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• CP violation:

Outline

B → PP, PV, V Vie.
• B →M1M2  Factorization Theorem

in SCETB →M1M2

(1/Nc & Λ/Eπ)

• B → ππ Phenomenology at LO in 1/mb

B̄0 → D0π0

•
•

Λb → Λcπ Λb → Σ(∗)
c ρ

B̄ → D∗∗π

Results for B → P and B → V form factors



B → ππ

B → πρ

B → πK

B → πK∗
B → ρK∗

B → KKB → ρρB →M1M2

PP = 21 + 13  decays
PV = 40 + 23 decays
VV = 21 + 13  decays 

Bs → π0η Bs → K+K∗−

αeff = 102◦ +16
−12(stat) +5

−4(syst)BabarB → ρ+ρ−

Of course we want as many α’s as we can get

QCD contamination

& γ’s

EM ∼ 2.3 GeV energetic

|αeff − α| < 17◦



Electroweak Hamiltonian
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mW ,mt ! mb

trees
O1 = (ūb)V−A(d̄u)V−A

O2 = (ūibj)V−A(d̄jui)V−A

penguins

O3 = (d̄b)V−A

∑
q

(q̄q)V−A

O4,5,6 = . . .

O7γ,8G = . . .

Oew
7,...,10 = . . .

= CKM  factorsλi

λ1 = VubV
∗
ud λ3 = VtbV

∗
td

Hweak =
GF√

2

∑
i

λiCi(µ)Oi(µ)



Need expansion parameters to make model 
independent predictions

αs(mb) ! 0.2 Λ
mb
! 0.1

ms
Λ ! 0.3

Λ
EM

! 0.2

Separate physics at different momentum scales 
Model independent, systematically improvable
Power expansion, can estimate uncertainty
Exploit symmetries 

Effective Field Theory 
•
•
•
•



1. Use SU(2) or SU(3) to relate amplitudes 

• Flavor symmetries of QCD,                                    

2. Factorization from QCD to reduce the amplitudes to 
simple universal nonperturbative parameters. 

• Expand in  

Measuring CP violation in “unclean” decays:   

mu,md,ms ! ΛQCD

These two possibilities are not exclusive.

Ask “What are the uncertainties?” and 
 “Is the expansion converging as expected?”

mb, Eπ ! ΛQCD

SCET

gives a systematic expansion in QCD

model independent description of power corrections

can estimate uncertainties

make symmetries explicit, understand factorization in a universal way

Determine quantities that are short and long distance,

calculate short distance coefficients

Proof of Factorization means Known to be Model Independent once
hadronic parameters are determined

has hard coefficients with , Wilson

lines W,

has jet coefficients with , Wilson lines ,

Iain Stewart – p.9



• Beneke, Buchalla, Neubert, Sachrajda proposed a QCD 
factorization theorem for                   ,  QCDF .  

• Amplitude is reduced to simpler matrix elements

• At LO  in                strong phases are perturbative,                  ,  

and therefore small.

B → ππ

ΛQCD

Eπ

iαs(mb)

〈π| · · · |B〉 〈π| · · · |0〉 〈0| · · · |B〉

Factorization in QCD

〈ππ| · · · |B〉 −→ , ,

B

M2

M1

M2

M1B

FB→M1 , φM2(x) φB(r+),φM1(x),φM2(y)

form factor hard spectator

Keum, Li, Sanda:
pQCD Factorization

Ciuchini et al,
Colangelo et al:

charming penguins



• An effective field theory for energetic hadrons, 

Soft - Collinear Effective Theory
Bauer, Pirjol, Stewart

Fleming, Luke 

E ! ΛQCD



Soft Collinear Effective Theory

B D!eg.

Pion has: pµ
π = (2.3 GeV)nµ = Q nµ n2 = n̄2 = 0, (n·p = p−)

B

n
µ

!

Soft brown muck:

pµ
s = (p+, p−, p⊥) ∼ (Λ,Λ,Λ)

Collinear constituents:
pµ

c = (p+, p−, p⊥) ∼
(Λ2

Q
,Q,Λ

)
∼ Q(λ2, 1,λ) λ =

Λ
Q



SCETI

SCETII

usoft pµ ∼ Λ
collinear p2

c ∼ QΛ, λ =
√

Λ/Q

soft pµ ∼ Λ
collinear p2

c ∼ Λ2, λ = Λ/Q

Energetic jets

n
µ

X

Energetic hadrons
n
µ

!

Λ2 ! QΛ! Q2



Factorization

B D

!
B,D are soft, π collinear

LSCET = L(0)
s + L(0)

c

Factorization if O = Oc ×Os

〈Dπ|(c̄b)(ūd)|B〉 = N ξ(v · v′)
∫ 1

0
dxT (x, µ) φπ(x, µ)

〈π|Oc(x)|0〉 = fπφπ(x)

Bauer, Pirjol, I.S. 

