QCD Effects in
 B \& Λ_{b} Decays

Iain Stewart MIT

6th International Conference on
Hyperons, Charm, \& Beauty Hadrons (BEACH), Chicago, 2004

Outline

- Expansions and the Soft-Collinear EFT
- I) Lessons from $\bar{B}^{0} \rightarrow D^{0} \pi^{0}\left(1 / N_{c} \& \Lambda / E_{\pi}\right)$
- $\Lambda_{b} \rightarrow \Lambda_{c} \pi \quad \Lambda_{b} \rightarrow \Sigma_{c}^{(*)} \rho$
- $\bar{B} \rightarrow D^{* *} \pi$
- 2) Results for $B \rightarrow P$ and $B \rightarrow V$ form factors
- 3) Factorization for $B \rightarrow M_{1} M_{2}$ in SCET

$$
\text { ie. } B \rightarrow P P, P V, V V
$$

- $B \rightarrow M_{1} M_{2}$ Factorization Theorem
- $B \rightarrow \pi \pi$ Phenomenology at LO in $1 / m_{b}$
- Outlook and Open Issues

$$
\begin{array}{cc}
B \rightarrow M_{1} M_{2} & B \rightarrow \pi \pi \quad B \rightarrow \pi K \quad B \rightarrow \rho K^{*} \\
& B \rightarrow \pi K^{*} \\
B \rightarrow \rho \rho & B \rightarrow \pi \rho
\end{array} \quad B \rightarrow K K
$$

$$
B \rightarrow \rho^{+} \rho^{-} \quad \text { Babar } \quad \alpha_{\mathrm{eff}}=102^{\circ}{ }_{-12}^{+16}(\text { stat }){ }_{-4}^{+5}(\text { syst })
$$

$$
\mathrm{QCD} \text { contamination } \quad\left|\alpha_{\mathrm{eff}}-\alpha\right|<17^{\circ}
$$

Of course we want as many α 's \& γ 's as we can get

Electroweak Hamiltonian

$m_{W}, m_{t} \gg m_{b}$

$$
H_{\text {weak }}=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda^{i} C_{i}(\mu) O_{i}(\mu)
$$

trees

$$
\begin{aligned}
& O_{1}=(\bar{u} b)_{V-A}(\bar{d} u)_{V-A} \\
& O_{2}=\left(\bar{u}_{i} b_{j}\right)_{V-A}\left(\bar{d}_{j} u_{i}\right)_{V-A}
\end{aligned}
$$

penguins

$$
\begin{aligned}
& O_{3}=(\bar{d} b)_{V-A} \sum_{q}(\bar{q} q)_{V-A} \\
& O_{4,5,6}=\ldots \\
& O_{7 \gamma, 8 G}=\ldots \\
& O_{7, \ldots, 10}^{e w}=\ldots
\end{aligned}
$$

Need expansion parameters to make model independent predictions

$$
\alpha_{s}\left(m_{b}\right) \simeq 0.2 \quad \frac{\Lambda}{m_{b}} \simeq 0.1 \quad \frac{\Lambda}{E_{M}} \simeq 0.2
$$

$\frac{m_{s}}{\Lambda} \simeq 0.3$

Effective Field Theory

- Separate physics at different momentum scales
- Model independent, systematically improvable
- Power expansion, can estimate uncertainty
- Exploit symmetries

Measuring CP violation in "unclean" decays:

I. Use $\operatorname{SU}(2)$ or $\operatorname{SU}(3)$ to relate amplitudes

- Flavor symmetries of $\mathrm{QCD}, m_{u}, m_{d}, m_{s} \ll \Lambda_{\mathrm{QCD}}$

2. Factorization from QCD to reduce the amplitudes to simple universal nonperturbative parameters.

- Expand in $m_{b}, E_{\pi} \gg \Lambda_{\mathrm{QCD}}$

Proof of Factorization means Known to be Model Independent once hadronic parameters are determined

These two possibilities are not exclusive.

> Ask "What are the uncertainties?" and "Is the expansion converging as expected?"

Factorization in QCD

- Beneke, Buchalla, Neubert, Sachrajda proposed a QCD factorization theorem for $B \rightarrow \pi \pi$, QCDF .
- Amplitude is reduced to simpler matrix elements

$$
\langle\pi \pi| \cdots|B\rangle \longrightarrow\langle\pi| \cdots|B\rangle,\langle\pi| \cdots|0\rangle,\langle 0| \cdots|B\rangle
$$

- At LO in $\frac{\Lambda_{\mathrm{QCD}}}{E_{\pi}}$ strong phases are perturbative, $i \alpha_{s}\left(m_{b}\right)$, and therefore small.

$F^{B \rightarrow M_{1}}, \phi_{M_{2}}(x)$
form factor

$\phi_{B}\left(r^{+}\right), \phi_{M_{1}}(x), \phi_{M_{2}}(y)$

Keum, Li, Sanda: pQCD Factorization

Ciuchini et al,

 Colangelo et al:charming penguins

Soft - Collinear Effective Theory

Bauer, Pirjol, Stewart Fleming, Luke

- An effective field theory for energetic hadrons, $E \gg \Lambda_{\mathrm{QCD}}$

Soft Collinear Effective Theory

eg.

