New Tools for Understanding the Strong Interactions

Iain Stewart MIT

Carnegie Mellon / Pittsburgh
Colloquium, Dec. 2006

Outline

- Effective Field Theory, QED, Hydrogen
- Introduction to $\mathrm{QCD}, \alpha_{s}(\mu)$
- Soft-Collinear Effective Theory \& Energetic Particles
- Weak Decays of B mesons
- Outlook

Introduction to QED

(quantum electromagnetism)
QED $\left\{\begin{array}{r}\text { Special Rela } \\ \text { Quantum Mech }\end{array} \underset{\longrightarrow}{\longrightarrow}\right.$ spacetime, $v \leq c$ Quantum Mechanics: quantization, $\Delta x \Delta p \geq \frac{\hbar}{2}$ antiparticles, spin, gauge-theory parameters: charge \& masses
Interactions

$V=-\frac{e^{2}}{r}$

$$
V=+\frac{e^{2}}{r}
$$

two factors of the coupling

pair creation

The Standard Model Interactions

(leave out gravity and the higgs)

Strong
QCD
gluons
~ 1
$\sim 1 \mathrm{fm}$

proton
$n \rightarrow p e \bar{\nu}$,

Electromagnetism
QED
photons
$\sim 10^{-2}$
Weak

$$
\begin{aligned}
& W^{ \pm}, Z^{0} \\
& \sim 10^{-6}
\end{aligned}
$$

$$
\infty \quad \frac{1}{m_{W}} \rightarrow \sim 10^{-3} \mathrm{fm}
$$

radioactive decay

Other forces can (in principle) be derived from these

Physics compartmentalized

Physics compartmentalized

short distance
long distance

quantum gravity electroweak QCD \& quarks nuclei atoms chemistry US

But, one doesn't need nuclear physics to build a boat

Generality
VS.
Precision

Dynamics at long distance does not depend on the details of what happens at short distance
In the quantum realm, $\lambda \sim \frac{1}{p}$, wavelength and momentum are related, so

Low energy interactions do not depend on the details of high energy interactions
Bad:

- we have to work harder to probe the interesting physics at short distances

Good:

- we can focus on the relevant interactions \& degrees of freedom
- calculations are simpler

Dynamics at long distance does not depend on the details of what happens at short distance
In the quantum realm, $\lambda \sim \frac{1}{p}$, wavelength and momentum are related, so

Low energy interactions do not depend on the details of high energy interactions

Bad:

- we have to work harder to probe the interesting physics at short distances

Good:

- we can focus on the relevant interactions \& degrees of freedomcalculations are simpler

Newton didn't need quantum gravity for projectile motion

Dynamics at long distance does not depend on the details of what happens at short distance
In the quantum realm, $\lambda \sim \frac{1}{p}$, wavelength and momentum are related, so

Low energy interactions do not depend on the details of high energy interactions
Bad:

- we have to work harder to probe the interesting physics at short distances

Good:

- we can focus on the relevant interactions \& degrees of freedomcalculations are simpler

Newton didn't need quantum gravity for projectile motion

Example:
 Hydrogen

non-relativistic quantum mechanics
parameters:
degrees of freedom:

$$
\begin{array}{ll}
\text { mass } & m_{e} \\
\text { charges } & Q_{e}, Q_{p} \\
\text { coupling } & \alpha=\frac{1}{137}
\end{array}
$$

scales: $\quad m_{p}=938 \mathrm{MeV} \quad \rightarrow \infty$

$$
\begin{aligned}
m_{e} & =0.511 \mathrm{MeV} \\
p \sim m_{e} \alpha & =3.7 \mathrm{keV} \quad \sim\left(a_{\mathrm{Bohr}}\right)^{-1} \\
E_{n}=-\frac{m_{e} \alpha^{2}}{2 n^{2}} & =-\frac{13.6 \mathrm{eV}}{n^{2}}
\end{aligned}
$$

Example:
 Hydrogen

non-relativistic quantum mechanics
parameters:
degrees of freedom:

$$
\begin{array}{ll}
\text { mass } & m_{e} \\
\text { charges } & Q_{e}, Q_{p} \\
\text { coupling } & \alpha=\frac{1}{137}
\end{array}
$$

scales: $\quad m_{p}=938 \mathrm{MeV} \quad \rightarrow \infty$

$$
m_{e}=0.511 \mathrm{MeV}
$$

$$
p \sim m_{e} \alpha=3.7 \mathrm{keV} \quad \sim\left(a_{\mathrm{Bohr}}\right)^{-1}
$$

$$
E_{n}=-\frac{m_{e} \alpha^{2}}{2 n^{2}}=-\frac{13.6 \mathrm{eV}}{n^{2}}
$$

Why not quarks? QCD? b-quark charge? e^{+}? weak force? $m_{\text {proton }}$? spin?