Universal functions: Calculate T,  αs(Q)

Q = Eπ,mb,mc

corrections will be Λ/mc ∼ 30%

LO = λ5 graphs

〈D(∗)|Os|B〉 = ξ(v ·v′)

B̄0 → D+π− , B− → D0π−



Universal hadronic parameters

Process Degrees of Freedom (p2) Non-Pert. functions
B̄0 → D+π−, . . . c (Λ2), s (Λ2) ξ(w), φπ

B̄0 → D0π0, . . . c (Λ2), s (Λ2), c (QΛ) S(k+
j ), φπ

B → Xendpt
s γ, c (QΛ), us (Λ2) f(k+)

B → Xendpt
u %ν

B → π%ν, . . . c (QΛ), s (Λ2), c (Λ2) φB(k+), φπ(x), ζπ(E)
B → γ%ν, γγ c (QΛ), us (Λ2) φB

B → ππ c (Λ2), s (Λ2), c (QΛ) φB , φπ, ζπ(E)
B → K∗γ c (QΛ), s (Λ2), c (Λ2) φB , φK , ζ⊥K∗(E)
e−p→ e−X c (Λ2) fi/p(ξ), fg/p(ξ)
e−γ → e−π0 c (Λ2), s (Λ2) φπ

γ∗M →M ′ c (Λ2), s (Λ2) φM , φM ′



B → Dπ
"Tree" "Color suppressed" "Exchange"

B D

b c

u , d

du DB

b c

u

d , u d B

D

b

d

c

u

u ,d

u, d

!!

!

B̄0 → D+π− B− → D0π− B̄0 → D+π−
B− → D0π− B̄0 → D0π0 B̄0 → D0π0

O0 = (c̄b)V−A(d̄u)V−A

O8 = (c̄T Ab)V−A(d̄TAu)V−A

(Nc)0 1/Nc 1/Nc

Large       - not very predictiveNc



(Cleo, Belle, Babar)

Type Decay Br(10−3) Decay Br(10−3)
I B̄0 → D+π− 2.68± 0.29 B̄0 → D∗+π− 2.76± 0.21

III B− → D0π− 4.97± 0.38 B− → D∗0π− 4.6± 0.4
II B̄0 → D0π0 0.29± 0.03 B̄0 → D∗0π0 0.26± 0.05
I B̄0 → D+ρ− 7.8± 1.4 B̄0 → D∗+ρ− 6.8± 1.0

III B− → D0ρ− 13.4± 1.8 B− → D∗0ρ− 9.8± 1.8
II B̄0 → D0ρ0 0.29± 0.11 B̄0 → D∗0ρ0 < 0.56

Data

Br(B̄0 → D∗+π−)
Br(B̄0 → D+π−)

= 1.03± 0.14
Br(B− → D∗0π−)
Br(B− → D0π−)

= 0.93± 0.11

• size of Br(D+M−) agrees with factorization

• Br(D0M0) small as expected (power suppressed)
• color allowed Br are same for D and D∗ 20-30% level

|A0−|
|A+−| =

{
0.77 ± 0.05 for Dπ
0.81 ± 0.05 for D∗π

• but significant power corrections for Br( D0M−)/Br(D+M−)

• significant strong phases δ ∼ 30◦



Color Suppressed Decays

Mantry, Pirjol, I.S.Factorization with SCET 
Single class of power suppressed SCETI operators T{O(0),L(1)

ξq ,L(1)
ξq }

b

d

c

u

d

d

(a)

(   )s

b
c

u

u

ud

(b)

(   )

(   )

s

s

Q2 QΛ Λ2!!

AD(∗)
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φM (x)

S(i)(k+
1 , k+

2 )new soft function - like generalized parton distributions

,D(∗)0ρ0,D(∗)0K0,D(∗)0K∗0,D(∗)
s K−,D(∗)

s K∗−B̄0 → D(∗)0π0

+AD(∗)M
long



Theory tidbits: 

Phenomenology:

1) Predictions that are independent of form of J (i)

2) Predictions with J (i) expanded in αs(µ2 ∼ EΛ)

1)  Long Distance Amplitude  polarization in D* V
2)  Symmetry structure of

Implications

D versus D*
3)  Complex nature of universal strong phases

S(i)

S(i)



〈D(∗)0|O(0,8)
s |B̄0〉 → S(0,8)(k+

1 , k+
2 ) same for D and D∗

S(i)(k+
1 , k+

2 ) is complex, new mechanism for rescattering

O(0,8) = O(0,8)[v, v′, n]

