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Outline

• Effective Field Theory, QED, Hydrogen

•

•

Soft-Collinear Effective Theory & Energetic Particles

• Outlook

αs(µ)•  Introduction to QCD, 

Weak Decays of B mesons
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Introduction to QED

Special Relativity:
Quantum Mechanics:

spacetime,  v ≤ c

quantization,  ∆x∆p ≥ h̄

2
QED {

antiparticles,  spin,  gauge-theory

Interactions

V = −e2

r
V = +

e2

r

two factors of the coupling

e-

e-
!

e-

e+

!

e-

e+ ! e-

e+

!
pair

annihilation
pair 

creation

parameters:  charge & masses

(quantum electromagnetism)
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Strong WeakElectromagnetism

(leave out gravity and the higgs)

QCD QED
mediator: gluons photons W±, Z0

typical 
strength:

range:

∼ 1 ∼ 10−2 ∼ 10−6

∼ 1 fm ∞

The Standard Model Interactions

1
mW

→ ∼ 10−3 fm

proton

+ -!E

!B

n→ peν̄
radioactive

decay

,

Other forces can (in principle) 
be derived from these

W

b c
W

e

!
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  Quantum 

Field Theory

 String

Theory?

 General

Relativity

  Special

Relativity  Quantum

 Mechanics

  Classical

 Mechanics

       Classical

    Electricity &

     Magnetism

 Newtonian

    Gravity

quantum gravity
short distance

long distance

electroweak

QCD & quarks
nuclei

atoms
chemistry
us

eg.

Physics compartmentalized
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  Quantum 

Field Theory

 String

Theory?

 General

Relativity

  Special

Relativity  Quantum

 Mechanics

  Classical

 Mechanics

       Classical

    Electricity &

     Magnetism

 Newtonian

    Gravity

quantum gravity
short distance

long distance

electroweak

QCD & quarks
nuclei

atoms
chemistry
us

eg.

Physics compartmentalized

But, one doesn’t need 
nuclear physics to build a boat

Generality 
vs. 

Precision
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Dynamics at long distance does not depend on the 
details of what happens at short distance

In the quantum realm,               , wavelength and momentum 
are related, so

λ ∼
1

p

Low energy interactions do not depend on
 the details of high energy interactions

•

Good:
we can focus on the 
relevant interactions &
degrees of freedom

• calculations are simpler

•

Bad:
we have to work harder to probe the interesting physics at 

short distances
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Dynamics at long distance does not depend on the 
details of what happens at short distance

In the quantum realm,               , wavelength and momentum 
are related, so

λ ∼
1

p

Low energy interactions do not depend on
 the details of high energy interactions

•

Good:
we can focus on the 
relevant interactions &
degrees of freedom

• calculations are simpler

•

Bad:
we have to work harder to probe the interesting physics at 

short distances
Newton didn’t need quantum gravity
for projectile motion

Phew!
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Example: 

parameters: me

α =
1

137

Qe Qp

mass
charges

coupling

non-relativistic quantum mechanics

,

proton
e-

scales: mp = 938 MeV
me = 0.511 MeV

p ∼ meα = 3.7 keV

En = −meα2

2n2
= −13.6 eV

n2

∼ (aBohr)−1

→ ∞

Hydrogen

degrees of 
freedom:
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Example: 

parameters: me

α =
1

137

Qe Qp

mass
charges

coupling

non-relativistic quantum mechanics

,

proton
e-

scales: mp = 938 MeV
me = 0.511 MeV

p ∼ meα = 3.7 keV

En = −meα2

2n2
= −13.6 eV

n2

∼ (aBohr)−1

→ ∞

Hydrogen

degrees of 
freedom:

Why not quarks?  QCD?  b-quark charge?        ?    weak force?
                     ?    spin?

e
+

mproton
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Example: 

parameters: me
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137

Qe Qp

mass
charges

coupling

non-relativistic quantum mechanics

,

proton
e-

scales: mp = 938 MeV
me = 0.511 MeV

p ∼ meα = 3.7 keV

En = −meα2

2n2
= −13.6 eV

n2

∼ (aBohr)−1

→ ∞

Hydrogen

degrees of 
freedom:

Why not quarks?  QCD?  b-quark charge?        ?    weak force?
                     ?    spin?