Example:
 Hydrogen

non-relativistic quantum mechanics
parameters:
degrees of freedom:

$$
\begin{array}{ll}
\text { mass } & m_{e} \\
\text { charges } & Q_{e}, Q_{p} \\
\text { coupling } & \alpha=\frac{1}{137}
\end{array}
$$

scales: $\quad m_{p}=938 \mathrm{MeV} \quad \rightarrow \infty$

$$
m_{e}=0.511 \mathrm{MeV}
$$

$$
p \sim m_{e} \alpha=3.7 \mathrm{keV} \quad \sim\left(a_{\mathrm{Bohr}}\right)^{-1}
$$

$$
E_{n}=-\frac{m_{e} \alpha^{2}}{2 n^{2}}=-\frac{13.6 \mathrm{eV}}{n^{2}}
$$

+ corrections

Why not quarks? QCD? b-quark charge? e^{+}? weak force? $m_{\text {proton }}$? spin?

Effective Field Theory Idea

NRQED

$$
H=H_{0}+\sum^{\infty} \epsilon^{m} H_{m}
$$

$$
\overline{m=1}
$$

exact answer is irrelevant, work to the desired level of precision

Nonrelativistic
Quantum
Mechanics

Effective Field Theory Idea

Comments: Degrees of freedom can change

$$
\begin{aligned}
e^{+} & \longrightarrow \text { no } e^{+} \\
\mathrm{QCD}, \text { quarks } & \longrightarrow \text { proton }
\end{aligned}
$$

Effective Field Theory Idea

NRQED

$$
H=H_{0}+\sum_{m=1}^{\infty} \epsilon^{m} H_{m}
$$

exact answer is irrelevant, work to the desired level of precision

Comments: Symmetries of QED constrain the form of NRQED
Charge conjugation ($e^{+} \leftrightarrow e^{-}$)
Parity $(\vec{x} \rightarrow-\vec{x})$
Time-Reversal ($t \rightarrow-t$)
constrain the
Spin-Statistics Theorem

Effective Field Theory for $n L_{J}$ Non-relativistic bound states $F=J+S_{p}$

Effective Field Theory for $n L_{J}$ Non-relativistic bound states

Effective Field Theory for
 $n L_{J}$ Non-relativistic bound states

Effective Field Theory for
 $n L_{J}$ Non-relativistic bound states
 $F=J+S_{p}$

-

Lamb shift
parameters $\sim m_{e} \alpha^{5} \ln (\alpha) \longleftarrow \quad$ fixed by
2466 THz
QED

$$
\text { Bohr } \sim m_{e} \alpha^{2}
$$

hyperfine splitting $\sim \frac{m_{e}^{2}}{m_{p}} \mu_{e} \mu_{p} \alpha^{4}$

Compute the H_{m} by "Matching"

Relativity: $\quad \frac{p^{4}}{8 m_{e}^{3}}+\ldots$
QED: $\mu_{e}, \vec{L} \cdot \vec{S}, \ldots$ (coefficients determined by α, m_{e})

QED

$$
H=H_{0}+\sum_{m=1}^{\infty} \epsilon^{m} H_{m}
$$

NRQED

What about quarks?

u
 d

$Q_{d}=-1 / 3$
$Q_{u}=+2 / 3$

When matching
couplings change too:

$$
Q_{u, d} \rightarrow Q_{p}
$$

short distance

long distance

This is just an application of the multipole expansion, familiar from electromagnetism:

$$
\mathcal{V}(\vec{r})=\frac{1}{r} \int \rho d^{3} r^{\prime}+\frac{1}{r^{2}} \int r^{\prime} \cos \theta \rho d^{3} r^{\prime}+\ldots
$$

total
charge
$200 \mathrm{MeV} \gg p_{\gamma} \Leftrightarrow r^{\prime} \ll r$ meV

What about quarks?

u
 d

size $\sim 1 \mathrm{fm} \rightarrow 200 \mathrm{MeV} \gg p_{\gamma}$
low momentum photons do not resolve the quarks, they see the proton charge
$Q_{u}=+2 / 3$
$Q_{d}=-1 / 3$

When matching couplings change too: $\quad Q_{u, d} \rightarrow Q_{p}$
\longrightarrow other parameters: m_{p}, μ_{p}, \ldots
in principle fixed by QCD , but it is more accurate to use experimental measurements measure a parameter in one place, then use it in others!

$$
=\text { universality }
$$

Resolution μ Resolution Resolution

Resolution
Resolution

Resolution

Vacuum Polarization

at larger energy E, we probe shorter distances and see a larger charge

$$
\alpha(E)=\frac{\alpha(0)}{1-\frac{\alpha(0)}{3 \pi} \ln \left(\frac{E^{2}}{m_{e}^{2}}\right)}
$$

Long versus Short Distance

ξ^{γ}

Lamb Shift in NRQED
Two parts:
soft γ

ii) radiation in the bound state (long distance)

$$
\left.\delta E_{n}=\left[\frac{4 \alpha^{2}}{3 m_{e}^{2}}\left|\psi_{n}(0)\right|^{2} \ln \left(\frac{\mu}{m_{e}}\right)+\ldots\right]+\left.\left[\frac{1}{m_{e}^{2}} \sum_{k \neq n}|\langle n| \hat{p}| k\right\rangle\right|^{2}\left(E_{k}-E_{n}\right) \ln \left(\frac{\mu}{\left|E_{n}-E_{k}\right|}\right)+\ldots\right]
$$