Predict
equal strong phases δD = δD∗

equal amplitudes AD
00 = AD∗

00

corrections to this are αs(mb), Λ/Q

with HQET for 〈D(∗)0π|(c̄ b)(d̄ u)|B̄0〉 pµ
π

mc
→ Eπ

mc
= 1.5get

not a convergent expansion



Tests and Predictions

rearrange:

1 = RI +
3A00√
2A0−

RI =
A1/2√
2A3/2

δ = arg(A1/2A
∗
3/2)

A0− =
√

2A00 + A+−

isospin gives triangle:

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

! "

= D
*= D
#
#

RI
2

A003

A0_

Expt Average (Cleo, Belle, Babar):

Br(D0π0) = (0.29± 0.03)× 10−3 , δ(Dπ) = 30.4± 4.8◦

Br(D∗0π0) = (0.26± 0.05)× 10−3 , δ(D∗π) = 31.0± 5.0◦



Tests and Predictions
Also predict (not post-dict):

rρ
00 =

A(B̄0 → D∗0ρ0)
A(B̄0 → D0ρ0)

= 1 ,

rK−
00 =

A(B̄0 → D∗
sK−)

A(B̄0 → DsK−)
= 1 , r

K∗−
‖

00 =
A(B̄0 → D∗

sK∗−
‖ )

A(B̄0 → DsK
∗−
‖ )

= 1 ,

rK0

00 =
A(B̄0 → D0∗K̄0)
A(B̄0 → D0K̄0)

= 1 , r
K∗0
‖

00 =
A(B̄0 → D∗0K̄∗0

‖ )
A(B̄0 → D0K̄∗0

‖ )
= 1

All predictions so far are independent of the form of J (i)(z, x, k+
1 , k+

2 )
and  S(i)(k+

1 , k+
2 ) , φM (x)

ie.  same Br and same strong phases



More Predictions

Relate π and ρ

If we expand J(z, x, k+
1 , k+

2 ) in αs(EΛ), we can make more predictions

• Recall data gives

|rDπ| =
|A(B̄0 → D+π−)|
|A(B− → D0π−)| = 0.77 ± 0.05 , |rDρ| = 0.80 ± 0.09

SCET predicts weak dependence on M through 〈x−1〉π # 〈x−1〉ρ :

rDM = 1 − 16παsmD

9(mB + mD)
〈x−1〉M
ξ(wmax)

seff

EM

no fρ = 1.6 fπ

natural parameters fit data, seff ! (430 MeV)ei 44◦

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

= D
*= D

! "

RI
2

A003

A0_

#
#

• predict that φDρ = φDπ, not yet tested

if 〈x−1〉π # 〈x−1〉ρ then this implies δDπ # δDρ



Baryon decays
Add a soft quark

b

d

c

u

q

q

!

d

"b

"c

#c

,

!

b c

u
d , u
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,u d

"c
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,
"b

!

b c

qd

d
"c

#c

,
"b u

q

"b

b c

u
d

du

!c!b d
u

"

T=tree C= color 
commensurate

E= exchange B = bow-tie

Leibovich, Ligeti, I.S., Wise 

In SCET:

Λb → Λcπ, Λcρ, Σ(∗)
c π, Σ(∗)

c ρ

Naive factorization, only makes sense for T

T ! C ∼ E ! B similar factorization
 theorems

Λb → Σ(∗)
c !ν̄ violates isospin and is 1/mb suppressed



Λb → Λcπ

! D

"

b !c

Γ(Λb → Λcπ−)
Γ(B̄0 → D+π−)

=
8m3

Λb
(1− r2

Λ)3 rD

m3
B(1− r2

D)3(1 + rD)2

(
ζ(wΛ

max)
ξ(wD

max)

)2

1.6 need
semileptonic

= 2 in small velocity limit

Λb → Σ(∗)
c π similar SCET analysis to B̄0 → D0π0

Br(Λb → Ξ∗
cK)

Br(Λb → Ξ′
cK)

= 2 ,
Br(Λb → Ξ∗

cK
∗
‖ )

Br(Λb → Ξ′
cK

∗
‖ )

= 2

Br(Λb → Σ∗
cπ)

Br(Λb → Σcπ)
= 2 ,

Br(Λb → Σ∗
cρ)

Br(Λb → Σcρ)
= 2

CDF has 2.7± 0.8 for this ratio



Decays to Excited States
S. Mantry 

Semileptonics:

D1 : Jπ = 1+ , m = 2420 MeV

D∗
2 : Jπ = 2+ , m = 2460 MeV

LO and 1/mc,b compete ⇒ could spoil factorization in B → D∗∗π

Nonleptonics:
At max recoil find: (v ·v′ − 1)(v ·v′ + 1) = E2

π

m2
D∗∗

∼ 1

can use SCET  power counting & factorization 

Br(B → D∗
2π)

Br(B → D1π)
= 1Predict: color allowed & color suppressed

φD∗
2π = φD1π equal phases in isospin triangles 

Belle: Br(B− → D∗0
2 π−)

Br(B− → D0
1π

−)
= 0.77± 0.15 (prev. theory estimates uncertain:  

= 0.3 to 1.4 )

〈D∗∗
v′ |J |Bv〉 ∝ (v ·v′ − 1) = 0.0 to 0.3



• nonperturbative strong phases                  are natural

• Nonperturbative  J  vs.  Perturbative J

• With the entire amplitude power suppressed the 
polarization issue in B to VV is non-trivial  

Lessons

naive factorization for color
suppressed decays

δ ∼ 30◦
from Λ/E !



