
Matching Markets with Couples Revisited

Itai Ashlagi Mark Braverman Avinatan Hassidim∗

October 2010

Abstract

It is well known that a stable matching in a two-sided matching market with couples need

not exist. We introduce a new matching algorithm for such markets and show that for a general

class of large random markets the algorithm will find a stable matching with high probability.

In particular we allow the number of couples grow in an ‘almost’ linear rate. Furthermore, the

mechanism induced by the new algorithm is ‘almost’ incentive compatible. For markets in which

the number of couples grow in a linear rate, we show that many ‘natural’ algorithms will not

find a stable matching with constant probability.

1 Introduction

We consider a two-sided many-to-one matching market, in which one side consists of hospitals and

the other consists of doctors. Stability is the most natural and desired property in such two-sided

markets. Therefore understanding when a stable matching exists in a matching market with couples

as well as providing an efficient procedure to find one (whenever exists) are both important tasks,

and both the main scope of this paper.

Gale and Shapley (1962) introduced the well-known Deferred Acceptance algorithm and showed

that if doctors preferences do no depend on other doctors’ preference, in other words all doctors

are “single”, the algorithm will always produce a stable matching. When couples are present in the

market, naturally their preferences depend on each other and often introduce complementarities,

a stable matching may not exist (Roth (1984)). In fact for any market size one can construct a

∗Ashlagi: Sloan School of Management, MIT, iashlagi@mit.edu. Braverman: Department of CS, University of

Toronto, mbravem@cs.toronto.edu. Hassidim: Google, Israel, avinatanh@gmail.com. We thank Itay Fainmesser,

Jacob Leshno and Brendan Lucier for very helpful discussions and comments.

1

preference profile for which a stable matching does not exist and even if a stable matching does

exist, finding it can be computationally intractable (Ronn (1990)).

Several clearinghouses exist today for two-sided markets with couples. Two major examples are

the National Resident Matching Program (NRMP) and the clearinghouse for psychology interns.

Until not long ago couples had to participate as singles, since clearinghouses for these markets

used the Deferred Acceptance algorithm to find a matching. Only since 1999, the NRMP and the

psychology market adopted the new algorithm designed by Roth and Peranson (1999) allowing for

couples to express their preferences, henceforth called the Roth-Peranson (RP) algorithm. This

algorithm has had a great success in practice: every year since it is used, the NRMP has found a

stable matching with respect to the reported preferences. For a comprehensive background, and

history of these markets see Kojima et al. (2010); Roth (2009).

Klaus and Klijn (2005)1 initiated the search for markets that have a stable matching. They

showed that the domain of responsive preferences is a maximal domain in which a stable matching

exists. However, Kojima et al. (2010) observe from real data that couples’ preferences often do

not belong to this domain. Adopting a random preferences approach, they showed that if there

are n single doctors, and the number of couples is of order
√
n, then the RP algorithm will find a

stable matching with probability converging to one as n approaches infinity. In fact they used a

very simplified version of the RP algorithm, leaving open the question whether the RP or any other

matching algorithm will be able to find a stable matching when the number of couples is larger

than
√
n.

The approach for studying random growing markets is well founded2. About 16,000 single

doctors and 800 couples participated in the NRMP in 2010, and about 3,000 single doctors and 19

couples participated in the psychology clearinghouse in the same year. Furthermore these figures

are increasing every year. While the size of the market justifies the large-market-assumption, the

number of couples increases every year. Thus the algorithm used in Kojima et al. (2010) explains

the success in the psychology like markets, but in the NRMP the number of couples is already

larger than
√
n, which is essential for their algorithm to succeed.

The RP algorithm is not formally defined in Roth and Peranson (1999) and in particular not

analyzed. Instead of filling in the exact details of this algorithm and analyzing its performance in

1See also Klaus et al. (2009).
2Immorlica and Mahdian (2005) and Kojima and Pathak (2009) also used a similar large market approach to

study incentives and stability in a two-sided one-to-one and many-to-one matching markets without couples.

2

large markets, we introduce a new matching algorithm, called Sorted Deferred Acceptance (SoDA),

for two-sided matching markets with couples. The SoDA algorithm is simple and consists of two

main steps: (i) First it finds a stable matching in the sub-market without couples. Then (ii) in

some given order, each couple c applies according to its preference list; whenever a single is rejected

it applies until it finds a position. If some other couple c′ has been rejected after being assigned,

the second step starts over, but letting c′ apply just ahead of c. Roughly the algorithm used by

Kojima et al. (2010) allowed couples to apply in a single order and if at any point some previously

assigned couple was rejected, the algorithm failed.

As noted above we study large markets as in Kojima et al. (2010) in general and analyze the

performance of the SoDA algorithm in these markets. In our model, there is an excess number of

available positions3, all doctors are acceptable to all hospitals and vice versa (all our results but

one hold without this restriction, i.e. any preference lists’ lengths), doctors preferences are random

and hospital preferences are arbitrary.4 We first provide positive results for a ‘almost’ linear rate.

If the number of couples grows at a rate of at most n1−ε(n) where ε(n) is a ‘slow’ decreasing function

converging to zero:5

1. The probability that a stable matching exists and is found by the SoDA algorithm approaches

1 (as n approaches infinity).

2. The probability that any doctor or any couple can gain by misreporting her preferences

converges to 0 even ex post. A similar result can be shown for hospitals, implying that truth-

telling is an approximated Bayes Nash equilibrium in the game induced by SoDA for large

enough n.

Note that if ε(n) is approximately 1/ log n then the growth rate of couples is linear. Our result

holds for any ε(n) = Ω(log log n
√
n) (see the last section for further discussion).

Finally since this paper asks similar questions to the ones by Kojima et al. (2010) we refer the

reader to their paper for related literature.

For the linear setting, i.e. when the number of couples grows at a rate of αn for some α > 0 we

provide negative results:

3There are λn positions for any λ > 1.
4In their model, Kojima et al. (2010) do not assume an excess number of positions. They assume, however, that

doctors have ‘short’ preference lists, and show that it results in an excess number of positions. These differences will

be further discussed in Section 3.
5ε(n) can be replaced by any fixed ε > 0.

3

3. For some λ > 2α + 1, if the number of hospitals is λn, when n tends to infinity with con-

stant probability (not depending on n) no order of applications by the doctors (couples or

singles) and rejections by the hospitals according to their true preference lists will yield a

stable matching (here we allow hospitals preferences to be random). Consequently Deffered

Acceptance, SODA and RP will all fail to find a stable matching with constant probability.

4. If there is no excess number of hospitals then regardless of the size of the market even if there

is only one couple there exist hospitals’ preferences such that no stable matching exist.6

In the proof of the third result we use a large excess number of hospitals and it might still be the

case that for a small or no excess at all, a stable matching exists with high probability. We give

evidence, based on simulation, that in the linear setting the probability of failure decreases as α

decreases. Furthermore, not finding a stable matching by using any application ordering again does

not rule out the existence of another stable matching.

We also show that the SoDA algorithm runs in polynomial time (in fact ‘almost’ linear), and

provide simulations that test SoDA in various large random markets. Some open problems are

discussed in the Conclusion. Finally, we believe our proof technique is interesting for its own sake,

and may serve as tool for future directions in the search for positive results in other settings with

complementarities.

SoDA is the first matching algorithm for matching markets with couples that is proven to find

stable matchings in very general settings. Our positive results also explain why stable matchings

have been found in the NRMP. This adds to the short list of positive results in settings with

complementarities (see e.g. Milgrom (2004), Gul and Stacchetti (1999), Ning and Yang (2006) and

Lahaie and Parkes (2009) for auction settings, and Hatfield and Kominers (2009) and Pycia (2010)

for matching settings). Finally since this paper asks similar questions to the ones by Kojima et al.

(2010) we refer the reader to their paper for related literature.

2 Matching Markets with Couples

2.1 Model

In a matching market there is a set of hospitals H a set of single doctors S and a set of couples of

doctors C. Each single doctor s ∈ S has a strict preference relation �s over the set of hospitals.

6This is the only result for which doctors’ preference lists should be long.

4

Each couple c ∈ C denoted by c = (f,m) has a strict preference relation �c over pairs of hospitals.

For every couple c we denote by fc and mc the first and second members of c. Denote by D the

set of all doctors. That is D = S ∪ {mc|c ∈ C} ∪ {fc|c ∈ C}. Each hospital h ∈ H has a fixed

capacity kh > 0 and a strict preference relation �h over the set D. For any set D′ ⊆ D hospital h’s

choice given D′, i.e. the most preferred doctors h can employ, CHh(D′), is induced by �h and kh

as follows: d ∈ D′ ∩CHh(D′) if and only if there exist no set of D′′ ⊆ D′ \ {d} such that |D′′| = kh

and d′ �h d for all d′ ∈ D′′.

