ε1

B and Pr[c2 = Heads] = Y/n.

e. When c1 = Heads: if Y = n, then reset ω := ω? and reset Pi := P ?i − ε1 for each player i; otherwise, for
each player i announcing NO, reset Pbipi

:= Pbipi
+ P ?i “that is, bipi is punished due to i announcing

NO.”

f. When c1 = Tails, rely on c2 to reset ω and P as follows: if c2 = Heads, then reset ω := ω? and reset
Pi := P ?i − ε1 for each player i; otherwise, ω and P continue to be ⊥ and 0n.

g. For each player i, reset Pi := Pi − ε1

2− 1

1+
∑

j 6=i

(
∆i

j
2

+Ki
j(ω?)

)
+P ?

i

.

“That is, each player gets a reward which is at least ε1 and at most 2ε1.”

7 Analysis of Our Mechanism

7.1 Statements of Our Lemmas

Lemma 1. For all players i and all strategies σi ∈ Σ1
i : in Step 3, if P ?i > 0 then

1. i announces YES whenever vi(ω?) ≥ P ?i , and
2. i announces NO whenever vi(ω?) < P ?i .
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Lemma 2. For all players i, all strategies σi ∈ Σ2
i , and all players j 6= i: in Step 2,

1. if MKj(ω?) ≥ vj(ω?), then i announces ∆i
j = 0;

2. if MKj(ω?) < vj(ω?), then i announces ∆i
j ≤ vj(ω?)−MKj(ω?).

Lemma 3. For all players i, all strategies σi ∈ Σ3
i , and all players j 6= i: in Step 2, if MKj(ω?) < vj(ω?),

then i announces ∆i
j = vj(ω?)−MKj(ω?).

Lemma 4. For all players i, all strategies σi ∈ Σ4
i , all players j 6= i, and all states s: in Step 1, i announces

Ki
j(s) ≤ vj(s).

The next lemma and our main theorem uses the following notation: let os = argmaxo∈Ω

∑
l vl(o) with ties

broken lexicographically, and refer to it as the optimal state, in the sense that it has the maximum social
welfare.
Lemma 5. For all players i, all strategies σi ∈ Σ5

i , and all players j 6= i: in Step 1, i announces Ki
j(os) =

vj(os).

7.2 Our Main Theorem

Theorem 2. For all Σ5 plays σ, let (ω, P ) =M(σ), we have
(1) E[

∑
i Pi] ≥ (1− ε)

∑
i vi(os)− ε, and

(2) E[
∑

i vi(ω)] ≥ (1− ε)
∑

i vi(os).

Proof. By Lemma 5, for any players l and k 6= l, Kk
l (os) = vl(os), and thus MKl(os) = vl(os). Therefore

Ros =
∑

l vl(os). By Lemma 4, for any state s 6= os, any players l and k 6= l, Kk
l (s) ≤ vl(s), and thus

MKl(s) ≤ vl(s). Therefore
Rs ≤

∑
l

vl(s) ≤ vl(os) = Ros,

where the second inequality is by definition of os. Because os = argmaxs∈Ω

∑
l vl(s), combining with the

inequality above, we also have that os = argmaxs∈ΩRs, with ties broken lexicographically. Accordingly, in
Step b of execution σ, Pr[ω? = os] > 1− ε.

By Lemma 2, when ω? = os, for any players l and k 6= l, ∆k
l = 0 since MKl(os) = vl(os), and thus no

matter what bipl is, P ?l = Kbipl
l (os) = vl(os). Accordingly, every player announces YES in Step 3, (ω?, P ?) is

implemented when c1 = Heads, Y = n when c1 = Tails, and Pr[c2 = Heads|c1 = Tails] = 1. Therefore before
Step g, the expected revenue that the mechanism gets is

E[
∑
l

Pl] ≥ Pr[ω? = os]E[
∑
l

Pl|ω? = os]

> (1− ε)

[
(1− ε1

B
)
∑
l

(P ?l − ε1) +
ε1
B
· 1 ·

∑
l

(P ?l − ε1)

]
= (1− ε)

∑
l

(P ?l − ε1) = (1− ε)(
∑
l

vl(os)− nε1).

Since the expected reward each player gets in Step g is at most 2ε1, the total expected revenue that the
mechanism gets is

E[
∑
l

Pl] > (1− ε)(
∑
l

vl(os)− nε1)− 2nε1 = (1− ε)
∑
l

vl(os)− (3− ε)nε1 > (1− ε)
∑
l

vl(os)− ε

where the last inequality is because 3nε1 < ε, and the first part of Theorem 2 holds.
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In the meanwhile, when ω? = os, each player l gets value vl(ω) = vl(ω?) = vl(os) once (ω?, P ?) is
implemented, either because c1 = Heads or because c2 = Heads. Therefore the total expected social welfare
the mechanism gets is

E[
∑
l

vl(ω)] ≥ Pr[ω? = os]E[
∑
l

vl(ω)|ω? = os] > (1−ε)

[
(1− ε1

B
)
∑
l

vl(os) +
ε1
B

∑
l

vl(os)

]
= (1−ε)

∑
l

vl(os),

and the second part of Theorem 2 holds.
Q.E.D.
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Appendix

A Proofs of Lemmas 1 to 5

Lemma 1. For all players i and all strategies σi ∈ Σ1
i : in Step 3, if P ?i > 0 then

1. i announces YES whenever vi(ω?) ≥ P ?i , and
2. i announces NO whenever vi(ω?) < P ?i .

Proof. We focus ourselves on proving, by contradiction, the first implication (the proof of the second one
is totally symmetric). Assume there exist a player i and a strategy profile σ such that (1) σi ∈ Σ1

i and
σ−i ∈ Σ0

−i; and (2) in the execution of σ, there exists a sequence of coin tosses of the mechanism before Step
3 for which P ?i > 0, vi(ω?) ≥ P ?i , and i announces NO in Step 3. Consider the following alternative strategy
σ̂i for i.

Strategy σ̂i

Step 1. Run σi and announce Ki as σi does.
Step 2. Continue running σi and announce ∆i as σi does.
Step 3. If P ?i > 0 and vi(ω?) ≥ P ?i , announce YES.

Otherwise, continue running σi and answer whatever σi does.

