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Abstract

Maximizing revenue in the presence of perfectly informed players is a well known goal in mechanism
design. Yet, all current mechanisms for this goal are vulnerable to equilibrium selection and therefore far
from guaranteeing that maximum revenue will be obtained. In this paper we both clarify and rectify this
situation by

• Proving that no weakly dominant-strategy mechanism (traditionally considered immune to equilibrium
selection) guarantees an arbitrarily small fraction of the maximum possible revenue;

and, more importantly,

• Constructing a robust-strategy mechanism (a new type of mechanism provably immune to equilibrium
selection) guaranteeing a fraction arbitrarily close to 1 of the maximum possible revenue.

In particular, therefore, we provably separate implementation in dominant-strategies from implementation in
robust strategies. Our robust-strategy mechanism actually is of a stronger type. Namely, it is of extensive-
form and has a unique sub-game-perfect equilibrium.

In addition, our mechanism guarantees the players’ maximum privacy and withstands rational collusion
to the largest possible extent. This is important, since both privacy and collusion are typically capable of
derailing the intended functioning of a mechanism.



1 Introduction

1.1 Classical Mechanism Design

Contexts and mechanisms. A context C describes the players, the outcomes and the players’ preferences
over the outcomes. A mechanism M describes the strategies available to the players, and how strategies
determine outcomes. Together, a context C and a mechanism M define a game G, G = (C,M), in which
each rational player will endeavor to choose his own strategy so as to maximize his own utility.

Mechanism design. Mechanism design aims at finding a mechanism M such that, for any context C (or
any C in a given class), a desired property P holds for the outcomes of the game (C,M), when rationally
played. The difficulty is that the designer does not exactly know the players’ preferences, while P typically
depends on such preferences. In the purest form of mechanism design, all knowledge about the players lies
with the players themselves. The designer can count only on the players’ rationality. And based solely on
this fact, he must design M so that it becomes “in the best interest of the players” to satisfy P. That is, he
must ensure that P holds in a rational play of M . But: What is a rational play?

The classical interpretation of a rational play. The classical interpretation of a rational play is an
equilibrium, that is a profile of strategies σ = σ1, . . . , σn such that no player i has an incentive to deviate from
his specified strategy σi to an alternative strategy σ′i. But equilibria are vastly different in their “quality.”
The weakest form is that of a Nash equilibrium, simply stating that i prefers σi to any alternative σ′i only if
he believes that every other player j will stick to his specified σj. That is, Nash equilibrium only guarantees
that i prefers σ1, . . . , σi, . . . , σn to σ1, . . . , σ

′
i, . . . , σn. If σ is a dominant-strategy equilibrium, the strongest

form of equilibrium, then, for any player i, σi is i’s best strategy no matter what strategies the other players
may choose. More precisely, a dominant-strategy equilibrium σ is called strict (respectively, weak) if, for
any player i, any alternative strategy σ′i, and any strategy sub-profile τ−i for the other players, i’s utility is
strictly larger (respectively, larger or equal to) when i plays σi than when he plays σ′i.

1.2 Our Goal

This paper focuses on a classical context: quasi-linear utilities with non-negative valuations. Namely, there
are finitely many possible states, ω1, . . . , ωk, including the null state, which every player values 0; each player
i has non-negative value vi(ωj) for each state ωj ; each outcome consists of a state ω together with a price
Pi for each player i; and the utility of each player i for such an outcome is vi(ω) − Pi. (The revenue of an
outcome (ω, P ) consists of

∑
i Pi. The function vi is i’s valuation.)

Such context models a great deal of situations. For instance, in an auction of multiple goods, a state ω
represents which player wins which items. Accordingly, the utility of player i in an outcome (ω, P ) naturally
is his value for the items he gets in ω, minus the price he pays. In another example, each state ω represents
one of finitely many ways of building a bridge across a given river. Accordingly, and naturally too, each
player has different values for each possible bridge. (For instance, a player’s value for a given potential bridge
may dependent on how distant it would be from his house.) The list of examples could go on and on. In
all of them, however, no matter what the mechanisms may be, it is also natural for different subsets of the
players to collude —that is, to coordinate their strategies— so as to improve their utilities.

In such a classical context, our goal is equally classical: getting an outcome of maximum revenue when
the players have perfect knowledge. That is, when each player knows the valuations of all players (as well as
who colludes with whom, if collusion exists among the players).

