The Gluon Contribution to the Nucleon Spin

Antje Bruell, Jlab EIC meeting, MIT, April 7 2007

- Introduction
- ΔG from scaling violations of $g_1(x,Q^2)$
- The Bjorken Sum Rule
- $\bullet \Delta G$ from charm production

World Data on F2^p Structure Function

Next-to-Leading-Order (NLO) perturbative QCD (DGLAP) fits

4 orders of magnitude in x and Q2

World Data on g₁^p

ΔG from scaling violations of g_1

• Bjorken's sum rule

$$\int_{0}^{1} \mathrm{d}x \, g_{1}^{ep-en}(x,Q^{2}) = \frac{1}{6} \underbrace{g_{A}}{g_{V}} \left\{ 1 - \frac{\alpha_{s}(Q^{2})}{\pi} - \frac{43}{12} \frac{\alpha_{s}^{2}(Q^{2})}{\pi^{2}} - 20.215 \frac{\alpha_{s}^{3}(Q^{2})}{\pi^{3}} \right\}$$

high-order perturbation theory

$$+\frac{M^2}{Q^2}\int_0^1 x^2 \,\mathrm{d}x \left\{\frac{2}{9}g_1^{ep-en}(x,Q^2) + \frac{1}{6}g_2^{ep-en}(x,Q^2)\right\}$$

target-mass corrections

$$-rac{1}{Q^2}rac{4}{27}\mathcal{F}^{u-d}(Q^2)$$
 Twist-4 matrix elements $\sim \left\langle ar{q} ilde{F}q
ight
angle$

• Precision QCD. Currently tested at ~10%. Can it be tested at ~1 or 2% ?

1

10

O [GeV]

100

constrained by data and lattice QCD

 \cdot 3-4% precision at various values of Q^2

LO QCD: asymmetry in D production directly proportional to Δ G/G

problems: luminosity, charm cross section, background !

starting assumptions for EIC:

- vertex separation of 100μm
- full angular coverage (3<Θ<177 degrees)
- perfect particle identification for pions and kaons (over full momentum range)
- detection of low momenta particles (p>0.5 GeV)
- measurement of scattered electron

(even at very small scattering angles)

• 100% efficiency

very demanding detector requirements !

Background suppression:

Separation of primary and secondary vertex absolutely essential !

Pion/kaon separation very helpful !

invariant mass of K π system

Precise determination of Δ G/G for 0.003 < x_g < 0.4

at common Q² of 10 GeV²

<u>|f:</u>

- We can measure the scattered electron even at angles close to 0⁰ (determination of photon kinematics)
- \bullet We can separate the primary and secondary vertex down to about 100 μm
- We understand the fragmentation of charm quarks (✔)
- We can control the contributions of resolved photons
- We can calculate higher order QCD corrections (✔)

charm production: detector consequences

- Need to measure the scattered electron at angles close to $0^0 \rightarrow how$? • Need to separate the primary and secondary vertex down to about 100 µm \rightarrow how to determine the primary vertex ?
- For charm decay products need to instrument only \pm 15-20⁰ around proton direction
- Simple set of silicon disks might be sufficient for vertex detection
- Momenta of decay products between 1.5 and 10(15) GeV

charm production: influence of fragmentation

Future: Polarized gluon distribution from RHIC

Future: Polarized gluon distribution from RHIC

Future: Polarized gluon distribution from RHIC

Future: $x \Delta g(x, Q^2)$ from RHIC and EIC

Polarized gluon distribution vs Q²

Next Steps

• determine sensitivity of g_1 to different "realistic" models for ΔG (including different functional forms !)

• generate pseudo EIC data and include in full QCD fit procedure (including estimates of systematic uncertainties !)

 \bullet determine precision of Bjorken Sum measurement as function of Q^2 (including extrapolations)

- study fragmentation in charm production
- include other charm decay channels (including D* tagging)
- get first estimates of systematic uncertainties

 specify more clearly detector requirements for different processes

Summary

EIC is the ideal machine to finally determine the contribution of the gluons to the nucleon spin!

- measurements of g_1 will allow
 - \succ a determination of $\Delta G/G$ from its scaling violation

➤ a statistically very precise determination of the Bjorken Sum (systematics due to uncertainty in proton beam polarization ???)

• measurements of charm cross section asymmetries will provide a precise determination of $\Delta G/G$ for 0.003<x<0.5 at a fixed value of Q² of ~10 GeV²

- provided we can
 - measure the scattered electron at extremely small angles
 - separate the primary and secondary vertex with sufficient precision
 - control the contribution of resolved photons
- more work needed to define the necessary detector requirements !