
Sorting and Selection with Imprecise
Comparisons

Miklós Ajtai1, Vitaly Feldman1, Avinatan Hassidim2, and Jelani Nelson2

1 IBM Almaden Research Center, San Jose CA 95120, USA
2 MIT, Cambridge MA 02139, USA

Abstract. In experimental psychology, the method of paired compar-
isons was proposed as a means for ranking preferences amongst n el-
ements of a human subject. The method requires performing all

(
n
2

)
comparisons then sorting elements according to the number of wins. The
large number of comparisons is performed to counter the potentially
faulty decision-making of the human subject, who acts as an imprecise
comparator.

We consider a simple model of the imprecise comparisons: there exists
some δ > 0 such that when a subject is given two elements to compare,
if the values of those elements (as perceived by the subject) differ by
at least δ, then the comparison will be made correctly; when the two
elements have values that are within δ, the outcome of the comparison
is unpredictable. This δ corresponds to the just noticeable difference unit
(JND) or difference threshold in the psychophysics literature, but does
not require the statistical assumptions used to define this value.

In this model, the standard method of paired comparisons minimizes
the errors introduced by the imprecise comparisons at the cost of

(
n
2

)
comparisons. We show that the same optimal guarantees can be achieved
using 4n3/2 comparisons, and we prove the optimality of our method.
We then explore the general tradeoff between the guarantees on the error
that can be made and number of comparisons for the problems of sorting,
max-finding, and selection. Our results provide close-to-optimal solutions
for each of these problems.

1 Introduction

Let x1, . . . , xn be n elements where each xi has an unknown value val(xi). We
want to find the element with the maximum value using only pairwise com-
parisons. However, the outcomes of comparisons are imprecise in the following
sense. For some fixed δ > 0, if |val(xi) − val(xj)| ≤ δ, then the result of the
comparison can be either “≥” or “≤”. Otherwise, the result of the comparison
is correct. It is easy to see that in such a setting it might be impossible to find
the true maximum (for example when the values of all the elements are within
δ). It might however be possible to identify an approximate maximum, that is
an element xi∗ such that for all xi, val(xi)− val(xi∗) ≤ kδ for some, preferably
small, value k. In addition, our goal is to minimize the number of comparisons

2

performed to find xi∗ . We refer to the minimum value k such that an algorithm’s
output is always guaranteed to be kδ-close to the maximum as the error of the
algorithm in this setting. Similarly, to sort the above elements with error k we
need to find a permutation π such that if π(i) < π(j) then val(xi)−val(xj) ≤ kδ.

A key issue that our work addresses is that in any sorting (or max-finding) al-
gorithm, errors resulting from imprecise comparisons might accumulate, causing
the final output to have high error. Consider, for example, applying the classical
bubble sort algorithm to a list of elements that are originally sorted in the re-
verse order and the difference between two adjacent elements is exactly δ. All the
comparisons will be between elements within δ and therefore, in the worst case,
the order will not be modified by the sorting, yielding error (n− 1)δ. Numerous
other known algorithms that primarily optimize the number of comparisons can
be easily shown to incur a relatively high error. As can be easily demonstrated
(Theorem 1), performing all

(
n
2

)
comparisons then sorting elements according to

the number of wins, a “round-robin tournament”, achieves error k = 2, which is
lowest possible (Theorem 2). A natural question we ask here is whether

(
n
2

)
com-

parisons are necessary to achieve the same error. We explore the same question
for all values of k in the problems of sorting, max-finding, and general selection.

One motivation for studying this problem comes from social sciences. A com-
mon problem both in experimental psychology and sociology is to have a hu-
man subject rank preferences amongst many candidate options. It also occurs
frequently in marketing research [20, Chapter 10], and in training information
retrieval algorithms using human evaluators [1, Section 2.2]. The basic method
to elicit preferences is to present the subject two alternatives at a time and ask
which is the preferred one. The common approach to this problem today was
presented by Thurstone as early as 1927, and is called the “method of paired
comparisons” (see [8] for a thorough treatment). In this method, one asks the
subject to give preferences for all pairwise comparisons amongst n elements. A
ranked preference list is then determined by the number of “wins” each candi-
date element receives. A central concept in these studies introduced as far back
as the 1800s by Weber and Fechner is that of just noticeable difference (JND)
unit or difference threshold δ. If two physical stimuli with intensities x < y have
|x − y| ≤ δ, a human will not be able to reliably distinguish which intensity
is greater3. The idea was later generalized by Thurstone to having humans not
only compare physical stimuli, but also abstract concepts [21].