SCET Result

B M

Λ~p 22 Λ~p 22Λ~p2 Q

~p2 Q2

result at LO in λ, all
orders in αs, where
Q = {mb, EM}

Λ/Q! 1

B →M Form Factors
pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

Bauer, Pirjol, I.S.
Beneke, Feldmann,
Becker, Hill, Lange, Neubert

fF (E) =
∫ 1

0
dz T (z,E,mb) ζBM

J (z,E)

fNF(E) = C(E,mb) ζBM (QΛ,Λ2)

fF (E) =
fBfMmB

4E2

∫ 1

0
dz

∫ 1

0
dx

∫ ∞
0
dr+ T (z,E,mb)

×J(z, x, r+, E)φM (x)φ+
B(r+)

fNF(E) = C(E,mb) ζBM (QΛ,Λ2)



Log Resummation:

One Loop 
Matching:

Ck(E,mb) Bauer, Fleming, Pirjol, I.S.

Ti(z,E,mb) Beneke, Kiyo, Yang

J(z, x, r+, E) Becher, Hill, Neubert

Becher, Hill, Neubert
Lange, Neubert

Sudakov suppression 
of fNF fFrelative to

mb

αs(µ0) = 0.5

αs(µ0) = 0.75
αs(µ0) = 1.0



B →M1M2 Factorization in SCET

Λ2 ! EΛ! E2,m2
b

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

!s(q )2

c

c

b
d,s

q

q

....
q µ

!s (mv)

• hard spectator & form factor terms  same 

• long distance charming penguin amplitude

Bauer, Pirjol, Rothstein, I.S. 
Chay, Kim



Operators

Decays of B mesons to two light mesons are important for the study of CP violation in the

standard model. In [1] it was suggested that since mb, EM ! Λ, mM the amplitudes should

factorize into simpler non-perturbative objects. Factorization has also been considered in

pQCD [2]. These factorization theorems require a perturbative expansion in αs(EMΛ).

B → ππ factorization was recently studied in [3] using the soft collinear effective theory

(SCET) [4]. In this paper we reduce the SCET operator basis to its minimal form and

extend it to allow for all B → M1M2 decays including two vectors. We give a form of the

factorization theorem which does not rely on a perturbative expansion in αs(EMΛ), and

show that the non-perturbative parameters are still the same as those in the B → M form

factors. We do not attempt to factorize long distance cc̄ effects.

The decays B → M1M2 are mediated in full QCD by the weak ∆B = 1 Hamiltonian,

which for ∆S = 0 reads

HW =
GF√

2

∑
p=u,c

λ(d)
p

(
C1O

p
1 + C2O

p
2 +

10,8g∑
i=3

CiOi

)
, (1)

where the CKM factor is defined as λ(d)
p = VpbV ∗

pd and the standard basis of operators are [6]

Op
1 =(pb)V−A(dp)V−A, Op

2 = (pβbα)V−A(dαpβ)V−A,

O3,5,4,6 =
{
(db)V−A(qq)V∓A , (dβbα)V−A(qαqβ)V∓A

}
,

O7,9,8,10 =
3eq

2

{
(db)V−A(qq)V±A , (dβbα)V−A(qαqβ)V±A

}
,

O8g =−mb

8π2
d σµν(gGa

µνT
a)(1+γ5)b . (2)

Here the sum over q = u, d, s, c, b is implicit, α, β are color indices and eq are electric charges.

The ∆S = 1 weak Hamiltonian responsible for transitions such as B̄ → Kπ, is obtained

by replacing d → s in the HW in Eq. (1). The coefficients of these operators are known

at NLL order [6]. In the NDR scheme taking αs(mZ) = 0.118 at µ = mb = 4.8 GeV gives

C8g(mb) = −0.149 and

C1−10(mb) = {1.080 ,−.177 , .011 ,−.033 , .010 ,−.040 ,

4.9×10−4 , 4.6×10−4 ,−9.8×10−3 , 1.9×10−3} . (3)

The relevant scales are mb, mc, the jet scale
√

EΛ ∼ 1.3 GeV, and Λ. Integrating out

2

QCD

SCETI Integrate out ∼ mb fluctuations

HW =
2GF√

2

{ 6∑
i=1

∫
dωjc

(f)
i (ωj)Q

(0)
if (ωj) +

8∑
i=1

∫
dωjb

(f)
i (ωj)Q

(1)
if (ωj) +Qcc̄ + . . .