μ dependence cancels, but allows us to give separate meaning to the two pieces

Lamb Shift in NRQED

Two parts:

i) effective potentials (short distance)
$\left.\delta E_{n}=\left[\frac{4 \alpha^{2}}{3 m_{e}^{2}}\left|\psi_{n}(0)\right|^{2} \ln \left(\frac{\mu}{m_{e}}\right)+\ldots\right]+\left.\left[\frac{1}{m_{e}^{2}} \sum_{k \neq n}|\langle n| \hat{p}| k\right\rangle\right|^{2}\left(E_{k}-E_{n}\right) \ln \left(\frac{\mu}{\left|E_{n}-E_{k}\right|}\right)+\ldots\right]$
μ dependence cancels, but allows us to give separate meaning to the two pieces

History:

- 1947 Bethe computed ii), with $\mu=m_{e}$
\rightarrow large log: $\sim \ln \left(\frac{m_{e}}{m_{e} \alpha^{2}}\right)=-2 \ln (\alpha)$
- 1949 French \& Weisskopf Lamb \& Kroll (Feynman, Schwinger)

Lamb Shift in NRQED

Two parts:

i) effective potentials (short distance)
ii) radiation in the bound state (long distance)
$\left.\delta E_{n}=\left[\frac{4 \alpha^{2}}{3 m_{e}^{2}}\left|\psi_{n}(0)\right|^{2} \ln \left(\frac{\mu}{m_{e}}\right)+\ldots\right]+\left.\left[\frac{1}{m_{e}^{2}} \sum_{k \neq n}|\langle n| \hat{p}| k\right\rangle\right|^{2}\left(E_{k}-E_{n}\right) \ln \left(\frac{\mu}{\left|E_{n}-E_{k}\right|}\right)+\ldots\right]$
μ dependence cancels, but allows us to give separate meaning to the two pieces

History:

- 1947 Bethe computed ii), with $\mu=m_{e}$
\longrightarrow large log: $\sim \ln \left(\frac{m_{e}}{m_{e} \alpha^{2}}\right)=-2 \ln (\alpha)$
- 1949 French \& Weisskopf Lamb \& Kroll
(Feynman, Schwinger)

Lamb Shift in NRQED

Two parts:

i) effective potentials (short distance)

ii) radiation in the bound state (long distance)
$\left.\delta E_{n}=\left[\frac{4 \alpha^{2}}{3 m_{e}^{2}}\left|\psi_{n}(0)\right|^{2} \ln \left(\frac{\mu}{m_{e}}\right)+\ldots\right]+\left.\left[\frac{1}{m_{e}^{2}} \sum_{k \neq n}|\langle n| \hat{p}| k\right\rangle\right|^{2}\left(E_{k}-E_{n}\right) \ln \left(\frac{\mu}{\left|E_{n}-E_{k}\right|}\right)+\ldots\right]$
μ dependence cancels, but allows us to give separate meaning to the two pieces

History:

$$
\Delta E(2 S-2 P)=1040 \mathrm{MHz}
$$

- 1947 Bethe computed ii), with $\mu=m_{e}$ large log: $\sim \ln \left(\frac{m_{e}}{m_{e} \alpha^{2}}\right)=-2 \ln (\alpha)$
close to the 1058 MHz answer
- 1949 French \& Weisskopf Lamb \& Kroll (Feynman, Schwinger)
computed i) in QED and combined with ii)
$\Delta E(2 S-2 P)=1051 \mathrm{MHz}$

The structure of QED logs can be derived from a non-relativistic renormalization group

Luke, Manohar, Rothstein, I.S.

$$
E=\frac{p^{2}}{2 m}
$$

energy resolution	μ_{E}
momentum resolution	μ_{p}

Correction	Observable	System	Comparison	
$\alpha^{8} \ln ^{3} \alpha$	Lamb shift	H	agrees*	
		$\mu^{+} e^{-}, e^{+} e^{-}$	new	
	no h.f.s., no $\Delta \Gamma / \Gamma)$		agrees	all from
$\alpha^{7} \ln ^{2} \alpha$	h.f.s.	$H, \mu^{+} e^{-}, e^{+} e^{-}$	agrees	
$\alpha^{3} \ln ^{2} \alpha$	Lamb shift	$H, \mu^{+} e^{-}, e^{+} e^{-}$	alne	
$\alpha^{6} \ln \alpha$	$\Delta \Gamma / \Gamma$	$e^{+} e^{-}$ortho and para	agrees	
$\alpha^{2} \ln \alpha$	Lamb shift	$H, \mu^{+} e^{-}, e^{+} e^{-}$	agrees	
$\alpha^{5} \ln \alpha$	h.f.s.	$H, \mu^{+} e^{-}, e^{+} e^{-}$	agrees	

LO anomalous dimension: $\alpha^{4}(\alpha \ln \alpha)^{k} \quad$ stops at $k=1$
NLO anomalous dimension: $\alpha^{5}(\alpha \ln \alpha)^{k} \quad$ stops at $k=3$

The structure of QED logs can be derived from a non-relativistic renormalization group

Luke, Manohar, Rothstein, I.S.