We prove that σi is distinguishably dominated by σ̂i over Σ0, which implies that σi 6∈ Σ1
i . By definition, we

need to show that there exists a strategy subprofile τ−i ∈ Σ0
−i such that M(σi t τ−i) 6= M(σ̂i t τ−i), and

that for any such τ−i, E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))]. Notice that if execution σi t τ−i is such that
for any sequence of coin tosses of the mechanism used before Step 3, either P ?i = 0, or vi(ω?) < P ?i , or i
announces YES in Step 3, then the two executions σit τ−i and σ̂it τ−i coincides everywhere by construction
of σ̂i, and the two outcome distributions M(σi t τ−i) and M(σ̂i t τ−i) are the same. Therefore such a τ−i
can not distinguish σi and σ̂i over Σ0. Accordingly, it suffices for us to consider all strategy subprofiles τ−i
such that in execution σi t τ−i for some sequence of coin tosses used before Step 3, P ?i > 0, vi(ω?) ≥ P ?i , and
i announces NO. Notice that by hypothesis, σ−i is such a strategy subprofile.

Arbitrarily fix such a τ−i. For similar reasons, notice that for all sequences of coin tosses used before
Step 3 such that either P ?i = 0, or vi(ω?) < P ?i , or i announces YES, the two executions coincide, and
E[ui(M(σi t τ−i))] = E[ui(M(σ̂i t τ−i))] conditioned on such coin tosses. Therefore it suffices for us to
consider all sequences of coin tosses used before Step 3 such that P ?i > 0, vi(ω?) ≥ P ?i , and i announces NO.
Notice that by hypothesis such a sequence of coin tosses exists.

Arbitrarily fix such a sequence of coin tosses. We show that E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))]
conditioned on those coin tosses. By construction of σ̂i, the two executions σi t τ−i and σ̂i t τ−i coincides
everywhere before Step 3. Therefore for variables that do not change after Step 3, we can use the same
notations (ω?, P ?, bipj , etc) in both executions, without any ambiguity. It follows immediately that:

(1) in execution σ̂i t τ−i we have P ?i > 0, vi(ω?) ≥ P ?i , and i announces YES by construction;

(2) for each player j 6= i, j announces the same content in Step 3 in the two executions, and thus Ŷ = Y +1
with Y and Ŷ being the number of players announcing YES in σi t τ−i and σ̂i t τ−i respectively; and

(3) player i gets the same amount of reward in Step g in the two executions, because the reward only depends
on variables whose values do not change after Step 3, and thus it suffices to compare E[ui(M(σitτ−i))]
and E[ui(M(σ̂i t τ−i))] before Step g.

Letting (ω, P ) and (ω̂, P̂ ) be the final outcome in execution σi t τ−i and execution σ̂i t τ−i respectively,
we now distinguish 3 exhaustive events, according to c1 and c2.
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Event E1: c1 = Heads.

Notice that Pr[E1|σi t τ−i] = Pr[E1|σ̂i t τ−i] = 1− ε1
B > 0.

When this event occurs, if all players other than i announce YES in Step 3, then (1) in execution σitτ−i
we have that ω = ⊥ (due to i announcing NO), Pi = 0 (i is not punished as nobody else announces
NO), and thus

E[ui(M(σi t τ−i))|E1] = 0;

and (2) in execution σ̂i t τ−i we have that ω̂ = ω?, P̂i = P ?i − ε1 (again i is not punished), and thus

E[ui(M(σ̂i t τ−i))|E1] = vi(ω̂)− P̂i = vi(ω?)− P ?i + ε1 ≥ ε1 > 0,

because vi(ω?)− P ?i by hypothesis.

If there exists a player j 6= i announcing NO, then we have that ω = ω̂ = ⊥ and

Pi = P̂i =
∑

j: bipj=i, j announces NO
P ?j ,

which implies that E[ui(M(σi t τ−i))|E1] = E[ui(M(σ̂i t τ−i))|E1].

Therefore if this event occurs, then no matter what the other players announce, we have that

E[ui(M(σi t τ−i))|E1] ≤ E[ui(M(σ̂i t τ−i))|E1],

and thus

Pr[E1|σi t τ−i]E[ui(M(σi t τ−i))|E1] ≤ Pr[E1|σ̂i t τ−i]E[ui(M(σ̂i t τ−i))|E1]. (1)

Event E2: c1 = Tails and c2 = Heads.

Notice that Pr[E2|σit τ−i] = ε1Y
Bn , and Pr[E2|σ̂it τ−i] = ε1Ŷ

Bn > Pr[E2|σit τ−i], because Y < Y + 1 = Ŷ .

When this event occurs, we have ω = ω̂ = ω? and Pi = P̂i = P ?i − ε1, and thus

E[ui(M(σi t τ−i))|E2] = E[ui(M(σ̂i t τ−i))|E2] = vi(ω?)− P ?i + ε1 ≥ ε1 > 0.

Therefore

Pr[E2|σi t τ−i]E[ui(M(σi t τ−i))|E2] < Pr[E2|σ̂i t τ−i]E[ui(M(σ̂i t τ−i))|E2]. (2)

Event E3: c1 = Tails and c2 = Tails.

When this event occurs, we have ω = ω̂ = ⊥ and Pi = P̂i = 0, and thus

E[ui(M(σi t τ−i))|E3] = E[ui(M(σ̂i t τ−i))|E3] = 0.

Therefore

Pr[E3|σi t τ−i]E[ui(M(σi t τ−i))|E3] = Pr[E3|σ̂i t τ−i]E[ui(M(σ̂i t τ−i))|E3] = 0. (3)

By Equations 1, 2, and 3, we have that before Step g,

E[ui(M(σi t τ−i))] =
3∑

k=1

Pr[Ek|σi t τ−i]E[ui(M(σi t τ−i))|Ek]

<

3∑
k=1

Pr[Ek|σ̂i t τ−i]E[ui(M(σ̂i t τ−i))|Ek]

= E[ui(M(σ̂i t τ−i))],
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as desired.
To prove the second implication in Lemma 1, just need to notice that both vi(ω?) and P ?i are integers,

and thus vi(ω?) < P ?i implies vi(ω?) < P ?i − ε1. �

Lemma 2. For all players i, all strategies σi ∈ Σ2
i , and all players j 6= i: in Step 2,

1. if MKj(ω?) ≥ vj(ω?), then i announces ∆i
j = 0;

2. if MKj(ω?) < vj(ω?), then i announces ∆i
j ≤ vj(ω?)−MKj(ω?).

Proof. We focus on proving, by contradiction, the first implication (the proof of the second one is very similar,
and will be briefly mentioned at the end of the whole proof). Assume that there exists a player i, a strategy
profile σ, and a player j 6= i such that: (1) σi ∈ Σ2

i and σ−i ∈ Σ1
−i; and (2) there exists a sequence of coin

tosses of the mechanism used before Step 2, according to which MKj(ω?) ≥ vj(ω?) and i announces ∆i
j > 0.

Consider the following alternative strategy σ̂i for i.

Strategy σ̂i

Step 1. Run σi and announce Ki as σi does.
Step 2. Continue running σi and compute ∆i as σi does.