When the players’ knowledge is best possible, it is natural to ask whether the best possible revenue can
be obtained. Note that, without the ability of imposing arbitrary prices, the best possible revenue that a
mechanism can hope to get from rational players is the maximum social welfare, that is, maxω

∑
i vi(ω).

Thus:

Can a mechanism guarantee perfect revenue from perfectly informed players?
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1.3 Three Main Obstacles

Equilibrium Selection Plenty of mechanisms have been proposed for our goal. Yet, none of them achieves
it in a robust way. A main obstacle on their way is equilibrium selection. Let us explain.

It should be realized that designing a mechanism so as to guarantee a property P “at a Nash Equilibrium”
is a weak guarantee. First, because there may be several Nash equilibria, while P holds for just some of them.
Moreover, even if P held for all equilibria, P may not hold at all in a real play. For instance, assume that
there exist two equilibria, σ and τ , and that some players believe that σ will be played out, while others
believe that τ will. Then, rather than an equilibrium, a mixture of σ and τ will be played out, so that P may
not hold. Of course, this problem worsens as the number of players and/or equilibria grows.

The following mechanism, perhaps the first thing that comes to mind for our context, shows how big the
problem of equilibrium selection can be for our goal.

hope-for-the-best: Each player reports the valuations of all players (including himself). If all reports
are the same, then (1) choose the state ω maximizing the sum of the reported valuations and (2) for
each player i, choose the price Pi to be his reported value for ω (possibly minus a small discount ε
to encourage i’s participation). If not all reports coincide, then choose the “null outcome” (which all
players are assumed to value 0) and price 0 for every player.

It is trivial to see that the strategy profile in which each player reports all true valuations is a Nash equilibrium
for hope-for-the-best, indeed, it is the truthful equilibrium. It is also trivial to see that in this equilibrium
the revenue is the maximum possible (disregarding the negligible quantity nε). Notice too, however, that
hope-for-the-best also has additional equilibria, E2, E3, . . ., where in Ex all players report all true valua-
tions divided by x. Thus, the truthful equilibrium is E1, and in each Ex the utility of each player is increased
by a factor x, and the money collected is a fraction 1/x of the maximum possible revenue. Accordingly,

• In the truthful equilibrium E1 the designer is “happy”, but the players are “sad”, while
• in all other equilibria Ex the players are “happy” and the designer is “sad.”

This being the case: which equilibrium Ex is more likely to be selected? Further, while each Ex at least
maximizes social welfare, in plenty of other equilibria both revenue and social welfare are quite poor.1 Given
the multitude of available equilibria and the fact that different equilibria are preferable to different players:
Will a play of hope-for-the-best be an equilibrium and generate any revenue at all? In sum,

hope-for-the-best is extremely vulnerable to equilibrium selection.

The JPS Mechanism . Notably, Jackson, Palfrey, and Srivastava [12] provided a quite different mechanism,
but still yielding optimal revenue only at the truthful equilibrium τ . This time, however, τ is a much more
meaningful equilibrium: it is the only Nash equilibrium composed of weakly undominated strategies. Somewhat
counterintuitively, however, their solution too is vulnerable to equilibrium-selection. The point is that, as
in hope-for-the-best, there are plenty of equilibria σ that generate smaller revenue while being more
attractive to all players. Again too, each such σ consists of reporting all true valuations divided by the same
factor x. To be sure, this time each component σi is weakly dominated by some other strategy σ′i. This
means that, in all cases (i.e., for all possible subprofiles of strategies for the other players) σi provides no
more utility to i than σ′i does, while in at least some cases σi provides less utility to i than σ′i. But in the
JPS mechanism this happens in only one case: when all other players “suicide” (i.e., when all other players
deliberately choose the worst possible strategies for themselves). Thus, as long as a single player does not
believe that all others will commit mass suicide, all players prefer σ to the truthful and revenue-maximizing
equilibrium τ . Accordingly,

the JPS mechanism too is very vulnerable to equilibrium selection.
1Let ω be any state such that vi(ω) >> c > 0 for all players i. And let σ be the strategy profile, where each σj consists of

reporting that all players have the following valuation v: v(ω) = c and v(x) = 0 for any state x 6= ω. Then, it is easy to see that
σ is an equilibrium. Moreover, the revenue of σ is cn, and the social welfare of σ is

∑
i vi(ω).
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What has happened? Although “no one should want to play a weakly dominated strategy,” the problem
is that the process of eliminating all weakly dominated strategies for yourself and the other players is not well
defined. Unlike the iterated elimination of strictly dominated strategies, the iterated elimination of weakly
dominated strategies depends on the order of elimination. For example, if one eliminates first “suicidal
strategies” (in fact, if one eliminates first “suicide” for just another one of the players), then all equilibria
become equally reasonable, and the attractive ones from the players’ point of view are those generating less
revenue.