$$
E=\frac{p^{2}}{2 m}
$$

energy resolution	μ_{E}
momentum resolution	μ_{p}

NRQED methods are also used for the non-logarithmic terms

		Expt.(MHz)	Theory(MHz)	Agree?
H	Lamb	$1057.845(9)$	$1057.85(1)$	$<r_{p}^{2}>$
	h.f.s	$1420.405751768(1)$	$1420.399(2)$	G_{E}, G_{M}
$\mu^{+} e^{-}$	h.f.s	$4463.30278(5)$	$4463.30288(55)$	m_{e} / m_{μ}
$e^{+} e^{-}$	Lamb	$13012.4(1)$	$13012.41(8)$	agree
	h.f.s	$203389.10(74)$	$203391.70(50)$	3σ
	$\Gamma_{\text {para }}$	$7990.9(1.7) \mu s^{-1}$	$7989.62(4) \mu s^{-1}$	agree
	$\Gamma_{\text {ortho }}$	$7.0404(13) \mu s^{-1}$	$7.03996(2) \mu s^{-1}$	agree

The ideas we've discussed in QED:

- resolution μ
- changes in degrees of freedom \& couplings
- expansions, multiple scales
- universality
become even more crucial for QCD

QCD Interactions are more complicated than QED:
strong coupling: $g(\mu)$

$$
\alpha_{s}(\mu)=\frac{g(\mu)^{2}}{4 \pi}
$$

these interactions involve the same coupling (gauge symmetry)

Vacuum response?

gluons have spin, carry color charge behave like a permanent magnet anti-screen the charge

$$
\beta(g)=\mu \frac{d}{d \mu} g(\mu)=-\frac{g(\mu)^{3}}{16 \pi^{2}}\left(11-\frac{2}{3} n_{f}\right)<0
$$

In QCD, the coupling, $g(\mu)$, behaves in the opposite way to QED, it gets weaker at short distances
slope is negative

large change in the value

$$
\alpha_{s}(\mu)=\frac{g(\mu)^{2}}{4 \pi} \quad \beta(g)=\mu \frac{d}{d \mu} g(\mu)<0
$$

Gross, Politzer, Wilczek

Nobel Prize, 2004

Asymptotic freedom

large $\mu=Q$, small α_{s}, free quarks

Infrared slavery

as $\mu=Q$ approaches a few $100 \mathrm{MeV}(r \rightarrow 1 \mathrm{fm})$, the coupling gets large
an expansion in $\alpha_{s}(\mu<1 \mathrm{GeV})$ is no good
coupling gets so strong that quarks never escape unless they form a color singlet (bound) state with other quarks, ie. they are confined

Mesons
$\pi, K, \rho, \ldots \quad \bar{q}$
degrees of freedom change

Baryons

$$
p, n, \Sigma, \Delta, \ldots \not q
$$

$$
r=\Lambda_{\mathrm{QCD}}^{-1}
$$

an expansion in $\alpha_{s}(\mu<1 \mathrm{GeV})$ is no good
coupling gets so strong that quarks never escape unless they form a color singlet (bound) state with other quarks, ie. they are confined

Mesons

$$
\pi, K, \rho, \ldots
$$

Baryons

$$
p, n, \Sigma, \Delta, \ldots
$$

degrees of freedom change

$$
r=\Lambda_{\mathrm{QCD}}^{-1}
$$

an expansion in $\alpha_{s}(\mu<1 \mathrm{GeV})$ is no good
coupling gets so strong that quarks never escape unless they form a color singlet (bound) state with other quarks, ie. they are confined

Mesons

$$
\pi, K, \rho, \ldots
$$

Baryons

$$
p, n, \Sigma, \Delta, \ldots
$$

$$
r=\Lambda_{\mathrm{QCD}}^{-1}
$$

degrees of freedom change

m_{W}, m_{t}
m_{b}
m_{c}
Λ_{QCD}
m_{s}
$m_{u, d}$

Is there a "Hydrogen Atom" for QCD?

Is there a "Hydrogen Atom" for QCD?

candidates:
m_{W}, m_{t}
$\longrightarrow m_{b}$
m_{c}
Λ_{QCD}
m_{s}
$m_{u, d}$
i) top quarks: $t \bar{t}$
ii) proton
iii) B mesons
$m_{t} \sim 175 \mathrm{GeV}$
m_{W}
$\longrightarrow p_{t} \sim 25 \mathrm{GeV}$
$\longmapsto m_{b} \sim 4 \mathrm{GeV}$
m_{c}
Λ_{QCD}
m_{s}
$m_{u, d}$

$$
\Gamma_{t}=1.4 \mathrm{GeV}>\Lambda_{\mathrm{QCD}}
$$

top decays before it hadronizes
Coulombic, expansion in $\alpha_{s}(\mu)$:

$$
\mathrm{LO}+\mathrm{NLO}+\mathrm{NNLO}+\ldots
$$

vary

$$
\mu=m_{t}, p_{t}, E_{t} ?
$$

$$
\Gamma_{t}=1.4 \mathrm{GeV} \gg \Lambda_{\mathrm{QCD}}
$$

top decays before it hadronizes

$$
\begin{gathered}
\longmapsto \\
p_{t} \\
\longmapsto \\
m_{b} \\
E_{t}
\end{gathered}
$$