For each player l 6= j, announce ∆̂i
l = ∆i

l.
If MKj(ω?) ≥ vj(ω?), then announce ∆̂i

j = 0.
If MKj(ω?) < vj(ω?), then announce ∆̂i

j = ∆i
j .

Step 3. If P ?i = 0, announce nothing.
If P ?i > 0 and vi(ω?) ≥ P ?i , announce YES.
Otherwise, announce NO.

We prove that σi is distinguishably dominated by σ̂i over Σ1, which implies that σi 6∈ Σ2
i . To do so, we first

provide the following observations:
O1: in Step 3 of σi, i announces YES or NO consistently with Lemma 1.
O2: in Step 3 of σ̂i, i announces YES or NO consistently with Lemma 1.
O3: if a strategy subprofile τ−i ∈ Σ1

−i is such that in execution σi t τ−i, for any sequence of coin tosses used
before Step 2, either MKj(ω?) < vj(ω?), or MKj(ω?) ≥ vj(ω?) and i announces ∆i

j = 0 in Step 2, then
M(σi t τ−i) =M(σ̂i t τ−i) and such a τ−i does not distinguish σi and σ̂i over Σ1.

O4: for any strategy subprofile τ−i ∈ Σ1
−i and for each player l 6= i, in both executions σi t τ−i and σ̂i t τ−i,

l announces YES or NO in Step 3 consistently with Lemma 1.
O1 is because σi ∈ Σ1

i by hypothesis σi ∈ Σ2
i and the fact that Σ2

i ⊆ Σ1
i ; O2 is by construction of σ̂i; O3 is

because O1, O2, and the fact that σi and σ̂i coincides everywhere before Step 3 for such τ−i; and O4 is by
Lemma 1.

According to O3, it suffices for us to consider all strategy subprofiles τ−i ∈ Σ1
−i such that in execution

σi t τ−i, there exists a sequence of coins tossed before Step 2 according to which MKj(ω?) ≥ vj(ω?) and i
announces ∆i

j > 0 in Step 2. By hypothesis σ−i is such a strategy subprofile.
Arbitrarily fix such a τ−i. Similar to O3, if a sequence of coins tossed before Step 2 is such that in

execution σi t τ−i, either MKj(ω?) < vj(ω?), or MKj(ω?) ≥ vj(ω?) and i announces ∆i
j = 0, then we

have that E[ui(M(σi t τ−i))] = E[ui(M(σ̂i t τ−i))] conditioned on such coins, because the two executions
coincide everywhere. Thus it suffices for us to consider all sequences of coins tossed before Step 2 such that
in execution σitτ−i, MKj(ω?) ≥ vj(ω?) and i announces ∆i

j > 0. Notice that by hypothesis such a sequence
of coins exists.

Arbitrarily fixing such a sequence of coins, we show that E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))] condi-
tioned on them. Because the two executions coincide before Step 2, for each variable whose value does not
change in or after Step 2, we use the same notation in both executions —K l, ω?, MKj(ω?), etc—, without
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any ambiguity. For the other variables, we use different notations in the two executions —∆i and ∆̂i, bipj
and b̂ipj , P ? and P̂ ?, etc, for σi t τ−i and σ̂i t τ−i respectively—, and it should be clear from the context
which execution a notation belongs to.

Because in both executions, the reward that player i gets in Step g is always in [ε1, 2ε1), we have that

E

ε1
2− 1

1 +
∑

l 6=i

(
∆̂i

l
2 +Ki

l (ω
?)
)

+ P̂ ?i


− E

ε1
2− 1

1 +
∑

l 6=i

(
∆i

l
2 +Ki

l (ω
?)
)

+ P ?i

 > −ε1, (4)

and thus it suffices for us to show that E[ui(M(σ̂i t τ−i))]− E[ui(M(σi t τ−i))] > ε1 before Step g.
To do so, we further notice that for each player l 6= j, for each sequence of coins tossed in Step c to set

bipl and P ?l in execution σi t τ−i, we have that with the same sequence of coins, b̂ipl = bipl, P̂ ?l = P ?l , and l
announces the same content in Step 3 in the two executions. Therefore to simplify the analysis, we assume
that all coins tossed in Step c for players l 6= j have been fixed, and show that for any such coins, conditioned
on them we have that E[ui(M(σ̂i t τ−i))]− E[ui(M(σi t τ−i))] > ε1 before Step g.

Recall that after the coins above have been fixed, for each player l 6= j (in particular for l = i), P ?l = P̂ ?l
and l announces the same content in Step 3 in the two executions. We define the following variables:
• u1

i = vi(ω?)− P ?i + ε1.
This is the utility that i gets in both executions when (ω?, P ?) is implemented, either because c1 = Heads
and everybody announces YES, or because c1 = Tails and c2 = Heads. Notice that

|u1
i | < B, (5)

since 0 ≤ vi(ω?) < B and 0 ≤ P ?i < B, and they are both integers.
• p1

i =
∑

l 6=j: bipl=i, l announces NO
P ?l .

This is the punishment that i pays to the mechanism in both executions due to players other than j
announcing NO, when c1 = Heads. Notice that

p1
i ≥ 0. (6)

• Y = |{l : l 6= j, l announces YES}|.
This is the number of players other than j who announces YES. Notice that

Y

n
≤ Pr[c2 = Heads|σi t τ−i] ≤

Y + 1
n

and
Y

n
≤ Pr[c2 = Heads|σ̂i t τ−i] ≤

Y + 1
n

,

because the only player whose announcement in Step 3 has not been fixed yet is player j. Therefore

|Pr[c2 = Heads|σ̂i t τ−i]− Pr[c2 = Heads|σi t τ−i]| ≤
1
n
. (7)

• p2
i = Pr[bipj = i|σi t τ−i] · (1− ε1

B ) · (MKj(ω?) + ∆i
j).

This is the expected punishment that i pays to the mechanism due to j announcing NO in execution
σi t τ−i — since MKj(ω?) ≥ vj(ω?) and ∆i

j > 0, j announces NO whenever bipj = i. Notice that
Pr[bipj = i|σi t τ−i] ≥ ε

n−1 and MKj(ω?) + ∆i
j ≥ 1. Therefore

p2
i ≥

ε

n− 1
(1− ε1

B
). (8)

We now distinguish the following two cases, and show that in each case, E[ui(M(σ̂i t τ−i))] − E[ui(M(σi t
τ−i))] > ε1, before Step g, and conditioned on all previously mentioned coin tosses being fixed.
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Case 1. ∆l
j = 0 for all l 6= i, j.