Most previous work on the method of paired comparisons has been through
the lens of statistics. In such work the JND is modeled as a random variable and
the statistical properties of Thurstone’s method are studied [8]. Our problem
corresponds to a simplified model of this problem which does not require any
statistical assumptions, and is primarily from a combinatorial perspective.

Another context that captures the intuition of our model is that of designing
a sporting tournament based on win/lose games. There, biases of a judge and

3 The JND is typically defined relative to x rather than as an absolute value. This
is identical to absolute difference in the logarithmic scale and hence our discussion
extends to this setting.

3

unpredictable events can change the outcome of a game when the strengths of
the players are close. Hence one cannot necessarily assume that the outcome is
truly random in such a close call. It is clear that both restricting the influence
of the faulty outcomes and reducing the total number of games required are
important in this scenario, and hence exploring the tradeoff between the two is
of interest. For convenience, in the rest of the paper we often use the terminology
borrowed from this scenario.

1.1 Our Results

We first examine the simpler problem of finding only the maximum element.
For this problem, we give a deterministic max-finding algorithm with error 2 us-
ing 2n3/2 comparisons. This contrasts with the method of paired comparisons,
which makes (n2 − n)/2 comparisons to achieve the same error. Using our al-
gorithm recursively, we build deterministic algorithms with error k that require
O(n1+1/((3/4)·2k−1)) comparisons. We also give a lower bound of Ω(n1+1/(2k−1)).
The bounds are almost tight — the upper bound for our error-k algorithm is
less than our lower bound for error-(k−1) algorithms. We also give a linear-time
randomized algorithm that achieves error 3 with probability at least 1 − 1/n2,
showing that randomization greatly changes the complexity of the problem.

We then study the problem of sorting. For k = 2, we give an algorithm using
4 · n3/2 comparisons. For general k, we show O((n1+1/(3·2bk/2c−1−1) + nk) log n)
comparisons is achievable, and we show a lower bound of Ω(n1+1/2k−1

) compar-
isons. When k = O(1), or if only a single element of specific order needs to be
selected, the log n factor disappears from our upper bound. Our lower bounds
for selection depend on the order of the element that needs to be selected and
interpolate between the lower bounds for max-finding and the lower bounds for
sorting. For k ≥ 3, our lower bound for finding the median (and also for sort-
ing) is strictly larger than our upper bound for max-finding. For example, for
k = 3 the lower bound for sorting is Ω(n5/4), whereas max-finding requires only
O(n6/5) comparisons.

Note that we achieve log log n error for max-finding in O(n) comparisons, and
2 log log n error for sorting in O(n log n) comparisons. Standard methods using
the same number of comparisons (e.g. a binary tournament tree, or Mergesort)
can be shown to incur at least log n error. Also, all the algorithms we give are
efficient in that their running times are of the same order as the number of
comparisons they make.

The main idea in our deterministic upper bounds for both max-finding and
selection is to develop efficient algorithms for a small value of k (k = 2), then for
larger k show how to partition elements, recursively use algorithms for smaller
k, then combine results. Achieving nearly tight results for max-finding requires
in part relaxing the problem to that of finding a small k-max-set, or a set which
is guaranteed to contain at least one element of value at least x∗ − kδ, where
x∗ is the maximum value of an element (we interchangeably use x∗ to refer to
an element of maximum value as well). It turns out we can find a k-max-set

4

in a fewer number of comparisons than the lower bound for error-k max-finding
algorithms. Exploiting this allows us to develop an efficient recursive max-finding
algorithm. We note a similar approach of finding a small set of “good” elements
was used by Borgstrom and Kosaraju [6] in the context of noisy binary search.

