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Introduction to QED

(quantum electromagnetism)

Special Relativity: ~ spacetime, v < ¢

QED K

Quantum Mechanics:  quantization, AzAp > 5

waip
iy

antiparticles, spin, gauge-theory

parameters: charge & masses

Interactions
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\ two factors of the coupling
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i Y i w\yfv< j

et pair
e d e

nnihilation creation
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The Standard Model Interactions

(leave out gravity and the higgs)

Strong Electromagnetism Weak
QCD QED
mediator: gluons photons W=, Z°
i AP ~ 107 ~ 1076
strength:
range: ~ 11m mlw » ~ 1072 fm

radioactive
proton / decay

Other forces can (in principle) ? W
b C
> >

n — pev ,

<l

be derived from these
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Physics compartmentalized .
short distance

— quantum gravity

eg.

— electroweak
Quantum General
Field Theory Relativity i Q CD & quar i
Special — nuclei
Mechanics
— atoms
Electieiny & = — chemistry
Mechani ectricity |
M Magnetism long distance —§— us
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Physics compartmentalized .
short distance

eg [ ]

Quantum General
Field Theory Relativity
Special

Quantum Relativity
Mechanics
Classical Classical
Mechanics

Electricity &
Magnetism
But, one doesn’t need
nuclear physics to build a boat

Newtonian
Gravity

long distance

proton mEsukran

Generality
VS.
Precision

e -

o Q_—«-'r-f o

quantum gravity

electroweak

QCD & quarks

nuclei

atoms
chemistry
us

B e e 514

- S, e

2 T :

I e O 7R
é&a Y S Sy i T g g R TN~ gy R e o
g T S TN L P e Sl SRS, e R
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== Dynamics at long distance does not depend on the

details of what happens at short distance

In the quantum realm, A\ ~ L wavelength and momentum

p
are related, so

== Iow energy interactions do not depend on
the details of high energy interactions

Bad:

® we have to work harder to probe the interesting physics at
short distances

Good:

® we can focus on the
relevant interactions &
degrees of freedom

@® calculations are simpler
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Example: Hydrogen

non-relativistic quantum mechanics

parameters: mass e -

charges Q¢ ,Qp .
| |

coupling o= —— ’

degrees of 157 *
freedom: '
b scales:  m, =938MeV — 0O

Cn m. = 0.511 MeV
proton p~mea = 3.7TkeV ~ (aBohr) "

L 2 13.6eV
il Me0” e
2n? n?
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Example: Hydrogen

non-relativistic quantum mechanics

parameters: mass Me Py
charges Q¢ ,Qp *®
1 -
coupling a = — e
degrees of 137 *
freedom:
o scales:  m, =938MeV — 0O
& me = 0.511 MeV
proton p~meax = 3.7keV ~ (aBohr) "
2
13.
il MeQ”™ 3.6eV
2n? n?

Why not quarks? QCD? b-quark charge? e'? weak force?

mproton : Spln?
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Example: Hydrogen

non-relativistic quantum mechanics

parameters: mass Me Py
charges Q¢ ,Qp *®
1 -
coupling a = — e
degrees of 137 * '-
freedom:
o scales:  m, =938MeV — 0O
& me = 0.511 MeV
proton p~meax = 3.7keV ~ (aBohr) "
M 13.6eV :
= = + corrections
2n? n?

'

Why not quarks? QCD? b-quark charge? e'? weak force?

mproton : Spln?

2

v
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Effective Field Theory Idea

short distance theory

<QED> is more general
expand in
i tHfi y (Y
e mp

@RQED long distance theory where

1ts easier to compute
O

ikt m exact answer is irrelevant, work to
H = Ho + Z € Hm the desired level of precision
/ m=1

Nonrelativistic
Quantum
Mechanics
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Effective Field Theory Idea
<QED> sho.rt distance theory
is more general
expand in
il el
Me iy
@RQED long distance theory where
1ts easier to compute
®.©)

exact answer is irrelevant, work to
H = Hy+ E i 3 !