Pion has: $\quad p_{\pi}^{\mu}=(2.3 \mathrm{GeV}) n^{\mu}=Q n^{\mu} \quad n^{2}=\bar{n}^{2}=0,\left(\bar{n} \cdot p=p^{-}\right)$

Soft brown muck:

$$
p_{s}^{\mu}=\left(p^{+}, p^{-}, p^{\perp}\right) \sim(\Lambda, \Lambda, \Lambda)
$$

Collinear constituents:

$$
p_{c}^{\mu}=\left(p^{+}, p^{-}, p^{\perp}\right) \sim\left(\frac{\Lambda^{2}}{Q}, Q, \Lambda\right) \sim Q\left(\lambda^{2}, 1, \lambda\right) \quad \lambda=\frac{\Lambda}{Q}
$$

$\mathrm{SCET}_{\mathrm{I}} \quad$ Energetic jets $\quad \Lambda^{2} \ll Q \Lambda \ll Q^{2}$
usoft $\quad p^{\mu} \sim \Lambda$
collinear $p_{c}^{2} \sim Q \Lambda, \lambda=\sqrt{\Lambda / Q}$

$\mathrm{SCET}_{\text {II }}$

Energetic hadrons
soft $\quad p^{\mu} \sim \Lambda$
collinear $p_{c}^{2} \sim \Lambda^{2}, \lambda=\Lambda / Q$

Factorization

$$
\mathrm{LO}=\lambda^{5} \text { graphs }
$$

$$
\begin{gathered}
\bar{B}^{0} \rightarrow D^{+} \pi^{-} \quad, B^{-} \rightarrow D^{0} \pi^{-} \\
B, D \text { are soft, } \pi \text { collinear } \\
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{s}^{(0)}+\mathcal{L}_{c}^{(0)}
\end{gathered}
$$

Factorization if $\mathcal{O}=O_{c} \times O_{s}$

Bauer, Pirjol, I.S.

$$
\langle D \pi|(\bar{c} b)(\bar{u} d)|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)
$$

Universal functions:
$\left\langle D^{(*)}\right| O_{s}|B\rangle=\xi\left(v \cdot v^{\prime}\right)$
$\langle\pi| O_{c}(x)|0\rangle=f_{\pi} \phi_{\pi}(x)$

Calculate T, $\quad \alpha_{s}(Q)$
$Q=E_{\pi}, m_{b}, m_{c}$
corrections will be $\Lambda / m_{c} \sim 30 \%$

Universal hadronic parameters

Process	Degrees of Freedom $\left(p^{2}\right)$	Non-Pert. functions
$B^{0} \rightarrow D^{+} \pi^{-}, \ldots$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right)$	$\xi(w), \phi_{\pi}$
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}, \ldots$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right), \mathrm{c}(Q \Lambda)$	$S\left(k_{j}^{+}\right), \phi_{\pi}$
$B \rightarrow X_{s}^{e n d p t} \gamma$,	$\mathrm{c}(Q \Lambda)$, us $\left(\Lambda^{2}\right)$	$f\left(k^{+}\right)$
$B \rightarrow X_{u}^{e n d p t} \ell \nu$		
$B \rightarrow \pi \ell \nu, \ldots$	$\mathrm{c}(Q \Lambda), \mathrm{s}\left(\Lambda^{2}\right), \mathrm{c}\left(\Lambda^{2}\right)$	$\phi_{B}\left(k^{+}\right), \phi_{\pi}(x), \zeta_{\pi}(E)$
$B \rightarrow \gamma \ell \nu, \gamma \gamma$	$\mathrm{c}(Q \Lambda), \mathrm{us}\left(\Lambda^{2}\right)$	ϕ_{B}
$B \rightarrow \pi \pi$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right), \mathrm{c}(Q \Lambda)$	$\phi_{B}, \phi_{\pi}, \zeta_{\pi}(E)$
$B \rightarrow K^{*} \gamma$	$\mathrm{c}(Q \Lambda), \mathrm{s}\left(\Lambda^{2}\right), \mathrm{c}\left(\Lambda^{2}\right)$	$\phi_{B}, \phi_{K}, \zeta_{K^{*}}^{ \pm}(E)$
$e^{-} p \rightarrow e^{-} X$	$\mathrm{c}\left(\Lambda^{2}\right)$	$f_{i / p}(\xi), f_{g / p}(\xi)$
$e^{-} \gamma \rightarrow e^{-} \pi^{0}$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right)$	ϕ_{π}
$\gamma^{*} M \rightarrow M^{\prime}$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right)$	$\phi_{M}, \phi_{M^{\prime}}$

$B \rightarrow D \pi$

"Tree"

$$
\begin{aligned}
& \bar{B}^{0} \rightarrow D^{+} \pi^{-} \\
& B^{-} \rightarrow D^{0} \pi^{-}
\end{aligned}
$$

"Color suppressed"
"Exchange"

$$
\begin{aligned}
& B^{-} \rightarrow D^{0} \pi^{-} \\
& \bar{B}^{0} \rightarrow D^{0} \pi^{0}
\end{aligned}
$$

$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$

Large N_{c} - not very predictive
$\left(N_{c}\right)^{0}$
$1 / N_{c}$
$1 / N_{c}$

$$
\begin{gathered}
O^{0}=(\bar{c} b)_{V-A}(\bar{d} u)_{V-A} \\
O^{8}=\left(\bar{c} T^{A} b\right)_{V-A}\left(\bar{d} T^{A} u\right)_{V-A}
\end{gathered}
$$