e
+

mproton

+ corrections
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expand in 
me

mp

α
p

me

, ,

QED

NRQED

short distance theory 
is more general

long distance theory where 
its easier to compute

Effective Field Theory Idea 

H = H0 +

∞∑

m=1

ε
m

Hm

exact answer is irrelevant, work to 
the desired level of precision 

Nonrelativistic
Quantum 
Mechanics
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expand in 
me

mp

α
p

me

, ,

QED

NRQED

short distance theory 
is more general

long distance theory where 
its easier to compute

Effective Field Theory Idea 

H = H0 +

∞∑

m=1

ε
m

Hm

exact answer is irrelevant, work to 
the desired level of precision 

Degrees of freedom can change

e
+

→ e
+no

QCD, quarks → proton

Comments:
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expand in 
me

mp

α
p

me

, ,

QED

NRQED

short distance theory 
is more general

long distance theory where 
its easier to compute

Effective Field Theory Idea 

H = H0 +

∞∑

m=1

ε
m

Hm

exact answer is irrelevant, work to 
the desired level of precision 

Symmetries of QED constrain the form of NRQED

Charge conjugation (                     )  
Parity (                   )
Time-Reversal (                  )

e
+
↔ e

−

!x → −!x

t → −t

Spin-Statistics Theorem 

constrain the
Hm ’s

Comments:
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nLJ

F = J + Sp

Bohr

Effective Field Theory for 
Non-relativistic bound states

NRQED

∼ meα
2

2S

1S

2P

... spectrum
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nLJ

F = J + Sp

Bohr

Effective Field Theory for 
Non-relativistic bound states

NRQED

∼ meα
2

...
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nLJ

F = J + Sp

Bohr

Effective Field Theory for 
Non-relativistic bound states

NRQED

∼ meα
2

...
fine structure ∼ meα

4
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nLJ

F = J + Sp

Bohr

Effective Field Theory for 
Non-relativistic bound states

NRQED

Lamb shift parameters
fixed by

QED
∼ meα

5 ln(α)

∼ meα
2

...
fine structure ∼ meα

4
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nLJ

F = J + Sp

Bohr

Effective Field Theory for 
Non-relativistic bound states

NRQED

Lamb shift parameters
fixed by

QED
∼ meα

5 ln(α)

∼ meα
2

...
fine structure ∼ meα

4

hyperfine splitting

QCD

hyperfine

hyperfine

∼

m
2
e

mp

µeµp α
4
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QED: µe

Relativity: p
4

8m3
e

+ . . .

!L ·
!S,

, . . . (coefficients determined by                )α , me

Compute the         by  “Matching”Hm

H = H0 +

∞∑

m=1

ε
m

Hm

QED

NRQED
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What about quarks?
u

ud
Qu = +2/3

Qd = −1/3

size
low momentum photons do 

not resolve the quarks,
they see the proton charge

∼ 1 fm→ 200 MeV ! pγ

couplings change too: Qu,d → QpWhen matching
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short distance long distance

This is just an application of the multipole expansion, 
familiar from electromagnetism:

V(!r) =
1
r

∫
ρ d3r′ +

1
r2

∫
r′cosθρ d3r′ + . . .}

total
charge

200 MeV! pγ ⇔ r′ # r

r'
r

−1

+1

+1

keV
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What about quarks?
u

ud
Qu = +2/3

Qd = −1/3

size
low momentum photons do 

not resolve the quarks,
they see the proton charge

∼ 1 fm→ 200 MeV ! pγ

couplings change too: Qu,d → QpWhen matching

other parameters: mp, µp , . . .

in principle fixed by QCD, but it is more 
accurate to use experimental measurements

measure a parameter in one place, then use it in others!

universality=
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Resolution
µ

Resolution
Resolution

Resolution

Resolution

Resolution
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e-

e+

! !Vacuum Polarization

- -+

-+
-

+

- +

-
+

- + - +

-+

α(E) =
α(0)

1− α(0)
3π ln

(
E2

m2
e

)

at larger energy E, we 
probe shorter distances 
and see a larger charge

like a dielectric,
gives screening

α =
e2

4π

0.1 1.0 10 100 1000

135.5

136.0

136.5

137
1

α

coupling is
renormalized

resolution µ = E

E (MeV )

hydrogen

µ
d

dµ
α(µ) =

2

3π
α2(µ)

E = me
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Long  versus  Short  Distance

γ γ
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Lamb Shift in NRQED

 i)  effective potentials 
(short distance)  

ii)  radiation in the bound 
state (long distance)

!soft

Two parts: 

Separate quark momenta Luke et al.

p index

continuous

like in HQET

Georgi (’90)

mv

mv
2

p

k

Interactions

4 quark operators:

p p!

