F_L and the Gluon Density

EIC meeting, April 6,7, MIT

A. Caldwell

Motivation

At small x, gluons physics dominates

In this region, far from initial conditions: universal properties?

Fundamental aspect of QCD. F_L good probe of this physics.

Proton Structure

Q² dependence in agreement with the expectations of perturbative QCD (famous Dokshitzer, Gribov, Lipatov, Altarelli, Parisi evolution equations).

DGLAP

$$\frac{\partial F_2}{\partial \ln Q^2}\bigg|_x = \frac{\alpha_S(Q^2)}{2\pi} \begin{bmatrix} \int_x^1 \frac{dz}{z} \left(\frac{x}{z}\right) P_{qq} \left(\frac{x}{z}\right) F_2(z, Q^2) + \\ \int_x^1 2\sum_q e_q^2 \frac{dz}{z} \left(\frac{x}{z}\right) P_{qg} \left(\frac{x}{z}\right) zg(z, Q^2) \end{bmatrix}$$

Proton Structure

Proton Structure

BUT:

- many free parameters (18-30) (DGLAP only knows how parton densities evolve in Q²)
- form of parametrization fixed by hand (not given by theory)
- Fits don't agree at small-x! In particular, large uncertainty in gluons
- parametrizations should not be extended beyond measurement range in x

(divergence at fixed small-x larger at low Q², smaller at high Q²)

$$F_{L}$$

Need better data to test whether our parton densities are reasonable. The structure function F_L will provide an important test.

negligible at small Q^2

$$\frac{d^2\sigma(e^{\mp}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ F_2(x,Q^2) - y^2 F_L(x,Q^2) \pm Y_- x F_3(x,Q^2) \right]$$

$$Y_{\pm} = \left(1 \pm (1 - y)^2\right)$$

Need two beam energies to measure F_I

Feasure
$$F_L$$

$$F_L = \left(\frac{Q^2}{4\pi^2\alpha}\right)\sigma_L$$

$$F_L = \frac{\alpha_S}{4\pi}x^2\int_{r}^{1}\frac{dz}{z^3}\left[\frac{16}{3}F_2 + 8\sum_{q}e_q^2(1-\frac{x}{z})zg\right]$$

Directly sensitive to xg at small-x

Measuring F_L

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ F_2(x, Q^2) - y^2 F_L(x, Q^2) \right]$$

Small Q², ignore F₃

$$Y_{+} = \left(1 + (1 - y)^{2}\right)$$

$$\sigma_r = \left(\frac{2\pi\alpha^2 Y_+}{xQ^4}\right)^{-1} \frac{d^2\sigma}{dxdQ^2} = \left[F_2(x, Q^2) - \frac{y^2}{Y_+}F_L(x, Q^2)\right]$$

$$F_L(x,Q^2) = \frac{\sigma_r(x,Q^2,y_1) - \sigma_r(x,Q^2,y_2)}{f(y_2) - f(y_1)}$$

$$f(y) = \frac{y^2}{Y_+}$$

For best sensitivity, maximize lever arm (y-range)

Measuring F_L

HERA Kinematics

Need to go to lowest possible scattered electron energy:

- lower E_P rather than E_e
- trigger efficiency
- electron finder efficiency
- electron finder purity (photoproduction background, wrong candidate)

Measuring F_L

HERA Kinematics

Low Energy Run

The HERA low energy has started and is planned to continue until 2 July, 2007 at 10:00AM. Expect ≈10 pb⁻¹ of data.

 F_{l}

The F_L measurement at HERA will serve primarily as a check of the gluon distributions extracted using the DGLAP fits

CTEQ5D	R=0.25
MRST2002(LO)	0.30
MRST2004(NLO)	0.18
MRST2004(NNLO)	0.18

Predictions for F_L

 F_L predictions from MRST group at different orders in DGLAP, a fit which resums the leading $\ln(1/x)$ and β_0 terms, and a dipole type model. Very large differences at small Q^2 where gluon uncertainty large.

F_I: EIC & other Measurements

EIC is in an optimal energy range to extract F_L via cross section comparisons to previous experiments.

F_L from EIC, HERA comparison

$$F_L(x,Q^2) = \frac{\sigma_r(x,Q^2,y_1) - \sigma_r(x,Q^2,y_2)}{f(y_2) - f(y_1)} \qquad f(y) = \frac{y^2}{Y_+}$$

$$\delta F_L \approx \left[\delta \sigma_r(y_1) \oplus \delta \sigma_r(y_2)\right] \cdot F_L \cdot \left[\frac{1+R}{Ry_1^2}\right]$$
 where y_1 is the larger y

$$R = \frac{F_L}{F_2 - F_L}$$

Assumptions:

$$E_e$$
=20, 10 GeV E_p =250,200 GeV

2% cross section measurement precision

F₁ from EIC, HERA comparison

Summary

- F_L is important in really understanding the parton densities at small-x
- The EIC is in a great kinematic position to give F_L measurements over a wide kinematic range
- Measurements will be possible with EIC alone, and from comparisons of cross sections EIC with existing measurements