the desired level of precision

=1

Comments: Degrees of freedom can change

et —> o et
QCD, quarks ﬁ proton
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Effective Field Theory Idea
<QED> sho.rt distance theory
is more general
expand in
il il o
Me iy
@RQED long distance theory where
1ts easier to compute
®.©)

exact answer is irrelevant, work to
H = Hy+ E i 3 !

the desired level of precision

gl
Comments: Symmetries of QED constrain the form of NRQED
Charge conjugation ( e i)

Parity (& —% ) constrain the
Time-Reversal ({ — —1 ) ' i [

Spin-Statistics Theorem

Wednesday, October 22, 2008
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spectrum

Wednesday, October 22, 2008 T ' 11



NRQED Effective Field Theory for

Non-relativistic bound states

r 4
2517 mm— ] N S
178 MHz

F=0

154/ _< ________ |
1420 MHz

F=0

F=2

24 MHz

F=1

F=1

59 MHz

2Pss —
/ <
9910 MHz
_________ Yy _
i
1058 MHz
QPJ/Q <
2466 THz

Bohr ~ m.a?

F=0

nLJ

F=J+8,
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NRQED Effective Field Theory for nL
Non-relativistic bound states
el dil
F=2
P32 < 24 MHz
F=1
Feq 9910 MHz A
) — fine structure ~ M,
12 e S I-
, 178 Mz 1058 MHz P
=0 iy Y 59 MHz
F=0
2466 THz

Bohr ~ m.a?

154/ _< ________ | )
1420 MHz

F=0
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NRQED Eftective Field Theory for nl ;
Non-relativistic bound states

iR |
F=2
P32 < 24 MHz
F=1
Fei 9910 MHz 4

fine structure ~ M,

28,5 _<k

178 MHz
‘ F=1

r= 59 MHz

F=0
Lamb shift . parameters
- ~ mea’ In(a) «—— fixed by
2466 7
2 QED
Bohr ~ m.«
F=1

154/ _< ________ | )
1420 MHz

F=0

Wednesday, October 22, 2008 12



NRQED Eftective Field Theory for nl ;
Non-relativistic bound states

et AL Sp
F=2  hyperfine
P32 < 24 MHz yP
F=1
Pt 9910 MHz A

fine structure ~ M,

Qsz/zﬁ"ﬂ
178 MHz
: F=1
F=0 v, yperfine
F=0
Lamb shift - parameters
~ mea’ In(a) «—— fixed by
2466 THz QED
Bohr ~ m.a”
F=1
2
191/2 e - - b--ee--- - hyperfine splitting ~ e o
1420 MHz YP P & m, foefhp

Y\\QCD
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Compute the H,, by “Matching”

4

Relativity: 827?713 L

(0158 0 SV SSRRE  H

<>
v

<>

(coefficients determined by &, M )

)

H:HO+ZemHm

=l

Wednesday, October 22, 2008

13



What about quarks?

@ 1 size ~ 1{m — 200 MeV > p,

Q. = +2/3 low momentum photons do
not resolve the quarks,
Qa=—1/3 they see the proton charge

When matching couplings change too:  Qu,d — &y

Wednesday, October 22, 2008 14



short distance long distance

.\.

This is just an application of the multipole expansion,
familiar from electromagnetism:

r
1 1
V(r) = — /,0 dor’ + i r'cosOp d°r’ + . ..
r r
/
total 200MeV >p, & r<r
charge NI

Wednesday, October 22, 2008 15



What about quarks?

1 size ~ 1{m — 200 MeV > p,

Q. = +2/3 low momentum photons do
not resolve the quarks,
Qa=—1/3 they see the proton charge

When matching couplings change too:  Qu,d — &y

=== Other parameters: My, Up ,. ..
in principle fixed by QCD, but it is more

accurate to use cexper imental measurements

measure a parameter in one place, then use it in others!