Determine the right scales

$$
\mu \frac{d}{d \mu} C_{i}(\mu)=\ldots
$$ I.S., Teubner

$e^{-} p \rightarrow e^{-} X$
Deep Inelastic Scattering on a proton
A factorization theorem
m_{W}
Q
m_{b}
m_{c}
Λ_{QCD}
m_{s}
$m_{u, d}$

$$
F_{1}\left(x, Q^{2}\right)=\frac{1}{x} \int_{x}^{1} d \xi H(\xi / x, Q, \mu) f_{i / p}(\xi, \mu)
$$

short distance process $p^{2} \sim Q^{2}$

analogy: Bragg scattering of X-rays on a crystal, for this time scale the atoms are at rest

B-meson

$m_{b} \gg \Lambda_{\mathrm{QCD}}$

heavy quark symmetry Isgur \& Wise

Decay by weak interactions; long lived

Precision studies are sensitive to scales $>\mathrm{m}_{\mathrm{W}}$ The B is heavy, so many of its decay products are energetic, E

$m_{b} \gg \Lambda_{\mathrm{QCD}}$

m_{b}
E
m_{c}
Λ_{QCD}
m_{s}
$m_{u, d}$

Decay by weak interactions; long lived

$$
\begin{array}{ccc}
B \rightarrow X_{u} \ell \bar{\nu} & B \rightarrow D \pi & B \rightarrow K^{*} \gamma \\
B \rightarrow \pi \ell \bar{\nu} & B \rightarrow X_{s} \gamma & B \rightarrow \rho \gamma \\
B \rightarrow D^{*} \eta^{\prime} & B \rightarrow \rho \rho \quad B \rightarrow \pi \pi \\
& B \rightarrow K \pi & B \rightarrow \gamma \ell \bar{\nu}
\end{array}
$$

Precision studies are sensitive to scales $>\mathrm{m}_{\mathrm{W}}$ The B is heavy, so many of its decay products are energetic, E
eg. $B \rightarrow D e \bar{\nu}, \quad M_{W}^{2} \gg m_{b}^{2} \gg \Lambda^{2}$

1) Short Distance
$\mu=m_{W} \simeq 80 \mathrm{GeV}$
gluons perturbative

$$
\text { eg. } B \rightarrow D e \bar{\nu}, \quad M_{W}^{2} \gg m_{b}^{2} \gg \Lambda^{2}
$$

$$
\text { eg. } B \rightarrow D e \bar{\nu}, \quad M_{W}^{2} \gg m_{b}^{2} \gg \Lambda^{2}
$$

2) Intermediate Distance
$\mu=m_{b} \simeq 5 \mathrm{GeV}$
gluons perturbative

$$
\text { eg. } B \rightarrow D e \bar{\nu}, \quad M_{W}^{2} \gg m_{b}^{2} \gg \Lambda^{2}
$$

eg. $B \rightarrow D e \bar{\nu}, \quad M_{W}^{2} \gg m_{b}^{2} \gg \Lambda^{2}$
3) Long Distance $\mu=\Lambda \simeq 0.5 \mathrm{GeV}$
gluons nonperturbative

$$
\text { eg. } B \rightarrow D e \bar{\nu}, \quad M_{W}^{2} \gg m_{b}^{2} \gg \Lambda^{2}
$$

$$
\text { eg. } B \rightarrow D e \bar{\nu}, \quad M_{W}^{2} \gg m_{b}^{2} \gg \Lambda^{2}
$$

4) Very Long Distance
$\mu \ll \Lambda$
no gluons

eg. $B \rightarrow D e \bar{\nu}, \quad M_{W}^{2} \gg m_{b}^{2} \gg \Lambda^{2}$
5) Very Long Distance
$\mu \ll \Lambda$
no gluons

- Each of these pictures can be described by a field theory
- These theories can be matched together $H_{1} \rightarrow H_{2} \rightarrow H_{3} \rightarrow H_{4}$
- At each μ we capture the most important physics
$\underset{\text { parameters }}{\operatorname{expansion}} \quad \frac{m_{b}^{2}}{m_{W}^{2}} \simeq \frac{1}{250}, \quad \alpha_{s}\left(m_{b}\right) \simeq 0.2, \quad \frac{\Lambda}{m_{b}} \simeq 0.1$

Soft - Collinear Effective Theory

Bauer, Pirjol, I.S.
Fleming, Luke

An effective field theory for energetic hadrons \& jets

$$
E \gg \Lambda_{\mathrm{QCD}}
$$

Analogy:

> QED \longleftrightarrow Quantum Mechanics (NRQED)
> QCD \longleftrightarrow SCET

Soft Collinear Effective Theory (SCET)

B has Soft
constituents:

Soft Collinear Effective Theory (SCET)

π has Collinear constituents:

Soft Collinear Effective Theory (SCET)

 eg.
$\pi \rightarrow \sim \sim$

$$
E_{\pi}=2.6 \mathrm{GeV} \gg \Lambda_{\mathrm{QCD}} \sim 0.3 \mathrm{GeV} \quad m_{B}=2 E_{\pi}
$$

π has Collinear constituents:

or replace π by a jet of many hadrons

Soft Collinear Effective Theory (SCET)

π has Collinear constituents:

Soft Collinear Effective Theory (SCET)

A field theory for Soft \& Collinear interactions

$$
Q n^{\mu}+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)
$$

organizes the interactions in a series expansion in $\frac{\Lambda_{\mathrm{QCD}}}{E}$ (analog of the non-relativistic expansion in Q.M.)
decoupling