In this case, in execution σi t τ−i, Pr[bipj = i|σi t τ−i] = 1 by construction ofM, and thus j announces
NO in Step 3. Therefore p2

i = (1− ε1
B ) · (MKj(ω?) + ∆i

j), and ω = ⊥ when c1 = Heads. Accordingly, we
have that

E[ui(M(σi t τ−i))] = −(1− ε1
B

)p1
i − p2

i +
ε1
B
· Pr[c2 = Heads|σi t τ−i] · u1

i . (9)

In execution σ̂i t τ−i, we have that (1) Pr[b̂ipj = i|σ̂i t τ−i] ≤ 1; (2) when c1 = Heads and b̂ipj = i, i is
punished by at most Ki

j(ω
?); and (3) i answers YES if and only if u1

i > 0 by Lemma 1, and thus does
not lose money except the possible punishments he is asked to pay. Accordingly, we have that

E[ui(M(σ̂i t τ−i))] ≥ −(1− ε1
B

)p1
i − (1− ε1

B
)Ki

j(ω
?) +

ε1
B
· Pr[c2 = Heads|σ̂i t τ−i] · u1

i . (10)

Subtracting Equation 9 from Equation 10, we have that

E[ui(M(σ̂i t τ−i))]− E[ui(M(σi t τ−i))]

≥ (1− ε1
B

)(MKj(ω?) + ∆i
j −Ki

j(ω
?)) +

ε1u
1
i

B
· (Pr[c2 = Heads|σ̂i t τ−i]− Pr[c2 = Heads|σi t τ−i])

> 1− ε1
B
− ε1|u1

i |
B
· |Pr[c2 = Heads|σ̂i t τ−i]− Pr[c2 = Heads|σi t τ−i]|

> 1− ε1
B
− ε1 ·

1
n
> 3nε1 − 2ε1 ≥ ε1,

where the first inequality is because p2
i = (1− ε1

B )·(MKj(ω?)+∆i
j); the second one is because MKj(ω?) ≥

Ki
j(ω

?), ∆i
j ≥ 1, and x ≥ −|x| with x = ε1u1

i
B · (Pr[c2 = Heads|σ̂i t τ−i] − Pr[c2 = Heads|σi t τ−i]); the

third one is because Equations 5 and 7; the last two are because 3nε1 < 1, B ≥ 1, and n ≥ 1.
Case 2. There exists l 6= i, j such that ∆l

j > 0.

In this case, b̂ipj 6= i with probability 1, and thus i is not punished due to j’s announcement in Step 3 in
execution σ̂i t τ−i. But in both executions, no matter what bipj and b̂ipj are, since MKj(ω?) ≥ vj(ω?),

∆bipj

j > 0 and ∆̂
b̂ipj

j > 0, we have that P ?j = MKj(ω?) + ∆bipj

j > vj(ω?) and P̂ ?j = MKj(ω?) + ∆̂
b̂ipj

j >
vj(ω?) with probability 1, and thus j always announces NO in both executions. Therefore in execution
σi t τ−i, it is still true that Pr[bipj = i|σi t τ−i] ≥ ε

n−1 even conditioned on j announcing NO, and
Equation 8 still holds.
Accordingly, we have that

E[ui(M(σ̂i t τ−i))] = −(1− ε1
B

)p1
i +

ε1
B
· Pr[c2 = Heads|σ̂i t τ−i] · u1

i ,

and
E[ui(M(σi t τ−i))] = −(1− ε1

B
)p1
i − p2

i +
ε1
B
· Pr[c2 = Heads|σi t τ−i] · u1

i .

Thus

E[ui(M(σ̂i t τ−i))]− E[ui(M(σi t τ−i))]

= p2
i +

ε1u
1
i

B
· (Pr[c2 = Heads|σ̂i t τ−i]− Pr[c2 = Heads|σi t τ−i])

≥ p2
i −

ε1|u1
i |

B
· |Pr[c2 = Heads|σ̂i t τ−i]− Pr[c2 = Heads|σi t τ−i]|

>
ε

n− 1
(1− ε1

B
)− ε1 ·

1
n
>

3nε1
n− 1

(1− ε

3n
)− ε1

n

= 3ε1 + ε1(
3− ε
n− 1

− 1
n

) > ε1,

where the second inequality is because Equations 5, 7, and 8; and the third one is because ε > 3nε1 and
thus ε1

B ≤ ε1 <
ε

3n .
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In sum, we have that E[ui(M(σ̂i t τ−i))]−E[ui(M(σi t τ−i))] > ε1 before Step g. Combining with Equation
4, we have that E[ui(M(σ̂i t τ−i))] > E[ui(M(σi t τ−i))], as desired.

To prove the second implication of Lemma 2, that is, if MKj(ω?) < vj(ω?) then i announces ∆i
j ≤

vj(ω?)−MKj(ω?), the alternative strategy σ̂i becomes to announce ∆̂i
j = vj(ω?)−MKj(ω?) in Step 2 when

MKj(ω?) < vj(ω?), and coincide with σi everywhere else. The analysis is similar to the proof of the first
implication, except that when ∆l

j > 0 for some l 6= i, j, it is not true that j always announces NO in both
executions, and a more careful case analysis is needed. �

Lemma 3. For all players i, all strategies σi ∈ Σ3
i , and all players j 6= i: in Step 2, if MKj(ω?) < vj(ω?),

then i announces ∆i
j = vj(ω?)−MKj(ω?).

Proof. We proceed by contradiction. Assume that there exist a player i, a strategy profile σ, and a player
j 6= i such that: (1) σi ∈ Σ3

i and σ−i ∈ Σ2
−i; (2) there exists a sequence of coins tossed before Step 2,

according to which MKj(ω?) < vj(ω?), and i announces ∆i
j < vj(ω?) −MKj(ω?) in Step 2 (by Lemma

2, ∆i
j ≤ vj(ω?) −MKj(ω?) always, and thus we only need to consider the strictly-less case). Consider the

following alternative strategy σ̂i for i.

Strategy σ̂i

Step 1. Run σi and announce Ki as σi does.
Step 2. Continue running σi and compute ∆i as σi does.

For each player l 6= j, announce ∆̂i
l = ∆i

l.
If MKj(ω?) ≥ vj(ω?), then announce ∆̂i

j = ∆i
j .

If MKj(ω?) < vj(ω?), then announce ∆̂i
j = vj(ω?)−MKj(ω?).

Step 3. If P ?i = 0, announce nothing.
If P ?i > 0 and vi(ω?) ≥ P ?i , announce YES.
Otherwise, announce NO.