For our randomized max-finding algorithm, we use a type of tournament with
random seeds at each level, in combination with random subsampling at each
level of the tournament tree. By performing a round-robin tournament on the
top few tournament players together with the subsampled elements, we obtain
an element of value at least x∗ − 3δ with high probability.

To obtain lower bounds we translate our problems into problems on directed
graphs in which the goal is to ensure existence of short paths from a certain node
to most other nodes. Using a comparison oracle that always prefers elements that
had fewer wins in previous rounds, we obtain bounds on the minimum of edges
that are required to create the paths of desired length. Such bounds are then
translated back into bounds on the number of comparisons required to achieve
specific error guarantees for the problems we consider. We are unaware of directly
comparable techniques having been used before.

Some of the proofs are omitted from this extended abstract and appear in
the full version of the paper.

1.2 Related Work

Handling noise in binary search procedures was first considered by Rényi [18] and
by Ulam [22]. An algorithm for solving Ulam’s game was proposed by Rivest et.
al. in [19], where an adversarial comparator can err a bounded number of times.
They gave an algorithm with query complexity O(log n) which succeeds if the
number of adversarial errors is constant.

Yao and Yao [24] introduced the problem of sorting and of finding the maxi-
mal element in a sorting network when each comparison gate either returns the
right answer or does not work at all. For finding the maximal element, they
showed that it is necessary and sufficient to use (e+1)(n−1) comparators when
e comparators can be faulty. Ravikumar, Ganesan and Lakshmanan extended
the model to arbitrary errors, showing that O(en) comparisons are necessary and
sufficient [17]. For sorting, Yao and Yao showed that O(n log n + en) gates are
sufficient. In a different fault model, and with a different definition of a successful
sort, Finocchi and Italiano [11] showed an O(n log n) time algorithm resilient to
(n log n)1/3 faults. An improved algorithm handling (n log n)1/2 faults was later
given by Finocchi, Grandoni and Italiano [10].

In the model where each comparison is incorrect with some probability p,
Feige et al. [9] and Assaf and Upfal [2] give algorithms for several comparison
problems, and [3, 15] give algorithms for binary search. We refer the reader in-
terested in the history of faulty comparison problems to a survey of Pelc [16].

We point out that some of the bounds we obtain appear similar to those
known for max-finding, selection, and sorting in parallel in Valiant’s model [23].
In particular, our bounds for max-finding are close to those obtained by Valiant
for the parallel analogue of the problem (with the error used in place of parallel

5

time) [23], and our lower bound of Ω(n1+1/(2k−1)) for max-finding with error k
is identical to a lower (and upper) bound given by Häggkvist and Hell [14] for
merging two sorted arrays each of length n using a k-round parallel algorithm.
Despite these similarities in bounds, our techniques are different, and we are
not aware of any deep connections. For example, sorting in k parallel rounds
Ω(n1+1/k) comparisons are required [5, 13], whereas in our model, for constant
k, we can sort with error k in n1+1/2Θ(k)

comparisons. For a survey on parallel
sorting algorithms, the reader is referred to [12].

2 Notation

Throughout this document we let x∗ denote some xi of the maximum value (if
there are several such elements, we choose one arbitrarily). Furthermore, we use
xi interchangeably to refer to the both the ith element and its value, e.g. xi > xj
should be interpreted as val(xi) > val(xj).

We assume δ = 1 without loss of generality, since the problem with arbitrary
δ > 0 is equivalent to the problem with δ = 1 and input values xi/δ.

We say x defeats y when the comparator claims that x is larger than y (and
we similarly use the phrase y loses to x). We say x is k-greater than y (x ≥k y)
if x ≥ y − k. The term k-smaller is defined analogously. We say an element
is a k-max of a set if it is k-greater than all other elements in the set, and a
permutation xπ(1), . . . , xπ(n) is k-sorted if xπ(i) ≥k xπ(j) for every i > j.