Type	Decay	$\operatorname{Br}\left(10^{-3}\right)$	Decay	$\operatorname{Br}\left(10^{-3}\right)$
I	$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$	2.68 ± 0.29	$\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$	2.76 ± 0.21
III	$B^{-} \rightarrow D^{0} \pi^{-}$	4.97 ± 0.38	$B^{-} \rightarrow D^{* 0} \pi^{-}$	4.6 ± 0.4
II	$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$	0.29 ± 0.03	$\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}$	0.26 ± 0.05
I	$\bar{B}^{0} \rightarrow D^{+} \rho^{-}$	7.8 ± 1.4	$\bar{B}^{0} \rightarrow D^{*+} \rho^{-}$	6.8 ± 1.0
III	$B^{-} \rightarrow D^{0} \rho^{-}$	13.4 ± 1.8	$B^{-} \rightarrow D^{* 0} \rho^{-}$	9.8 ± 1.8
II	$\bar{B}^{0} \rightarrow D^{0} \rho^{0}$	0.29 ± 0.11	$\bar{B}^{0} \rightarrow D^{* 0} \rho^{0}$	<0.56

- $\operatorname{Br}\left(A_{0-1}^{0} M^{0}\right)$ smalhas expected (pgyer suppressed)
- collar allowed Brsairetsanos føorDDatad D^{*}
$20-30 \%$ level

Color Suppressed Decays

$$
\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}, D^{(*) 0} \rho^{0}, D^{(*) 0} K^{0}, D^{(*) 0} K^{* 0}, D_{s}^{(*)} K^{-}, D_{s}^{(*)} K^{*-}
$$

Factorization with SCET

Mantry, Pirjol, I.S.
Single class of power suppressed $\operatorname{SCET}_{\text {I }}$ operators $T\left\{\mathcal{O}^{(0)}, \mathcal{L}_{\xi q}^{(1)}, \mathcal{L}_{\xi q}^{(1)}\right\}$
(a)

(b)

$$
A_{00}^{D^{(*)}}=N_{0}^{(*)} \int d x d z d k_{1}^{+} d k_{\text {long }}^{D_{2}^{(*)} M} \underbrace{\gg Q \Lambda}_{Q^{2}} \underbrace{T^{(i)}(z)}_{\gg \Lambda^{2}} \underbrace{J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right)} \underbrace{S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right) \phi_{M}(x)}
$$

new soft function $S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right)$- like generalized parton distributions

Theory tidbits:

I) Long Distance Amplitude
2) Symmetry structure of $S^{(i)}$
3) Complex nature of $S^{(i)}$

Implications

polarization in $\mathrm{D}^{*} \mathrm{~V}$
D versus D*
universal strong phases

Phenomenology:

1) Predictions that are independent of form of $J^{(i)}$
2) Predictions with $J^{(i)}$ expanded in $\alpha_{s}\left(\mu^{2} \sim E \Lambda\right)$
$\left\langle D^{(*) 0}\right| O_{s}^{(0,8)}\left|\bar{B}^{0}\right\rangle \rightarrow S^{(0,8)}\left(k_{1}^{+}, k_{2}^{+}\right) \quad$ same for D and D^{*}
with HQET for $\left\langle D^{(*) 0} \pi\right|(\bar{c} b)(\bar{d} u)\left|\bar{B}^{0}\right\rangle \quad$ get $\quad \frac{p_{\pi}^{\mu}}{m_{c}} \rightarrow \frac{E_{\pi}}{m_{c}}=1.5$
not a convergent expansion
$S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right)$is complex, new mechanism for rescattering
$O^{(0,8)}=O^{(0,8)}\left[v, v^{\prime}, n\right]$

Predict

equal strong phases $\delta^{D}=\delta^{D^{*}}$ equal amplitudes $A_{00}^{D}=A_{00}^{D *}$
corrections to this are $\alpha_{s}\left(m_{b}\right), \Lambda / Q$

Tests and Predictions

Expt Average (Cleo, Belle, Babar):

isospin gives triangle:

$$
A_{0-}=\sqrt{2} A_{00}+A_{+-}
$$

rearrange:

$$
\begin{aligned}
1 & =R_{I}+\frac{3 A_{00}}{\sqrt{2} A_{0-}} \\
R_{I} & =\frac{A_{1 / 2}}{\sqrt{2} A_{3 / 2}} \\
\delta & =\arg \left(A_{1 / 2} A_{3 / 2}^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
B r\left(D^{0} \pi^{0}\right) & =(0.29 \pm 0.03) \times 10^{-3}, \quad \delta(D \pi) \\
B r\left(D^{* 0} \pi^{0}\right) & =(0.26 \pm 0.05) \times 10^{-3}, \delta\left(D^{*} \pi\right)
\end{aligned}=31.0 \pm 5.0^{\circ}
$$