}

!s(q )2

!s " )2( 
c

c

b
d,s

q

q

....
q µ

FIG. 1: An example of long distance charming penguins.

where c(f)
i are Wilson coefficients and the ellipses denote higher order terms, and Qcc̄ denotes

long distance charm effects as in Fig. 1. The offshellness of the cc̄ system depends on the

value of q2, and for q2 ∼ 4m2
c the charm quarks are moving non-relativistically. This

region corresponds to momentum fractions x " 4m2
c/m

2
b " 0.4 in the middle of the light-

cone distribution φM(x). These contributions have one αs(4m2
c), but can not be calculated

perturbatively [5], and may be comprable in size to other penguin terms. We do not derive

a factorization theorem for them here, and focus on observables that are independent of

Qcc̄. Penguin contractions with light quark loops can be included in matching onto Q(0,1)
if

since their long distance contributions are power suppressed [1], as are the long distance cc̄

contributions occuring for x→ 0.

In Eq. (4) the f = d, s (super)subscript distinguishes the ∆S = 0 and ∆S = 1 (coeffi-

cients) operators. The O(λ0) operators are [summing over q = u, d, s]

Q(0)
1d =

[
ūn,ω1n̄/PLbv

][
d̄n̄,ω2n/PLun̄,ω3

]
, (4)

Q(0)
2d,3d =

[
d̄n,ω1n̄/PLbv

][
ūn̄,ω2n/PL,Run̄,ω3

]
,

Q(0)
4d =

[
q̄n,ω1n̄/PLbv

][
d̄n̄,ω2n/PL qn̄,ω3

]
,

Q(0)
5d,6d =

[
d̄n,ω1n̄/PLbv

][
q̄n̄,ω2n/PL,Rqn̄,ω3

]
,

with Q(0)
is obtained by taking d̄→ s̄. In Eq. (4) the “quark” fields with subscripts n and n̄ are

products of collinear quark fields and Wilson lines with large momentum fractions ωi. For

example ūn,ω = [ξ̄(u)
n Wn δ(ω−n̄·P†)] , where ξn denotes a collinear quark moving along the n

direction. The bv field is the standard usoft HQET field with Lagrangian Lh = b̄viv·Dvv. For

a complete basis we also need operators with octet bilinears. We take these to be Q(0)
i with

TA ⊗ T A color structure, eg. Q(0)

1d
=

[
ūn,ω1n̄/PLTAbv

][
d̄n̄,ω2n/PLTAun̄,ω3

]
. These operators do

not contribute to the decays B → M1M2 at leading order. This basis of O(0)
i,d operators is

equivalent to the one derived in [3]. We observe that no new SCETI operators are required

to include the effects of electroweak penguins, so they are included in the c(f)
i ’s.

We also need the O(λ) operators. Defining ig B⊥µ
n,ω = (W †

n[in̄·Dc,n, iD
µ
n,⊥]Wn)ωδ(ω−P̄†)/ω

3

B M

!~! p 22
!~

! p 22
!~!p

2 Q

!~
! p2 Q2

!

!~!p
22M’

FIG. 2: Factorization of B →MM ′ in SCET.

they are:

Q(1)
1d =

−2

mb

[
ūn,ω1 ig /B⊥

n,ω4
PLbv

][
d̄n̄,ω2n/PLun̄,ω3

]
, (5)

Q(1)
2d,3d =

−2

mb

[
d̄n,ω1 ig /B⊥

n,ω4
PLbv

][
ūn̄,ω2n/PL,Run̄,ω3

]
,

Q(1)
4d =

−2

mb

[
q̄n,ω1 ig /B⊥
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.

Our basis in Eq.(5) is simpler than the one in [3] for several reasons. Terms with a B⊥
n or D⊥

n

in the n̄-bilinear can be reduced to Eq.(5) by a series of one or more Fierz transformations.

This shows that spectator and form factor contributions are related. Second, P/⊥Q(0)
if = 0, so

integration by parts allows a basis choice for Q(1)
if with no n-covariant derivatives, only field

strengths B⊥
n , plus [ūnγ

µ
⊥PLbv]Pµ

⊥[d̄n̄n/PLun̄] operators that give vanishing contributions. We

suppress Q(1)’s with octet bilinears that do not contribute at LO, while Q(0,1)
5,6 only contribute

to SU(3)n̄ singlet production and are dropped below.

Next we determine the most general structure of the p2 ∼ EΛ contributions in SCETI .