= universality

Wednesday, October 22, 2008
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Resolution L

Resolution
Resolution

Resolution

Resolution

Resolution

Wednesday, October 22, 2008
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Vacuum Polarization WL !
€
Gl

D % T like a dielectric, et ATt
gives screening coupling is
o G @ renormalized
SZRASE resolution = F d 2 9
— ey
Q () = 2=a?(1)
at larger energy E, we
probe shorter distances 1 E =me
'- 1 ll 37 -
and see a larger charge i _ é
136.5 | g
" hydrogen
136.0 |
Vit a(g(O) B -
iRE (m_g) 1355 | £ (MeV)

0.1 1.0 10 100 1000

Wednesday, October 22, 2008
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LLong versus Short Distance

iy X

Wednesday, October 22, 2008
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Lamb Shlft in N RQED soft Y

P p
'Two parts: >-< M
_p’

-p & e
i) effective potentials i1) radiation in the bound
(short distance) state (long distance)
[ 4e? 5 @ 1 LAY
OE, = 32 14, (0)|7 In — 4. .}—I— [mg ; [(n|p|k)|“(Ex—E,)In ( En@Ekl)+ . ]

[l dependence cancels, but allows us to give separate meaning to
the two pieces

Wednesday, October 22, 2008 20



Lamb Shlft in N RQED soft Y

2 p
'Two parts: >-< M
_p’

-p & e
i) effective potentials i1) radiation in the bound
(short distance) state (long distance)
[ 4e? 5 @ 1 A
OE, = ey 14, (0)|7 In — 4. .}—I— [mg ; [(n|p|k)|“(Ex—E,)In (\En@Ekl)+ . ]

[l dependence cancels, but allows us to give separate meaning to
the two pieces

History:

® 1947 Bethe computed ii), with (= M,
Pl large log: ~ 1n< s ) = —2In(a)

Me?

® 1949 French & Weisskopf
LLamb & Kroll

(Feynman, Schwinger)

Wednesday, October 22, 2008 21



Lamb Shlft in N RQED soft Y

p
Two parts: >-< M
p -

~ N

i) effective potentials i1) radiation in the bound
(short distance) state (long distance)
[ 4e? 5 @ 1 e
OE, = ey 14, (0)|7 In — 4. .}—I— [mg ; [(n|p|k)|“(Ex—E,)In (\En@Ekl)+ . ]

[l dependence cancels, but allows us to give separate meaning to
the two pieces
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Lamb Shlft in N RQED soft Y

p
Two parts: >-< M
p -

~ N

i) effective potentials i1) radiation in the bound
(short distance) state (long distance)
[ 4e? 5 @ 1 e
OE, = 32 14, (0)|7 In — 4. .}—I— [mg ; [(n|p|k)|“(Ex—E,)In ( En@Ekl)+ . ]

[l dependence cancels, but allows us to give separate meaning to
the two pieces

History:

AE(25—2P) = 1040 MHz

® 1947 Bethe computed ii), with (= M, LIRS

== large log: Nln< Lk ): —21n(a) 10568 MHz answer

Me?

® 1949 French & Weisskopt computed i) in QED and

LLamb & Kroll combined with ii)
(Feynman, Schwinger) AFE(25—2P) = 1051 MHz
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The structure of QED logs can be derived from a

non-relativistic renormalization group Luke, Manohar,
Rothstein, I.S.
f p? energy resolution UE s
T 2m momentum resolution L, HE T
Correction Observable System Comparison
o8 1n” a Lamb shift H
pteT, eler
(no h.f.s., no AT'/T)
o’ In? o h.fs. H, urte , eTer agrees all from
i Lamb shift H et emen agrees one
o’ In“ AI'/T ete” ortho and para agrees ,
a®ln o Lamb shift H, uter, ete” agrees equatlon
h.fs. Hsimetienen agrees
o’ In o Al ete” ortho and para agrees
o’ Ina Lamb shift H, ute ,ete agrees
: : A k | At
L.O anomalous dimension: o (o In o) stopsat k=1

NLO anomalous dimension: ° (Oz In Oz)k stopsat kK =3

Wednesday, October 22, 2008 22



The structure of QED logs can be derived from a

non-relativistic renormalization group Luke, Manohar,
Rothstein, I.S.

ji p? energy resolution UE w2

T 2m momentum resolution L, HE T

NRQED methods are also used for the non-logarithmic terms

Expt.(MHz) Theory(MHz) Agree?