A matching µ is a function from H ∪ C ∪ S such that µ(s) ∈ H ∪ {φ} for every s ∈ S,

µ(c) ∈ H ×H ∪ {(φ, φ)} for every c ∈ C, µ(h) ∈ 2D for every h ∈ H, and:

(i) s ∈ µ(h) if and only if µ(s) = h.

(ii) µ(c) = (h, h′) if and only if fc ∈ µ(h) and mc ∈ µ(h′).

µ(s) = φ means that s is unassigned under µ, and similarly µ(c) = (φ, φ) means that the couple c

is unassigned under µ.

We proceed to define stability. Blocking coalitions for a given matching can be formed in several

ways:

• (s, h) ∈ S ×H is a block of µ if h �s µ(s) and s ∈ CHh(µ(h) ∪ s).

• (c, h, h′) ∈ C ×H ×H (where h 6= h′) is a block of µ if (h, h′) �c µ(c), fc ∈ Chh(µ(h) ∪ fc),

and mc ∈ Chh′(µ(h′) ∪mc)

• (c, h) ∈ C ×H is a block of µ if (h, h) �c µ(c) and {fc,mc} ∈ Chh(µ(h) ∪ c).

Finally a matching is stable if there is no block of µ.

Gale and Shapley (1962) showed that the (doctor proposing) Deferred Acceptance algorithm

described below, always produces a stable matching in a matching market without couples. They

further showed that the stable matching produced by this algorithm is the one that is weakly

preferred by all single doctors. Roth (1982) showed that the mechanism induced by this algorithm

makes it a dominant strategy for all single doctors to report their true preferences.

Doctor-Proposing Deferred Acceptance Algorithm (DA):

Input: a matching market (H,S,�H ,�S) without couples.

5

Step 1: Each single doctors ∈ S applies to her most preferred hospital. Each hospital rejects its

least-preferred doctor in excess of its capacity among those who applied to it, keeping the rest of the

doctors temporarily.

Step t: Each doctor who was rejected in Step (t-1) applies to her next highest choice if such

exists. Each hospital considers these doctors as well as the doctors who are temporarily held from

the previous step, and rejects the least-preferred doctors in excess of its capacity keeping the rest of

the doctors temporarily.

The algorithm terminates at a step where no doctor is rejected.

In the next section we introduce a new algorithm for finding a matching in a market with couples.

Roth (1984) showed that when there are couples, sometimes a stable match does not exist. In

Section 4 we show that this algorithm produces a stable matching with very high probability when

there is a large market with the number of couples growing (almost) linearly.

2.2 A New Matching Algorithm for Matching Markets with Couples

The matching algorithm that we present here first finds the stable matching in the market with-

out couples (using DA) and then attempts to insert the couples, while maintaining the deferred

acceptance idea.

Informally, the new algorithm receives as input a matching market with couples and does the

following:

(i) Find the stable matching in the sub-market without couples using the DA algorithm.

(ii) Fix an order π over the couples. Let each couple c on its turn according to π apply to pairs

of hospitals according to its preference list �c (beginning with the most preferred) and once

it found a pair of hospitals that accepts it, we assign the couple to the pair of hospitals and

stabilize the current matching as follows:

Stabilize: Continue the DA algorithm, with the singles that were rejected from the their positions

in the pair of hospitals that the last couple c was assigned to (at most two singles).

If during stabilizing one of the members of the last couple c was rejected the algorithm

fails. Otherwise if some other couple c′ 6= c was rejected during stabilizing, the order π

6

is changed so that c is moved one place ahead of c′ and part (ii) begins again with the

altered permutation; If the new order π′ has been tried previously the algorithm fails.

Note that if the algorithm doesn’t fail it produces a stable matching. As mentioned in the

previous section, this algorithm will serve as a main tool in showing that there exist a stable

matching in a large random market. Kojima et al. (2010) used a simpler algorithm to show their

stability result. Before we describe our algorithm formally, we briefly discuss the differences between

the algorithms.

The difference between our algorithm to the one used in Kojima et al. (2010):

To show their result Kojima et al. (2010) use a simple algorithm.7 The algorithm they use

first finds a stable matching in the market without couples, and only then allows each couple,

one by one, to apply according to its preference list until some hospital accepts it. Finally, all

single doctors that were rejected due to the insertion of couples continue “applying” according to

their preference lists, i.e. the Gale-Shapley algorithm continues. They show that no couple will

be rejected after being assigned with probability approaching 1 as the market grows to infinity.

Importantly, if some couple is rejected, their algorithm fails to produce a matching, even though

there might be a different order of couples’ applications which will not lead to such a failure.

In our matching algorithm if some couple has been rejected the algorithm allows couples to a

apply again using a different ordering. In particular the algorithm does not end when a couple is

rejected due to the application of another couple, but rather begins again with a simple altered

permutation. Another difference is that after each couple applies, the moment single doctors are

rejected we let the system stabilize, i.e. the singles continue to apply as in the Deferred Acceptance

algorithm.

We next describe our algorithm formally.

Sorted Deferred Acceptance Algorithm (SoDA):

Input: A matching market (H,S,C,�S ,�H ,�C) and a default permutation π over the set {1, 2, . . . , |C|}.

Let Π = φ.

Step 1: Find the stable matching µ produced by the DA algorithm in the matching market (H,S,�S

,�H) without couples.

Step 2 [Iterate through the couples]: Let i = 1 and let B = φ.

7Different from the the Roth-Peranson one.

7

(a) Let c = cπ(i) be the π(i)-th couple.

Let c apply to the most preferred pair of hospitals (h, h′) ∈ H ×H that has not rejected it yet.

If such a pair of hospitals does not exist, modify µ such that c = (f,m) is unassigned and go

to step 2(a) with i+ 1. If such a pair (h, h′) exists then:

(a1) If h = h′ and {f,m} ⊆ Chh(µ(h) ∪ c) then:

Let R = µ(h) \ Chh(µ(h) ∪ c) be the rejected doctors from h.

(a11) If there exist a couple c′ 6= c for which {fc′ ,mc′} ∩ R then: Let j < i be such that

cπ(j) = c′. Let π′ be the permutation obtained by π as follows:

π′(j) = π(i), π′(l) = π(l) for all l such that l < j or l > i and π′(l) > π(l − 1) for

other j + 1 ≤ l ≤ i.

If π′ ∈ Π terminate the algorithm. Otherwise add π′ to Π and go to Step 1 setting

π = π′.

(a12) Modify µ by assigning c to h, remove R from µ(h). Add R to B and do Step 3

(Stablize) with the couple c.

(a2) If h 6= h′, f ∈ Chh(µ(h) ∪ f), and m ∈ Chh′(µ(h) ∪m) then:

Let Rh = µ(h) \ Chh(µ(h) ∪ {f}) and Rh′ = µ(h′) \ Chh′(µ(h′) ∪ {m}).

(a21) If there exist a couple c′ 6= c for which {fc′ ,mc′} ∩ (Rh ∪ Rh′) then: Let j < i be

such that cπ(j) = c′, change π as in step 2(a11). If π ∈ Π terminate the algorithm.

Otherwise add π to Π and go to Step 1.

(a22) Modify µ by assigning f to h and m to h′, remove Rh from µ(h) and remove Rh′

from µ(h′). Add Rh ∪Rh′ to B and go to Step 3 (Stablize) with the couple c.

(a3) Otherwise, let h and h′ reject the couple c and go to Step 2(a).

Step 3 [Stabilize]: Let j = |B|. As long as j ≥ 0:

(a) If j = 0 increment i by one and got to Step 2.

(b) Otherwise pick some s ∈ B and:

(b1) Let h be the most preferred hospital s has yet to apply to. If such a hospital does not exist

then modify the matching µ such that s is unassigned and go to Step 2(a). Otherwise:

Let R = (µ(h) ∪ {s}) \ Chh(µ(h) ∪ {s}).

8

(b21) If {fc,mc} ∩R then the algorithm fails.

(b22) If there exist a couple c′ 6= c for which {f ′c,m′c} ∩ R then let i and j be such that

cπ(i) = c (c is the last couple that applied) and cπ(j) = c′. Change π as in Step

2(a11). If π ∈ Π terminate the algorithm. Otherwise add π to Π and go Step 1.

(b23) If s ∈ R then go to Step 3(b1).

(b24) Modify µ by assigning s to h, remove R from µ(h). Add R to B and go to Step 3.

Observe that the SoDA algorithm fails to produce a matching in two cases: (i(if a couple c

that finds a pair of positions causes a “chain reaction” leading to the same couple c being rejected

(step 3(b21)), or (ii) it is about to let couples apply in and order that has already been tried before

(steps 2(a11), 2(a21) and 3(b22)) (it changes the permutation π to a permutation π′ that already

belongs to Π). As mentioned above, if the algorithm does not fail it produces a stable matching.