-p -p!

δEn =

[

4α2

3m2
e

|ψn(0)|2 ln
( µ

me

)

+. . .

]

+

[

1

m2
e

∑

k !=n

|〈n|p̂|k〉|2(Ek−En) ln
( µ

|En − Ek|

)

+. . .

]

dependence cancels, but allows us to give separate meaning to 
the two pieces

µ
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Lamb Shift in NRQED

 i)  effective potentials 
(short distance)  

ii)  radiation in the bound 
state (long distance)

!soft

Two parts: 

Separate quark momenta Luke et al.

p index

continuous

like in HQET

Georgi (’90)

mv

mv
2

p

k

Interactions

4 quark operators:

p p!

-p -p!

δEn =

[

4α2

3m2
e

|ψn(0)|2 ln
( µ

me

)

+. . .

]

+

[

1

m2
e

∑

k !=n

|〈n|p̂|k〉|2(Ek−En) ln
( µ

|En − Ek|

)

+. . .

]

dependence cancels, but allows us to give separate meaning to 
the two pieces

History:
1947  Bethe computed ii),  with 

large log:
•

•

∼ ln
(

me

meα
2

)

= −2 ln(α)

µ = me

1949
Lamb & Kroll
French & Weisskopf

(Feynman, Schwinger)

µ
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Lamb Shift in NRQED

 i)  effective potentials 
(short distance)  

ii)  radiation in the bound 
state (long distance)

!soft

Two parts: 

Separate quark momenta Luke et al.

p index

continuous

like in HQET

Georgi (’90)

mv

mv
2

p

k

Interactions

4 quark operators:

p p!

-p -p!

δEn =

[

4α2

3m2
e

|ψn(0)|2 ln
( µ

me

)

+. . .

]

+

[

1

m2
e

∑

k !=n

|〈n|p̂|k〉|2(Ek−En) ln
( µ

|En − Ek|

)

+. . .

]

dependence cancels, but allows us to give separate meaning to 
the two pieces

History:
1947  Bethe computed ii),  with 

large log:
•

•

∼ ln
(

me

meα
2

)

= −2 ln(α)

µ = me

1949
Lamb & Kroll
French & Weisskopf

(Feynman, Schwinger)

µ

1058 MHz

close to the
              answer

computed i) in QED and 
combined with ii)

∆E(2S−2P ) = 1040 MHz

∆E(2S−2P ) = 1051 MHz
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Correction Observable System Comparison
α8 ln3 α Lamb shift H agrees∗

µ+e−, e+e− new
(no h.f.s., no ∆Γ/Γ)

α7 ln2 α h.f.s. H, µ+e−, e+e− agrees
Lamb shift H, µ+e−, e+e− agrees

α3 ln2 α ∆Γ/Γ e+e− ortho and para agrees

α6 lnα Lamb shift H, µ+e−, e+e− agrees
h.f.s. H, µ+e−, e+e− agrees

α2 lnα ∆Γ/Γ e+e− ortho and para agrees

α5 lnα Lamb shift H, µ+e−, e+e− agrees

LO anomalous dimension: 

NLO anomalous dimension: 
α

4(α lnα)k

α
5(α lnα)k

stops at

stops at
k = 1

k = 3

}

all from
one 

equation

The structure of QED logs can be derived from a 
non-relativistic renormalization group

Rothstein, I.S.
energy resolution

momentum resolutionE =
p2

2m

µE

µp

µE ∼

µ
2
p

m

Luke, Manohar,
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The structure of QED logs can be derived from a 
non-relativistic renormalization group

