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Rejecting H0 if it is true is called an error of the first kind. The probability for this
to occur is called the significance level of the test, α, which is often chosen to be equal
to some pre-specified value. It can also happen that H0 is false and the true hypothesis
is given by some alternative, H1. If H0 is accepted in such a case, this is called an
error of the second kind. The probability for this to occur, β, depends on the alternative
hypothesis, say, H1, and 1 − β is called the power of the test to reject H1.

In High Energy Physics the components of x might represent the measured properties
of candidate events, and the acceptance region is defined by the cuts that one imposes in
order to select events of a certain desired type. That is, H0 could represent the signal
hypothesis, and various alternatives, H1, H2, etc., could represent background processes.

Often rather than using the full data sample x it is convenient to define a test statistic,
t, which can be a single number or in any case a vector with fewer components than
x. Each hypothesis for the distribution of x will determine a distribution for t, and
the acceptance region in x-space will correspond to a specific range of values of t. In
constructing t one attempts to reduce the volume of data without losing the ability to
discriminate between different hypotheses.

In particle physics terminology, the probability to accept the signal hypothesis, H0,
is the selection efficiency, i.e., one minus the significance level. The efficiencies for the
various background processes are given by one minus the power. Often one tries to
construct a test to minimize the background efficiency for a given signal efficiency. The
Neyman–Pearson lemma states that this is done by defining the acceptance region such
that, for x in that region, the ratio of p.d.f.s for the hypotheses H0 and H1,

λ(x) =
f(x|H0)

f(x|H1)
, (32.26)

is greater than a given constant, the value of which is chosen to give the desired signal
efficiency. This is equivalent to the statement that (32.26) represents the test statistic
with which one may obtain the highest purity sample for a given signal efficiency. It can
be difficult in practice, however, to determine λ(x), since this requires knowledge of the
joint p.d.f.s f(x|H0) and f(x|H1). Instead, test statistics based on neural networks or
Fisher discriminants are often used (see [10]).

32.2.2. Goodness-of-fit tests :

Often one wants to quantify the level of agreement between the data and a hypothesis
without explicit reference to alternative hypotheses. This can be done by defining a
goodness-of-fit statistic, t, which is a function of the data whose value reflects in some
way the level of agreement between the data and the hypothesis. The user must decide
what values of the statistic correspond to better or worse levels of agreement with the
hypothesis in question; for many goodness-of-fit statistics there is an obvious choice.

The hypothesis in question, say, H0, will determine the p.d.f. g(t|H0) for the statistic.
The goodness-of-fit is quantified by giving the p-value, defined as the probability to find
t in the region of equal or lesser compatibility with H0 than the level of compatibility
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observed with the actual data. For example, if t is defined such that large values
correspond to poor agreement with the hypothesis, then the p-value would be

p =

∫
∞

tobs

g(t|H0) dt , (32.27)

where tobs is the value of the statistic obtained in the actual experiment. The p-value
should not be confused with the significance level of a test or the confidence level of a
confidence interval (Section 32.3), both of which are pre-specified constants.

The p-value is a function of the data and is therefore itself a random variable. If
the hypothesis used to compute the p-value is true, then for continuous data, p will be
uniformly distributed between zero and one. Note that the p-value is not the probability
for the hypothesis; in frequentist statistics this is not defined. Rather, the p-value is
the probability, under the assumption of a hypothesis H0, of obtaining data at least as
incompatible with H0 as the data actually observed.

When estimating parameters using the method of least squares, one obtains the
minimum value of the quantity χ2 (32.13), which can be used as a goodness-of-fit
statistic. It may also happen that no parameters are estimated from the data, but that
one simply wants to compare a histogram, e.g., a vector of Poisson distributed numbers
n = (n1, . . . , nN ), with a hypothesis for their expectation values νi = E[ni]. As the
distribution is Poisson with variances σ2

i = νi, the χ2 (32.13) becomes Pearson’s χ2

statistic,

χ2 =
N∑

i=1

(ni − νi)
2

νi
. (32.28)

If the hypothesis ν = (ν1, . . . , νN ) is correct and if the measured values ni in (32.28) are
sufficiently large (in practice, this will be a good approximation if all ni > 5), then the
χ2 statistic will follow the χ2 p.d.f. with the number of degrees of freedom equal to the
number of measurements N minus the number of fitted parameters. The same holds for
the minimized χ2 from Eq. (32.13) if the yi are Gaussian.

Alternatively one may fit parameters and evaluate goodness-of-fit by minimizing
−2 ln λ from Eq. (32.12). One finds that the distribution of this statistic approaches the
asymptotic limit faster than does Pearson’s χ2 and thus computing the p-value with the
χ2 p.d.f. will in general be better justified (see [9] and references therein).

Assuming the goodness-of-fit statistic follows a χ2 p.d.f., the p-value for the hypothesis
is then

p =

∫
∞

χ2
f(z; nd) dz , (32.29)

where f(z; nd) is the χ2 p.d.f. and nd is the appropriate number of degrees of freedom.
Values can be obtained from Fig. 32.1 or from the CERNLIB routine PROB. If the
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Figure 32.1: One minus the χ2 cumulative distribution, 1−F (χ2; n), for n degrees
of freedom. This gives the p-value for the χ2 goodness-of-fit test as well as one
minus the coverage probability for confidence regions (see Sec. 32.3.2.3).

conditions for using the χ2 p.d.f. do not hold, the statistic can still be defined as before,
but its p.d.f. must be determined by other means in order to obtain the p-value, e.g.,
using a Monte Carlo calculation.

If one finds a χ2 value much greater than nd and a correspondingly small p-value,
one may be tempted to expect a high degree of uncertainty for any fitted parameters.
Although this may be true for systematic errors in the parameters, it is not in general the
case for statistical uncertainties. If, for example, the error bars (or covariance matrix)
used in constructing the χ2 are underestimated, then this will lead to underestimated
statistical errors for the fitted parameters. But in such a case an estimate θ̂ can differ
from the true value θ by an amount much greater than its estimated statistical error.
The standard deviations of estimators that one finds from, say, equation (32.11) reflect
how widely the estimates would be distributed if one were to repeat the measurement
many times, assuming that the measurement errors used in the χ2 are also correct. They
do not include the systematic error which may result from an incorrect hypothesis or
incorrectly estimated measurement errors in the χ2.

Since the mean of the χ2 distribution is equal to nd, one expects in a “reasonable”
experiment to obtain χ2 ≈ nd. Hence the quantity χ2/nd is sometimes reported. Since
the p.d.f. of χ2/nd depends on nd, however, one must report nd as well in order to make
a meaningful statement. The p-values obtained for different values of χ2/nd are shown in
Fig. 32.2.
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