Collusion and Privacy Collusion and privacy can also prevent mechanisms from achieving their goals.
The problem of collusion in mechanism design is well recognized. The problem occurs for obvious rea-

sons. Any equilibrium, even a dominant-strategy one, only guarantees that no single player has incentive to
deviate from his strategy. However, two or more players may have all the incentive in the world to jointly
deviate from their equilibrium strategies. Accordingly, by “guaranteeing” a property P at equilibrium, a
classical mechanism is typically vulnerable to collusion. In a second-price auction, although the mechanism
is dominant-strategy, if the players with the highest two valuations for the item on sale collude, then the
revenue generated drops from the second-highest to the third-highest valuation. As for a more extreme ex-
ample, Ausubel and Milgrom [1] show that two sufficiently informed players can totally destroy the economic
efficiency of the famous VCG mechanism [22, 7, 9], although it too is dominant-strategy.

Privacy has been traditionally neglected in mechanism design, and considered a quite separate desidera-
tum: nice to have perhaps, but not central for an incentive analysis. Yet, as especially argued by [10], it has
a great potential to distort incentives, and thus to derail classical mechanisms from achieving their desired
properties. A mechanism typically neglect privacy by requiring the players to reveal a lot of information
about themselves. But if the players value privacy (which by definition implies that divulging their secret
information causes them to receive a negative utility), then the mechanism gives them both positive and
negative incentives, and it is no longer clear how these opposing forces will balance out.

Note that the JPS mechanism, hope-for-the-best, and all traditional mechanisms totally disregard
privacy by requiring the players to reveal all their information. Further, the JPS mechanism (unlike hope-
for-the-best) makes no attempt to protect against collusion. Indeed, it enables some pairs of players (i, j)
to jointly deviate from the truthful equilibrium so as to improve the utility of i without hurting that of j.
And when they so deviate revenue cannot be maximum.

1.4 Our Results

An Impossibility Result for Implementation in Dominant Strategies The problem of equilibrium
selection fully disappears when a mechanism achieves its desired property P at a strictly dominant-strategy
equilibrium, while still “lurks around” for weakly dominant-strategy equilibria. Unfortunately, we prove
that neither strong nor weakly dominant-strategy mechanisms exist that can guarantee perfect revenue from
perfectly informed players. Worse, our impossibility result holds even even if the mechanism designer were
content to generate an arbitrarily small fraction of the optimal revenue. In sum, we prove the following.

Thm 1: No weakly dominant-strategy mechanism guarantees a fraction ε of the optimal revenue.

Thus, if we really want to achieve our goal without any equilibrium-selection (as well as privacy and collusion)
problems, the time has come to explore a different approach to mechanism design.

A Possibility Result for Implementation in Robust Strategies Our main result is that our goal
can be achieved, but by less classical means. We use mechanisms of extensive-form (that, as the Ascending
English Auction, are played in several rounds), but adopt a new solution concept, implementation in robust
strategies (robust implementation for short), as introduced by [5]. In our setting, where each player is perfectly
informed about the others, their notion is equivalent to the following one.
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Definition 1. Let M be an extensive-form perfect-information mechanism, where the players may act
simultaneously at some decision nodes. Process all its decision nodes in the following bottom-up fashion:

• At each decision node N of height 1, each player iteratively eliminates all strictly dominated strate-
gies (for himself and all other players) for the normal-form subgame consisting of node N
• At every decision node N of height h, assuming recursively that all decision nodes of height h − 1

have been already processed, the players iteratively eliminate all strictly dominated strategies for the
subgame rooted at node N .

We say that M robustly implements a property P, if P holds for all profiles of strategies that survive this
elimination procedure.

Notice that, although there are multiple ways to carry out the above elimination process, no rational player
will ever play a strategy discarded by the above process. Thus M indeed guarantees P in a very robust sense,
without in particular relying on any beliefs about the way the game could be played. Our second result can
be summarized as follows

Thm 2: There exists a robust-strategy mechanismM guaranteeing a fraction 1−ε of the optimal revenue.