Tests and Predictions

Also predict (not post-dict):

$$
\begin{gathered}
r_{00}^{\rho}=\frac{A\left(\bar{B}^{0} \rightarrow D^{* 0} \rho^{0}\right)}{A\left(\bar{B}^{0} \rightarrow D^{0} \rho^{0}\right)}=1, \\
r_{00}^{K^{-}}=\frac{A\left(\bar{B}^{0} \rightarrow D_{s}^{*} K^{-}\right)}{A\left(\bar{B}^{0} \rightarrow D_{s} K^{-}\right)}=1, \quad r_{00}^{K_{\|}^{*-}}=\frac{A\left(\bar{B}^{0} \rightarrow D_{s}^{*} K_{\|}^{*-}\right)}{A\left(\bar{B}^{0} \rightarrow D_{s} K_{\|}^{*-}\right)}=1, \\
r_{00}^{K^{0}}=\frac{A\left(\bar{B}^{0} \rightarrow D^{0 *} \bar{K}^{0}\right)}{A\left(\bar{B}^{0} \rightarrow D^{0} \bar{K}^{0}\right)}=1, \quad r_{00}^{K_{\|}^{* 0}}=\frac{A\left(\bar{B}^{0} \rightarrow D^{* 0} \bar{K}_{\|}^{* 0}\right)}{A\left(\bar{B}^{0} \rightarrow D^{0} \bar{K}_{\|}^{* 0}\right)}=1
\end{gathered}
$$

ie. same Br and same strong phases
All predictions so far are independent of the form of $J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right)$ and $S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right), \phi_{M}(x)$

More Predictions

If we expand $J\left(z, x, k_{1}^{+}, k_{2}^{+}\right)$in $\alpha_{s}(E \Lambda)$, we can make more predictions $\underline{\text { Relate } \pi \text { and } \rho}$

Recellictatatgiøes $\rho=\phi^{D \pi}$, not yet tested
 SCET predicts weak dependence on M through $\left\langle\begin{array}{l}\square \varphi_{0} \pi \simeq\end{array}\left\langle x^{-1}\right\rangle_{\rho}\right.$:

Baryon decays

Add a soft quark

$$
\Lambda_{b} \rightarrow \Lambda_{c} \pi, \Lambda_{c} \rho, \Sigma_{c}^{(*)} \pi, \Sigma_{c}^{(*)} \rho
$$

$\mathrm{T}=$ tree

$\mathrm{E}=$ exchange

B = bow-tie

Naive factorization, only makes sense for T
$\Lambda_{b} \rightarrow \Sigma_{c}^{(*)} \ell \bar{\nu} \quad$ violates isospin and is $1 / m_{b}$ suppressed
In SCET: $\quad T \gg C \sim E \gg B$
similar factorization theorems

CDF has 2.7 ± 0.8 for this ratio

$\Lambda_{b} \rightarrow \Sigma_{c}^{(*)} \pi \quad$ similar SCET analysis to $\bar{B}^{0} \rightarrow D^{0} \pi^{0}$

$$
\begin{array}{ll}
\frac{B r\left(\Lambda_{b} \rightarrow \Sigma_{c}^{*} \pi\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c} \pi\right)}=2, & \frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c}^{*} \rho\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c} \rho\right)}=2 \\
\frac{B r\left(\Lambda_{b} \rightarrow \Xi_{c}^{*} K\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{\prime} K\right)}=2, & \frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{*} K_{\|}^{*}\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{\prime} K_{\|}^{*}\right)}=2
\end{array}
$$

Decays to Excited States

$D_{1}: \quad J^{\pi}=1^{+}, \quad m=2420 \mathrm{MeV}$
$D_{2}^{*}: \quad J^{\pi}=2^{+}, \quad m=2460 \mathrm{MeV}$
Semileptonics:
LO and $1 / m_{c, b}$ compete \Rightarrow could spoil factorization in $B \rightarrow D^{* *} \pi$

$$
\left\langle D_{v^{\prime}}^{* *}\right| J\left|B_{v}\right\rangle \propto\left(v \cdot v^{\prime}-1\right)=0.0 \text { to } 0.3
$$

Nonleptonics:

At max recoil find: $\left(v \cdot v^{\prime}-1\right)\left(v \cdot v^{\prime}+1\right)=\frac{E_{\pi}^{2}}{m_{D^{* *}}^{2}} \sim 1$
can use SCET power counting \& factorization
Predict: $\quad \frac{B r\left(B \rightarrow D_{2}^{*} \pi\right)}{\operatorname{Br}\left(B \rightarrow D_{1} \pi\right)}=1 \quad$ color allowed \& color suppressed

$$
\phi_{D_{2}^{*} \pi}=\phi_{D_{1} \pi} \quad \text { equal phases in isospin triangles }
$$

Belle: $\frac{\operatorname{Br}\left(B^{-} \rightarrow D_{2}^{* 0} \pi^{-}\right)}{\operatorname{Br}\left(B^{-} \rightarrow D_{1}^{0} \pi^{-}\right)}=0.77 \pm 0.15$
(prev. theory estimates uncertain:

$$
=0.3 \text { to } 1.4)
$$

Lessons

- nonperturbative strong phases $\delta \sim 30^{\circ}$ are natural from Λ / E !
- Nonperturbative J vs. Perturbative J
- With the entire amplitude power suppressed the polarization issue in B to VV is non-trivial

$B \rightarrow M$ Form Factors
pseudoscalar: f_{+}, f_{0}, f_{T}
vector: $V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}$

SCET Result

$$
\Lambda / Q \ll 1
$$

result at LO in λ, all orders in α_{s}, where $Q=\left\{m_{b}, E_{M}\right\}$

One Loop
$C_{k}\left(E, m_{b}\right)$
Bauer, Fleming, Pirjol, I.S.
Matching:

$$
\begin{array}{cl}
T_{i}\left(z, F, m_{b}\right) & \text { Beneke, Kiyo, Yang } \\
J\left(z, x, r_{+}, E\right) & \text { Becher, Hill, Neubert }
\end{array}
$$

Log Resummation:

Sudakov suppression

 of $f^{N F}$ relative to f^{F}
$B \rightarrow M_{1} M_{2}$ Factorization in SCET

- hard spectator \& form factor terms
same
- long distance charming penguin amplitude

$$
\Lambda^{2} \ll E \Lambda \ll E^{2}, m_{b}^{2}
$$

Operators

QCD

$$
H_{W}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} \lambda_{p}^{(d)}\left(C_{1} O_{1}^{p}+C_{2} O_{2}^{p}+\sum_{i=3}^{10,8 g} C_{i} O_{i}\right)
$$

$\mathrm{SCET}_{\mathrm{I}} \quad$ Integrate out $\sim m_{b}$ fluctuations

$$
\begin{aligned}
& H_{W}=\frac{2 G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{6} \int d \omega_{j} c_{i}^{(i)}\left(\omega_{j}\right) Q_{i f}^{(0)}\left(\omega_{j}\right)+\sum_{i=1}^{8} \int d \omega_{j} b_{i}^{(i)}\left(\omega_{j}\right) Q_{i f}^{(1)}\left(\omega_{j}\right)+Q_{c \overline{c i}}+\ldots\right\} \\
& Q_{1 d}^{(0)}=\left[\bar{u}_{n, \omega_{1}} \not \hbar P_{L} b_{v}\right]\left[\bar{d}_{\bar{n}, \omega_{2}} \hbar P_{L} u_{\bar{n}, \omega_{3}}\right], \\
& Q_{1 d}^{(1)}=\frac{-2}{m_{b}}\left[\bar{u}_{n, \omega_{1}} i g \mathscr{P}_{n, \omega_{4}}^{\perp} P_{L} b_{v}\right]\left[\bar{d}_{\bar{n}, \omega_{2}} \nmid P_{L} u_{\bar{n}, \omega_{3}}\right], \ldots \\
& Q_{7 d}^{(1)}=\frac{-2}{m_{b}}\left[\bar{u}_{n, \omega_{1}} i g \mathcal{B}_{n, \omega_{4}}^{\perp \mu} P_{L} b_{v}\right]\left[\bar{d}_{\bar{n}, \omega_{2}} h \gamma_{\mu}^{\perp} P_{R} u_{\bar{n}, \omega_{3}}\right],
\end{aligned}
$$

Long Distance $c \bar{c}$

dangerous region near threshold

- $q^{2} \simeq 4 m_{c}^{2}, x \simeq 4 m_{c}^{2} / m_{b}^{2} \sim 0.4$
- NRQCD $c \bar{c}$ couple to b, spectator suppression $\sim v=0.5 \quad$ ie. none

These amplitudes appear to be LO!
If so:

- LO large strong phases (mechanism as before)
- LO transverse polarization in VV

Need to derive a Fact. Thm. to be sure

Polarization

VV channels
expect longitudinal to be larger
transverse vs. longitudinal

$$
\frac{R_{T}}{R_{0}} \sim \frac{1}{m_{b}^{2}} \quad \text { Kagan }
$$

SCET factorization theorem agrees, except for $A_{c \bar{c}}$
Data:

	R_{T} / R_{0}
$\rho^{+} \rho^{0}$	0.04 ± 0.08
$\rho^{+} \rho^{-}$	0.01 ± 0.05
$K^{* 0} \phi$	0.72 ± 0.30

Charming penguins might explain polarization data at LO

Penguins are small in $B \rightarrow \rho \rho$

Penguin dominated

like ϕK_{s} also $b \rightarrow s \bar{s} s$
Large power corrections (eg. annihilation) are another possibility

$\mathrm{SCET}_{\mathrm{II}} \longrightarrow$ Same Jet function as $B \rightarrow M$

$$
\begin{aligned}
& A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2}} B^{B M_{1}} \int_{0}^{1} d u T_{2 \zeta}(u) \phi^{M_{2}}(u)+f_{M_{1}} B^{B M_{2}} \int_{0}^{1} d u T_{1 \zeta}(u) \phi^{M_{1}}(u)\right. \\
& \left.\quad+\frac{f_{B} f_{M_{1}} f_{M_{2}}}{m_{B}} \int_{0}^{1} d u \int_{0}^{1} d x \int_{0}^{1} d z \int_{0}^{\infty} d k_{+} J\left(z, x, k_{+}\right)\left[T_{2 J}(u, z) \phi^{M_{1}}(x) \phi^{M_{2}}(u)+T_{1 J}(u, z) \phi^{M_{2}}(x) \phi^{M_{1}}(u)\right] \phi_{B}^{+}\left(k_{+}\right)\right\}
\end{aligned}
$$

New Nonperturbative Result in $\alpha_{s}(\sqrt{E \Lambda})$:

$$
\begin{aligned}
& A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2}} \zeta^{B M_{1}} \int_{0}^{1} d u T_{2 \zeta}(u) \phi^{M_{2}}(u)+f_{M_{1}} \zeta^{B M_{2}} \int_{0}^{1} d u T_{1 \zeta}(u) \phi^{M_{1}}(u)\right. \\
& \left.\quad+f_{M_{2}} \int_{0}^{1} d u \int_{0}^{1} d z T_{2 J}(u, z) \zeta_{J}^{B M_{1}}(z) \phi^{M_{2}}(u)+f_{M_{1}} \int_{0}^{1} d u \int_{0}^{1} d z T_{1,}(u, z) \zeta_{J}^{B M_{2}}(z) \phi^{M_{1}}(u)\right\}
\end{aligned}
$$

where $\zeta^{B M} \sim \zeta_{J}^{B M}(z) \sim(\Lambda / Q)^{3 / 2}$ and appear in $B \rightarrow M$