The following definition will be useful throughout the paper.

Definition 1 (Evicting) Let d ∈ D be a doctor and suppose that d is (temporarily) assigned to

some hospital h. Let c ∈ C. If during the execution of the SoDA algorithm some member of the

couple c who is not assigned to h applies to h and causes d to be rejected by h, we say that d was

evicted by c. Furthermore, if d was evicted by c, applies to some hospital h′ and causes some

other doctor d′ who is assigned to h′ to be rejected, we also say that d′ is evicted by c, and so forth.

Finally, if d was evicted out by c and d belongs to a couple c′ we say that c was evicted by c′.

Formally, all doctors in the set R in steps 2(a1), 2(a2) and 3(b2) are evicted by the applying couple

c.

Remark: According to this definition c can evict itself. Such a phenomenon may occur since

one member of a given couple can evict the other member of the couple (in the algorithm this

happens in part (b21)).

In the next section we study large random matching markets.

3 Large Matching Markets

Our approach to large markets is similar to the one in Kojima et al. (2010). A random market is

a tuple Γ = (H,S,C,�H , Z,Q) where Z = (zh)h∈H and Q = (qh)q∈H are probability distributions

over H.

9

The preference list of each single doctor d ∈ S is independently drawn as follows: for each

k = 1, . . . , |H| given s’s preference list up to her k-th most preferred hospital, draw independently

according to Z a hospital h until h does not appear in s’s k most preferred hospitals and let it be

s’s (k+ 1)-th most preferred hospital. The preference list for each couple c = (f,m) is drawn from

the distribution Q×Q.

We will assume that the distributions Z and Q are uniformly bounded, that is there exist r ≥ 1

such that qh
qh′
∈ [1

r , r] and zh
zh′
∈ [1

r , r] for every h, h′ ∈ H. Define γmax to be the maximum

probability that a hospital is drawn either from Z or from Q, that is γmax = maxh∈H max(qh, zh).

We will consider a sequence of random markets Γ1,Γ2, . . . where Γn = (Hn, Sn, Cn,�nH
, Zn, Qn), i.e. markets with a growing size.

Definition 2 A sequence of random markets Γ1,Γ2, . . . is called regular if there exist 0 < ε < 1,

λ > 1, c > 0 and r ≥ 1 such that for all n

1. |Sn| = n and |Cn| = O(n1−ε) (the number of couples grows almost linearly).

2. for each hospital h ∈ Hn, kh < c (bounded capacity).

3.
∑

h∈Hn kh ≥ λn (excess number of positions).

Importantly our results are true even if ε is a ‘slow’ decreasing function of n converging to zero.

The exact rate is discussed in the last section.

Note that the main difference between our “regular” definition and the one in Kojima et al.

(2010) is that ε < 1
2 . Further, in Kojima et al. (2010) each doctor’s preference list is bounded by a

constant, whereas in our setting all hospitals are acceptable. A key step in their proof is to show

that the number of unfilled positions grows linearly in n with high probability. Instead, we assume

an excess number of positions and skip that part of the proof.8 With some minor changes our

results will follow also using constant lists lengths without assuming an excess umber of positions.

4 Stability

In this section we show:

8Our results hold for any lists’ lengths.

10

Theorem 1 Let Γ1,Γ2, . . . be a regular sequence of random markets. Then the probability that

there exist a stable matching tends to 1 as n goes to infinity.

To prove Theorem 1 we will show that for random preferences the probability that the SoDA

algorithm ends without failure converges to 1 as n→∞. Before we prove the theorem we provide

some intuition and a brief outline of the proof.

4.1 Intuition and Proof Sketch

The goal is to show that if the number of couples is m = n1−ε (for any 0 < ε < 1) then as

n approaches infinity the probability of a stable match approaches 1. To better understand our

approach we begin with the intuition for why the result holds for any ε < 1
2 (essentially we provide

the intuition for the result by Kojima et al. (2010)). We then give intuition for the case in which

ε < 2
3 and finally for any ε.

1. Number of couples is n
1
2
−δ: Consider the following simplified version of the SoDA algorithm

which we call the direct algorithm: after finding the stable matching in the market without couples,

the couples apply one by one and if some couple evicts another couple the algorithm fails (i.e. it

does not attempt to change the permutation over the couples). Observe that if the algorithm does

not fail, it outputs a stable matching.

We will therefore bound the probability that a member of a couple will be evicted from a

hospital. We do this iteratively. When the first couple applies, no other couple will be evicted (since

there are no couples in the system). When the second couple c applies, what is the probability that

it will evict the first couple?

The second couple c creates a “chain reaction”, which can cause several doctors who were

temporarily assigned to continue applying. To bound the length of this chain consider fc. At some

point she is temporarily assigned to a hospital h. If this hospital’s capacity wasn’t full, she did not

evict any doctor and therefore also no other couple and we are done. Since there are more positions

than doctors, the probability that the hospital has a vacancy is 1 − 1
λ (for simplicity we assume

here each hospital has capacity one and the preference distributions are uniform). If the hospital

has no vacancy, she evicts a doctor d1 who enters some hospital h1. If h1 has a vacancy, we are

done. If h1 is full, a doctor d2 gets kicked out, and looks for a new position. Say d2 is assigned

to h2. Again, h2 can have a vacancy, or be full, and this goes onwards. However, since at every

11

step of the chain there is a constant probability for a vacancy, one can show that with probability

1− 1/n3 the number of hospitals h, h1, h2, ... in the chain is upper bounded by 3λ log n/(λ− 1).

Now, we can estimate the probability that the second couple evicts the first. The second couple

kicks out doctors from at most 6λ log n/(λ − 1) hospitals. If this list includes the hospitals which

admitted the first couple, we could be in trouble. But since preferences are random, the chances

that the second couple influences any of these hospitals are upper bounded by

2 · 6λ log n

(λ− 1)n
=

12λ log n

(λ− 1)n

What about the third couple? Again, it influences at most 6λ log n/(λ − 1) hospitals. But now,

there are four hospitals which must not be influenced: two hospitals (at most) for each previously

assigned couple. Generalizing this for the k-th couple and summing the probabilities we get

m∑
k=1

12λ(k − 1) log n

(λ− 1)n
<
λm2 log n

(λ− 1)n
= O

(
log n

n2δ

)
which goes to zero as n goes to infinity. Note that if m =

√
n this argument would not hold. In fact

an argument similar to the Birthday Paradox shows the direct algorithm fails with high probability

if the number of couples is a large multiple of
√
n.

The direct algorithm algorithm attempts to insert the couples according to a single permutation.

A natural attempt to find stable matching when more couples are in the market is to change the

permutation each time a couple kicks out another couple. We continue with an intuition for the

result when there are at most n
2
3
−ε for any ε > 0.

2. Number of couples is n
2
3
−δ: Consider the following addition to the direction algorithm:

each time a couple ci evicts a different couple cj the algorithm starts over but swaps the order

between ci and cj when the couples apply.

Denote the initial order of insertion by c1, c2, . . . cm. If ci evicts cj for i > j, swapping places

between ci and cj will cause j not to be evicted by ci. However, this could create new “evictions”.

One can prove that the probability that any other couple “feels” that ci and cj have swapped places

in the application order is at most O(n−1/3−δ/2). By a similar analysis as in the direct algorithm,

the probability that any of the doctors who got evicted by ci or cj enters any of the hospitals of

these couples is bounded by
24n2/3−δ log n

n
< n1/3−δ/2.

12

What is left to bound is the number of swaps; again, the probability that ck will evict another

couple is roughly k
n where we neglect the log n factor. Thus the expected number of couples

which will evict another couple is bounded by m2

n < n1/3−δ. Informally, combining these together

one obtains that with probability approaching 1 swapping will solve all the ”eviction” events, the

algorithm will find a stable matching and will terminate successfully.

Unfortunately this approach is not sufficient to formally obtain our result and we will need some

more subtle structures.

3. Number of couples is n1−ε (sketch of proof of Theorem 1):

The SoDA algorithm attempts to find an ordering of the couples, such that if couples apply one

by one according to this order, no couple gets evicted by another couple. Whether or not a couple

c evicts another couple c′ depends on the (current) matching and the preference profile. Identifying

worst case scenarios, such as where c could “possibly” evict c′ if there exist a configuration in which

this happens, are too weak to prove our result. Instead, we devise a notion of whether c is “likely”

to evict c′, and use this notion to analyze the algorithm. To do so we define for each couple c an

influence tree; roughly speaking the influence tree of c consists of the hospitals and doctors which

c is most likely to influence (the new “matches” due to c’s likely evictions).