Taken together, our impossibility and possibility results in particular yield a strong separation between
implementation in robust strategies and implementation in dominant strategies.

Additional properties Our mechanism M actually satisfies even stronger properties: namely
• The game yielded by our mechanism M has a single subgame-perfect equilibrium.2

We stress the word “single” because subgame-perfect equilibria, although more reasonable than Nash
ones in extensive-form games, are not otherwise immune to equilibrium-selection problems.
Perhaps interestingly, in the presence of collusion, our mechanism M has multiple ways to be truthful,
but only one of them is a subgame-perfect equilibrium.
• While guaranteeing perfect revenue, M also guarantees perfect collusion resilience and perfect privacy.

By saying that our mechanism is perfectly resilient to collusion we mean that M guarantees perfect
revenue as long as not all players belong to the same coalition, and each coalition acts rationally. In our
setting, a rational coalition maximizes the sum of the individual utilities of its members. (Only when
the players have imperfect knowledge about each other, one may want to consider weaker models of
coalition rationality.)
By saying that M is perfectly private we essentially mean that in any rational play nothing can be
learned about the players’ valuations, except what is deducible from an outcome with perfect revenue.
Of course, our M can be so “perfect” only because we are dealing with perfectly informed players (so
that the only privacy concern is with respect to the designer/seller/auctioneer/outside world). But this
is our setting, and thus one has both the right to demand and the obligation to deliver as a perfect
solution as possible.

We stress that both properties above hold no matter how well collusive players cooperate. (In particular,
they are free to make side-payments to each other and/or to enter into binding contracts with each other.)

Comparison with other work
• Note that our notion of collusion resiliency is stronger than that offered by other mechanisms. In

particular, group —or coalition— strategyproofness [2, 16, 13, 18, 21] rules out collusion, but only under
the assumption that the players are not able to make side payments to each other. Without restricting
how players might cooperate, t-truthful mechanisms [8] offer protection against coalitions of at most t
players, but only for single-value games. (In such games, a player i values some outcomes 0, and all other
outcomes a fixed value vi.) Again without restricting cooperation abilities, collusion neutralization [17, 5]

2For the non experts, this means that for each node and each player, only a single strategy survives the elimination process
of Definition 1. That is, M is such that, at each node, every acting player has a single best action available to him.
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offers collusion protection in more general games, but their notion too is weaker than the one considered
in our paper. (Protection against the coalition of all players has also been considered and achieved, but
only in Bayesian settings, where the distributions of player preferences are known to everyone, including
the mechanism designer [14, 15, 3, 4].) Finally, a different approach altogether, collusion leveraging, has
been submitted to this same conference [6].
• Some privacy preserving mechanisms have already appeared [20, 19, 10]. Their privacy, however, is either

limited or gained by adding an additional layer to the mechanism —such as one or more mediators,
envelopes, or encryption. By contrast, our mechanism M achieves perfect privacy without relying on
any additional infrastructure. Indeed, M works by asking the players to take only public actions.

In Sum To be really meaningful, mechanism design must seek mechanisms that are really robust. But
robustly achieving even classical desiderata may require developing non classical approaches.

2 Preliminaries

Contexts. In our paper we work with reasonably general contexts with semi-linear utilities. Namely, our
context is defined by the following items:

• N , the finite set of players: N = {1, . . . , n}
• Ω× Rn, the set of possible outcomes, where Ω is finite.

A member ω of Ω is referred to as a state and a member P of Rn is referred to as a price profile. Set Ω
is required to include the empty state, denoted by ⊥.
• V is the set of all possible profiles of (non-negative) player types or valuations.

Each type is a function, from the set of states to the set N of natural numbers, mapping ⊥ to 0.
We consistently denote by TV the profile of the true types (that is, for each player i, TVi describes i’s
actual value for each possible state).
• ui, for each player i, is i’s utility function, mapping outcomes to real numbers as follows: ui(ω, P ) =
TVi(ω)− Pi. That is, i’s utility is i’s true value for the state minus the price he pays.
• C, a partition of N specifying who colludes with whom.

If S is a subset in C, then S is the maximal subset of players colluding with each other. A player i is
independent if {i} is in C, and the context is non-collusive if all players are independent.

Accordingly, to specify a context C, it suffices to specify just its “variable” components: that is, the quadruple
(N,Ω, TV,C). If the context is non-collusive, it suffices to specify the triple (N,Ω, TV ). Each player i knows
his own type. Each independent player tries to maximize his own utility function. Each collusive set, that is
a subset in C with cardinality greater than 1, tries to maximize the sum of the utilities of its members.