- fit ζ 's, calculate T's

Hard Coefficients

$M_{1} M_{2}$	$T_{1 \zeta}(u)$	$T_{2 \zeta}(u)$	$M_{1} M_{2}$	$T_{1 \zeta}(u)$	$T_{2 \zeta}(u)$														
$\begin{gathered} \hline \hline \pi^{-} \pi^{+}, \rho^{-} \pi^{+}, \pi^{-} \rho^{+}, \rho_{\\|}^{-} \rho_{\\|}^{+} \\ \pi^{-} \pi^{0}, \rho^{-} \pi^{0} \\ \pi^{-} \rho^{0}, \rho_{\\|}^{-} \rho_{\\|}^{0} \\ \pi^{0} \pi^{0} \\ \rho^{0} \pi^{0} \\ \rho_{\\|}^{0} \rho_{\\|}^{0} \\ K^{(*) 0} K^{(*)-}, K^{(*) 0} \bar{K}^{(*) 0} \end{gathered}$	$\begin{gathered} c_{1}^{(d)}+c_{4}^{(d)} \\ \frac{1}{\sqrt{2}}\left(c_{1}^{(d)}+c_{4}^{(d)}\right) \\ \frac{1}{\sqrt{2}}\left(c_{1}^{(d)}+c_{4}^{(d)}\right) \\ \frac{1}{2}\left(c_{2}^{(d)}-c_{3}^{(d)}-c_{4}^{(d)}\right) \\ \frac{1}{2}\left(c_{2}^{(d)}+c_{3}^{(d)}-c_{4}^{(d)}\right) \\ \frac{1}{2}\left(c_{2}^{(d)}+c_{3}^{(d)}-c_{4}^{(d)}\right) \\ -c_{4}^{(d)} \end{gathered}$	$\begin{gathered} 0 \\ \frac{1}{\sqrt{2}}\left(c_{2}^{(d)}-c_{3}^{(d)}-c_{4}^{(d)}\right) \\ \frac{1}{\sqrt{2}}\left(c_{2}^{(d)}+c_{3}^{(d)}-c_{4}^{(d)}\right) \\ \frac{1}{2}\left(c_{2}^{(d)}-c_{3}^{(d)}-c_{4}^{(d)}\right) \\ \frac{1}{2}\left(c_{2}^{(d)}-c_{3}^{(d)}-c_{4}^{(d)}\right) \\ \frac{1}{2}\left(c_{2}^{(d)}+c_{3}^{(d)}-c_{4}^{(d)}\right) \\ 0 \end{gathered}$	$\begin{gathered} \pi^{+} K^{(*)-}, \rho^{+} K^{-}, \rho_{\\|}^{+} K_{\\|}^{*-} \\ \pi^{0} K^{(*)-} \\ \rho^{0} K^{-}, \rho_{\\|}^{0} K_{\\|}^{*-} \\ \pi^{-} \bar{K}^{(*) 0}, \rho^{-} \bar{K}^{0}, \rho_{\\|}^{-} \bar{K}_{\\|}^{* 0} \\ \pi^{0} \bar{K}^{(*) 0} \\ \rho^{0} \bar{K}^{0}, \rho_{\\|}^{0} \bar{K}_{\\|}^{* 0} \\ K^{(*)-} K^{(*)+} \end{gathered}$	$\begin{gathered} 0 \\ \frac{1}{\sqrt{2}}\left(c_{2}^{(s)}-c_{3}^{(s)}\right) \\ \frac{1}{\sqrt{2}}\left(c_{2}^{(s)}+c_{3}^{(s)}\right) \\ 0 \\ \frac{1}{\sqrt{2}}\left(c_{2}^{(s)}-c_{3}^{(s)}\right) \\ \frac{1}{\sqrt{2}}\left(c_{2}^{(s)}+c_{3}^{(s)}\right) \end{gathered}$	$\begin{gathered} c_{1}^{(s)}+c_{4}^{(s)} \\ \frac{1}{\sqrt{2}}\left(c_{1}^{(s)}+c_{4}^{(s)}\right) \\ \frac{1}{\sqrt{2}}\left(c_{1}^{(s)}+c_{4}^{(s)}\right) \\ -c_{4}^{(s)} \\ -\frac{1}{\sqrt{2}} c_{4}^{(s)} \\ -\frac{1}{\sqrt{2}} c_{4}^{(s)} \\ 0 \end{gathered}$														

similar for T_{J} 's in terms of $b_{i}^{(f)}$'s
Note: have not used isospin here

Matching

$$
\begin{aligned}
c_{1}^{(f)} & =\lambda_{u}^{(f)}\left(C_{1}+\frac{C_{2}}{N_{c}}\right)-\lambda_{t}^{(f)} \frac{3}{2}\left(C_{10}+\frac{C_{9}}{N_{c}}\right)+\Delta c_{1}^{(f)}, \\
b_{1}^{(f)} & =\lambda_{u}^{(f)}\left[C_{1}+\left(1-\frac{m_{b}}{\omega_{3}}\right) \frac{C_{2}}{N_{c}}\right]-\lambda_{t}^{(f)}\left[\frac{3}{2} C_{10}+\left(1-\frac{m_{b}}{\omega_{3}}\right) \frac{3 C_{9}}{2 N_{c}}\right]+\Delta b_{1}^{(f)},
\end{aligned}
$$