We prove that σi is distinguishably dominated over Σ2, which implies that σi 6∈ Σ3
i . To do so, similarly as

in Lemma 2, it suffices for us to consider all strategy subprofiles τ−i ∈ Σ2
−i such that in execution σi t τ−i,

there exists a sequence of coins tossed before Step 2, according to which MKj(ω?) < vj(ω?) and i announces
∆i
j < vj(ω?) −MKj(ω?) in Step 2. Notice that by hypothesis, such a τ−i and a sequence of coins exist.

Arbitrarily fix such a τ−i and such a sequence of coins. We show that E[ui(M(σitτ−i))] < E[ui(M(σ̂itτ−i))]
conditioned on these coins. We adopt the same rule to use variables in the two executions as in Lemma 2.

Because for each player l 6= i, l uses the same strategy τl in the two executions, and because σi and σ̂i
coincide in Step 1, we have that ∆l

i = ∆̂l
i, and thus the value P ?i and P̂ ?i have the same distribution — that

is, for any non-negative integer m < B, Pr[P ?i = m] = Pr[P̂ ?i = m]. Further because ∆̂i
j > ∆i

j and ∆̂i
l = ∆i

l

for each l 6= i, j, we have that in Step g

E

ε1
2− 1

1 +
∑

l 6=i

(
∆i

l
2 +Ki

l (ω
?)
)

+ P ?i

 < E

ε1
2− 1

1 +
∑

l 6=i

(
∆̂i

l
2 +Ki

l (ω
?)
)

+ P̂ ?i


 , (11)

that is, i receives in expectation less reward in Step g in execution σi t τ−i than in σ̂i t τ−i. Therefore it
suffices to show that E[ui(M(σitτ−i))] ≤ E[ui(M(σ̂itτ−i))] before Step g, with the coins tossed before Step
2 fixed as mentioned above. Further, as in Lemma 2, it suffices for us to fix the coins tossed for all players
other than j in Step 2, and show that E[ui(M(σi t τ−i))] ≤ E[ui(M(σ̂i t τ−i))] before Step g, conditioned
on these additional coins also.

After all above-mentioned coins being fixed, for each player l 6= j, we have that bipl = b̂ipl, P ?l = P̂ ?l , and
l announces the same content in Step 3 in the two executions. Therefore the only difference between the two
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executions comes from the values of bipj , b̂ipj , P ?j , and P̂ ?j , as well as the announcements of j in Step 3 in the
two executions. However, because both σi t τ−i and σ̂i t τ−i belong to Σ2, by Lemma 2, no matter what bipj
and b̂ipj are, their announced values for j in Step 2 are at most vj(ω?)−MKj(ω?). Therefore P ?j ≤ vj(ω?)
and P̂ ?j ≤ vj(ω?), and by Lemma 1, j announces YES in Step 3 in both executions.

Accordingly, when c1 = Heads, ω = ω? if and only if ω̂ = ω?, and thus

E[ui(M(σi t τ−i))|c1 = Heads] = E[ui(M(σ̂i t τ−i))|c1 = Heads],

since i is asked to pay the same price and the same punishment. When c1 = Tails, because Y = Ŷ , we have
that

Pr[c2 = Heads|σi t τ−i, c1 = Tails] = Pr[c2 = Heads|σ̂i t τ−i, c1 = Tails],

and
E[ui(M(σi t τ−i))|c1 = Tails, c2 = Heads] = E[ui(M(σ̂i t τ−i))|c1 = Tails, c2 = Heads].

Combining the above three equalities, we have that

E[ui(M(σi t τ−i))] = E[ui(M(σ̂i t τ−i))],

before Step g and conditioned on the fixed coins. Combining with Equation 11, we have that

E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))],

as desired. �

Lemma 4. For all players i, all strategies σi ∈ Σ4
i , all players j 6= i, and all states o: in Step 1, i announces

Ki
j(o) ≤ vj(o).

Proof. We again proceed by contradiction. Assume there exists a player i, a strategy profile σ, a player j 6= i,
and a state s such that: (1) σi ∈ Σ4

i and σ−i ∈ Σ3
−i; and (2) in Step 1, i announces Ki

j(s) > vj(s). Consider
the following alternative strategy σ̂i for i.

Strategy σ̂i

Step 1. Run σi and compute Ki as σi does.
For each state o and each player j, if Ki

j(o) ≤ vj(o), then announce K̂i
j(o) = Ki

j(o);
if Ki

j(o) > vj(o), then announce K̂i
j(o) = vj(o).

Step 2. For each player l, if MKl(ω?) ≥ vl(ω?), then announce ∆̂i
l = 0;

if MKl(ω?) < vl(ω?), then announce ∆̂i
l = vl(ω?)−MKl(ω?).

Step 3. If P ?i = 0, announce nothing.
If P ?i > 0 and vi(ω?) ≥ P ?i , announce YES.
Otherwise, announce NO.

We prove that σi is distinguishably dominated by σ̂i over Σ3, which implies that σi 6∈ Σ4
i . To do so, we show

that for any strategy subprofile τ−i ∈ Σ3
−i, E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))], which actually implies

that σi is strictly dominated by σ̂i over Σ3. Because the two executions σi t τ−i and σ̂i t τ−i now differs from
the very beginning, for each variable in the mechanism, we use different notations to refer to it in the two
executions (K l and K̂ l, ω? and ω̂?, P ? and P̂ ?, etc). It should be clear from the context to which execution
a notation belongs. Of course, for each player l 6= i, we have that K l = K̂ l, since l uses the same strategy τl
in the two executions. We have the following two observations:
O1: in both executions, in Step 3, every player l announces YES or NO consistently with Lemma 1, that is,

l announces YES if and only if vl(ω?) ≥ P ?l in σi t τ−i, and announces YES if and only if vl(ω̂?) ≥ P̂ ?l
in σ̂i t τ−i.
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O2: every player l announces ∆l and ∆̂l in Step 2 of the two executions respectively consistently with
Lemmas 2 and 3. That is, l announces ∆l

k (respectively, ∆̂l
k) for player k to be 0 if MKk(ω?) ≥ vk(ω?)

(respectively, if M̂Kk(ω̂?) ≥ vk(ω̂?)), and vk(ω?)−MKk(ω?) (respectively, vk(ω̂?)−M̂Kk(ω̂?)) otherwise.
O3: Ro ≥ R̂o for each state o.
Here O1 and O2 are because both σi t τ−i and σ̂i t τ−i belong to Σ3, and thus belong to Σ2 and Σ1 as well;
and O3 is because for each player l 6= i, l announces the same valuation profile in both executions, while the
values announced by player i for each player k and each state o only decreases from σi t τ−i to σ̂i t τ−i.

In execution σi t τ−i, let state om be the lexicographically first state o′ such that Ro′ = maxoRo. We
distinguish two cases, according to om.

Case 1. Ki
l (om) ≤ vl(om) for each player l. That is, i does not overbid about l’s value on om.