Rothstein, I.S.
energy resolution

momentum resolutionE =
p2

2m

µE

µp

µE ∼

µ
2
p

m

Expt.(MHz) Theory(MHz) Agree?
H Lamb 1057.845(9) 1057.85(1) < r2

p >

h.f.s 1420.405751768(1) 1420.399(2) GE , GM

µ+e− h.f.s 4463.30278(5) 4463.30288(55) me/mµ

e+e− Lamb 13012.4(1) 13012.41(8) agree

h.f.s 203389.10(74) 203391.70(50) 3σ
Γpara 7990.9(1.7) µs−1 7989.62(4) µs−1 agree
Γortho 7.0404(13) µs−1 7.03996(2) µs−1 agree

NRQED  methods are also used for the non-logarithmic terms

Luke, Manohar,
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The ideas we’ve discussed in QED:

resolution  µ

expansions, multiple scales
universality

changes in degrees of freedom  &  couplings

become even more crucial for QCD

•

•

•

•
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QCD Interactions are more complicated than QED:

q q

g
g

gg

g

gg

g

strong coupling: αs(µ) = g(µ)2

4π
g(µ)

these interactions 
involve the same 
coupling (gauge 

symmetry)

Vacuum response?

gluons have spin, carry color charge
behave like a permanent magnet
anti-screen the charge

< 0β(g) = µ
d

dµ
g(µ) = −g(µ)3

16π2

(
11− 2

3
nf

)
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Nobel Prize, 2004

Gross,         Politzer,      Wilczek

αs(µ) =
g(µ)2

4π
β(g) = µ

d

dµ
g(µ) < 0slope is negative

In QCD, the coupling ,            ,  behaves in the opposite way to 
QED,  it gets weaker at short distances

S.Bethke

g(µ)

Asymptotic freedom 
large             ,                  

Infrared slavery 
µ = Q

large change in the value

free quarkssmall αs ,

as µ = Q approaches a few
100 MeV (r → 1 fm), the
coupling gets large
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Mesons
q

qq
Baryonsq

qπ, K, ρ, . . . p, n, Σ, ∆, . . .

coupling gets so strong that quarks never escape unless they form 
a color singlet (bound) state with other quarks, ie. they are 
confined

 an expansion in αs(µ < 1 GeV) is no good 

degrees of freedom change
r = Λ

−1
QCD
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Mesons
q

qq
Baryonsq

qπ, K, ρ, . . . p, n, Σ, ∆, . . .

coupling gets so strong that quarks never escape unless they form 
a color singlet (bound) state with other quarks, ie. they are 
confined

 an expansion in αs(µ < 1 GeV) is no good 

degrees of freedom change
r = Λ

−1
QCD

QCDtop quark

jets
nuclear 
forces

perturbative 
QCD

NRQCDcc states

spectrum

pions finite T
finite 

density
energetic
hadrons

bd statesHQET

SCET

SCET

NNEFT

HDET

ChPT HTL

unstable
particles
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Mesons
q

qq
Baryonsq

qπ, K, ρ, . . . p, n, Σ, ∆, . . .

coupling gets so strong that quarks never escape unless they form 
a color singlet (bound) state with other quarks, ie. they are 
confined

 an expansion in αs(µ < 1 GeV) is no good 

degrees of freedom change
r = Λ

−1
QCD

QCDtop quark

jets
nuclear 
forces

perturbative 
QCD

NRQCDcc states

spectrum

pions finite T
finite 

density
energetic
hadrons

bd statesHQET

SCET

SCET

NNEFT

HDET

ChPT HTL

unstable
particles

* Lattice
QCD

*

**

* *

*
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mW

?

mb

ΛQCD

mc

ms

mu,d

, mt
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mW

?

mb

ΛQCD

mc

ms

mu,d

, mt

Is there a “Hydrogen Atom” for QCD?
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mW

?

mb

ΛQCD

mc

ms

mu,d

, mt

Is there a “Hydrogen Atom” for QCD?

candidates: i)  top quarks:  t t
ii)  proton

iii)  B mesons
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mW

?

mb

ΛQCD

mc

ms

mu,d

e
+
e
−

→ tt̄

Nonrelativistic 
QCD bound states?

Γt = 1.4 GeV ! ΛQCD

top decays before it hadronizes

346 347 348 349 350 351 352 353 354
s GeV

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Q
t2 R

v

a

LO, NLO, NNLO

expansion in

vary
µ

pt

Et

mt ∼ 175 GeV

∼ 25 GeV

∼ 4 GeV

Coulombic, 

µ = mt, pt, Et?