H Lamb  1057.845(9)  1057.85(1) <12
h.t.s 1420.405751768(1) 1420.399(2) Gg, Gum
iTer  hifs 1463.30278(5)  4463.30288(55)  m./m,
ete” Lamb 13012.4(1) 13012.41(8) agree
h.fs 203389.10(74)  20839170(30) 3o
7990.9(1.7) us™!  7989.62(4) ps~ agree

7.0404(13) ps™'  7.03996(2) us— agree

Wednesday, October 22, 2008
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The ideas we’ve discussed in QED:

resolution
changes in degrees of freedom & couplings

o
.
e cxpansions, multiple scales
e universality

become even more crucial for QCD

Wednesday, October 22, 2008
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QCD Interactions are more complicated than QED:

strong coupling:  g(u) as(p) = 9(4/;)2

—> o TEL
| q o o
S g

Vacuum response’

% %@

these interactions
involve the same

coupling (gauge

symmetry)

XS @ %\p gluons have spin, carry color charge
RS behave like a permanent magnet
anti-screen the charge
d g(p)? 2

Wednesday, October 22, 2008 25



In QCD, the coupling, 9(/) , behaves in the opposite way to
QED, it gets weaker at short distances

. , ! i
slope is negative il g(p) R
0.5 - April 2004 OZS (ILL) 47T ( ) dl,L ( )

\ — 1~ o ) . .
Dua T3 2 % (Gross Politzer, Wilczek
*(Q) | Deep Inclastic Scattering , ,
i L'L'U nelastic ¢ C'r_lllL"['lllf.:' A
0.4 1\ e e DO
Heavy Quarkonia E =
4 AL at5(Mp))
03l | o {ii’?,?.ﬁ‘;i e
1180 MeV — —0.1155 /
A Nobel Prize, 2004
02/ Asymptotic freedom
large 1 = @, small o , free quarks
0.1+ <
S.Bethke | Infrared slavery
1 10 Q [GEV] 100

as 1 = () approaches a few
100 MeV (r — 1fm), the

large change in the value coupling gets large

Wednesday, October 22, 2008 26



an expansion in Qs(u < 1GeV) is no good

==) coupling gets so strong that quarks never escape unless they form
a color singlet (bound) state with other quarks, ie. they are

confined
Mesons Baryons ﬁ
Lt ol PR & ol DTN
R
degrees of freedom change r=Agky

Wednesday, October 22, 2008



an expansion in Qs(u < 1GeV) is no good

==) coupling gets so strong that quarks never escape unless they form
a color singlet (bound) state with other quarks, ie. they are
confined

Mesons BE[I‘YOHS
W,K,p,... p,n,Z,A,...

degrees of freedom change

NROCD ChPT HTL
Q cC states  pions finite T
finite
HDET
spectrum \ I / density
unstable \ / :

. 7; QCD — energetic
particles top quark «— / hadrons SCET
SCET Jets / l \ perturbative

nuclear QCD

HOET bd states forces NNEFT
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an expansion in Qs(u < 1GeV) is no good

==) coupling gets so strong that quarks never escape unless they form
a color singlet (bound) state with other quarks, ie. they are
confined

Mesons BE[I‘YOHS
W,K,p,... p,n,Z,A,...

degrees of freedom change

NROCD ChPT HTL
Q cC states  pions finite T
finite
HDET
spectrum \ I / density
unstable \ / :

. 7; QCD — energetic
particles top quark «— / hadrons SCET
SCET Jets / l \ perturbative

nuclear QCD

HOET" bd states  forces NNEFT
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Is there a “Hydrogen Atom” for QCD?

Wednesday, October 22, 2008

28



Is there a “Hydrogen Atom” for QCD?

candidates: 1) top quarks: tt
ii) proton

ii1) B mesons

Wednesday, October 22, 2008
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T (i il Nonrelativistic

? e'e — 1t QCD bound states?
Myt ~ 175 GeV I't = 1.4GeV > Aqep
myy

top decays before it hadronizes

—e Dt ~ 25GeV
Coulombic, expansion in () : ‘

LO + NLO + NNLO + ...

].6 [ T ‘ T T T J_~\

14 (a) ___________
12+ vary

— .
. .
— . .
.
. . 1
. - - =
. , . TN t m e TYM—— e e e e e = = = = =
. -
[ , |
. ’
- . .
.
’ .