We say that a context is perfect-knowledge, equivalently that the players are perfectly informed, if the
entire true-valuation profile TV (as well as the partition C if the context is collusive) is common knowledge
to all players. We stress that the mechanism designer has no knowledge about TV (or C)! In other words,
we adhere to the classic spirit of mechanism design, where all knowledge lies with just the players.

Strategies and Mechanisms. We now must specify the players’strategies, and how these lead to outcomes.
Traditionally, attention is restricted to mechanisms in which each player, simultaneously with the others,
announces a type for himself (which may or may not coincide with his true valuation function). For such
mechanisms, thanks to the revelation principle, a player’s set of strategies consists of the set of all possible
valuations.

In our case, however, the players do not only know their own types, but also those of the others. And to
leverage this extra knowledge, it is crucial that the players be able to announce types for all players. That
is, a player’s strategy consists of a profile of valuations (in other words, it is a member of V ). The empty
strategy is the one whose valuations map every possible state to 0.

5



A mechanism for a context (N,Ω, TV ) consists of a (possibly probabilistic) function M : V n → Ω × Rn

satisfying the following

Opt-Out Condition: For any strategy profile v = v1, . . . , vn, if M(v) = (ω, P ) then Pi = 0 whenever
vi is the empty strategy.

Plays. A play σ of a mechanism M consists of a profile of strategies. If M is probabilistic, then M(σ) is a
distribution over outcomes, and ui(M(σ)) is the expected utility of player i over such distribution, that is, it
is short hand for E[ui(M(σ))].

Social Welfare, Revenue, and Our Goal. The social welfare and the revenue of an outcome (ω, p)
are respectively defined to be

∑
i TVi(ω) and

∑
i pi.

The maximum rational revenue for a context C = (N,Ω, TV ) is defined to coincide with the maximum
social welfare (MSW for short), that is, max

ω

∑
i TVi(ω).

We are interested in designing mechanisms (essentially) guaranteeing the maximum rational revenue.

3 Impossibility Result for DST mechanisms

Let us prove that DST mechanisms are incapable of properly leveraging external knowledge: namely, in a
perfect-knowledge context, they cannot guarantee even a minuscule fraction of the maximum rational revenue.

Definition 2. A DST mechanism M guarantees a fraction ε of the maximum rational revenue if for any
context C = (N,Ω, TV ) we have

(∗) M(TV, . . . , TV ) = (x, P ) implies
∑
Pi ≥ ε ·MSW .

Note that, in proposition (∗), each TV is not just the true valuation of a single player, but the profile of
all such valuations, because a player’s strategy includes his declaration about the others’ valuations as well.

Note too that the mechanism is not required to choose the outcome which maximizes the social welfare.
Moreover, when not all the players are telling the truth, there is no requirement on the behavior of the
mechanism.

Finally note the following immediate corollary of the opt-out condition. Namely,

Non-negative utility property: if M is a DST mechanism and M(v1, . . . , vn) = (ω, P ), then Pi ≤ vi
i(ω).

Theorem 1. For any ε > 0 no DST mechanism M guarantees a fraction ε of the maximum rational revenue.

Proof. We actually prove our result even for contexts with just two players and only two possible outcomes.
Without loss of generality, consider the context (N,Ω, TV ) where N = {1, 2} and Ω = {⊥, ω}. In such a
context, a valuation vi of a player i coincides with a single number vi(ω) (because vi(⊥) is bound to be 0),
and so a strategy v for i coincides with a pair of numbers, v = (c1, c2), where c1 is the declared value for
player 1 and c2 the declared value for player 2.

Our proof is by contradiction. We start by analyzing the behavior of M when the two players make
identical and positive (but not necessarily truthful) declarations. More precisely, we prove the following
proposition:

(?) if c1, c2 > 0, then M( (c1, c2) , (c1, c2) ) = (x, (P1, P2)) where

?1: P1 + P2 ≥ ε · (c1 + c2)
?2: x = ω
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To see that proposition (?) holds, assume the players bid truthfully; that is assume that c1 = TV1(ω) and
c2 = TV2(ω). In this case, according to (∗) the mechanism must extract a revenue of at least ε ·MSW =
ε · (c1 + c2), and thus P1 + P2 ≥ ε · (c1 + c2), in agreement with inequality ?1.