αs(µ) :

cr
os

s s
ec

tio
n

t
t̄

LO + NLO + NNLO + . . .
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mW

?

mb

ΛQCD

mc

ms

mu,d

e
+
e
−

→ tt̄

Γt = 1.4 GeV ! ΛQCD

top decays before it hadronizes

346 347 348 349 350 351 352 353 354
s GeV

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Q
t2 R

v

b

LL, NLL, NNLL

Hoang, Manohar, 
I.S., Teubner

vary
µ

mt, yt,Γt

pt

Et

mt

cr
os

s s
ec

tio
n

t
t̄

µ
d

dµ
Ci(µ) = . . .Determine the 

right scales 

Nonrelativistic 
QCD bound states?
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mW

?

mb

ΛQCD

mc

ms

mu,d

e−p → e−X

A factorization theorem

analogy:  Bragg scattering of 
X-rays on a crystal, for this

time scale the atoms are at rest

Q

Deep Inelastic Scattering
on a proton

short distance process universal 
nonperturbative 

function

p

!~p 22

~p2 Q2

X

"

e-
e-

*

p2
∼ Q2

p
2
∼ Λ

2
QCD
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mW

?

mb

ΛQCD

mc

ms

mu,d

b

B-meson mb ! ΛQCD

Decay by weak interactions;  long lived

Isgur & Wise
heavy quark symmetry

E

The B is heavy, so many of its decay products 
are energetic,

Precision studies are sensitive to scales > mW

E
32Wednesday, October 22, 2008



mW

?

mb

ΛQCD

mc

ms

mu,d

b

B-meson mb ! ΛQCD

Decay by weak interactions;  long lived

Isgur & Wise
heavy quark symmetry

B → Xsγ

B → Dπ

B → π"ν̄

B → ππB → ρρ

B → Kπ

B → K∗γ
B → ργ

B → Xu!ν̄

B → D∗η′
B → γ"ν̄

E

The B is heavy, so many of its decay products 
are energetic,

Precision studies are sensitive to scales > mW

E
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QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

1) Short Distance
µ = mW # 80

Iain Stewart – p.8

µ = mW ! 80 GeV

QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

1) Short Distance
µ = mW # 80

Iain Stewart – p.8

gluons perturbative
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eg. B → D e ν̄, M2
W " m2

b " Λ2
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Iain Stewart – p.8
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QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

1) Short Distance
µ = mW # 80

Iain Stewart – p.8

QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

2) Intermediate Distance
µ = mb, mc

Iain Stewart – p.8

QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

2) Intermediate Distance
µ = mb, mc

Iain Stewart – p.8

µ = mb ! 5 GeV
gluons perturbative
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QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

1) Short Distance
µ = mW # 80

Iain Stewart – p.8
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QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

1) Short Distance
µ = mW # 80

Iain Stewart – p.8

QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

3) Long Distance
µ # Λ

Iain Stewart – p.8

QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

3) Long Distance
µ # Λ

Iain Stewart – p.8

µ = Λ ! 0.5 GeV
gluons nonperturbative
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QCD for B-Decays

eg. B → D e ν̄, M2
W " m2

b " Λ2

1) Short Distance
µ = mW # 80

Iain Stewart – p.8
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QCD for B-Decays

eg. B → D e ν̄, M2
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b " Λ2

Effective Field Theory:

• Technique by which we match these pictures together in a
refineable way (so no information is loss)

• At each µ we capture most important physics

! degrees of freedom

! symmetries, relevant interactions

• expansion parameters

m2
b

m2
W

∼ 1
250

,
Λ
mb

∼ 1
10

,
Λ
mc

∼ 1
3
or

1
6

Some processes need more input from QCD than others

Iain Stewart – p.8

Each of these pictures can be described by a field theory
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! symmetries, relevant interactions
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m2
b

m2
W

∼ 1
250

,
Λ
mb

∼ 1
10

,
Λ
mc

∼ 1
3
or

1
6

Some processes need more input from QCD than others

Iain Stewart – p.8

These theories can be matched together

m2
b

m2
W

! 1
250

, αs(mb) ! 0.2,
Λ
mb

! 0.1expansion
parameters

At each     we capture the most important physicsµ

H1 → H2 → H3 → H4
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Soft - Collinear Effective Theory
Bauer, Pirjol, I.S.