All logarithms throughout this document are base-2. For simplicity of pre-
sentation, we frequently omit floors and ceilings and ignore rounding errors when
they have an insignificant effect on the bounds.

3 Max-Finding

In this section we give deterministic and randomized algorithms for max-finding.

3.1 Deterministic Algorithms

We start by showing that the method of paired comparisons provides an optimal
error guarantee, not just for max-finding, but also for sorting.

Theorem 1. Sorting according to the number of wins in a round-robin tourna-
ment yields error 2.

Proof. Let x, y be arbitrary elements with y strictly less than x − 2. For any z
that y defeats, x also defeats z. Furthermore, x defeats y, and thus x has strictly
more wins than y, implying y is placed lower in the sorted order.

Theorem 2. No deterministic max-finding algorithm has error less than 2.

Proof. Given three elements a, b, c, the comparator can claim a > b > c > a,
making the elements indistinguishable. Without loss of generality, suppose A
outputs a. Then the values could be a = 0, b = 1, c = 2, implying A has error 2.

6

Algorithm A2: // Returns an element of value at least x∗ − 2. The value

s > 1 is a parameter which is by default d
√
ne when not specified.

1. Label all xi as candidates.
2. while there are more than s candidate elements:

(a) Pick an arbitrary set of s candidate elements and play them in a round-robin
tournament. Let x have the most number of wins.

(b) Compare x against all candidate elements and eliminate all elements that
lose to x.

3. Play the final at most s candidate elements in a round-robin tournament and
return the element with the most wins.

Fig. 1. The algorithm A2 for finding a 2-max.

In Figure 1 we give an error-2 algorithm for max-finding.

Lemma 1. The max-finding algorithm A2 has error 2 and makes at most ns+
n2/s comparisons. In particular, the number of comparisons is at most 2n3/2 for
s = d

√
ne.

Proof. We analyze the error in two cases. If x∗ is never eliminated then x∗

participates in Step 3. Theorem 1 then ensures that the final output is of value
at least x∗ − 2. Otherwise, consider the iteration when x∗ is eliminated. In this
iteration, it must be the case that the x chosen in Step 2(b) has x ≥ x∗ − 1,
and thus any element with value less than x∗ − 2 was also eliminated in this
iteration. In this case all future iterations only contain elements of value at least
x∗ − 2, and so again the final output has value at least x∗ − 2. In each step at
least (s − 1)/2 elements are eliminated implying the given bound on the total
number of comparisons.

The key recursion step of our general error max-finding is the algorithm
1-Cover of Lemma 3 which is based on A2 and the following lemma.

Lemma 2. There is a deterministic algorithm which makes
(
n
2

)
comparisons

and outputs a 1-max-set of size at most dlog ne.

The algorithm performs a round-robin tournament and then iteratively greedily
picks an element which defeats as many thus-far undefeated elements as possible.
We now obtain 1-Cover by setting s = d

√
ne /8 in Figure 1, then returning the

union of the x that were chosen in any iteration of Step 2(a), in addition to the
output of Lemma 2 on the elements in the final tournament in Step 3.

Lemma 3. There is an algorithm 1-Cover making O(n3/2) comparisons which
finds a 1-max-set of size at most

√
n/4 (for sufficiently large n).

We are now ready to present our main algorithm for finding a k-max.

7

Algorithm Ak: // Returns a k-max for k ≥ 3

1. return A2(A′k−1(x1, x2, . . . , xn))

Algorithm A′k: // Returns a (k−1)-max set of size O(n2k/(3·2k−4)) for k ≥ 2

1. if k = 2, return 1-Cover(x1, x2, . . . , xn).
2. else

(a) Equipartition the n elements into t = bkn
2k−1/(2k−4/3) sets S1, . . . , St.

(b) Recursively call A′k−1 on each set Si to recover a (k − 2)-max set Ti.
(c) Return the output of 1-Cover with ∪t

i=1Ti as input.

Fig. 2. The algorithm Ak for finding a k-max based on a recursive algorithm A′k
for finding a (k − 1)-max-set. The value bk is (1/2) · (3/4)k−3 for k ≤ 10 and

2−(3/4)k+5(3·2k−1−4)/4 otherwise.