- . = —
’
08 C ‘¢ = ~
‘ . - =
* ‘o . '/ ~ = P
- . 7
y . .
.
- . ’ 4
.
0.6

04 A
o LO, NLO, NNLO

tt cross section

0.0 - ! \ ! \ ! \ ! \ ! \ ! \ ! \ ! ]
346 347 348 349 350 351 352 353 354

Vs (GeV)

M= mtaptaEt?

Wednesday, October 22, 2008 29



_|_

Nonrelativistic

e'e — 1t QCD bound states?
Ft = A GeV P AQCD
top decays before it hadronizes
iy \
Determine the ' i(p) = ..
U Hoang, Manohar,
S I.S., Teubner
16 — | | | _—
S 12 SOy | yar
8 1.2 - el N y
O 1.0 - ILL
08 ¢
9] i
3 06 -
S04
I+ 02 i LL, NLL, NNLL
A
0.0346 347 348 349 350 351 352 353 354
Vs (GeV)
» me, Yt, Ft

Wednesday, October 22, 2008
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Deep Inelastic Scattering

e p—e X
on a proton

A factorization theorem

- ‘ 1 ;o .
f"](.’lf-_. QJ) — %I‘, d{i Jr‘-:_",.:':.‘i:.-..“-:'
short distance process p* ~ Q7 / universal |
nonperturbative
71! function
p° ~ A%D,CD
p2~ Q2
™\

X)

¢

25, ;
33&09339999%%?})
A S
Z

0992999999999999

analogy: Bragg scattering of
X-rays on a crystal, for this
time scale the atoms are at rest

Wednesday, October 22, 2008
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T 7/ B-meson

I my > AQCD
my heavy quark symmetry
Isgur & Wise

my

E Decay by weak interactions; long lived

Mme

Aqcp

Mg Precision studies are sensitive to scales > myy;

The B is heavy, so many of its decay products
Mauy,d are energetic, F

Wednesday, October 22, 2008 32



B-meson

(447, =>> AQCD

heavy quark symmetry
Isgur & Wise

Decay by weak interactions; long lived

B— Xy B —Dr B — K*v
b

TR b il

Ay B—pp B—nmnm i

— D™n B Ko B — vl

Precision studies are sensitive to scales > My,

The B is heavy, so many of its decay products
are energetic, F

Wednesday, October 22, 2008
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eg. B—Dev, Mz > mi> A?

1) Short Distance
uw=my =~ 80GeV

gluons perturbative

Wednesday, October 22, 2008
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eqg. b — Dev,

Mg, > mi > A°

Wednesday, October 22, 2008
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eqg. b — Dev,

Mg, > mi > A°

2) Intermediate Distance \/
G,

uw=myp >~ 5GeV

gluons perturbative

Wednesday, October 22, 2008
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eqg. b — Dev,

Mg, > mi > A°

Wednesday, October 22, 2008
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eg. B—Dev, Mz > mi> A?

3) Long Distance

1%

=

uw=A~05GeV

gluons nonperturbative

Q

=
q
(3

1/!: (€N P=O]
= N S
[ 2\ %, &
B [oas6e3 2200
q
ﬂ
SN—r

Wednesday, October 22, 2008
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eqg. b — Dev,

Mg, > mi > A°

Wednesday, October 22, 2008
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eg. B—Dev, Mz > mi> A?

4) Very Long Distance XV\;
n << A @ J! giilinip

no gluons

Wednesday, October 22, 2008
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eg. B—Dev, Mz > mi> A?