Fleming, Luke 

E ! ΛQCD

An effective field theory for energetic hadrons & jets

Analogy:
QED  Quantum Mechanics (NRQED)
QCD SCET

34Wednesday, October 22, 2008



eg. B! !

Eπ = 2.6 GeV ! ΛQCD ∼ 0.3 GeV

B

B has Soft

constituents:

p
µ

s ∼ ΛQCD

mB = 2Eπ

Soft Collinear Effective Theory  (SCET)
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Soft Collinear Effective Theory  (SCET)
eg.

n
µ

!

B! !

has Collinear constituents:π

p
⊥
c
∼ ΛQCD

Eπ = 2.6 GeV ! ΛQCD ∼ 0.3 GeV mB = 2Eπ

plongitudinal
c ∼ mB
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Soft Collinear Effective Theory  (SCET)
eg.

n
µ

!

B! !

has Collinear constituents:π

p
⊥
c
∼ ΛQCD

Eπ = 2.6 GeV ! ΛQCD ∼ 0.3 GeV mB = 2Eπ

plongitudinal
c ∼ mB

or  replace     by a jetπ
n
µ

X of many hadrons

ΛQCD ! p⊥c ! mB
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Soft Collinear Effective Theory  (SCET)
eg.

n
µ
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has Collinear constituents:π
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⊥
c
∼ ΛQCD

π
π
π
π
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eg. B! !

Soft

ΛQCD

Qnµ + O(ΛQCD)

A field theory for
& Collinear

interactions

Eπ = 2.6 GeV ! ΛQCD ∼ 0.3 GeV mB = 2Eπ

organizes the interactions 
  in a series expansion in ΛQCD

E

(analog of the non-relativistic
expansion in Q.M.)

Soft Collinear Effective Theory  (SCET)

n
µ

!

decoupling
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SCET  is a field theory which:
• explains how these degrees of 

freedom communicate with each 
other, and with hard interactions

F1(x,Q2) =
1
x

∫ 1

x
dξ H(ξ/x,Q, µ) fi/p(ξ, µ)

p+

cn

0
0

u

h
ard

!2

2

p-

Q

!Q
0

cn

!Q !Q
0
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SCET  is a field theory which:
• explains how these degrees of 

freedom communicate with each 
other, and with hard interactions

p+

cn

0
0

u

h
ard

!2

2

p-

Q

!Q
0

cn

!Q !Q
0

communicate by integrals

F1(x,Q2) =
1
x

∫ 1

x
dξ H(ξ/x,Q, µ) fi/p(ξ, µ)

ξ
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SCET  is a field theory which:
• explains how these degrees of 

freedom communicate with each 
other, and with hard interactions

• provides a simple operator language to derive factorization 
theorems in fairly general circumstances

eg.  unifies the treatment of factorization for exclusive and 
inclusive QCD processes

• new symmetry constraints

p+

cn

0
0

u

h
ard

!2

2

p-

Q

!Q
0

cn

!Q !Q
0

communicate by integrals

F1(x,Q2) =
1
x

∫ 1

x
dξ H(ξ/x,Q, µ) fi/p(ξ, µ)

ξ
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How is SCET used?

• cleanly separate short and long distance effects in QCD
derive new factorization theorems
find universal hadronic functions, exploit symmetries 
& relate different processes

• model independent, systematic expansion
study power corrections

• keep track of       dependence µ

sum logarithms,  reduce uncertainties
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Factorization  Example

B D

!

B̄0 → D+π− , B− → D0π−

〈Dπ|Hweak|B〉 = Nξ(v ·v′)

∫ 1

0

dx T (x, µ) φπ(x, µ)

B, D are soft , π collinear

〈π|Oc(x)|0〉 = fπφπ(x)

SCET gives Universal functions  
(analog of wavefunctions in Q.M.)

Calculate T,  αs(Q)
Q = Eπ,mb,mc

corrections will be Λ/mc ∼ 30%

〈D(∗)|Os|B〉 = ξ(v ·v′)

LSCET = L
(0)
s + L

(0)
c

Factorization if Hweak = Os ×Oc
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Systematic Corrections

Soft & Collinear start to Interact•

Quark Mass Effects•

At higher orders the description of the modes 
remains valid.  However, we typically have more 
integrations and our results depend on new functions.