We first decouple the usoft modes by making the field redefinitions [4] ξn′ = Yn′ξn′, An′ =

Yn′A(0)
n′ Y †

n′, with Yn′ a wilson line of n′ ·Aus gluons and n′ = n or n̄. In Q(0,1)
if all Y ’s cancel

except for the combination (Y †
n bv) [3], and the operators factor into (n, v) and n̄ parts,

Qif = Q̃ifQn̄
if . In Fig. 2 this is indicated by the fact that the M ′ meson only connects to

the rest of the diagram at the scale p2 ∼ Q2. The shaded region in the figure is necessary
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FIG. 2: Factorization of B →MM ′ in SCET.

they are:

Q(1)
1d =

−2

mb

[
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ūn̄,ω2n/PL,Run̄,ω3

]
,

Q(1)
4d =

−2

mb

[
q̄n,ω1 ig /B⊥

n,ω4
PLbv

][
d̄n̄,ω2n/PL qn̄,ω3

]
,

Q(1)
5d,6d =

−2

mb

[
d̄n,ω1 ig /B⊥

n,ω4
PLbv

][
q̄n̄,ω2n/PL,Rqn̄,ω3

]
,

Q(1)
7d =

−2

mb

[
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Long Distance cc̄

dangerous region near threshold
q2 ! 4m2

c x ! 4m2
c/m2

b ∼ 0.4,
NRQCD cc̄

suppression

•
• couple to b, spectator

These amplitudes appear to be LO ! (disagrees with QCDF)

If so: • LO  large strong phases (mechanism as before)
• LO  transverse polarization in VV

Need to derive a Fact. Thm. to be sure

∼ v = 0.5 ie. none



Polarization
transverse vs. longitudinal

RT

R0
∼ 1

m2
b

Kagan

V V channels

Acc̄

Data: RT /R0

ρ+ρ0 0.04± 0.08
ρ+ρ− 0.01± 0.05
K∗0φ 0.72± 0.30

like φKs also b→ ss̄s

expect longitudinal 
to be larger

SCET  factorization theorem agrees, except for

Charming penguins 
might explain 

polarization data at LO 

Penguins are small in B → ρρ

Penguin dominated

Large power corrections 
(eg. annihilation) are 
another possibility 



A(B →M1M2) = Acc̄ + N

{
fM2 ζBM1

∫ 1

0
du T2ζ(u)φM2(u) + fM1 ζBM2

∫ 1

0
du T1ζ(u)φM1(u)

+
fBfM1fM2

mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz

∫ ∞
0
dk+ J(z, x, k+)

[
T2J(u, z)φM1(x)φM2(u) + T1J(u, z)φM2(x)φM1(u)

]
φ+

B(k+)
}

Same Jet function as SCETII

New Nonperturbative Result in αs(
√

EΛ) :

A(B →M1M2) = Acc̄ + N

{
fM2 ζBM1

∫ 1

0
du T2ζ(u)φM2(u) + fM1ζ

BM2

∫ 1

0
du T1ζ(u)φM1(u)

+fM2

∫ 1

0
du

∫ 1

0
dz T2J(u, z)ζBM1

J (z)φM2(u) + fM1

∫ 1

0
du

∫ 1

0
dz T1J(u, z)ζBM2

J (z)φM1(u)
}

• fit ζ’s , calculate T’s

where ζBM ∼ ζBM
J (z) ∼ (Λ/Q)3/2 and appear in B →M

B →M



Hard Coefficients
3

M1M2 T1ζ(u) T2ζ(u) M1M2 T1ζ(u) T2ζ(u)

π−π+, ρ−π+, π−ρ+, ρ−‖ ρ+
‖ c(d)

1 + c(d)
4 0 π+K(∗)−, ρ+K−, ρ+

‖ K∗−
‖ 0 c(s)

1 + c(s)
4

π−π0, ρ−π0 1√
2
(c(d)

1 +c(d)
4 ) 1√

2
(c(d)

2 −c(d)
3 −c(d)

4 ) π0K(∗)− 1√
2
(c(s)

2 −c(s)
3 ) 1√

2
(c(s)

1 +c(s)
4 )

π−ρ0, ρ−‖ ρ0
‖

1√
2
(c(d)

1 +c(d)
4 ) 1√

2
(c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K−, ρ0
‖K

∗−
‖

1√
2
(c(s)

2 +c(s)
3 ) 1√

2
(c(s)

1 +c(s)
4 )

π0π0 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) π−K̄(∗)0, ρ−K̄0, ρ−‖ K̄∗0
‖ 0 −c(s)

4

ρ0π0 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) π0K̄(∗)0 1√
2
(c(s)

2 −c(s)
3 ) − 1√

2
c(s)
4

ρ0
‖ρ

0
‖

1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K̄0, ρ0
‖K̄

∗0
‖

1√
2
(c(s)