Phenomenology for $B \rightarrow \pi \pi$

Beneke, Neubert
Buras, Fleischer, Recksiegel, Schwab - SU(2) analysis
Ali, Lunghi, Parkhomenko
Chiang, Gronau, Rosner, Suprun
Bauer, Pirjol, Rothstein, I.S.
BABAR
$S_{\pi \pi}=-0.40 \pm 0.22$
$C_{\pi \pi}=-0.19 \pm 0.20$
BELLE
$S_{\pi \pi}=-1.00 \pm 0.22$
$C_{\pi \pi}=-0.58 \pm 0.17$

- QCDF analysis
- $\mathrm{SU}(2)$ analysis
- global $B \rightarrow P P$ analysis
- LO analysis in SCET with $A_{c c}$

World Averages (HFAG, incl. CLEO)

$$
\begin{aligned}
& S_{\pi \pi}=-0.74 \pm 0.16, \quad C_{\pi \pi}=-0.46 \pm 0.13, \\
& \operatorname{Br}\left(B^{+} \rightarrow \pi^{0} \pi^{+}\right)=(5.2 \pm 0.8) \times 10^{-6}, \\
& \operatorname{Br}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=(4.6 \pm 0.4) \times 10^{-6}, \\
& \operatorname{Br}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=(1.9 \pm 0.5) \times 10^{-6},
\end{aligned}
$$

- a large Penguin, seems problematic for QCDF
- to test Λ / E expansion in a model independent way we should fit unknown hadronic parameters

Pure Isospin Analysis

$$
\begin{gathered}
A=\lambda_{u}^{(d)} T+\lambda_{c}^{(d)} P \\
A\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)=\lambda_{u}^{(d)} T_{c}\left(1+r_{c} e^{i \delta_{c}} e^{i \gamma}\right), \\
A\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)=\lambda_{u}^{(d)} T_{n}\left(1+r_{n} e^{i \delta_{n}} e^{i \gamma}\right), \\
\sqrt{2} A\left(B^{-} \rightarrow \pi^{0} \pi^{-}\right)=\lambda_{u}^{(d)} T, \\
\text { Io hadronic parameters } \\
-4 \text { for isospin relation } \\
\text { - an overall phase } \\
=5 \text { parameters } \\
\left(T, r_{c}, \delta_{c},|t|=\left|\frac{T}{T_{c}}\right|,\left|t_{n}\right|=\left|\frac{T_{n}}{T_{c}}\right|\right)
\end{gathered}
$$

With $\gamma=64^{\circ}$
$r_{c}=0.75 \pm 0.35, \quad \delta_{c}=-44^{\circ} \pm 12^{\circ}$.
large penguin

$$
|t|=2.07 \pm 0.42, \quad\left|t_{n}\right|=\left\{\begin{array}{l}
1.15 \pm 0.33 \tag{I}\\
1.42 \pm 0.35
\end{array}\right.
$$

large C amplitude

SCET at LO

LO in $\Lambda / E, \mathrm{LO}$ in $\alpha_{s}\left(m_{b}\right)$ for T's
fit 4 parameters $\left(\zeta^{B \pi}, \zeta_{J}^{B \pi}, P\left(\right.\right.$ or $\left.\left.A_{c \bar{c}}\right)\right)$
do not need $\left|t_{n}\right|$ ie. $\operatorname{Br}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$

$$
\left.\zeta^{B \pi}\right|_{\gamma=640}=(0.05 \pm 0.05)\left(\frac{3.9 \times 10^{-3}}{\left|V_{u b}\right|}\right),
$$

QCDF used
$T,|t|$

$$
\left.\zeta_{J}^{B \pi}\right|_{\gamma=64^{\circ}}=(0.11 \pm 0.03)\left(\frac{3.9 \times 10^{-3}}{\left|V_{u b}\right|}\right),
$$

$$
\zeta^{B \pi}>\zeta_{J}^{B \pi}
$$

$$
\left.\frac{P}{N_{\pi}}\right|_{\gamma-640^{\circ}}=(0.043 \pm 0.013) e^{\left.e^{\tau\left(136^{\circ} \pm 12^{\circ}\right.}\right)}
$$

$r_{c},\left.\delta_{c} \quad \frac{P}{N_{\pi}}\right|_{\gamma=64{ }^{\circ}}=(0.043 \pm 0.013) e^{\left.e^{\left(1136^{\circ}\right.} \pm 12^{\circ}\right)}$
compatible with large $A_{c \bar{c}}$

At this order the "Tree" isospin triangle is predicted to be flat

Predictions

I) $f_{+}(0)=\zeta^{B \pi}+\zeta_{J}^{B \pi}$

- $A\left(B^{-} \rightarrow \pi^{0} \pi^{-}\right) \propto \zeta^{B \pi}+\left(1+\frac{\left\langle\bar{u}^{-}\right\rangle}{4}\right)<\zeta_{J}^{B \pi}$ naive factorization fails when $\quad \zeta_{J}^{B \pi} \sim \zeta^{B \pi}$

units $\times\left[\frac{\left[\frac{3, x \mid 0^{-3}}{}\right.}{\left.V_{w o l}\right]}\right]$