Now, the hypothesis c1 + c2 > 0 implies P1 + P2 > 0. Thus, in light of the non-negative utility property,
the state returned by M cannot be ⊥. Since ω is the only other state, M has to return ω in agreement with
equality ?2.

Consider now the declaration K = (1, 1) and let M(K,K) = (y,Q). Then proposition (?) guarantees
that y = ω and that Q1 + Q2 ≥ 2ε. This implies that Qi ≥ ε for at least a player i. Thus, without loss of
generality, we can assume Q1 ≥ ε.

Consider now the strategy K̃ = (ε/2, ε/2), and let us analyze the behavior of M(K̃,K). Let M(K̃,K) =
(x, P ).

We start by proving that x = ω. Assume for contradiction purposes that x =⊥. Then, when TV = K
(and thus player 1 is not truthful), player 2 has an incentive to lie. Indeed, by being truthful, under the
current assumption, his utility is 0. However, if player 2 chose the strategy K̃, then according to (?), the
outcome would be (ω, P1, P2). In this case, according to the non-negative utility property, since player 2’s
self-valuation is ε/2, P2 ≤ ε/2. Thus player 2’s utility would be at least 1− ε/2. Since this utility is positive,
while his utility of being truthful is 0, player 2 has an incentive to lie when TV = K and player 1’s strategy
is K̃. Therefore we must have x 6=⊥, or equivalently x = ω.

Let us now analyze the possible values for P1 and derive a contradiction in every case.

1. Case 1: P1 < ε. In this case, assume that TV = K and compute player 1’s utility under the following
two strategy profiles: (K,K) and (K̃,K). In the first case we already know that M(K,K) = (ω,Q),
where Q1 ≥ ε. Therefore player 1’s utility when being truthful is 1 − Q1 which is at most 1 − ε. On
the other hand, under the strategy profile (K̃,K), player 1’s utility is equal to 1− P1 and thus strictly
greater than 1−ε by hypothesis. Thus, the context ({1, 2}, {⊥, ω},K) contradicts the dominant-strategy
truthfulness of M .

2. Case 2: P1 > ε/2. In this case, since M(K̃,K) = (ω, P ) and K̃ = (ε/2, ε/2), the non-negative utility
property implies that P1 ≤ ε/2, and thus a contradiction.

In sum, if M guarantees an ε fraction of the maximum possible revenue, no price profile exists for M(K̃,K)
that does not contradict the dominant-strategy truthfulness of M . Since we have not assumed any property
of M beyond its being DST, this establishes our theorem. Q.E.D.

4 Our Mechanism

Notation In the mechanism below,
• ε and εij , for i ∈ {2, . . . , n} and j ∈ {1, . . . , n}, are constants such that

1
5n > ε > ε21 > · · · > ε2n > ε31 > . . . > ε3n > · · · > εn1 > · · · > εnn > 0.

• Numbered steps are taken by the players, while steps marked by letters are taken by the mechanism.
• Sentences between quotation marks are comments, and could be excised if no clarification is needed.
• We denote by nr the number of outcomes (ω, P ) with revenue r. For all such outcomes, we denote by

0 ≤ fr(ω, P ) < nr the rank of the outcome (ω, P ) in the lexicographic order that first considers the state
and then the price profile (where P1, . . . Pn precedes P ′1 . . . P

′
n whenever P1 > P ′1, etc.).

Mechanism M

(1) Player 1 announces a state ω? and a profile K1 of natural numbers.

“(ω?,K1) is player 1’s proposed outcome, allegedly an outcome of maximum revenue.”
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(a) Set ω = ⊥, and Pi = 0 ∀i. If
∑

iK
1
i = 0, the mechanism ends right now. Otherwise, proceed to Step 2.

“Whenever the mechanism ends, ω and P will be, respectively, the final state and price profile.”

(2,. . . , n) In Step i, 2 ≤ i ≤ n, player i publicly announces a profile ∆i of natural numbers such that ∆i
i = 0.

“By so doing i suggests to raise the current price of j, that is K1
j +

∑i−1
`=2 ∆`

j , by the amount ∆i
j .”

(b) For each player i, publicly select bipi and P ?
i as follows. Let Ri = {j : ∆j

i > 0}.

If Ri 6= ∅, then bipi is highest player in Ri, and P ?
i = K1

i +
∑bipi

`=2 ∆`
i . Else, bipi = 1 and P ?

i = K1
i .