2 +c(s)
3 ) − 1√

2
c(s)
4

K(∗)0K(∗)−, K(∗)0K̄(∗)0 −c(d)
4 0 K(∗)−K(∗)+ 0 0

M⊥
1 M⊥

2 T2J (u) M⊥
1 M⊥

2 T2J (u) M⊥
1 M⊥

2 T2J (u)

ρ+
Lρ−L −b(d)

7 − b(d)
8 ρ+

LK∗−
L −b(s)

7 − b(s)
8 ρ−L K̄∗0

L −b(s)
8

ρ0
Lρ0

L
1
2 b(d)

8 ρ0
LK̄∗0

L
1√
2
b(s)
8 K̄0∗

L K∗0
L b(d)

8

ρ0
Lρ−L , ρ−Lρ0

L
1√
2
(b(d)

7 +b(d)
8 ), − 1√

2
b(d)
8 ρ0

LK̄∗−
L

1√
2
(b(s)

7 +b(s)
8 ) K̄∗−

L K∗0
L −b(d)

8

TABLE I: Combinations of Wilson coefficients appearing in the factorization formula. Note that these results do not assume
isospin symmetry. The coefficients T1J,2J (u, z) are identical to T1ζ,2ζ(u) with each c(f)

i (u) replaced by b(f)
i (u, z).

A00(B̄ →M1M2) = Acc̄
00 +

GF m2
B√

2

{
fM2 ζBM1

∫ 1

0
du T2ζ(u)φM2(u) + fM1 ζBM2

∫ 1

0
du T1ζ(u)φM1(u) (9)

+
fBfM1fM2

mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz

∫ ∞
0
dk+ J(z, x, k+)

[
T2J(u, z)φM1(x)φM2 (u) + T1J(u, z)φM2(x)φM1 (u)

]
φ+

B(k+)
}

,

A⊥⊥(B̄ →M⊥
1 M⊥

2 ) = Acc̄
⊥⊥ +

GF m2
B√

2
fBfT

M1
fT

M2

2mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz T2J(u, z)J⊥(z, x, k+)φM1

⊥ (x)φ+
B(k+)φM2

⊥ (u) .

where Acc̄ denote long distance charming penguin ampli-
tudes and φM

⊥ (u) is the chiral-odd twist 2 wave function.
For each decay mode there is a separate set of hard co-
efficients, T which we give in Table I. In Ref. [1] the full
theory form factor appear in the factorization theorem.
The analog of this in Eq. (9) is that the non-perturbative
parameters ζ, φM , φM

⊥ , and φB also appear in the fac-
torization formula for the form factor [7, 13].

What is new from our analysis is that the jet functions
J and J⊥ in Eq. (9) are also the same as those in the
B → M form factors. For example, f+ = Cζ ζB→M +
fBfM

mB

∫
dxdzdk+ J(x, z, k+)Ca

J (z)φM (x)φ+
B(k+). The jet

functions depends on physics at the intermediate scale,
their perturbative expansion in αs(

√
EΛ) is not as con-

vergent as for the Ti which are expanded in αs(Q). In
fact perturbation theory may fail for J , J⊥ all together.
Without expanding J and J⊥ perturbatively, we find

A00 = Acc̄
00 +

GF m2
B√

2

{
fM2ζ

BM1

∫ 1

0
du T2ζ(u)φM2(u)

+fM1ζ
BM2

∫ 1

0
du T1ζ(u)φM1 (u) (10)

+fM2

∫ 1

0
du

∫ 1

0
dz T2J(u, z)ζBM1

J (z)φM2(u)

+fM1

∫ 1

0
du

∫ 1

0
dz T1J(u, z)ζBM2

J (z)φM1(u)
}

.

A⊥⊥ = Acc̄
⊥⊥ +

GF m2
B

2
√

2
fT

M1

∫ 1

0
du

∫ 1

0
dz

×T2J(u, z)ζBM1
J⊥ (z)φM2

⊥ (u) . (11)

Here the non-perturbative parameters ζBM , ζBM
J,J⊥(z),

φM (u), and φM
⊥ (u) still all occur in the B →M semilep-

tonic and rare form factors. Note that it was possible to
derive Eqs. (10) and (11) because in Eq. (9) we seperated
the scales Q2 and EΛ into T and J ’s respectively.