We will want to show that there are not “many” influence tree intersections, since intersections

imply two couples might be able to influence the same hospital, and more importantly they might

evict each other. A first key step in this direction is the following:

(i) With high probability each influence tree is small (with respect to n).

If influence trees had not intersected each other one, could have shown that any insertion order

of the couples would yield a stable matching with high probability. Essentially Kojima et al. (2010)

showed that if ε < 0.5 then the probability that no two influence trees intersect approaches 1 as

n→∞. This however is not the case for all ε < 1.

Influence trees, their intersections and hospital preferences induce a useful structure in the form

of a directed graph which we call the couples graph; roughly speaking, in the couples graph each

couple is a node, and there is a directed edge from couple c to another couple c′ if their influence

trees intersect at some hospital h and c can possibly evict some doctor that caused h to be in the

influence tree of c′ (the doctor can be a member of the couple c′). We will show that the couples

graph is sparse:

(ii) With high probability all weakly connected components in the couples graph are

13

small.9

Recall that an influence tree for one couple does not involve other couples. In the next step we

verify that influence trees are indeed the “right” structure:

(iii) With high probability if in the algorithm a couple c influences a hospital h under

any ordering over the couples π, then that hospital will also belong to the influence

tree of c.

Finally, if one can find a topological sort π in the couples graph10 then by letting couples apply

one by one according to π yields a stable matching. We show:

(iv) With high probability there are no directed cycles in the couples graph.

4.2 Proof of Theorem 1

We begin with defining influence trees. These will be defined for a fixed realization of the preferences

and with respect to a parameter r which should be interpreted as “possible rejections”. First we

need a few notations. Let Γ = (H,S,C,�H ,�S ,�C) be a matching market and let µ be a matching.

Denote by oh(µ) and by fh = kh − oh(µ) the number of assigned doctors to hospital h and the

number of available positions in h under µ respectively. We also denote by dj(µ, h) to be the j-th

least preferred doctor according to �h that is assigned to h under µ.

Definition 3 (Influence Tree) Let Γ = (H,S,C,�H ,�S ,�C) be matching market with couples

and let µ be the matching produced by the DA algorithm for the sub-market without couples. Let

d ∈ D and let r be any integer. An influence sub-tree of doctor d with root h and with respect to

r , denoted by IT (d, r, h) is defined recursively as follows.

(a) If fh(µ) = 0 and dkh(µ, h) �h d then let h′ be be the next preferred hospital by d after h and

let IT (d, r, h) = IT (d, r, h′). Otherwise

(b) Change µ such that d is assigned to h and:

(b1) Add (h, d) to IT (d, r, h).

9A weakly connected component in directed graph is a connected component in the graph obtained by removing

the directions of the edges.
10A topological sort π is an order over the couples such that no couple has an edge to a couple ahead of him in the

order.

14

(b2) If r > 0 or fh(µ) = −1 then: for each j = 1, . . . ,min(oh(µ), r − fh(µ)) let hj be the

most preferred hospital by dj(µ, h) after h, and add to IT (d, r, h) the influence sub-tree

IT (dj(µ, h), r − (j − 1)− fh(µ), hj).

For a couple c = {f,m}, let (h1
f , h

1
m), . . . , (hrf , h

r
m) be the top r pairs of hospitals according to �c

in which the couple c can be accepted. That is, either

• hif = him and c ⊆ Chhif (µ(hif) ∪ c), or

• hif 6= him and f ∈ Chhif (µ(hif) ∪ {f}) and m ∈ Chhim(µ(him) ∪ {m}).

The influence tree for the couple c is defined to be:

IT (c, r) :=
r⋃
i=1

(
IT (f, r + 1− i, hif)) ∪ IT (m, r + 1− i, him)

)
.

First note that we allow fh(µ) to be -1 in the definition of an influence tree (this is possible since

under this definition we first assign a doctor to a hospital and only then reject from that hospital.)

Also observe that each time a hospital h is inserted to the influence tree, a doctor d is associated

with it. In this case we say that h was inserted to IT (c, r) by d.11 With a slight abuse of notation

we will write h ∈ IT (c, r) if there exist a doctor d such that (h, d) ∈ IT (c, r), i.e. h ∈ IT (c, r) is

inserted to d by some doctor.

In the definition of an influence tree for c, no other couple other than c involved; the definition

in fact simulates the presence of other couples, or in other words it simulates an adversary that can

“reject” doctors from settling in a hospital h due the possible additional occupied positions that

will possibly be taken due to the presence of other couples. The adversary is allowed to reject r

times (above the natural rejections). Importantly, Definition 3 allows us to analyze a static setting

rather than a dynamic setting in which at each point a different number of couples already applied.

Before we continue with the proof we illustrate the definition of an influence tree in the following

example.

Example 1 Consider a setting with 6 hospitals each with capacity of 2, 5 single doctors, d1, d2, . . . , d5

and two couples c1 = (d6, d7) and c2 = (d8, d9), and let their preferences be as in Table 1. To sim-

plify the illustration we chose a preferences that does not “seem” to be drawn randomly.

11We do not rule out here that h was inserted to the influence tree by two different doctors. We will later show

that the probability of this even is negligible, however.

15

doctors hospitals

d1 d2 d3 d4 d5 (d6, d7) (d8, d9) h1 h2 h3 h4 h5

h1 h1 h1 h3 h3 (h1, h2) (h1, h1) d1 d1 d1 s1 s1

h2 h2 h2 h5 h5 (h2, h1) (h2, h2) d8 d8 d8 d8 d8

h3 h3 h3 h1 h1 (h3, h4) (h3, h4) d9 d9 d9 d9 d9

h4 h5 h4 h4 h2 (h4, h5) (h4, h3) d2 d2 d3 d3 d6

h5 h6 h5 h2 h4 (h5, h5) (h4, h2) d5 d5 d6 d5 d4

d3 d3 d2 d4 d2

d6 d6 d5 d6 d5

d4 d4 d7 d2 d7

d7 d7 d4 d7 d3

Table 1: Preference lists.

The Deferred Acceptance algorithm for the market without couples produces the matching given

in the boxes as in Table 1. The influence trees of c1 = (d8, d9) with parameters r = 0 and r = 1 are

given in Figure 1(a). For r = 0 the tree captures the “chain reaction” that c1 causes after entering

the first pair of hospitals that accepts it, these the pair of hospitals (h3, h4). For r = 1, the tree Had

c1 would be rejected from the pair (h3, h4) note that the next pair that would have accepted it would

be (h4, h5). Thus the influence tree of c1 includes with r = 1 includes both its tree for r = 0 and the

chain reaction it causes had it been accepted to (h3, h4) (see Figure 1(b)). Similarly the influence

tree of couple c2 = (d8, d9) is given in Figure 1.

(a) Influence tree of c1 = (d6, d7). (b) Influence tree of c2 = (d7, d8).

Figure 1: Influence trees with parameters r = 0 and r = 1.

16

At this point we fix r to be r = 4/ε for some fixed 0 < ε < 1. One should interpret this r as a

“small” number of possible rejections (relative to n). In random market the influence trees (IT’s)

are random variables.

Lemma 2 1. For every hospital h couple c, Pr(h ∈ IT (c, r)) = O
(
(log n)r+1/n

)
.

2. The probability that the size of every influence tree IT (c, r) is O((log n)r+1) is at least 1−n−3.

3. The probability that for all couples c, each hospital h appears in IT (c, r) at most once is at

least 1− n−ε/2.

Proof: We begin with the second part. Let c be a couple. For each of the two d ∈ c and for each

h′ 6= h we will give an upper bound of O ((log n)r/n) on Pr(h ∈ IT (d, r, h′)). The claim will follow

from the definition of IT (c, r) and union bound.

An alternative way of viewing the recursive definition of IT (d, r, h′), is as follows: doctor d

proceeds down his list beginning with h′ until he finds the first hospital willing to accept him. If

d is accepted into a hospital h1 and h1 was full to capacity, then some doctor d′ is evicted and

goes to a hospital h2, and we add IT (d′, r, h2) to IT (d, r, h′). In this case, continuing the “chain

reaction” did not require any arbitrary rejections. We call the hospitals added into IT (d, r, h′) with

parameter r the main path of IT (d, r, h′). We then also allow the adversary to introduce up to

r arbitrary rejections (for example, precluding d from being accepted into h1). Thus the influence

tree is composed of the main path, with lower-order influence trees (i.e. influence trees with a

strictly smaller value of r) attached along it.