In this case, in execution σ̂it τ−i, om is also the lexicographically first state o′ such that R̂o′ = maxo R̂o.
Because on one hand, by construction of σ̂i, K̂i

l (om) = Ki
l (om) for each player l, and thus MKl(om) =

M̂K l(om) for each l, which implies Rom = R̂om; and on the other hand, Ro ≥ R̂o for each state o 6= om,
by O3.
Accordingly, in execution σi t τ−i (respectively, σ̂i t τ−i), with probability 1− ε, ω? (respectively, ω̂?) is
set to be om; and with probability ε, ω? (respectively, ω̂?) is set to be a random state in Ω. That is,

Pr[ω? = o] = Pr[ω̂? = o] > 0 (12)

for each state o. Since

E[ui(M(σi t τ−i))] =
∑
o∈Ω

Pr[ω? = o]E[ui(M(σi t τ−i))|ω? = o]

and
E[ui(M(σ̂i t τ−i))] =

∑
o∈Ω

Pr[ω̂? = o]E[ui(M(σ̂i t τ−i))|ω̂? = o],

combining with Equation 12, we have that

E[ui(M(σ̂i t τ−i))]− E[ui(M(σi t τ−i))]
=

∑
o∈Ω

Pr[ω? = o](E[ui(M(σ̂i t τ−i))|ω̂? = o]− E[ui(M(σi t τ−i))|ω? = o]). (13)

Therefore to prove E[ui(M(σ̂i t τ−i))] > E[ui(M(σi t τ−i))], it suffices for us to prove the following two
claims:

Claim 1. for each state o such that Ki
l (o) ≤ vl(o) for all players l 6= i, we have that

E[ui(M(σ̂i t τ−i))|ω̂? = o]− E[ui(M(σi t τ−i))|ω? = o] = 0; and
Claim 2. for each state o such that Ki

l (o) > vl(o) for some player l 6= i, we have that
E[ui(M(σ̂i t τ−i))|ω̂? = o]− E[ui(M(σi t τ−i))|ω? = o] > 0.

By our assumption at the very beginning of the proof of this lemma, there exists a state and a player,
namely state s and player j, satisfying the hypothesis in Claim 2. It is easy to see that the validity
of Claims 1 and 2, together with the existence of state s and player j, and with Equations 12 and 13,
implies E[ui(M(σ̂i t τ−i))] > E[ui(M(σi t τ−i))].

The validity of Claim 1 is easy to verify. Notice that for each state o satisfying its hypothesis, it must be
the case that Ki

l (o) = K̂i
l (o) for each player l 6= i. Since K l = K̂ l for each l 6= i, we have that ∆̂l = ∆l for

each player l (because l’s announcement in Step 2 must be consistent with Lemmas 2 and 3, and there
is only one way to do so). Therefore the two executions coincide everywhere after Step b, including the
reward that each player receives in Step g, and we have that E[ui(M(σ̂i t τ−i))] = E[ui(M(σi t τ−i))].
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To prove Claim 2, we focus on proving E[ui(M(σ̂i t τ−i))|ω̂? = s] − E[ui(M(σi t τ−i))|ω? = s] > 0,
since for any other state o satisfying the hypothesis of Claim 2, the proof is exactly the same. Similar
to Equation 4 in the proof of Lemma 2, we have that in Step g

E

ε1
2− 1

1 +
∑

l 6=i

(
∆̂i

l
2 + K̂i

l (s)
)

+ P̂ ?i


∣∣∣∣∣∣∣∣ ω̂

? = s


−E

ε1
2− 1

1 +
∑

l 6=i

(
∆i

l
2 +Ki

l (s)
)

+ P ?i

∣∣∣∣∣∣ω? = s

 > −ε1. (14)

Letting Ui = ui(M(σi t τ−i)) and Ûi = ui(M(σ̂i t τ−i)), it suffices for us to show that

E[Ûi|ω̂? = s]− E[Ui|ω? = s] > ε1 (15)

before Step g. From now on, unless explicitly specified, all expected utilities talked about below are
computed before Step g. Because

E[Ui|ω? = s] = Pr[c1 = Heads|σi t τ−i]E[Ui|ω? = s, c1 = Heads]
+ Pr[c1 = Tails|σi t τ−i]E[Ui|ω? = s, c1 = Tails]

= (1− ε1
B

)E[Ui|ω? = s, c1 = Heads] +
ε1
B
· E[Ui|ω? = s, c1 = Tails]

and similarly

E[Ûi|ω̂? = s] = (1− ε1
B

)E[Ûi|ω̂? = s, c1 = Heads] +
ε1
B
· E[Ûi|ω̂? = s, c1 = Tails],

to prove Equation 15, it suffices to show that

ε1
B

(
E[Ûi|ω̂? = s, c1 = Tails]− E[Ui|ω? = s, c1 = Tails]

)
> −ε1, (16)

and
(1− ε1

B
)
(
E[Ûi|ω̂? = s, c1 = Heads]− E[Ui|ω? = s, c1 = Heads]

)
> 2ε1. (17)

Notice that in execution σi t τ−i, for each player l 6= i, l announces ∆l
i according to Lemmas 2 and 3,

therefore no matter what bipi is, we have that 0 ≤ vi(s) ≤ P ?i < B, and thus

−(B − 1) ≤ E[Ui|ω? = s, c1 = Tails] ≤ ε1.

Similarly, −(B − 1) ≤ E[Ûi|ω̂? = s, c1 = Tails] ≤ ε1. Combining these two inequalities, we have that

E[Ûi|ω̂? = s, c1 = Tails]− E[Ui|ω? = s, c1 = Tails] ≥ −(B − 1)− ε1 > −B,

and Equation 16 holds.
We now prove Equation 17. Notice that in execution σ̂i t τ−i, since player i does not overbid on any
other player, i is never punished due to the others announcing NO in Step 3. Thus

E[Ûi|ω̂? = s, c1 = Heads] ≥ 0. (18)

On the other hand, in execution σi t τ−i, Ki
j(s) > vj(s) by assumption, therefore MKj(s) > vj(s), and

every player l 6= j (including i himself) announces ∆l
j = 0 in Step 2. Accordingly, Pr[bipj = i|ω? = s] ≥

ε
n−1 , and when bipj = i and c1 = Heads, i is punished by at least P ?j = Ki

j(s) ≥ 1. Since vi(s) ≤ P ?i
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as said when proving Equation 16, vi(s) ≤ P ?i which implies that vi(s)− (P ?i − ε1) ≤ ε1 and that when
bipj 6= i the utility i can get when c1 = Heads is at most ε1. In sum,

E[Ui|ω? = s, c1 = Heads] ≤ (1− ε

n− 1
)ε1 −

ε

n− 1
< ε1 −

ε

n− 1
. (19)

Combining Equations 18 and 19, we have that

(1− ε1
B

)
(
E[Ûi|ω̂? = s, c1 = Heads]− E[Ui|ω? = s, c1 = Heads]

)
≥ (1− ε1

B
)(

ε

n− 1
− ε1)

>
15
16

(4ε1 − ε1) =
45ε1
16

> 2ε1,

where the second inequality is because 4nε1 < ε < 1/4 and B ≥ 1. That is, Equation 17 holds.
Combining Equations 16 and 17, we know that Equation 15 holds. Further combining with Equation
14, we know that E[ui(M(σ̂i t τ−i))|ω̂? = s]− E[ui(M(σi t τ−i))|ω? = s] > 0 with Step g included, and
Claim 2 holds.
In sum, we have that E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))] in Case 1.