•

Ligeti, Leibovich, Wise

Beneki, Chapovsky, 
Diehl, Feldmann

Chay, Kim

Bauer, Pirjol, I.S.

42Wednesday, October 22, 2008



Color Suppressed Decays Mantry, Pirjol, I.S.

Intractable without SCET

b

d

c

u

d

d

(a)

(   )s

b
c

u

u

ud

(b)

(   )

(   )

s

s

Q2 QΛ Λ2!!

AD(∗)

00 = N (∗)
0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φM (x)

Q = mb, Eπ,mc

B̄0 → D0π0

prove S is same for D and D*

subleading
interaction

B̄
0

D
0

π
0
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D
0!0 0"

0 0
K

0"'

0#

D

D D

D

D
0$0

D
+!-

D
0!-

D
+
$-

D
0
$-D

+
%-

D
0 -
%

A(D*M)

A(D M)

0.0

0.5

1.0

1.5

2.0
color allowed

color suppressed

LO  SCET  prediction

*

* # + #

δ(Dπ) = 30.4± 4.8◦

δ(D∗π) = 31.0± 5.0◦

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

! "

= D
*= D
#

#

RI
2

A003

A0_

isospin triangle

Extension to isosinglets:
Blechman, Mantry, I.S.

Not yet tested:
• Br(D∗ρ0

‖)! Br(D∗ρ0
⊥) ,

• equal ratios D(∗)K∗, D(∗)
s K, D(∗)

s K∗;  triangles for D(∗)ρ, D(∗)K

Br(D∗0K∗0
‖ ) ∼ Br(D∗0K∗0

⊥ )

Extension to baryons  (      ) :
Leibovich, Ligeti, I.S., Wise

Λb

Comparison to Data
(Cleo, Belle, Babar)
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W

b cVcb

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



CKM
Matrix

Violate
C: exchange of particles

& antiparticles
P: parity  !x→ −!x

CP:

Can use 

Decays & Weak InteractionsB → ππ

B → ππ
to measure 

 observables in
CP-violating

but need to control QCD 
interactions

,γ
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Form Factors

Nonleptonic

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}

B →M1M2

f(E) =
∫

dz T (z,E) ζBM
J (z,E)

+ C(E) ζBM (E)

universality at 
EΛ

Bauer, Pirjol, 
Rothstein, I.S.; 

 Factorization with SCET

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

Beneke, Buchalla,
Neubert, Sachrajda Resolution µ = mb

(∼ 120 channels)

B → π"ν̄

B → K
∗
!
+
!
−

B → ργ

,
,

, ...

ζBM
J (z) = fMfB

∫ 1

0
dx

∫ ∞

0
dk+J(z, x, k+, E)φM (x)φB(k+)

√
EΛ expansion in αs(

√
EΛ)

left as a form factor

Resolution µ = ,

ζBM
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B → ππ

Bauer, Rothstein, I.S.

Factorization predicts a small relative phase for two amplitudes

1

•
εC/T)

τ (t) ε ∼ 0, τ (t) ∼ 0

uncertainty precludes measuring Cπ0π0 = −0.28± 0.39

(Belle & Babar)

• ,

B̄
0
→ π

+
π
−

B
0
→ π

+
π
−

B
−

→ π
0
π
−

B
0
→ π

0
π

0

B̄
0
→ π

0
π

0, ,,
,

•

ΛQCD

Eπ

! 1

γ without

Vub Vub direct

SCETγππ

γρρ ,
Globalγ

expt.
errors

dominate

input from QCD
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B-decays with one Jet

B → Xsγ

B → Xs!
+!−

Again the cuts give a jet, and modify 
the standard model prediction

!"#$%&'()*!)+,)-./)01 234453/)6355/7899 :;$!6< =

!"#$%"&'()'$*+!"#$%"&'()'$*+ !! !! "#$#$"#$#$

,$'#-./.0#$-#123(1$4(.2/.5'6$,$7*4&$4#).&$".'$1*180/(9(.:$;(1#5.0() 4('0/(730(*1'

<=$$$$-"*0*1$-#123(1 +/*5$!#! "#!