Theorem 3. For every 3 ≤ k ≤ log log n, there exists an algorithm Ak finds a
k-max element using O(n1+1/((3/4)2k−1)) comparisons.

Corollary 1. There is a max-finding algorithm using O(n) comparisons with
error log log n.

3.2 Randomized Max-Finding

We now show that randomization can significantly reduce the number of compar-
isons required to find an approximate maximum. We emphasize that although
an adversary is not allowed to adaptively change the input values during the
course of an algorithm’s execution, the adversary can adaptively choose how to
err when two elements are close. In particular, the classic randomized selection
algorithm can take quadratic time since for an input with all equal values, the
adversary can claim that the randomly chosen pivot is smaller than all other
elements. Nevertheless, we show the following.

Theorem 4. There exists a linear-time randomized algorithm which finds a 3-
max with probability at least 1− n−c for any constant c and n large enough.

Taking c > 1, and using the fact that the error of our algorithm can never be
more than n− 1, this gives an algorithm which finds an element with expected
value at least x∗ − 4. The high-level idea of the algorithm is as follows. We
randomly equipartition the elements into constant-sized sets. In each set we
play a round-robin tournament and advance everyone who was not the absolute
loser in their set. We also randomly subsample a set of players at each level of
the tournament tree. We show that either (1) at some round of the tournament
there is an abundance of elements with value at least x∗ − 1, in which case at
least one such element is subsampled with high probability, or (2) x∗ makes it
as one of the top few tournament players with high probability. We describe the

8

properties of the tournament in Lemma 4. In Figure 3 we present the subroutine
SampledTournament for the tournament.

Algorithm SampledTournament: // For constant c and n sufficiently

large, returns a 1-max-set with probability at least 1− n−c.

1. Initialize N0 ← {x1, . . . , xn}, W ← ∅, and i← 0.
2. if |Ni| ≤ n0.3, insert Ni into W and return W .
3. else randomly sample n0.3 elements from Ni and insert them into W .
4. Randomly partition the elements in Ni into sets of size 80(c + 2). In each set,

perform a round-robin tournament to find the minimal element (the element
with the fewest wins, with ties broken arbitrarily).

5. Let Ni+1 contain all of Ni except for the minimal elements found in Step 4.
That is, from each set of 80(c+ 2) elements of Ni, only one does not belong to
Ni+1. Increment i and goto Step 2.

Fig. 3. The algorithm SampledTournament.

Lemma 4. SampledTournament outputs a W of size O(n0.3 log n) after O(n)
comparisons such that W is a 1-max-set with probability at least 1− n−c.

Theorem 4 follows immediately from Lemma 4: run the algorithm Sampled-
Tournament, then return the winner of W in a round-robin tournament.

4 Sorting and Selection

Definition 1. Element xj in the set x1, . . . , xn is of k-order i if there exists
a partition S1, S2 of [n] with j ∈ S1, |S1| = i, x` ≤k xj for all ` ∈ S1, and
x` ≤k x`′ for all ` ∈ S1, `

′ ∈ S2. A k-median is an element of k-order bn/2c.

Our sorting and selection algorithms are based on the following lemma.

Lemma 5. In a round-robin tournament on n elements, the element with the
median number of wins has at least (n− 2)/4 wins and at least (n− 2)/4 losses.

We can now obtain an error-2 sorting algorithm B2 which needs only 4 ·n3/2

comparisons. The idea is to modify A2 so that the x found in Step 2(a) of Figure 1
is a pivot in the sense of Lemma 5. We then compare this x against all elements
and pivot into two sets, recursively sort each, then concatenate.

Lemma 6. There is a deterministic sorting algorithm B2 with error 2 that re-
quires at most 4 · n3/2 comparisons.

At a high level our algorithm for k-order selection is similar to the classical
selection algorithm of Blum et al. [4], in that in each step we try to find a pivot
that allows us to recurse on a problem of geometrically decreasing size. In our

9

Algorithm Ck: // Returns an element of k-order i.