We first show by induction that with probability at least 1 − n−6 the length of the main path

in IT (d, r, h′) is at most b log n, where b = 6 · cmax·γmaxλ−1 . At any step along the main path, for the

main path to continue, the currently evicted doctor d needs to choose a full hospital h. Because

of the way the doctors’ preferences are sampled, the probability of this happening is bounded by

1 − λ−1
cmax·γmax . Since each subsequent step along the path is independent from the previous ones,

the bound follows.

By union bound, we see that with probability at least 1−n−4 all potential main paths contain at

most b log n hospitals. Each main path of length ` recursively gives rise to at most r · ` lower-order

influence trees (i.e. influence trees with smaller r) that are added to IT (d, r, h′). Thus we can

prove by induction that for each r, the size S(r) of the largest order-r influence tree is bounded by

(1 + br log n)r+1 = O((log n)r+1). For the base case, an influence tree with r = 0 only contains the

17

main path, and thus S(0) ≤ b log n. For the step, we get

S(r) ≤ b log n+ (b log n) · r · S(r − 1) ≤ b log n+ (b log n) · r · (1 + br log n)r <

(1 + br log n)r + (b log n) · r · (1 + br log n)r = (1 + br log n)r+1.

Next, the first part of the lemma follows from the proof of the second part and the fact that

the hospitals that are added to IT (c, r) are hospitals on the doctors’ preference lists and are chosen

independently. Thus the probability of h to be added to IT (c, r) at some point is bounded by

S(r) · (cmax · γmax/n) = O((log n)r+1/n).

Finally, we show that IT (c, r) does not “intersect itself” except with probability < nε/2. Note

that in particular this means that the members of the couple may not apply into the same hospital

or evict each other. We have seen that the probability of a hospital h belonging to IT (c, r) is

bounded by O(S(r)/n). Similarly, the probability of h to be added twice or more to IT (c, r) is

bounded by O(S(r)2/n2). Taking a union bound over all possible hospitals h and all possible

couples c, we see that the probability that any hospital appears in any IT (c, r) twice or more is

bounded by

O(S(r)2/n2) · n · n1−ε < n−ε/2.

Throughout the remainder of the proof we will assume that each hospital appears in each

IT (c, r) at most once, neglecting an event of probability < n−ε/2.

In fact, in Lemma 2, one can prove a stronger bound of O(log n/n) for the probability that a

hospital belongs to an influence tree. Although we do not prove or use the stronger bound in the

rest of the paper, it provides intuition for why the SoDA algorithm works well in even in a rather

small market (e.g. when n = 256 we have (log 256)3 = 83 = 512 which does not explain why the

algorithm works).

Next we analyze how much influence trees intersect with each other. Let c1 and c2 be two

different couples. We say that two influence trees IT (c1, r) and IT (c2, r) intersect at hospital h if

there exist d′ and d′′ such that d′ 6= d′′, (h, d′) ∈ IT (c1, r) and (h, d′′) ∈ IT (c2, r).
12

Lemma 3 No two influence trees intersect more than once, except with probability < n−ε/2.

12It is possible that if two influence trees intersect they will have other nodes (h̃, d̃) in common, since there might

be common paths that continue from the point they intersect.

18

Proof: By Lemma 2, we can assume that for every couple c the size of IT (c, r) is at most

O
(
(log n)r+1

)
. For the remainder of the proof, we will denote this upper bound on the size of

IT (c, r) by S(r) = O
(
(log n)r+1

)
. Recall also that we have assumed that no IT (c, r) intersects

itself.

We prove that with high probability no two influence trees intersect exactly 2 times. A similar

proof shows that for every 3 ≤ k ≤ S(r) no two influence trees intersect exactly k times. The proof

will then follow by a union bound on k (since the size of each tree is ≤ S(r) with high probability

they cannot intersect more than S(r) times).

Let c1, c2 be two couples, and h1, h2 be two hospitals. We want to bound the probability of the

event

Pr(h1, h2 ∈ IT (c1, r)∩ IT (c2, r)) = Pr(h1, h2 ∈ IT (c1, r)) ·Pr(h1, h2 ∈ IT (c2, r)|h1, h2 ∈ IT (c1, r)).

(1)

We first note that if h1 is an ancestor of h2 in, e.g. IT (c1, r), and IT (c1, r) intersects IT (c2, r) in

both h1 and h2, then the influence tree IT (c2, 2r + cmax) will self-intersect at h2. The hospital h2

will be added to IT (c2, 2r + cmax) twice: once following the path in IT (c2, r), and a second time

through h1 and then following the path from h1 to h2 in IT (c1, r). Since 2r + cmax is a constant,

by Lemma 2 the probability that any IT (c, 2r+ cmax) will self intersect is smaller than n−ε/2, and

can be disregarded. Thus we can assume that h1 and h2 are not each other’s ancestors in either

IT (c1, r) or IT (c2, r).

We begin by calculating the probability of the first event in (1). A similar proof to that of

Lemma 2 gives that the probability for this event is

Pr(h1, h2 ∈ IT (c1, r)) = O

(
S(r)2

n2

)
.

Rather than compute Pr(h1, h2 ∈ IT (c2, r)|h1, h2 ∈ IT (c1, r)) directly, to avoid the condition-

ing, we consider inserting c2 into a modified world, in which all hospitals in IT (c1, r) except for

{h1, h2} and all the doctors in these hospitals do not exist. We argue that in this case,

Pr(h1, h2 ∈ IT (c2, r)) = O

(
S(r)2

n2

)
using similar reasoning.

The influence tree generated in the modified algorithm (where we took out some of the hospitals)

may differ from the one in the “real” algorithm. Note however that if removing IT (c1, r) affects the

19

generation of the tree IT (c2, r) before it reaches h1, h2, then it is the case that IT (c2, r) intersects

IT (c1, r) at another hospital (which comes before h1, h2). But this is a contradiction, since we

assumed IT (c1, r), IT (c2, r) intersect exactly twice.

Multiplying the probabilities, we get that

Pr(h1, h2 ∈ IT (c1, r) ∩ IT (c2, r)) = O

(
S(r)4

n4

)
Taking a union bound over O(n) hospitals and n1−ε couples, bounds the probability that exist two

couples which intersect exactly twice is at most

O

(
S(r)4

n2ε

)
.

We do not present the proof for exactly k intersections, and only state that the probability for that

event drops at a rate of
S(r)2k

nk·ε
<
S(r)4

n2ε
.

Taking a union bound over all possible values of k, we get that the probability that any two couples

intersect strictly more than once is at most

O

(
S(r) · S(r)4

n2ε

)
=

polylog(n)

n2ε
.

as required.13

Observe that in the definition of an influence tree for a couple c, no other couple is involved and

therefore the tree captures only what possibly could have happened had there been other couples.

The SoDA algorithm inserts couples one by one after the DA algorithm has terminated, and if some

couple c1 evicts another couple c2 the order of their insertions is altered so that c1 is moved ahead

of c2. Intuitively the intersection of two influence trees, of c1 and of c2, together with the hospital

preferences will provide a good guess which couple to insert first. This motivates the following

definition of the couples graph:

Definition 4 Let Γ = (H,S,C,�H ,�S ,�H) be a matching market and let r > 0. In a (directed)

couples graph for depth r > 0, denoted by G(C, r) the set of vertices is C and for every two

couples c1, c2 ∈ C there is a directed edge from c1 to c2 if and only if there exist h ∈ H and

d1, d2 ∈ D (d1 6= d2) such that (h, d1) ∈ IT (c1, r) and (h, d2) ∈ IT (c2, r) and d1 �h d2.

13We write polylogn for a polynomial in logn. In particular polylogn
n2ε tends to zero as n tends to infinity.

20

Before we continue we illustrate a couples graph.

Example 2 Consider the same market as in Example 1 (see Table 1). Note that the influence

trees with r = 1 intersect in h3 where (h3, d2) ∈ IT (c2, 1) and (h3, d6) ∈ IT (c2, 1). Since s6 �h3 d2

the couples graph with r = 1 is as in Figure 2. Indeed letting c1 apply before c2 (after the DA stage)

will end without any couple evicting each other and in a stable matching.

Figure 2: Couples graph for r = 1.

Our goal will be to show that with high probability the graph G(c, r) can be topologically sorted;

such a sorting corresponds to a “good” insertion order of the couples in the SoDA algorithm. In

example 2 the order c1, c2 is a topological sort.

In a couples graph G = G(C, r) a weakly connected component is defined to be a connected

component in the graph obtained from G by removing the direction of the edges.14

Lemma 4 With probability > 1− 1/n the largest weakly connected component of the couples graph

has size at most 3
ε .

Proof: We will first consider an arbitrary set of 3
ε couples and show that the probability that

they form a weakly connected component is very small. The statement of the lemma will follow

through union bound. Let I =
(
c1, c2, . . . , cb3/εc

)
be a sequence of couples with no repetitions:

ci 6= cj . Let AI be the event that for every 1 < i ≤ b3/εc the influence tree of ci intersects with

one of the previous influence trees, that is

IT (ci, r)
⋂

(∪j<iIT (ci, r)) 6= ∅.