4) Very Long Distance XV\;
n << A @ J! giilinip

no gluons

e Each of these pictures can be described by a field theory

e These theories can be matched together H{ — Hy — H3s — Hy

e Ateach p we capture the most important physics

’ : 1 A
expansion UL o as(mp) =02, — ~0.1
parameters my, 250 my

Wednesday, October 22, 2008
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Soft - Collinear Eftective Theory

Bauer, Pirjol, L.S.
Fleming, Luke

An eftective field theory for energetic hadrons & jets
E > AQCD

Analogy:

QED «—» Quantum Mechanics NRQED)
QCD <«—>» SCET

Wednesday, October 22, 2008



Soft Collinear Effective Theory (SCET)

ey ey

E, =2.6GeV > Aqcp ~ 0.3GeV mp = 2k,

B has Soft

constituents:

P? it AQCD

Wednesday, October 22, 2008
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Soft Collinear Effective Theory (SCET)

eg. () — ()

E, =2.6GeV > Aqcp ~ 0.3GeV mp = 2k,

7 has Collinear constituents:

longitudinal
Y

P

Wednesday, October 22, 2008
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Soft Collinear Effective Theory (SCET)

eg. () — ()

E, =2.6GeV > Aqcp ~ 0.3GeV mp = 2k,

7 has Collinear constituents:

longitudinal

Pe ~ Mp
n or replace 7 by a jet
< of many hadrons

Wednesday, October 22, 2008 36



Soft Collinear Effective Theory (SCET)

ey L Uil ey

E, =2.6GeV > Aqcp ~ 0.3GeV mp = 2k,

7 has Collinear constituents:

longitudinal

P

or replace 7 by a jet

of many hadrons

7"'4—

Wednesday, October 22, 2008 36



Soft Collinear Effective Theory (SCET)

s y e ey

E, =2.6GeV > Aqcp ~ 0.3GeV mp = 2k,
organizes the interactions
A freld theory for 1IN a Series expansion In Aqop
Soft & Collinear E
interactions (analog of the non-relativistic

expansion in Q.M.)

Wednesday, October 22, 2008
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SCET is a field theory which:

® explains how these degrees of P A
freedom communicate with each
other, and with hard interactions

0N T

Q}\’Z 1

1 1
Fl(LL‘,QZ) = ; / df H fi/p(fv:u) 0
N 0

Wednesday, October 22, 2008
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SCET is a field theory which:

® explains how these degrees of P A
freedom communicate with each
other, and with hard interactions
oN + © ¢n
O)N> + % U
1 1
Filw, @) =5 [ dg He/e.Qum) Fipom) | g L,

O Q)\'Z
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SCET is a field theory which:

® explains how these degrees of P A
freedom communicate with each
other, and with hard interactions

0N T

Q}\’Z 1

1 1
Fl(LL‘,QZ) = ; / df H fi/p(fv:u) 0
N 0
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SCET is a field theory which:

® explains how these degrees of
freedom communicate with each
other, and with hard interactions

1
Fi(.Q%) = / e K Fi (€11

scale separation

Wednesday, October 22, 2008
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SCET is a field theory which:

® cxplains how these degrees of P7A

freedom communicate with each

other, and with hard interactions ! %,
ON T —eTu-———o—QL-

communicate by integrals
Q}\,Z 1 w u () cn

1 1
Filw, @) = [ de 11(¢ fugw(&on) IS ,
= 0 02 0

Wednesday, October 22, 2008

39



SCET is a field theory which:

® cxplains how these degrees of P7A
freedom communicate with each f
other, and with hard interactions %,
0 it ————————— e —

communicate by integrals

: 0N T w u © ch

1
Fiw @) =1 [ € H/2.Q.0 fiple (gL ,
= 0 02 070

e provides a simple operator language to derive factorization
theorems in fairly general circumstances

eg. unifies the treatment of factorization for exclusive and
inclusive QCD processes

® new symmetry constraints

Wednesday, October 22, 2008
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How is SCET used?

o cleanly separate short and long distance effects in QCD
=p derive new factorization theorems
=) find universal hadronic functions, exploit symmetries

& relate different processes

e model independent, systematic expansion

=) study power corrections

® keep track of (4 dependence

=p sum logarithms, reduce uncertainties

Wednesday, October 22, 2008
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Factorization Example

BY - Dfn7 , BT — D7
B, D are sott , m collinear

1

(DrlHoeudB) = Ne(o-0) [ do bl 1)

SCET gives Universal functions
(analog of wavefunctions in Q.M.)