1. if k ≤ 3, sort the elements using B2 then return the element with index i.
2. else

(a) Set k′ = bk/2c+ 1.

(b) Equipartition the n elements into t = bk′n
2k
′−1/(2k

′
−4/3) sets S1, . . . , St.

(c) Recursively call Ck−2 on each set Si to obtain a (k − 2)-median yi.
(d) Play the y1, . . . , yt in a round-robin tournament and let y be the element

with the median number of wins.
(e) Compare y with each of the other n−1 elements. If y defeats at least (n−1)/2

elements then let X2 be a set of d = (t−2)/4 ·((n/t)−1)/2 elements (k−1)-
greater than y, and let X1 be the set of at least (n− 1)/2− d elements that
y defeats which are not in X2 (thus every (x, x′) ∈ (X1 ∪{y})×X2 satisfies
x′ ≥k x). If y defeats less than (n− 1)/2 elements, X1 and X2 are defined
symmetrically.

i. if |X1| = i− 1, return i.
ii. else if i ≤ |X1|, recursively find an element of k-order i in X1.

iii. else recursively find an element of k-order (i− |X1| − 1) in X2.

Fig. 4. The algorithm Ck. The value bk′ is chosen as in the algorithm A′k′ (see Figure 2).

scenario though, a good pivot must not only partition the input into nearly
equal-sized chunks, but must itself be of (k − 2)-order c · n for some constant
0 < c < 1. The base case k = 2 can be solved by Lemma 6 since the element
placed in position i of the sorted permutation is of 2-order i. Our algorithm is
given in Figure 4.

Lemma 7. For any i ∈ [n] and 2 ≤ k ≤ 2 log log n, the deterministic algorithm
Ck finds an element of k-order i in O(n1+1/(3·2bk/2c−1−1)) comparisons.

Theorem 5. For any 2 ≤ k ≤ 2 log log n, there is a deterministic sorting algo-
rithm Bk with error k using O((n1+1/(3·2bk/2c−1−1) + nk) log n) comparisons. If
k = O(1), the number of comparisons reduces to O(n1+1/(3·2bk/2c−1−1)).

Proof. We find a k-median using Ck, equipartition the elements into sets S1, S2

such that every element of S2 is k-greater than every element of S1 ∪{x}, recur-
sively sort each partition, then concatenate the sorted results. The upper bound
on the number of comparisons follows from the Master theorem (see [7, Theorem
4.1]), and correctness is immediate from the definition of a k-median.

5 Lower Bounds

Here we prove lower bounds against deterministic max-finding, sorting, and se-
lection algorithms. In particular, we show that Theorem 3 and Theorem 5 achieve
almost optimal trade-off between error and number of comparisons.

10

Lemma 8. Suppose a deterministic algorithm A upon given n elements guar-
antees that after m comparisons it can list r elements, each of which is guaran-
teed to be k-greater than at least q elements. Then m = Ω(max{q1+1/(2k−1), q ·
r1/(2

k−1)}).

Proof. We define a comparator that decides how to answer queries online in such
a way that we can later choose values for the elements which are consistent with
the given answers, while maximizing the error of the algorithm.

Let Gt be the comparison graph at time t. That is, Gt is a digraph whose
vertices are the xi and which contains the directed edge (xi, xj) if and only if
before time t a comparison between xi and xj has been made, and the comparator
has responded with “xi ≥ xj”. We denote the out-degree of xi in Gt by dt(xi).
Assume that at time t the algorithm wants to compare some xi and xj . If dt(xi) ≥
dt(xj) then the comparator responds with “xj ≥ xi”, and it responds with
“xi ≥ xj” otherwise. (The response is arbitrary when dt(xi) = dt(xj).) Let x be
an element that is declared by A to be k-greater than at least q elements.

Let yi = dist(x, xi), where dist gives the length of the shortest (directed) path
in the final graph Gm. If no such path exists, we set yi = n. After the algorithm
is done, we define val(xi) = yi, We first claim that the values are consistent with
the responses of the comparator. If for some pair of objects xi, xj the comparator
has responded with “xi ≥ xj”, then Gm contains edge (xi, xj). This implies that
for any x, dist(x, xj) ≤ dist(x, xi) + 1, or yi ≥ yj − 1. Therefore the answer
“xi ≥ xj” is consistent with the given values.