Case 2. There exists some player k 6= i such that Ki
k(om) > vk(om). That is, i overbids about vk(om).

In this case, similar to Equation 14, we have that in Step g,

E

ε1
2− 1

1 +
∑

l 6=i

(
∆̂i

l
2 + K̂i

l (ω̂
?)
)

+ P̂ ?i




−E

ε1
2− 1

1 +
∑

l 6=i

(
∆i

l
2 +Ki

l (ω
?)
)

+ P ?i

 > −ε1. (20)

Similar to Equation 16, we have that before Step g,

ε1
B

(
E[Ûi|c1 = Tails]− E[Ui|c1 = Tails]

)
> −ε1. (21)

Therefore to prove E[ui(M(σ̂i t τ−i))]− E[ui(M(σi t τ−i))] > 0, it suffices for us to prove the following
equation similar to Equation 17:

(1− ε1
B

)
(
E[Ûi|c1 = Heads]− E[Ui|c1 = Heads]

)
> 2ε1. (22)

Similar to Equation 18, we have that

E[Ûi|c1 = Heads] ≥ 0. (23)

Now we upperbound E[Ui|c1 = Heads]. In execution σi t τ−i, because om is the lexicographically first
state o′ such that Ro′ = maxoRo,

Pr[ω? = om|σi t τ−i] > 1− ε.

Given that ω? = om, since Ki
k(om) > vk(om), by Lemma 2, every player l 6= k (including i himself)

announces ∆l
k = 0 in Step 2. Thus

Pr[bipk = i|ω? = om] >
ε

n− 1
.
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Since k announces NO in Step 3 when bipk = i, i is punished by at least Ki
k(om) ≥ 1 when bipk = i and

c1 = Heads. Similar to Case 1, since every player l 6= i announces ∆l
i consistently with Lemmas 2 and

3, when ω? 6= om or bipk 6= i, the utility i can get when ci = Heads is at most ε1. In sum,

E[Ui|c1 = Heads] < ε1 − (1− ε) · ε

n− 1
. (24)

Combining Equations 23 and 24, we have that

(1− ε1
B

)
(
E[Ûi|c1 = Heads]− E[Ui|c1 = Heads]

)
> (1− ε1

B
)
(

(1− ε) · ε

n− 1
− ε1

)
>

24
25
· (4

5
· 5ε1 − ε1) =

72ε1
25

> 2ε1,

where the second inequality is because 5nε1 < ε < 1/5 and B ≥ 1. That is, Equation 22 holds.
Combining Equations 20, 21, and 22, we have that E[ui(M(σ̂i t τ−i))] − E[ui(M(σi t τ−i))] > 0, i.e.,
E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))] in Case 2.

Summarizing Cases 1 and 2, E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))] for any τ−i ∈ Σ3
−i, as desired. �

The next lemma uses the following notation: let os = argmaxo∈Ω

∑
l vl(o) with ties broken lexicographically,

os is called the optimal state, in the sense that it has the maximum social welfare.

Lemma 5. For all players i, all strategies σi ∈ Σ5
i , and all players j 6= i: in Step 1, i announces Ki

j(os) =
vj(os).

Proof. We again proceed by contradiction. Assume there exists a player i, a strategy σi ∈ Σ5
i , and a player

j 6= i, such that i announces Ki
j(os) < vj(os) in Step 1 (by Lemma 4, Ki

j(os) ≤ vj(os) always). Consider the
following alternative strategy σ̂i for i.

Strategy σ̂i

Step 1. Run σi and compute Ki as σi does.
For each state o 6= os and each player j, announce K̂i

j(o) = Ki
j(o).

For each player j, announce K̂i
j(os) = vj(os).

Step 2. For each player l, if MKl(ω?) ≥ vl(ω?), then announce ∆̂i
l = 0;

if MKl(ω?) < vl(ω?), then announce ∆̂i
l = vl(ω?)−MKl(ω?).

Step 3. If P ?i = 0, announce nothing.
If P ?i > 0 and vi(ω?) ≥ P ?i , announce YES.
Otherwise, announce NO.

We prove that σi is distinguishably dominated by σ̂i over Σ4, which implies that σi 6∈ Σ5
i . To do so, for

each strategy subprofile τ−i ∈ Σ4
−i, letting Ui = ui(M(σi t τ−i)) and Ûi = ui(M(σ̂i t τ−i)), we show that

E[Ui] < E[Ûi], which actually implies that σi is strictly dominated by σ̂i over Σ4.
Arbitrarily fix such a τ−i. Similar to the proof of Lemma 4, for each variable in the mechanism, we refer

to it using different notations in the two executions σi t τ−i and σ̂i t τ−i (K l and K̂ l, ω? and ω̂?, P ? and
P̂ ?, etc). It should be clear from the context to which execution a notation belongs. We have the following
observations:
O1: for each player l 6= i, the announcements of l in Step 1 are the same in the two executions, that is,

K l = K̂ l;
O2: for each state o 6= os and each player l, K̂i

l (o) = Ki
l (o); and for each player l, if Ki

l (os) = vl(os) then
Ki
l (os) = K̂i

l (os), otherwise Ki
l (os) < K̂i

l (os).

O3: for each state o 6= os, Ro = R̂o; and Ros ≤ R̂os.
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O4: in execution σi t τ−i (respectively, σ̂i t τ−i), for each player l, each state o, and each player k 6= l,
K l
k(o) ≤ vk(o) (respectively, K̂ l

k(o) ≤ vk(o)) in Step 1;
O5: in execution σi t τ−i (respectively, σ̂i t τ−i), for each player l and each player k 6= l, l announces ∆l

k

(respectively, ∆̂l
k) in Step 2 such that MKk(ω?) + ∆l

k = vl(ω?) (respectively, M̂Kk(ω̂?) + ∆̂l
k = vl(ω̂?)).