LcopT = Lgo) + Lgo) Factorization if Heax = O. X O,

(D™0,|B) = &(v-v") Calculate T, OzS(Q)
(m|Oc(2)]0) = frdn(T) Q = B, mp, me

corrections will be A /m. ~ 30%
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LcopT = L‘,go) + [,go) Factorization if Heax = O. X O,

(D™0,|B) = &(v-v") Calculate T, OzS(Q)
(m|Oc(2)]0) = frdn(T) Q = B, mp, me

corrections will be A/m. ~ 30%
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Systematic Corrections

Chay, Kim

Beneki, Chapovsky;
Diehl, Feldmann

Bauer, Pirjol, LS.

e Soft & Collinear start to Interact

® (QQuark Mass Effects

Ligeti, Leibovich, Wise

® At higher orders the description of the modes
remains valid. However, we typically have more
integrations and our results depend on new functions.
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Color Suppressed Decays Mantry, Pirjol, LS,

BY — D%  Intractable without SCET O subleading

interaction

A LY () /da: dz dki dky T (2, 2, kT, k) SD (kT k) ()
— /N J\ y,
v "4

ISR A 1 > A?

Q — My, E7T7 me
prove S is same for D and D*
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Comparison to Data Extension to isosinglets:

(Cleo, Belle, Babar)
20 | Extension to baryons (Ap) :
i A color allowed
‘A(D M) e color suppressed D°p’
ADM) | E | e T oo T
L 0.8 isospin triangle
- p’x® D'q ®
DOI_(O DOT] * iy L
1.0 : -} A } } } { { { } 0.4
[ v bk } 0.2 |
ok, A4 din'i e D+p'D0p_ i
1.5 :
i 0 oL id fhoki g (lokieli 110:8 1
: LO SCET prediction
i 5(Dr) = 30.444.8°
0.0 l l l l | l l l l | l l
5(D*1) = 31.0 £5.0°

Not yet tested:

® Br(D*py) > Br(D*p]) BT(D*OKlTO) ~ Br(D*K*")

® cqual ratios DK™, DK, DY K+, triangles for D™p, DWK
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B — mm Decays & Weak Interactions

b Vb Vud Vus Vub
i i l\(/iKM Vit Vcd Vcs vcb
W it Vie Vis Vi

(P, M)

Violate CP.

(C: exchange of particles
& antiparticles

—

B parity T — — (0, 0) (1, 0)

Can use CP-violating
observablesin B — 7w

to measure ) |

but need to control QCD

interactions

45
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B — mm Decays & Weak Interactions

b Vb ¢ Vud Vus Vub
i i l\(/iKM it Vcd Vcs Vcb
W i Via Vis Vi
Violate

(C: exchange of particles
& antiparticles

P: parity £ — —&

Can use CP-violating
observablesin B — 7w

to measure ) |

but need to control QCD
interactions
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Factorization with SCET  s.uer pisol,

Rothstein, I.S.;

2 2 \\
Rlasali b L Beneke, Buchalla, %p it ol
niliiitdle Neubert, Sachrajda %“’é;\’;””%%%?ﬂ
999"99‘%\§
Gl Y
Nonleptonic = B — MMy (~ 120 channels) W iR
A(B — My My) = A“+N{fM2<BM1 / duTs (1) ™2 (w)+ far, / s WP @)™ (u)+(1 — 2>}
Form Factors E) = [d i \
= [dz | 241 . !
f(E) ¢; (2, E) =P universality at
B — iy, 1L (A () EA
B — K00,
et e p R

Resolution = +/EA | expansion in as(v EA)

1 0
BM () = farfo / i / Akt J(z, 0, k", B) bas (2)5 (k™)
0 0

BM
C left as a form factor
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BH UL s B R e W RO 0 0
B — ’ ’ (
B — ntn, B? — 7070 (Belle & Babar)
® Croo=—02840.39, uncertainty precludes measuring 7Y without
input from QCD

® Factorization predicts a small relative phase for two amplitudes

W A
T(t) e~ 0,7 ~ 0 %CD <1
C/T € T
1 Bauer, Rothstein, I.S.