SCET is a field theory which:

- explains how these degrees of freedom communicate with each other, and with hard interactions

$$
F_{1}\left(x, Q^{2}\right)=\frac{1}{x} \int_{x}^{1} d \xi H(\xi / x, Q, \mu) f_{i / p}(\xi, \mu)
$$

SCET is a field theory which:

- explains how these degrees of freedom communicate with each other, and with hard interactions

SCET is a field theory which:

- explains how these degrees of freedom communicate with each other, and with hard interactions

$$
F_{1}\left(x, Q^{2}\right)=\frac{1}{x} \int_{x}^{1} d \xi H(\xi / x, Q, \mu) f_{i / p}(\xi, \mu)
$$

SCET is a field theory which:

- explains how these degrees of freedom communicate with each other, and with hard interactions

SCET is a field theory which:

- explains how these degrees of freedom communicate with each other, and with hard interactions
communicate by integrals

$$
F_{1}\left(x, Q^{2}\right)=\frac{1}{x} \int_{x}^{1} d \xi H(\xi / x, Q, \mu) f_{i / p}(\xi, \mu)
$$

SCET is a field theory which:

- explains how these degrees of freedom communicate with each other, and with hard interactions
communicate by integrals
- provides a simple operator language to derive factorization theorems in fairly general circumstances
eg. unifies the treatment of factorization for exclusive and inclusive QCD processes
- new symmetry constraints

How is SCET used?

- cleanly separate short and long distance effects in QCD
\rightarrow derive new factorization theorems
\rightarrow find universal hadronic functions, exploit symmetries \& relate different processes
- model independent, systematic expansion
\rightarrow study power corrections
- keep track of μ dependence
\rightarrow sum logarithms, reduce uncertainties

Factorization Example

$$
\bar{B}^{0} \rightarrow D^{+} \pi^{-}, B^{-} \rightarrow D^{0} \pi^{-}
$$

$\langle D \pi| H_{\text {weak }}|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)$

SCET gives Universal functions (analog of wavefunctions in Q.M.)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{s}^{(0)}+\mathcal{L}_{c}^{(0)} & \text { Factorization if } H_{\text {weak }}=O_{s} \times O_{c} \\
\left\langle D^{(*)}\right| O_{s}|B\rangle=\xi\left(v \cdot v^{\prime}\right) & \text { Calculate T, } \alpha_{s}(Q) \\
\langle\pi| O_{c}(x)|0\rangle=f_{\pi} \phi_{\pi}(x) & Q=E_{\pi}, m_{b}, m_{c} \\
& \text { corrections will be } \Lambda / m_{c} \sim 30 \%
\end{aligned}
$$

Factorization Example

$$
\bar{B}^{0} \rightarrow D^{+} \pi^{-}, B^{-} \rightarrow D^{0} \pi^{-}
$$

B, D are soft , π collinear

$\langle D \pi| H_{\text {weak }}|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)$

SCET gives Universal functions (analog of wavefunctions in Q.M.)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{s}^{(0)}+\mathcal{L}_{c}^{(0)} & \text { Factorization if } H_{\text {weak }}=O_{s} \times O_{c} \\
\left\langle D^{(*)}\right| O_{s}|B\rangle=\xi\left(v \cdot v^{\prime}\right) & \text { Calculate T, } \alpha_{s}(Q) \\
\langle\pi| O_{c}(x)|0\rangle=f_{\pi} \phi_{\pi}(x) & Q=E_{\pi}, m_{b}, m_{c} \\
& \text { corrections will be } \Lambda / m_{c} \sim 30 \%
\end{aligned}
$$

Factorization Example

$$
\bar{B}^{0} \rightarrow D^{+} \pi^{-}, B^{-} \rightarrow D^{0} \pi^{-}
$$

$\langle D \pi| H_{\text {weak }}|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)$

SCET gives Universal functions (analog of wavefunctions in Q.M.)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{s}^{(0)}+\mathcal{L}_{c}^{(0)} & \text { Factorization if } H_{\text {weak }}=O_{s} \times O_{c} \\
\left\langle D^{(*)}\right| O_{s}|B\rangle=\xi\left(v \cdot v^{\prime}\right) & \text { Calculate T, } \alpha_{s}(Q) \\
\langle\pi| O_{c}(x)|0\rangle=f_{\pi} \phi_{\pi}(x) & Q=E_{\pi}, m_{b}, m_{c} \\
& \text { corrections will be } \Lambda / m_{c} \sim 30 \%
\end{aligned}
$$

Factorization Example

$$
\bar{B}^{0} \rightarrow D^{+} \pi^{-}, B^{-} \rightarrow D^{0} \pi^{-}
$$

B, D are soft , π collinear
$\langle D \pi| H_{\text {weak }}|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)$

SCET gives Universal functions (analog of wavefunctions in Q.M.)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{s}^{(0)}+\mathcal{L}_{c}^{(0)} & \text { Factorization if } H_{\text {weak }}=O_{s} \times O_{c} \\
\left\langle D^{(*)}\right| O_{s}|B\rangle=\xi\left(v \cdot v^{\prime}\right) & \text { Calculate } \mathrm{T}, \alpha_{s}(Q) \\
\langle\pi| O_{c}(x)|0\rangle=f_{\pi} \phi_{\pi}(x) & Q=E_{\pi}, m_{b}, m_{c} \\
& \text { corrections will be } \Lambda / m_{c} \sim 30 \%
\end{aligned}
$$

Systematic Corrections

- Soft \& Collinear start to Interact

Chay, Kim
Beneki, Chapovsky,
Diehl, Feldmann
Bauer, Pirjol, I.S.