We first show that

Pr(AI) ≤
(S(r)2 · cmax · γmax · 3/ε)b3/εc

nb3/εc−1
≤ (S(r)2 · cmax · γmax · 3/ε)3/ε

n3/ε−2
, (2)

where S(r) is the bound on the size of the influence trees IT (ci, r) as in Lemma 2.

Let

ITi = ∪j≤iIT (cj , r)

14A set of nodes in an undirected graph is called a connected component if there exists a path between each to

nodes in the set.

21

be the union of the influence trees of the first i couples. The probability of AI can be written as

Pr(AI) = Pr (IT (2, r) ∩ IT1 6= ∅) · Pr (IT (3, r) ∩ IT2 6= ∅| IT (2, r) ∩ IT1 6= ∅) · · · ·

Pr
(
IT (b3/εc, r) ∩ ITb3/εc−1 6= ∅|∀j ≤ b3/ε− 1c, IT (j, r) ∩ ITj−1 6= ∅

)
. (3)

All the interactions that cause the influence trees within ITj−1 to intersect happen within ITj−1,

and conditioned on the set ITj−1 of hospitals do not affect the probability of IT (cj , r) intersecting

ITj−1. Hence for every j = 2, . . . , b3/εc,

Pr (IT (cj , r) ∩ ITj−1 6= ∅|∀2 ≤ l ≤ j − 1, IT (l, r) ∩ ITl−1 6= ∅) =

Pr (IT (cj , r) ∩ ITj−1 6= ∅ | ITj−1) .

Furthermore from Lemma 2 it follows that the probability that |IT (cl, r)| < S(r) is at least

1− 1
n3 and therefore |ITj | < j · S(r). Hence,

Pr (IT (cj , r) ∩ ITj−1 6= ∅ | ITj−1) ≤ (j − 1) · S(r)2 · γmax
λn/cmax

+
1

n3
<
j · S(r)2 · γmax

λn/cmax
.

Since there are b3/εc − 1 terms in (3) we derive inequality (2).

To finish the proof, observe that if there is a connected component of size at least 3/ε then

there exists a sequence I such that AI holds. Since there are n1−ε couples there exists fewer than

(
n1−ε)3/ε = n3/ε−3

such possible sequences I. Therefore using a union bound over all of them proves the lemma.

Recall that we ignore all realizations of preferences at which two influence trees intersect more

than once (in particular there is at most a single edge between every two couples in the couples

graph). From now one we also ignore realizations where the largest weakly connected component

of the couples graph contains more than 3/ε couples.

Lemma 5 With probability 1−O
(

1
nε

)
the couples graph has no directed cycles.

Proof: We first prove the following claim, that is basically a simple general statement about

directed graphs:

Claim 1 If the shortest directed cycle has length k, it involves k different hospitals.

22

Proof: Suppose the shortest directed cycle is of length k and consider such a cycle c1 →

c2 → · · · → ck → c1. Suppose couples c1 and c2 intersect at h due to d1 and d2 respectively,

i.e. (h, d1) ∈ IT (c1, r), (h, d2) ∈ IT (c2, r) and (h, d2) ∈ IT (c2, r). Assume for contradiction

that for some 2 ≤ i ≤ k, ci and ci+1 (i is taken modulo k) intersect at hospital h due to some

doctors di and di+1, i.e. (h, di) ∈ IT (ci, r), (h, di+1) ∈ IT (ci+1, r) and di �h di+1. Consider

the case in which di �h d2. In this case a cycle of length less than k exists which consists of

c2 → c3 → · · · → ci → c2. If d2 �h di, i.e. either d2 �h di or d2 = di, then d1 �h d2 �h di �h di+1

implying that c1 → ci+1 → · · · → ck → c1 is a shorter cycle.

To prove the lemma it is sufficient to show that the probability that the shortest directed cycle

has length k is O
(
S(r)2k

nεk

)
since by taking the sum of these probabilities over all values of k gives

the result (note that the the dominant term in this sum is when k = 2).

We proceed in a manner similar to that of the proof of Lemma 4. Let I = (c1, c2, . . . , ck) be

a sequence of couples without repetitions ci 6= cj . Let J = (h1, h2, . . . , hk) be a sequence of k

hospitals without repetitions hi 6= hj . Let AI,J be the event that for every i = 1, . . . , k, IT (ci, r)

and IT (ci+1, r) intersect at hospital hi. Applying Lemma 2, and using reasoning similar to the

proof of Lemma 4 the probability of the event AI,J can be bounded by

Pr(AI,J) <
(2S(r) · γmax)2k

(λn/cmax)2k
.

Since there are ≤ λn positions and n1−ε couples, there are λknkn(1−ε)k such different events AI,J .

A union bound over all these events implies the lemma.

For the analysis we will consider the event that the couples graph contains a cycle as a failure.15

If the couples graph does not have cycles, then it has a topological sort. Let π denote any topological

sort of G. We claim that inserting the couples according to π will result in a stable matching with

couples. Moreover, we will show that a failure of the SoDA algorithm corresponds to a backward

edge in the couples graph.16

The next lemma shows that the influence trees indeed captures “real influences”.

Lemma 6 Suppose we insert the couples as in the SoDA algorithm according to some order π until

a couple evicts another couple or until all couples have been inserted. If a couple c is inserted and

influences hospital h , then h ∈ IT (c, r).

15The presence of a cycle does not necessarily imply that there is no stable matching. In fact the SoDA will often

find stable matchings even when there are cycles in the couples graph.
16A backward edge is an edge from a newly inserted couple to a previously inserted one.

23

Proof: Recall that we consider only “small” weakly connected components (Lemma 4 upper

bounded the probability that such a component is large). Let c be the couple currently being

inserted, and assume that the statement of the lemma was true for couples inserted before c.

Let {c1, . . . ck} be c’s weakly connected component in the couples graph, where k ≤ 3/ε, ordered

according to their insertion order in π. We prove by induction a stronger claim, namely that if

c = ci influenced a hospital h, then h ∈ IT (c, i− 1).

Suppose that c = ci is currently being inserted and that its insertion affects a hospital h.

Consider the path of evictions that was started by c and led to hospital h being affected. There

are two types of evictions along this path: the first type would have occurred even without any

other couples present. The second type occurs because a hospital h′ on the path has already been

affected by a previously inserted couple cj . If this happens, then the influence tree of c intersects

the influence tree of cj and thus cj in in the weakly connected component of c in the couples graph.

Moreover, since influence trees intersect only once, evictions due to influences from previously

inserted couples happen at most i − 1 times: at most once for each previously inserted couple in

the weakly connected component of c. By the definition of IT (c, i−1) this implies h ∈ IT (c, i−1).

As an immediate corollary of Lemma 6 we obtain that a couple causing another couple to be

evicted corresponds to an edge in the couples graph.

Corollary 7 If in an insertion order π inserting the couple cπ(i) causes the couple cπ(j) to be evicted

(j < i) then in the couples graph there is an edge from cπ(i) to cπ(j).

Since there exist a topological sort with a high probability Theorem 1 follows from the following

corollary:

Corollary 8 Inserting the couples according to any topologically sort π of the couples graph gives

a stable outcome.

Finally, we can now analyze the running time of (a slight modification of) the SoDA algorithm.

Note that with high probability we have that the couples graph has small connected components

(of size < 3/ε) and can be topologically sorted. According to Corollary 8 each failed iteration of

the SoDA algorithm is due to a backward edge in the insertion order π. By recording the backward

edge, and ensuring that all future attempts are consistent with it, we can guarantee that at most

24

(3/ε)2 · n1−ε permutations will be tried before either a topologically sorted order is arrived at, or a

cycle in the couples graph is found.17

5 Incentive Compatibility

In this section we will show that:

Theorem 9 Ex post truthfulness: The probability that any doctor can gain by misreporting her

preferences is at most O(n−ε/2), even if the doctor knows the entire preference list.

A similar result can be shown for hospitals, using similar techniques as in the proof of Theorem 9.

We avoid the exact details here. 18 Together with Theorem 9 we obtain that reporting truthfully

is a δ-Bayes Nash equilibrium in the Bayesian game induced by the SoDA algorithm (assuming

bounded utilities). We refer the reader for exact definitions of the Bayesian game to Kojima et al.

(2010).