Consider the nodes xi that x can reach via a path of length at most k. These
are exactly the elements k-smaller than x, and thus there must be at least q of
them. For i ≤ k let Si = {xj |yj = i} and si = |Si|. We claim that for every
i ∈ [k], m ≥ s2i /(2si−1) − si/2. For a node u ∈ Si, let pred(u) be a node in
Si−1 such that the edge (pred(u), u) is in the graph. For a node v ∈ Si−1, let
Si,v = {u ∈ Si | v = pred(u)}. Further, let do(pred(u), u) be the out-degree of
pred(u) when the comparison between pred(u) and u was made (as a result of
which the edge was added to Gm). Note that for any distinct nodes u, u′ ∈ Si,v,
do(v, u) 6= do(v, u′) since the out-degree of v grows each time an edge to a node
in Si,v is added. This implies that∑

u∈Si,v

do(v, u) ≥
∑

d≤|Si,v|−1

d = |Si,v|(|Si,v| − 1)/2 .

By the definition of our comparator, for every u ∈ Si, dm(u) ≥ do(pred(u), u).
This implies that

m ≥
∑

v∈Si−1

∑
u∈Si,v

dm(u) ≥
∑

v∈Si−1

|Si,v|(|Si,v| − 1)
2

=

∑
v∈Si−1

|Si,v|2 − |Si|
2

.

Using the inequality between the quadratic and arithmetic means,

∑
v∈Si−1

|Si,v|2 ≥

 ∑
v∈Si−1

|Si,v|

2

/|Si−1| = s2i /si−1.

11

This implies that m ≥ s2i
2si−1

− si
2 .

We can therefore conclude that si ≤
√

(2m+ si)si−1 ≤
√

3msi−1 since si ≤
n ≤ m. By applying this inequality and using the fact that s0 = 1 we obtain
that s21/3 ≤ m and si ≤ 3m · (3m/s1)2

−(i−1)
for i > 1. Since

∑
i≤k si ≥ q+ 1, we

thus find that q ≤ 12 ·m · (3m/s1)2
−(k−1)

. This holds since either

1. (3m/s1)2
−(k−1)

> 1/2 and then 12 ·m · (3m/s1)2
−(k−1) ≥ 6m > n, or

2. (3m/s1)−2−(k−1) ≤ 1/2 and then (3m/s1)−2−i+1
/(3m/s1)−2−i = (3m/s1)−2−i ≤

(3m/s1)−2−(k−1) ≤ 1/2 for i ≤ k− 1, where the penultimate inequality holds
since s1 < 3m. In this case

q − s1 ≤
k∑
i=2

si ≤
k∑
i=2

(3m)(3m/s1)−2−(i−1)
≤
∑
i≤k

2i−k(3m)(3m/s1)−2−(k−1)

< 2(3m)1−2−(k−1)
s2
−(k−1)

1

If s1 ≥ q/2, then m = Ω(q2) since m ≥ s21/3. Otherwise we have that m ≥
(q/4)1/(1−2−(k−1))/(3s1/(2

(k−1)−1)
1), implying

m = Ω(max{s21, q1/(1−2−(k−1))/s
1/(2(k−1)−1)
1 }) = Ω(q1+1/(2k−1))

where the final equality can be seen by making the two terms in the max equal.
Also, note that the choice of x amongst the r elements of the theorem state-

ment was arbitrary, and that s1 is just the out-degree of x. Let smin be the min-
imum out-degree amongst the r elements. Then we trivially have m ≥ r · smin.
Thus, if smin ≥ q/2 then m ≥ qr/2, and otherwise

m = Ω(max{r · smin, q
1/(1−2−(k−1))/s

1/(2(k−1)−1)
min }) = Ω(q · r1/(2

k−1))

where the final equality is again seen by making the two terms in the max equal.