“We refer to bipi as the best informed player about i, and to P ?
i as the provisional price of i.”

(n+ 1) Each player i such that P ?
i > 0 simultaneously announces YES or NO.

By default, each player i such that P ?
i = 0 announces YES, and player 1 announces YES if bip1 = 1.

“Each player i announces YES or NO to ω? as the final state and to P ?
i − ε as his own price.

(By default player 1 accepts his own price if no one raises it.) At this point the players are done
playing, and the mechanism proceeds as follows. If all say YES, the updated proposal (ω?, P ?) is
implemented with probability 1. Else:
• With very high probability the null outcome is chosen, except that the best-informed players

of those saying NO are punished.
• With small probability the null outcome is chosen
• With very small probability, proportional to the number of players saying YES, we implement

(ω?, P ?) as if all said YES.
Importantly, as we shall see, all get a small reward at the end for their knowledge.”

(c) Let Y be the number of players announcing YES. If Y = n, then reset ω to ω? and each Pi to P ?
i − ε,

and go to Step g. If Y < n, proceed to Step d.

(d) Publicly flip a biased coin c1 such that Pr[c1 = Heads] = 1− ε.

(e) If c1 = Heads, reset Pbipi
to Pbipi

+ 2P ?
i for each player i announcing NO.

(f) If c1 = Tails, letting B =
∑

i announces NO

P ?
i , flip a biased coin c2 such that Pr[c2 = Heads] = Y

nB .

If c2 = Heads, reset ω to ω? and each Pi to P ?
i − ε.

If c2 = Tails, ω and P continue to be ⊥ and 0n.

(g) Reset P1 to P1 − ε− 2ε
∑

j K
1
j + εfr(ω)

nr
and each other Pi to Pi − ε−

∑
j ε

i
j∆

i
j.

“Although players’ prices may be negative, we prove that the mechanism never loses money, and
that in the unique rational play the utility of every player is non-negative. For clarity, our rewards
are proportional to prices and raises.”

5 Analysis of Our Mechanism

Mechanism M induces a game G whose game tree has height n + 1, and where only players act at each
internal node. (The mechanism tosses all its coins at leaf nodes, that are defined to be of height 0.) At each
node of height 1 all players act simultaneously, and at every other internal node only a single player acts.
Specifically, at each node of height h ≥ 2 the only acting player is player

ih , n− h+ 2.

8



For each internal node N , we denote by GN the subgame rooted at N . Recall that a strategy σi of player
i in G specifies, for each node at which i acts, which action i chooses among all those available to him. By σN

i

we denote the restriction of σi to subgame GN . Given a restricted strategy profile σN for GN , the outcome
of M obtained by executing σN is denoted by M(σN ).

For uniformity, we find it sometimes convenient to assume that every player i belongs to a (necessarily
unique) collusive set, denoted by Ci. If i is independent, then Ci = {i}.

5.1 Statements of Our Lemmas

Lemma 1. If N is a node of height 1, then GN has a unique subgame-perfect equilibrium σN , where

• If i is independent, then σN
i consists of announcing YES if and only if TVi(ω?) ≥ P ?

i .
• If i belongs to a coalition C , then σN

i consists of announcing YES if and only if

bipi ∈ C or
∑
j∈C

TVj(ω?) ≥
∑
j∈C

P ?
j .

The proof of this lemma is based on the fact that the probability that an outcome is executed is monotone
with the number of players who announce YES. Thus, it is strictly dominant to announce YES, if and only
if the player has positive utility from this outcome and price.

Lemma 2. Let N be a node of height h ∈ [2, n], i = ih, and C = Ci. If every player x plays his unique
subgame-perfect strategy σM

x at each proper subgame GM of GN , then GN has a unique subgame-perfect
equilibrium where i acts as follows at node N : For each collusive set D 6= C ,

1. if ∑
j∈D

(
K1

j +
i−1∑
`=2

∆`
j

)
≥
∑
j∈D

TVj(ω?)

then i announces ∆i
j = 0 for all j ∈ D ;

2. if ∑
j∈D

(
K1

j +
i−1∑
`=2

∆`
j

)
<
∑
j∈D

TVj(ω?)

then letting k be the minimal player in D , i announces ∆i
j = 0 for all j ∈ D \ {k} and

∆i
k =

∑
j∈D

(
TVj(ω?)−K1

j −
i−1∑
`=2

∆`
j

)
.