<>$$$$?5*'0:&@ A$-#123(1

<BC$$?5*'0:&@D$7*E 31(F3#$0*$!! "#$$

G:'*$'#1'(0(9#$0*$

<(H6$<I6$<%

JK?!!"""@$L$MNO$P CN=$BC8Q

BRS$31)#/0.(10&$(1$(1):3'(9#$/.0#

!"#$%&'()*!)+,)-./)01 234453/)6355/7899 :;$!6< =

!"#$%"&'()'$*+!"#$%"&'()'$*+ !! !! "#$#$"#$#$

,$'#-./.0#$-#123(1$4(.2/.5'6$,$7*4&$4#).&$".'$1*180/(9(.:$;(1#5.0() 4('0/(730(*1'

<=$$$$-"*0*1$-#123(1 +/*5$!#! "#!

<>$$$$?5*'0:&@ A$-#123(1

<BC$$?5*'0:&@D$7*E 31(F3#$0*$!! "#$$

G:'*$'#1'(0(9#$0*$

<(H6$<I6$<%

JK?!!"""@$L$MNO$P CN=$BC8Q

BRS$31)#/0.(10&$(1$(1):3'(9#$/.0#

Cuts force the Xs to be jet-like and are important
 for comparison to the standard model 

Br(B → Xsγ)expt
Eγ>1.6 GeV = (3.55± 0.26)× 10−4

Br(B → Xsγ)theory
Eγ>1.6 GeV = (3.15± 0.23)× 10−4 Misiak et al.

Becher, Neubert−0.17

1.4 1.6 1.8 2.0 2.2
0

0.2

0.4

0.6

0.8

1

mX
cut

! ij

ij  99,00=
79=
77=

Lee, Ligeti, 
Stewart, Tackmann

10-30%  reduction 
in the decay rate
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SCET has been applied to many processes
Process Non-Pert. functions Utility
B̄0 → D+π−, . . . ξ(w), φπ study QCD
B̄0 → D0π0, . . . S(k+

j ), φπ study QCD
B → Xendpt

s γ f(k+) new physics, measure f
B → Xendpt

u %ν f(k+) measure |Vub|
B → π%ν, . . . φB(k+), φπ(x), ζπ(E) measure |Vub|, study QCD
B → γ%ν, γ%+%− φB measure φB , new physics
B → ππ, Kπ, . . . φB , φπ, ζπ(E) new physics, CP violation,

φK̄ , ζK(E) study QCD
B → K∗γ, ργ φB , φK , ζ⊥K∗(E) measure |Vtd/Vts|

φρ, ζ⊥ρ (E)
B → Xs%+%− f(k+) new physics
e−p → e−X fi/p(ξ), fg/p(ξ) study QCD , measure p.d.f’s
pp̄ → X%+%− fi/p(ξ), fg/p(ξ) study QCD
e−γ → e−π0 φπ measure φπ

γ∗M → M ′ φM , φM ′ study QCD
e+e− → j1 + jets S̃(k+) event shapes & universality
e+e− → J/ΨX S(8,n)(k+) study QCD
Υ → Xγ S(8,n)(k+) study QCD

...
...

...

γ

new physics
,

In Pittsburgh:  C.Kim, A.Leibovich, I.Rothstein, A.Williamson, J.Zupan
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Future
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Who needs to understand QCD?
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Babar, Belle For many channels, control of hadronic 
uncertainties is crucial to test standard model &
look for new physics.  

B → Xs!
+
!
− B → ππ, B → Kπ, B → ρπ, . . .,

B → ργ, B → K∗γ B → φKs, B → η′Ks,

CDF, DO Test standard model / new physics in Bs, Λb, . . .

•

•

• Heavy quark production, jets, ...
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pp collider with Ecm = 14 TeV

Energetic QCD (SCET)

scales:  mW , mt, E
jet
T

Effective theory concepts will be helpful whether we’re:
      exploring QCD, 
      computing precision standard model cross sections
         (resolution scales  or  summation of logs),
      or puzzling out signals of unexplored particle physics

•

•

•
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Concluding Remarks

SCET•

• QCD  today is as rich & diverse as ever

 a new approach to derive factorization theorems 
and treat power corrections for energetic hadrons & jets

many subfields which focus on different degrees of freedom 
and different relevant interactions

universal hadronic parameters, strong phases
γ (or α) from individual B →M1M2 channels

predictions for the size of amplitudes

Nonleptonic B-decays

• A lot of theory and phenomenology left to study ...

• QED fundamental parameters & precision quantum field theory
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