From Lemma 8 we immediately obtain a lower bound for max-finding by
setting r = 1, q = n− 1, and for median-finding and sorting by setting r = q =
n/2. In general, the sorting lower bound holds for k-order selection of the ith
element for any i = c · n for constant 0 < c < 1.

Theorem 6. Every deterministic max-finding algorithm A with error k requires
Ω(n1+1/(2k−1)) comparisons.

Theorem 7. Every deterministic algorithm A which k-sorts n elements, or
finds an element of k-order i for i = c · n with 0 < c < 1 a constant, requires
Ω(n1+1/2k−1

) comparisons.

Theorem 6 implies the following, showing that Corollary 1 is tight.

Corollary 2. Let A be a deterministic max-finding algorithm that makes O(n)
comparisons. Then A has error at least log log n−O(1).

12

References

1. G. Aggarwal, N. Ailon, F. Constantin, E. Even-Dar, J. Feldman, G. Frahling, M. R.
Henzinger, S. Muthukrishnan, N. Nisan, M. Pál, M. Sandler, and A. Sidiropoulos.
Theory research at Google. SIGACT News, 39(2):10–28, 2008.

2. S. Assaf and E. Upfal. Fault tolerant sorting networks. SIAM J. Discrete Math,
4(4):472–480, 1991.

3. M. Ben-Or and A. Hassidim. The bayesian learner is optimal for noisy binary
search (and pretty good for quantum as well). In FOCS, pages 221–230, 2008.

4. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.

5. B. Bollobás and A. Thomason. Parallel sorting. Discrete Appl. Math., 6:1–11,
1983.

6. R. S. Borgstrom and S. R. Kosaraju. Comparison-based search in the presence of
errors. In STOC, pages 130–136, 1993.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, second edition, 2001.

8. H. A. David. The Method of Paired Comparisons. Charles Griffin & Company
Limited, 2nd edition, 1988.

9. U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information.
SIAM J. Comput., 23(5), 1994.

10. I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient sorting and searching
in the presence of memory faults. In ICALP, pages 286–298, 2006.

11. I. Finocchi and G. F. Italiano. Sorting and searching in the presence of memory
faults (without redundancy). In STOC, pages 101–110, 2004.

12. W. I. Gasarch, E. Golub, and C. P. Kruskal. Constant time parallel sorting: an
empirical view. J. Comput. Syst. Sci., 67(1):63–91, 2003.

13. R. Häggkvist and P. Hell. Parallel sorting with constant time for comparisons.
SIAM J. Comput., 10(3):465–472, 1981.

14. R. Häggkvist and P. Hell. Sorting and merging in rounds. SIAM Journal on
Algebraic and Discrete Methods, 3(4):465–473, 1982.

15. R. M. Karp and R. Kleinberg. Noisy binary search and its applications. In SODA,
pages 881–890, 2007.

16. A. Pelc. Searching games with errors—fifty years of coping with liars. Theor.
Comput. Sci., 270(1-2):71–109, 2002.

17. B. Ravikumar, K. Ganesan, and K. B. Lakshmanan. On selecting the largest
element in spite of erroneous information. In STACS, pages 88–99, 1987.

18. A. Rényi. On a problem in information theory. Magyar Tud. Akad. Mat. Kutató
Int. Közl, 6:505–516, 1962.

19. R. L. Rivest, A. R. Meyer, D. J. Kleitman, K. Winklmann, and J. Spencer. Coping
with errors in binary search procedures. J. Comput. Sys. Sci., 20(3):396–405, 1980.

20. S. M. Smith and G. S. Albaum. Fundamentals of Marketing Research. Sage Pub-
lications, Inc., first edition, 2005.

21. L. L. Thurstone. A law of comparative judgment. Psychological Review, 34:273–
286, 1927.

22. S. M. Ulam. Adventures of a Mathematician. Scribner’s, New York, 1976.
23. L. G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4(3):348–

355, 1975.
24. A. C. Yao and F. F. Yao. On fault-tolerant networks for sorting. SIAM J. Comput.,

14(1):120–128, 1985.