For his own collusive set C ,
1. if ∑

j∈C

(
K1

j +
i−1∑
`=2

∆`
j

)
≥
∑
j∈C

TVj(ω?) or it is the case that k ∈ C for all k > i,

then i announces ∆i
j = 0 for all j ∈ C ;

2. if ∑
j∈C

(
K1

j +
i−1∑
`=2

∆`
j

)
<
∑
j∈C

TVj(ω?) and there exists player j > i such that j 6∈ C ,

then letting k be the minimal player in C \ {i}, i announces

∆i
k =

∑
j∈C

(
TVj(ω?)−K1

j −
i−1∑
`=2

∆`
j

)
.
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This lemma is technically involved, but conceptually simple. First, we show that a player i never wants to
“overbid,” that is raise the price of another player j to more than j’s true valuation for the proposed state
ω?. When j is independent, this holds because we know that j will announce NO to any price above his true
valuation, and thus no player after i will want to further raise j’s price. Therefore, overbidding on j will
cause i to be punished. Care must still be taken to verify the Step-g rewards of i and j will not change this
simple analysis. (For example j will not accept a higher price in order to get more reward for volunteering
his knowledge about other players.) For coalitions, the argument is more subtle.

After ruling out overbidding, we also show that a player i never wants to “underbid,” that is not raise
the price of a player j when it is below j’s true valuation for the proposed state. Again, this is easier to
argue for independent players. Arguing this point for coalitions is the only time that requires exploiting the
n2 reward values εi,j .

Lemma 3. Let N be the root of the tree (so that GN = G) and let every player x play his unique subgame-
perfect strategy σM

x at each proper subgame GM of G. Then G has a unique subgame-perfect equilibrium
where player 1 acts as follows at node N :

1. player 1 announces ω?, the lexicographically first state ω such that
∑

` TV`(ω) = MSW ;
2. for each collusive set D , letting i be the minimal player in D , player 1 announces K1

i =
∑

j∈D TVj(ω?),
and K1

j = 0 for each j ∈ D \ {i}.

The proof of this lemma is also done in two stages. First, given Lemma 2, we prove that it is dominant for
player 1 to set the prices correctly (although not exactly truthfully in the case of a coalition). Finally, as the
prices are set correctly, choosing the outcome which maximizes the total welfare dominates any other course
of action.

Proofs of the three lemmas will come in the final version.

5.2 Our Main Theorem

Theorem 2. Let σ be the unique subgame perfect equilibrium of G, and let (ω, P ) =M(σ). Then:

(1)
∑

i TVi(ω) = MSW , and
(2)

∑
i Pi ≥ (1− 4εn)MSW .

Proof. In execution σ, by Lemma 3, player 1 announces ω? such that
∑

` TV`(ω?) = MSW and, for each
coalition D , also announces K1

` =
∑

j∈D TVj(ω?), where ` is the minimal player in D . Thus
∑

iK
1
i = MSW .

If MSW = 0, then
∑

iK
1
i = 0 andM ends at Step a, with ω = ⊥ and Pi = 0 for each player i. Therefore∑

i TVi(ω) =
∑

i TVi(⊥) = 0 = MSW and
∑

i Pi = 0 = MSW .
If MSW > 0, then

∑
iK

1
i > 0 and M ends at Step g. By Lemma 2, for each player i 6= 1, i announces

∆i
k = 0 for each k. Therefore for each player i, bipi = 1. Furthermore, the total price for each coalition D

equals D ’s total true valuation for ω?: that is,
∑

`∈D P
?
` =

∑
`∈D K

1
` =

∑
`∈D TV`(ω?). By Lemma 1, every

player in D announces YES in Step n + 1. This implies that, at the end of Step c we have Y = n, ω = ω?,
and, for each coalition D ,

∑
`∈D P` =

∑
`∈D P

?
` −|D |ε =

∑
`∈D TV`(ω?)−|D |ε. Because Y = n, the execution

of M will then proceed directly to Step g, which does not reset the current state. Thus we have that∑
i

TVi(ω) =
∑

i

TVi(ω?) = MSW.

Because the reward given to each player i > 1 in Step g is ε, and player 1 gets at most ε+ 2εMSW , then the
final revenue of the mechanism is∑

i

Pi >

(∑
i

TVi(ω?)− nε

)
− (n− 1)ε− ε− 2εMSW > (1− 4εn)MSW,

where we parenthesized the prices after step c, and used that MSW is integer and thus MSW ≥ 1. Q.E.D.
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