Throughout this section we will use the same assumptions as in the previous section about the

influence trees. They hold except with probability O(n−ε/2). Informally, we will show that if a

doctor or a couple doesn’t interact with any other couple’s influence tree, then she does not have

an incentive to deviate. To this end we show:

Lemma 10 Let d ∈ S be any doctor. Suppose that the SoDA algorithm terminates and assigns d

to a hospital h in the first (Deferred Acceptance) stage of the algorithm. Suppose that h does not

belong to any of the couples’ influence trees. Then d may not improve her allocation under SoDA

by misrepresenting her preferences.

Similarly, if c ∈ C is a couple whose influence tree is disjoint from all other influence trees,

then c may not improve their allocation under SoDA by misrepresenting their preferences.

Proof: We start with the first statement. At the end of the execution of the first stage of the

SoDA algorithm d ends up in h. By Lemma 6, if d was moved from h, in the second stage, then

h must belong to the influence tree of one of the couples, contradicting the assumption. Hence at

the end of the SoDA algorithm d is still assigned the hospital h.

17It can be shown that the SoDA algorithm without this modification will run with at most (3/ε)3/ε ·n1−ε iterations.
18In particular one will need to define influence trees for hospitals, show that with high probability a hospital does

not encounter any couple, and (with a bit of effort) apply Lemma 10 in Kojima and Pathak (2009) which asserts the

desired result for hospitals in markets without couples.

25

Suppose that d misrepresents her preferences and obtains a hospital h′ such that h′ �d h in a

valid execution of the SoDA algorithm. It is well known that the outcome of the (regular) Deferred

Acceptance algorithm on singles does not depend on the insertion order. Hence we can execute the

SoDA algorithm so that d is the last single doctor to be inserted. Just before d is inserted, for all

doctors d′ that are assigned to h′, d′ �h′ d, otherwise d would have been assigned h′ when stating

her true preferences. From that point on, a valid execution of the SoDA algorithm does not lead

to any couples being evicted, and hence the quality of the least preferred doctor in h′ according

to �h′ may only improve. Hence d may not be assigned to h′ in the second phase of the SoDA

algorithm. Contradiction.

Next, let c = (f,m) be a couple such that IT (c, r) is disjoint from all other influence trees.

Suppose that c is assigned the hospitals (h1, h2) is a valid execution of the SoDA algorithm with

an ordering π on couples. Since IT (c, r) is disjoint from other influence trees, by Lemma 6 we see

that inserting the couples in the order π′ obtained from π by putting c first, leads to another valid

execution that results in the same allocation.

Suppose that c misrepresent their preferences and obtain the hospitals (h′1, h
′
2) �c (h1, h2) in a

valid execution of the SoDA algorithm. Note that the couple c was the first to be inserted under

π′ and did not get accepted into (h′1, h
′
2) because one of the hospital preferred all the doctors that

were assigned to it in the DA stage of the algorithm to the corresponding couple member. Without

loss of generality, assume that h′1 preferred all of its assigned doctors to f . As in the single doctor

case above, in the second phase of the SoDA algorithm the least preferred doctor according to �h′1
that is assigned to h′1 may only improve. Thus f may never be assigned to h′1. Contradiction.

Using Lemma 10 we can now prove Theorem 9.

Proof: (of Theorem 9). Fix any doctor d ∈ S and the hospital h it is assigned in the DA stage

of the SoDA algorithm. By an argument very similar to Lemma 2 we can show that the probability

that any influence tree contains h (or any other hospital in the influence tree of d) is bounded by

O(S(r)2/nε) < n−ε/2. By Lemma 10, if this is the case, d does not have an incentive to deviate.

Similarly, the probability of the influence trees of two couples intersecting is bounded by

O(S(r)2/n), and thus for each couple c, the probability that IT (c, r) is disjoint from all other

influence trees – and thus c has no incentive to deviate – is at least 1−O(S(r)2/nε) > 1−O(n−ε/2).

26

6 Simulations

In this section we provide simulations results using the SoDA algorithm . In particular we performed

sensitivity analysis on various parameters of the problem. For each configuration we ran 600 trials.

We assumed there are n
2 hospitals where n is the number of singles and each hospital has capacity

of 3.19

In the first simulation we fixed the percentage of couples in the market and found the success

rate of finding a stable matching. For comparison, in the NMRP match in 2010 the number of (U.S)

doctors was about 16,000 where as the number of couples was about 800.20 As Figure 3 shows that

the ratio of doctors that are members of couples plays a crucial role in the probability that a stable

match will be found. Note that although the number of singles grows (and the number of couples

is linear) the probability for finding a stable match appears to remain unchanged.

Figure 3: The success rate for finding a stable outcome given the number of singles (x-axis), for

different couples percentages (5% means that 10% of the doctors are members of couples).

Next we fixed ε, i.e. the number of couples is n1−ε. Figure 4 shows that the probability

for finding a stable match with SoDA increases and is roughly concave in the number of singles.

Observe that the rate of convergence is different for various ε’s.

In the next simulation (see Figure 5) we fixed the number of singles and the number of couples

to be 16,000 and 800 respectively as in the NMRP, and found the percentage of singles and couples

that get their k-th most preferred choice. We assumed that there is no fitness, i.e. preference

19The results can be slightly improved by randomizing a new insert order each time the algorithm fails (doing this

a small arbitrary number of times).
20In fact in the NRMP more than 20,000 doctors participate, but 16,000 are from the US and are ranked higher in

the match.

27

Figure 4: The success rate in finding a stable outcome given the number of singles (x-axis), where

the number of couples is n1−ε for three different ε’s.

distributions of both doctors and hospitals are uniform.

Figure 5: The histogram shows the percentage of singles and couples that got their k-th favorite

choice for each k = 1, . . . , 8.

In Figure 6 we provide the same histogram but adding fitness to hospitals; each hospital has

been assigned a score uniformly at random from the interval [0.2, 1]. To decide the next preference

of a doctor, she randomizes uniformly a hospital h and a number from [0.2, 1], and if h’s score is

below the number, the doctor resamples such a pair.

28

Figure 6: The histogram shows the percentage of singles and couples that got their k-th most

preferred choice for each k = 1, . . . , 8. Hospitals have a fitness score.

7 ‘Almost’ Linear is ‘Almost’ Necessary

In Section 4 we showed that the SoDA algorithm finds a stable matching with probability approach-

ing 1 as n tends to infinity assuming the number of couples is growing at a rate of n1−ε (for any

0 < ε < 1). In Section 6 we saw that when the number of couples is a constant fraction of the total

capacity, there is a constant probability of failure. One might suggest that the SoDA algorithm

does not search through enough permutations and if it fails there might still exist a stable match-

ing. We show however that a constant failure probability is necessary. We will make our point in

two different settings. For simplicity we will consider only uniformly distributed preferences and a

capacity of 1 for each hospital.

Theorem 11 Consider a random matching market with n couples and n singles, λn hospitals for

sufficiently large λ each of capacity 1, and preferences distributed uniformly. Then the probability

that there exists a permutation π of the couples such that if the couples are inserted according to π

no couple gets evicted is at most 1− δ for some δ > 0 that does not depend on n.21

We in fact show that for any variation of deferred acceptance, that is for any application

ordering over the couples and singles, a stable matching will not be found with constant probability.

This implies that the Roth-Peranson algorithm will also not find a stable matching in the setting

described in Theorem 11.

21The result is true also for αn couples for any constant α > 0.

29

Proof (of Theorem 11): Consider the following event E: there exist a couple c = (mc, fc) ∈ C,

a single doctor s ∈ S and two hospitals h1 6= h2 so that the most preferred pair of hospitals by c is

(h1, h2) and the following properties hold:

(i) h2 �s h1 �s h for any h /∈ {h1, h2}.

(ii) s �h1 mc.

(iii) fc �h2 s.

Observe that if only the couple c and the single doctor s existed no stable matching would exists.

The proof will follow by first bounding (from below) the probability of the event E and then

bounding (from above) the event that some other doctor except those in the event E ever applies

to either h1 or h2 under any insertion order π.

Fix a couple c ∈ C and a single s and let (h1, h2) be the most preferred pair of hospitals by c.

The probability that h1 6= h2, and properties (ii) and (iii) hold is δ > 1
2 ·

1
22

. The probability that

h1 6= h2 and properties (i)-(iii) hold is Ω
(
δ 1

(λn)2

)
= Ω

(
1
n2

)
. Therefore, since there are n couples

the probability that for a given single s there exist a couple c such that h1 6= h2 and properties

(i)-(iii) hold is Ω
(

1
n

)
. Therefore since there are n singles, the probability that there exist a single

s such that the event E holds is some constant γ > 0.

Suppose the event E occurs with the couple c′ and doctor s′ and let D′ = D \ {fc′ ,mc′ , s
′}.