O6: in execution σi t τ−i (respectively, σ̂i t τ−i), for each player l, P ?l = vl(ω?) (respectively, P̂ ?l = vl(ω̂?)),
and l always announces YES in Step 3, no matter what bipl (respectively, b̂ipl) is.

Here O1 is because l uses the same strategy τl in the two executions; O2 is by construction of σ̂i; O3 is by
construction of σ̂i and by definition of Ro for each state o; O4 is because Lemma 4 and because both σi t τ−i
and σ̂i t τ−i belong to Σ4; O5 is because O4 and Lemmas 3 and 4; O6 is because O5 and Lemma 1.

By O6, we have that: (1) in execution σi t τ−i (respectively, σ̂i t τ−i), when c1 = Heads, (ω?, P ?)
(respectively, (ω̂?, P̂ ?)) is implemented, and each player gets utility ε1 in Step e; and (2) Pr[c2 = Heads|c1 =
Tails, σit τ−i] = Pr[c2 = Heads|c1 = Tails, σ̂it τ−i] = 1, and each player gets utility ε1 in Step f. Thus before
Step g, we have that

E[Ui] = E[Ûi] = (1− ε1
B

)ε1 +
ε1
B
· 1 · ε1 = ε1. (25)

Let ri = ε1

2− 1

1+
∑

l 6=i

(
∆i

l
2

+Ki
l (ω?)

)
+P ?

i

 and r̂i = ε1

2− 1

1+
∑

l 6=i

(
∆̂i

l
2

+K̂i
l (ω̂?)

)
+P̂ ?

i

 be the reward i gets

in Step g in the two executions. By Equation 25, to show that E[Ui] < E[Ûi], it suffices for us to show
E[ri] < E[r̂i], which is equivalent to show

E

∑
l 6=i

(
∆i
l

2
+Ki

l (ω
?)
)

+ P ?i

 < E

∑
l 6=i

(
∆̂i
l

2
+ K̂i

l (ω̂
?)

)
+ P̂ ?i

 .
By O6, P ?i = vi(ω?) and P̂ ?i = vi(ω̂?). Accordingly, the above inequality is equivalent to

E

∑
l 6=i

(
∆i
l

2
+Ki

l (ω
?)
)

+ vi(ω?)

 < E

∑
l 6=i

(
∆̂i
l

2
+ K̂i

l (ω̂
?)

)
+ vi(ω̂?)

 . (26)

Let om = argmaxo∈ΩRo and ôm = argmaxo∈Ω R̂o, with ties broken lexicographically. We now distinguish
four cases, according to om and ôm.
Case 1. om = os and ôm = os.

In this case, for each state o,
Pr[ω? = o] = Pr[ω̂? = o] > 0, (27)

because both equals os with probability 1− ε, and equals a random state in Ω with probability ε.
For each state o 6= os, we have that

E

∑
l 6=i

(
∆i
l

2
+Ki

l (o)
)

+ vi(o)

∣∣∣∣∣∣ω? = o

 = E

∑
l 6=i

(
∆̂i
l

2
+ K̂i

l (o)

)
+ vi(o)

∣∣∣∣∣∣ ω̂? = o

 , (28)

because (1) Kk
l (o) = K̂k

l (o) for each player k and each player l, by O1 and O2; (2) MKl(o) = M̂K l(o)
for each player l, by (1) and the definition of MKl(o); and (3) ∆i

l = ∆̂i
l for each player l 6= i, by (2) and

Lemmas 2 and 3.
For state os, by construction of σ̂i, K̂i

l (os) = vl(os) for each player l 6= i. By Lemma 4, no player overbids
on the others’ values on os, and thus M̂K l(os) = vl(os) also, which implies ∆̂i

l = 0. Accordingly, we
have that

E

∑
l 6=i

(
∆̂i
l

2
+ K̂i

l (os)

)
+ vi(os)

∣∣∣∣∣∣ ω̂? = os

 = E

∑
l 6=i

vl(os) + vi(os)

 =
∑
l

vl(os). (29)
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On the other hand, when ω? = os, we have that (1) for each player l 6= i, j, ∆i
l

2 +Ki
l (os) ≤ ∆i

l+MKl(os) =

vl(os); and (2)
∆i

j

2 + Ki
j(os) < ∆i

j + MKj(os) = vj(os), since Ki
j(os) < vj(os) implies that either

Ki
j(os) < MKj(os), or 0 <

∆i
j

2 < ∆i
j . Therefore

E

∑
l 6=i

(
∆i
l

2
+Ki

l (os)
)

+ vi(os)

∣∣∣∣∣∣ω? = os

 < ∑
l 6=i,j

vl(os) + vj(os) + vi(os) =
∑
l

vl(os). (30)

Combining Equations 29 and 30, we have that

E

∑
l 6=i

(
∆i
l

2
+Ki

l (os)
)

+ vi(os)

∣∣∣∣∣∣ω? = os

 < E

∑
l 6=i

(
∆̂i
l

2
+ K̂i

l (os)

)
+ vi(os)

∣∣∣∣∣∣ ω̂? = os

 . (31)

Combining Equations 27, 28, and 31, we conclude that Equation 26 holds, which implies E[ri] < E[r̂i].
Further combining with Equation 25, we have that E[Ui] < E[Ûi] in Case 1.

Case 2. om 6= os and ôm 6= os.
In this case, we have that om = ôm, by O3. Therefore similar to Case 1, Pr[ω? = o] = Pr[ω̂? = o] > 0.
By the same reasons as in Case 1, Equations 28 and 31 also hold here, and we have that E[Ui] < E[Ûi]
in Case 2.

Case 3. om 6= os and ôm = os.
In this case, notice that Equations 28 and 31 still hold, by the same reasons as in Case 1. In addition,
we have that

E
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∆i
l

2
+Ki
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)

+ vi(om)

∣∣∣∣∣∣ω? = om


≤ E

∑
l 6=i

(∆i
l +MKl(om)) + vi(om)|ω? = om

 =
∑
l

vl(om)

≤
∑
l

vl(os) = E

∑
l 6=i

(
∆̂i
l

2
+ K̂i

l (ôm)

)
+ vi(ôm)

∣∣∣∣∣∣ ω̂? = ôm

 .
where the second inequality is by definition of os.
Because Pr[ω? = o|ω? is uniformly chosen] = Pr[ω̂? = o|ω̂? is uniformly chosen] for each state o, we
have that Equation 26 also holds here, and E[Ui] < E[Ûi] in Case 3.

Case 4. om = os and ôm 6= os.
Fortunately, this case can never happen according to O3.

Summarizing all cases, we have that E[Ui] < E[Ûi]. �
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