f
Vb Vb o ﬁdirect
120 , : f /

100 ' errors
80 | """ QCET 4= dominate

o |

| Y Global
20 L (p, M) i
: \ Vi VJZ _jO( Ved VcZ
N i

VN I IS I NP A I S Y Vea V5
325 350 375 400 425 450 475 'ub
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B-decays with one Jet

[B il Xsyj Br(B — X3P | s gev = (3.55£0.26) x 10

Br(B — X.7) g v36cey = (315 £0.23) x 107*  Misiak et al.
—0.17 Becher, Neubert

Cuts force the Xs to be jet-like and are important
for comparison to the standard model

I Again the cuts give a jet, and modity
[B Ttk i j the standard model prediction
Lee, Ligeti, 10-30% reduction My | i HnneC,

_ Y E
Stewart, Tackmann in the decay rate gl £l / :

0.6 |

0.4 L

/ I” A :

Y,fr;;< - ij/\;\ﬁ/ 0.2:

. o W W+ 0_

b / ) J S 1.4
W b { S

/4

— 1j=9900 - -
— =79 ==
vt M G e d Tl

2.0 cut 2.2
m
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SCET has been applied to many processes

Process Non-Pert. functions Utility

BY - Dtr—, ... | &w), ¢« study QCD

BY LU0 S(k;r), i) study QCD

Bl Xenapty R new physics, measure f

B — X¢nartyy k) measure |V

B — 7wy, ... o (kT), dr(x), ((F) | measure |V, study QCD

B — ~vlv, v0T0~ | ¢p measure ¢, new physics

B—nan, Kn, ... | ¢, ¢r, Cx(E) new physics, CP violation, 7Y
Ois Ck(E) study QCD

B — K*~, pvy OB, OK, Cf{* (F) measure |Viq/Vis| ;
bpr G5 (E) new physics

B — X 010 kT new physics

e p—e X fin(&), fa/p(&) study QCD , measure p.d.f’s

i1 e A A fz/p(f)a fg/p(g) study QCD

ety —e 7 D measure Q@

"}/*M — M’ ¢M7 ¢M’ Stlldy QCD

ete™ — ji1 +jets | S(kT) event shapes & universality

ete” — J/UX S&:n) (k) study QCD

T - X~ S&m) (k) study QCD

In Pittsburgh: C.Kim, A.Leibovich, I.Rothstein, A.Williamson, J.Zupan
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Future
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Who needs to understand QCD?
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Babar, Belle e For many channels, control of hadronic
uncertainties is crucial to test standard model &
look for new physics.

B X/{"4,B—ar,B— Kr,B— pr,...
B—py,B— Kv,B— ¢K,,B— 1K,

CDE, DY ® Test standard model / new physics in By, Ay, ...

e [Heavy quark production, jets, ...
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Immediate
future:

Babar, Belle e For many channels, control of hadronic
uncertainties is crucial to test standard model &
look for new physics.

B X/{"4,B—ar,B— Kr,B— pr,...
B—py,B— Kv,B— ¢K,,B— 1K,

CDE, DY ® Test standard model / new physics in By, Ay, ...

e [Heavy quark production, jets, ...

Wednesday, October 22, 2008 52



pp collider with FE.,, = 14 TeV

et
scales: my, my, Er.

===l Energetic QCD (SCET)

Effective theory concepts will be helpful whether we’re:
e cxploring QCD,
e computing precision standard model cross sections
(resolution scales or summation of logs),
e or puzzling out signals of unexplored particle physics
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LLHC era:

pp collider with FE.,, = 14 TeV

et
scales: my, my, Er.

===l Energetic QCD (SCET)

Effective theory concepts will be helpful whether we’re:
e cxploring QCD,
e computing precision standard model cross sections
(resolution scales or summation of logs),
e or puzzling out signals of unexplored particle physics
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Concluding Remarks

® QED fundamental parameters & precision quantum field theory

® (QCD today is as rich & diverse as ever

many subfields which focus on different degrees of freedom
and different relevant interactions

e SCET anew approach to derive factorization theorems
and treat power corrections for energetic hadrons & jets

Nonleptonic B-decays

=) predictions for the size of amplitudes

=9 universal hadronic parameters, strong phases

=) v (or a) from individual B — M; M channels

e A lot of theory and phenomenology left to study ...
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