Consider the following application/rejection algorithm:

Pessimistic DA: At each step t = 1, 2 . . . , either a single doctor s ∈ S or a couple c ∈ C that are

not temporarily assigned are chosen at random and apply to the most preferred hospital or pair of

hospitals on their list respectively that they haven’t applied so far. Each hospital temporarily assigns

a doctor d if and only if no other doctor is currently assigned to h and no other doctor applied at

this step to h. If some doctor d applies to h and some other doctor d′ is temporarily assigned to h,

h rejects both d and d′.22

We will first show that the probability that any doctor but fc′ ,mc′ and s′ ever applies to h1

or h2 in the Pessimistic DA process is bounded from above by a small constant. We will show a

stronger claim – no more than αn are visited in this process for some α < λ.

We say that a doctor is active if it is not temporarily assigned to any hospital h, and we say that

a hospital h is visited if some doctor applied to it during the above process. For every t = 0, 1, 2 . . . ,

22As usual if a member of a couple is rejected from some hospital, its other member is also rejected.

30

denote by At the number of active doctors at step t, by Vt the number of visited hospitals up to

step t, where A0 = 3n and V0 = 0. Let Yt = Vt+ 5At and consider the process Xt = Yt+ t for every

t = 0, . . . ,min(J,K), where K is the first step in which VK = λn
10 and J is the first step in which

AJ = 0.

Claim: X1, X2 . . . , is a super-martingale, that is for every t > 0, E[Xt+1|X1, . . . , Xt] ≤ Xt.

Proof: Suppose a couple c is chosen at step t. If it applies to two unvisited hospitals then

At+1 = At − 2. If c applies to an unvisited hospital and one visited hospital then At+1 ≤ At + 2

since at most one other couple becomes active, and if it applies to two visited hospitals then

At+1 ≤ At + 4 since at most 2 additional couples become active. For singles similar bounds can be

used. Let Qt be the event that at the beginning of step t a couple is chosen and Q̄t is the event

that a single is chosen (from At). Therefore since either a couple or a single are chosen at step t

E[Xt+1|X1, . . . , Xt, Qt+1] = E[Xt+1|Xt, Qt+1] ≤ (λn− Vt)2

(λn)2
(Vt + 2 + 5(At − 2)) +

(λn− Vt)Vt
(λn)2

(Vt + 1 + 5(At + 2)) +
V 2
t

(λn)2
(Vt + 5(At + 4)) + t+ 1 ≤ Vt + 5At + t,

where the last inequality holds for any Vt ≤ λn
10 . Similarly,

E[Xt+1|X1, . . . , Xt, Q̄t+1] = E[Xt+1|Xt, Q̄t+1] ≤ (λn− Vt)
λn

(Vt + 1 + 5(At − 1)) +

Vt
λn

(Vt + 5(At + 2)) + t+ 1 ≤ Vt + 5At + t.

Therefore since either a couple or a single are chosen at each step, we obtain that E[Xt+1|Xt] ≤

Vt + 5At + t. �

As argued in the claim |Xt+1 − Xt| < 22 for every t > 1. Therefore by Azuma-Hoeffding’s

inequality we obtain that for any T ≥ 1

Pr

(
VT − V0 ≥

λn

10

)
≤ Pr

(
XT −X0 ≥

λn

10
− 15n+ T

)
≤ e−

(λn10 −15n+T)2

968T < 1− β,

for some constant β > 0 and a sufficiently large λ, i.e. with constant probability the process will

never reach λn
10 visited hospitals.

So far we showed that in the Pessimistic DA process described above, the number of hospitals

visited is with constant probability only a fraction of the total hospitals will be visited, implying

that the doctors in the process (all but c′ and s′) will never visit h1 and h2.

31

Consider next the SoDA algorithm and let π be an arbitrary order of applications by singles

and couples, at which no couple is ever evicted. To complete the proof observe that if a hospital

is not visited in the Pessimistic DA process it is also not visited in the DA algorithm; indeed no

single doctor or a couple ever visit a hospital or pair of hospitals respectively less preferred to the

ones they visit under the Pessimistic process (this can be shown by a simple induction).�

Finally one can also show that with no excess of positions, even with one couple, a stable

matching need not exist.

Theorem 12 Consider a matching market with n − 1 singles, one couple c and n hospitals each

of capacity 1. Then there exist preferences for hospitals such that no stable matching exist for any

preferences of the doctors.

The proof follows by letting the preference of each hospital h be mc �h s �h fc for every single s.

Remark: Theorem 12 is our only result where we use the fact that preference lists are long.

8 Conclusion

We showed using the SoDA algorithm that if the number of couples grows at a rate of |Cn| = n1−ε,

then there exists a stable matching with probability approaching 1. One can argue that “in real

life” the number of couples is indeed a linear fraction of the number of doctors, and the rate

|Cn| = n1−ε does not make sense. However, our correctness proof is only a lower bound on the

performance of the algorithm, and it may perform much better in practice. Moreover, note that

if ε were equal to O(1/ log n), then the number of couples was a linear fraction of the number of

singles. In face, our proof shows that the random market has a stable matching with probability

at least 1 − (log n)O(1/ε)/nΩ(ε), which converges to 1 even if ε = Ω(log log n/
√

log n), and not just

when ε is constant.

This means that we proved that the algorithm finds a stable outcome with probability ap-

proaching 1 even when the number of couples grows like n/2
√

logn·log logn. Such growth is close

to linear. Empirically it is indeed hard to distinguish between such subpolynomial factors and

constant factors when there are n = 16, 000 doctors.

A few open problems that follow from this work are the following. We showed in Theorem 11

that under application order of the doctors the SoDA algorithm will not find a stable match with a

constant probability when the number of couples grows linearly. We conjecture that with constant

32

probability a stable matching does not exist at all. In Theorem 11 and its proof we used a large

excess number of hospitals to obtain the negative result. We do not expect that fewer hospitals will

improve the chances of obtaining a stable matching. This conjecture is somewhat supported by

Theorem 12. Figure 3 suggests when there are αn couples, the probability for the SoDA algorithm

to find a stable matching decreases with α. We conjecture that this is true in general, i.e. the

probability that there exist a stable matching (not necessarily found by SoDA) is decreasing with

α.

References

D. Gale and L. L. Shapley. College Admissions and the Stability of Marriage. American Mathe-

matical Monthly, 69:9–15, 1962.

F. Gul and E. Stacchetti. Walrasian Equilibrium with Gross Substitutes. Journal of Economic

Theory, 87:95–124, 1999.

J. W. Hatfield and S. D. Kominers. Many-to-Many Matching with Contracts. Working paper,

2009.

N. Immorlica and M. Mahdian. Marriage, Honesty, and Stability. In Proc. of the sixteenth annual

ACM-SIAM symposium on Discrete algorithms, pages 53–62, 2005.

B. Klaus and F. Klijn. Stable Matchings and Preferences of Couples. Journal of Economic Theory,

121:75–106, 2005.

B. Klaus, F. Klijn, and T. Nakamura. Corrigendum: Stable Matchings and Preferences of Couples.

Journal of Economic Theory, 144:2227–2233, 2009.

F. Kojima and P. A. Pathak. Incentives and Stability in Large Two-Sided Matching Markets.

American Economic Review, 99:608–627, 2009.

F. Kojima, P. Pathak, and A. E. Roth. Matching with Couples: Stability and Incentives in Large

Markets. Working paper, 2010.

S. Lahaie and D. C. Parkes. Fair Package Assignment. In Proceedings of the first Conference on

Auctions, Market Mechasnisms and their Applications, 2009.

33

P. R. Milgrom. Putting Auction Theory to Work. Cambridge: Cambridge University Press, 2004.

S. Ning and Z. Yang. Equilibria and Indivisibilities: Gross Substitutes and Complements. Econo-

metrica, 74:1385–1402, 2006.

M. Pycia. Stability and Preference Alignment in Matching and Coalition Formation. Working

paper, UCLA, 2010.

E. Ronn. NP-complete stable matching problems. J. Algorithms, 11:285–304, 1990.

A. E. Roth. The Evolution of the Labor Market for Medical Interns and Residents: A Case Study

in Game Theory. Journal of Political Economy, 92:991–1016, 1984.

A. E. Roth. The Origins, History, and Design of the Resident Match. The Origins, History, and

Design of the Resident Match,” Journal of the American Medical Association, 289:909–912, 2009.

A. E. Roth and E. Peranson. The Redesign of the Matching Market for American Physicians: Some

Engineering Aspects of Economic Design. American Economic Review, 89:748–780, 1999.

34

	Introduction
	Matching Markets with Couples
	Model
	A New Matching Algorithm for Matching Markets with Couples

	Large Matching Markets
	Stability
	Intuition and Proof Sketch
	Proof of Theorem 1

	Incentive Compatibility
	Simulations
	`Almost' Linear is `Almost' Necessary
	Conclusion