- values are substantially smaller than model estimates

II) Predict

 only expt.$$
\left.f_{+}(0)\right|_{\gamma=64^{\circ}}=(0.17 \pm 0.02)\left(\frac{3.9 \times 10^{-3}}{\left|V_{u b}\right|}\right)
$$

$$
\operatorname{Br}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=\left\{\begin{array}{lc}
(1.0 \pm 0.7) \times 10^{-6}, \gamma=54^{\circ} \\
(1.3 \pm 0.6) \times 10^{-6}, \gamma=64^{\circ} \\
(1.8 \pm 0.7) \times 10^{-6}, \gamma=74^{\circ}
\end{array} \quad \text { an extra term } \frac{C_{1}}{N_{c}}\left\langle\bar{u}^{-1}\right\rangle_{\pi} \zeta_{J}^{B \pi}\right.
$$

from flat "tree" triangle
or turn this around and predict γ

Open Issues in $B \rightarrow M_{1} M_{2}$

- Factorization formula with charming penguins?
- Power Corrections:
- expect nonperturbative phases $\delta \sim 30^{\circ}$
- $C_{1} \Lambda / E \sim C_{2} \gg C_{j \geq 3}$
- "chirally" enhanced terms, annihilation
- size of $\operatorname{SU}(3)$ breaking: not just f_{M} also $\phi_{M}(x)$

Outlook

- The theory of nonleptonic B decays is challenging, but progress is being made

SCET

- Allows power corrections to be addressed in a model independent way
- For B's, need to carefully examine expansion for each process and improve our understanding of power corrections to trust results beyond the 20% level
- A lot of theory and phenomenology left to study ...

> We have only seen the tip of the iceberg

Comments on $K \pi$

Effective Field Theory

- Separate physics at different momentum scales
- Power expansion
- Make symmetries explicit
- Model independent, systematically improvable

Effective Theories	Expansion Parameter
(1) Electroweak (Fermi) Hamiltonian	$m_{b} / m_{W} \ll 1$
(2) Heavy Quark Effective Theory (HQET)	$\Lambda / m_{b} \ll 1$
(3) Chiral Perturbation Theory, SU(3)	$m_{u, d, s} / \Lambda \ll 1$

All designed to separate hard $p_{h} \sim Q$ and soft p_{s} momenta, $Q^{2} \gg p_{s}^{2}$
Allow for energetic hadrons \Longrightarrow collinear p_{c}, new class of processes

$$
Q \gg \Lambda_{\mathrm{QCD}} \quad Q=E_{H}
$$

SU(3) Violation

$$
\int_{0}^{1} d x \phi_{M}(x)=1 \quad M=\pi, K, \eta
$$

Using chiral perturbation theory:

- Non-analytic terms vanish

- At NLO , ie with all the leading $\left.\mathrm{SU}_{3}\right)$ violation:

$$
\phi_{\pi}(x)+3 \phi_{\eta}(x)=2\left[\phi_{K^{+}}(x)+\phi_{K^{-}}(x)\right]
$$

"Gell-Mann Okubo"
$B_{s} \rightarrow D_{s} \pi$

$B r=(4.2 \pm 1.6) \times 10^{-3}$

- pure "Tree" topology \rightarrow gives interesting information

$$
\begin{array}{r}
|T+E|=5.9 \pm 0.3 \\
|T+C|=7.7 \pm 0.3 \\
|T|=7.3 \pm 1.5
\end{array}
$$

Using SU(3)

Two body nonleptonic decays. Simple?
(a) - (B) \quad -

$$
\Gamma=\frac{\left|\vec{p}_{\pi}\right|}{8 \pi m_{B}^{2}}|A|^{2}
$$

$$
A=\langle\pi \pi| H_{\text {weak }}|B\rangle
$$

Note: Nonleptonic B-decays are not Gold Plated Observables for Lattice QCD

SCET Expansion

LO: $\mathcal{O}^{(0)}$ with $\mathcal{L}^{(0)}$
NLO: $T\left\{O^{(0)}, \mathcal{L}^{(1)}\right\} \sim O^{(1)} \quad$ with $\mathcal{L}^{(0)}$
NNLO: $T\left\{O^{(0)}, \mathcal{L}^{(2)}\right\} \sim T\left\{O^{(1)}, \mathcal{L}^{(1)}\right\}$

$$
\sim T\left\{O^{(0)}, \mathcal{L}^{(1)}, \mathcal{L}^{(1)}\right\} \sim O^{(2)}
$$

with $\mathcal{L}^{(0)}$

$B \rightarrow M_{1} M_{2}$ Factorization in SCET

- operators, exponentiation of soft \& collinear gluons
- involves $\zeta_{M_{1}}, \phi_{B}\left(r^{+}\right), \phi_{M_{i}}(x)$ same as form factors

Bauer, Pirjol, Rothstein, I.S.

- hard spectator \& form factor terms

same operators

- unique function $J\left(z, x, r_{+}, E\right)$ which is also in $B \rightarrow M$
- long distance charming penguins
- analysis for PP, PV, VV

$$
\begin{aligned}
& A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2}} \zeta^{B M_{1}} \int_{0}^{1} d u T_{2 \zeta}(u) \phi^{M_{2}}(u)+\right. \\
& \quad+\frac{f_{B} f_{M_{1}} f_{M_{2}}}{m_{B}} \int_{0}^{1} d u \int_{0}^{1} d x \int_{0}^{1} d z \int_{0}^{\infty} d k_{+} J\left(z, x, k_{+}\right)\left[T_{2 J}(u, z) \phi^{M_{1}}(z)\right.
\end{aligned}
$$