- Quark Mass Effects

Ligeti, Leibovich, Wise

- At higher orders the description of the modes remains valid. However, we typically have more integrations and our results depend on new functions.

Color Suppressed Decays

$\bar{B}^{0} \rightarrow D^{0} \pi^{0} \quad$ Intractable without SCET

$Q=m_{b}, E_{\pi}, m_{c}$
prove S is same for D and D^{*}

Comparison to Data

(Cleo, Belle, Babar)

Extension to isosinglets:
Blechman, Mantry, I.S.

Extension to baryons $\left(\Lambda_{b}\right)$:
Leibovich, Ligeti, I.S., Wise

Not yet tested:

- $\operatorname{Br}\left(D^{*} \rho_{\|}^{0}\right) \gg \operatorname{Br}\left(D^{*} \rho_{\perp}^{0}\right), \quad \operatorname{Br}\left(D^{* 0} K_{\|}^{* 0}\right) \sim \operatorname{Br}\left(D^{* 0} K_{\perp}^{* 0}\right)$
- equal ratios $D^{(*)} K^{*}, D_{s}^{(*)} K, D_{s}^{(*)} K^{*}$; triangles for $D^{(*)} \rho, D^{(*)} K$

$B \rightarrow \pi \pi \quad$ Decays \& Weak Interactions

$\left.\begin{array}{ccc}\text { CKM } & V=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ \text { Matrix } & V_{t d} & V_{t s}\end{array} V_{t b}\right.\end{array}\right)$

Violate

Can use CP-violating observables in $B \rightarrow \pi \pi$
to measure γ,
but need to control QCD interactions
$B \rightarrow \pi \pi \quad$ Decays \& Weak Interactions

CKM

$$
V=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Violate

C: exchange of particles \& antiparticles
$\mathrm{P}:$ parity $\vec{x} \rightarrow-\vec{x}$

Can use CP-violating observables in $B \rightarrow \pi \pi$
to measure γ,
but need to control QCD interactions

CP:

Factorization with SCET
Resolution $\mu=m_{b}$

Beneke, Buchalla, Neubert, Sachrajda

Nonleptonic $\quad B \rightarrow M_{1} M_{2} \quad(\sim 120$ channels $)$

$A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2} \zeta^{B M_{1}}} \int d u T_{2 \varsigma}(u) \phi^{M_{2}}(u)+f_{M_{2}} \int d u d z T_{2 J}(u, z) \zeta_{J}^{B M_{1}}(z) \phi^{M_{2}}(u)+(1 \leftrightarrow 2)\right\}$

Form Factors
$B \rightarrow \pi \ell \bar{\nu}$,
$B \rightarrow K^{*} \ell^{+} \ell^{-}$,
$B \rightarrow \rho \gamma, \ldots$
Resolution $\mu=\sqrt{E \Lambda}$, expansion in $\alpha_{s}(\sqrt{E \Lambda})$

$$
\begin{aligned}
& \zeta_{J}^{B M}(z)=f_{M} f_{B} \int_{0}^{1} d x \int_{0}^{\infty} d k^{+} J\left(z, x, k^{+}, E\right) \phi_{M}(x) \phi_{B}\left(k^{+}\right) \\
& \zeta^{B M} \quad \text { left as a form factor }
\end{aligned}
$$

$B \rightarrow \pi \pi \quad \bar{B}^{0} \rightarrow \pi^{+} \pi^{-}, \quad B^{-} \rightarrow \pi^{0} \pi^{-}, \bar{B}^{0} \rightarrow \pi^{0} \pi^{0}$,

- $C_{\pi^{0} \pi^{0}}=-0.28 \pm 0.39$, uncertainty precludes measuring γ without input from QCD
- Factorization predicts a small relative phase for two amplitudes

B-decays with one Jet

$$
B \rightarrow X_{s} \gamma \quad B r\left(B \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\operatorname{expt}}=(3.55 \pm 0.26) \times 10^{-4}
$$

$$
\begin{align*}
\operatorname{Br}\left(B \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\text {theory }}= & (3.15 \pm 0.23) \times 10^{-4} \quad \text { Misiak et al. } \\
& -0.17 \quad \text { Becher, Neubert }
\end{align*}
$$

Cuts force the Xs to be jet-like and are important for comparison to the standard model

$$
B \rightarrow X_{s} \ell^{+} \ell^{-}
$$

Lee, Ligeti,
Stewart, Tackmann

Again the cuts give a jet, and modify the standard model prediction in the decay rate

SCET has been applied to many processes

Process	Non-Pert. functions	Utility
$\overline{B^{0}} \rightarrow D^{+} \pi^{-}, \ldots$	$\xi(w), \phi_{\pi}$	study QCD
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$,	$S\left(k_{j}^{+}\right), \phi_{\pi}$	study QCD
$B \rightarrow X_{s}^{\text {endpt }} \gamma$	$f\left(k^{+}\right)$	new physics, measure f
$B \rightarrow X_{u}^{\text {endpt }} \ell \nu$	$f\left(k^{+}\right)$	measure $\left\|V_{u b}\right\|$
$B \rightarrow \pi \ell \nu$,	$\phi_{B}\left(k^{+}\right), \phi_{\pi}(x), \zeta_{\pi}(E)$	measure $\left\|V_{u b}\right\|$, study QCD
$B \rightarrow \gamma \ell \nu, \gamma \ell^{+} \ell^{-}$	ϕ_{B}	measure ϕ_{B}, new physics
$B \rightarrow \pi \pi, K \pi$,	$\phi_{B}, \phi_{\pi}, \zeta_{\pi}(E)$	new physics, CP violation, γ
	$\phi_{\bar{K}}, \zeta_{K}(E)$	study QCD
$B \rightarrow K^{*} \gamma, \rho \gamma$	$\phi_{B}, \phi_{K}, \zeta_{K^{*}}^{\perp}(E)$	measure $\left\|V_{t d} / V_{t s}\right\|$,
	$\phi_{\rho}, \zeta_{\rho}^{\perp}(E)$	new physics
$B \rightarrow X_{s} \ell^{+} \ell^{-}$	$f\left(k^{+}\right)$	new physics
$e^{-} p \rightarrow e^{-} X$	$f_{i / p}(\xi), f_{g / p}(\xi)$	study QCD , measure p.d.f's
$p \bar{p} \rightarrow X \ell^{+} \ell^{-}$	$f_{i / p}(\xi), f_{g / p}(\xi)$	study QCD
$e^{-} \gamma \rightarrow e^{-} \pi^{0}$	ϕ_{π}	measure ϕ_{π}
$\gamma^{*} M \rightarrow M^{\prime}$	$\phi_{M}, \phi_{M^{\prime}}$	study QCD
$e^{+} e^{-} \rightarrow j_{1}+$ jets	$\tilde{S}\left(k^{+}\right)$	event shapes \& universality
$e^{+} e^{-} \rightarrow J / \Psi X$	$S^{(8, n)}\left(k^{+}\right)$	study QCD
$\Upsilon \rightarrow X \gamma$	$S^{(8, n)}\left(k^{+}\right)$	study QCD

In Pittsburgh: C.Kim, A.Leibovich, I.Rothstein, A.Williamson, J.Zupan

Future

Who needs to understand QCD?

Babar, Belle - For many channels, control of hadronic uncertainties is crucial to test standard model \& look for new physics.

$$
\begin{array}{r}
B \rightarrow X_{s} \ell^{+} \ell^{-}, B \rightarrow \pi \pi, B \rightarrow K \pi, B \rightarrow \rho \pi, \ldots \\
B \rightarrow \rho \gamma, B \rightarrow K^{*} \gamma, B \rightarrow \phi K_{s}, B \rightarrow \eta^{\prime} K_{s}
\end{array}
$$

$\mathrm{CDF}, \mathrm{D} \varnothing$ - Test standard model / new physics in $B_{s}, \Lambda_{b}, \ldots$

- Heavy quark production, jets, ...

Immediate
 future:

Babar, Belle - For many channels, control of hadronic uncertainties is crucial to test standard model \& look for new physics.

$$
\begin{array}{r}
B \rightarrow X_{s} \ell^{+} \ell^{-}, B \rightarrow \pi \pi, B \rightarrow K \pi, B \rightarrow \rho \pi, \ldots \\
B \rightarrow \rho \gamma, B \rightarrow K^{*} \gamma, B \rightarrow \phi K_{s}, B \rightarrow \eta^{\prime} K_{s}
\end{array}
$$

CDF, DØ - Test standard model/new physics in $B_{s}, \Lambda_{b}, \ldots$

- Heavy quark production, jets, ...
pp collider with $E_{c m}=14 \mathrm{TeV}$ scales: $m_{W}, m_{t}, E_{T}^{\text {jet }}$
\rightarrow Energetic QCD (SCET)

Effective theory concepts will be helpful whether we're:

- exploring QCD,
- computing precision standard model cross sections (resolution scales or summation of logs),
- or puzzling out signals of unexplored particle physics

LHC era:

pp collider with $E_{c m}=14 \mathrm{TeV}$
scales: $m_{W}, m_{t}, E_{T}^{\text {jet }}$

\longrightarrow
Energetic QCD

Effective theory concepts will be helpful whether we're:

- exploring QCD,
- computing precision standard model cross sections (resolution scales or summation of logs),
- or puzzling out signals of unexplored particle physics

Concluding Remarks

- QED fundamental parameters \& precision quantum field theory
- QCD today is as rich \& diverse as ever many subfields which focus on different degrees of freedom and different relevant interactions
- SCET a new approach to derive factorization theorems and treat power corrections for energetic hadrons \& jets

Nonleptonic B-decays

\rightarrow
predictions for the size of amplitudes
universal hadronic parameters, strong phases
γ (or α) from individual $B \rightarrow M_{1} M_{2}$ channels

- A lot of theory and phenomenology left to study ...