The phenomenology of B → PP and B → PV de-
cays has been explored in Ref. [15] using a factoriza-
tion formula similar to Eq. (9) and in Ref. [16] using
a SU(3) analysis. The former relies on a perturbative
expansion in αs(

√
EΛ) $ 0.3 and requires some formally

power suppressed contributions for a reasonable fit to the
data, while the latter may have ∼ 30% corrections from
SU(3) violation. In the long term, Eqs. (10) and (11),
may be more useful phenomenologically since the correc-
tions are only from perturbative αs(mb) ∼ 0.2 corrections
and Λ/E ∼ 0.2 power corrections. A model independent
analysis requires knowledge of the ζ and φ parameters,
which can in principle be determined from the q2 depen-
dent B →M form factors and processes sensitive to the
light-cone distributions φM . Note that power counting
implies that ζBM ∼ ζBM

J,J⊥ ∼ (Λ/Q)3/2.
Eqs. (10) and (11) still require matching the full theory

Oi’s onto the Q(0,1)
if to determine the Wilson coefficients

the Wilson coefficients c(f)
i and b(f)

i . We find [f = d, s]

c(f)
1 = λ(f)

u

(
C1+

C2

Nc

)
− λ(f)

t

3

2

(
C10+

C9

Nc

)
+ ∆c(f)

1 ,

c(f)
2 = λ(f)

u

(
C2+

C1

Nc

)
− λ(f)

t

3

2

(
C9+

C10

Nc

)
+ ∆c(f)

2 ,

c(f)
3 =−λ(f)

t

3

2

(
C7 +

C8

Nc

)
+ ∆c(f)

3 , (11)

c(f)
4 =−λ(f)

t

(
C4 +

C3

Nc
− C10

2
− C9

2Nc

)
+ ∆c(f)

4 ,

b(f)
1 = λ(f)

u

[
C1 +

(
1−mb

ω3

)C2

Nc

]
(12)

−λ(f)
t

[3

2
C10 +

(
1−mb

ω3

)3C9

2Nc

]
+ ∆b(f)

1 ,

b(f)
2 = λ(f)

u

[
C2 +

(
1−mb

ω3

)C1

Nc

]
−λ(f)

t

[3

2
C9 +

(
1−mb

ω3

)3C10

2Nc

]
+ ∆b(f)

2 ,

b(f)
3 = −λ(f)

t

[3

2
C7 +

(
1−mb

ω2

)3C8

2Nc

]
+ ∆b(f)

3 ,

b(f)
4 = −λ(f)

t

[
C4−C10

2
+

(
1−mb

ω3

)(C3

Nc
− C9

2Nc

)]
+ ∆b(f)

4

b(f)
7 = −λ(d,s)

t

(mb

ω2
−mb

ω3

)3C9

2Nc
+∆b(d,s)

7 ,

b(f)
8 = −λ(d,s)

t

(2mb

ω2
−2mb

ω3

)(C5

Nc
− C9

2Nc

)
+∆b(d,s)

8 ,

The O(αs) contribution to the ∆c(f)
j (u) have been calculated in Ref [? ] and later in Ref. [?

]. A full αs(mb) analysis requires ∆b(f)
j (u, z), which are currently unknown.

There is a hierarchy in the c(f)
i and b(f)

i due to the CKM factors and the Ci’s which

have to be accounted for. For example, C1 is about a factor of 6 larger than any of the

other coefficients, making c(d)
1 and b(d)

1 large. Thus any f = d decay in Table ?? that is

independent of c(d)
1 and b(d)

1 could receive large corrections, and will be called “contaminated”.

There could be large perturbative corrections proportional to αs(mb)C1 which is ∼ C2 and

# Ci≥3. These effects have been computed for the c(f)
i ’s [? ], but not yet for the b(f)

i ’s.

A more serious problem are large power corrections proportional to C1Λ/E which is also

∼ C2 and # Ci≥3. Unless these can be accounted for or such terms are absent, one should

assign ∼ 100% uncertainty to predictions for contaminated decays. An example of this type

is Br(B̄0 → π0π0).
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7 ,
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− C9

2Nc
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8 ,

The O(αs) contribution to the ∆c(f)
j (u) have been calculated in Ref [1] and later in Ref. [3].

A full αs(mb) analysis requires ∆b(f)
j (u, z), which are currently unknown.

There is a hierarchy in the c(f)
i and b(f)

i due to the CKM factors and the Ci’s which have

to be accounted for. For example, C1 is about a factor of 6 larger than any of the other

coefficients, making c(d)
1 and b(d)

1 large. Thus any f = d decay in Table I that is independent of

c(d)
1 and b(d)

1 could receive large corrections, and will be called “contaminated”. There could

be large perturbative corrections proportional to αs(mb)C1 which is ∼ C2 and # Ci≥3.

These effects have been computed for the c(f)
i ’s [1], but not yet for the b(f)

i ’s. A more

serious problem are large power corrections proportional to C1Λ/E which is also ∼ C2 and

# Ci≥3. Unless these can be accounted for or such terms are absent, one should assign

∼ 100% uncertainty to predictions for contaminated decays. An example of this type is

Br(B̄0 → π0π0).

At leading order in Λ/E only the one-loop ∆ci, ∆bi are imaginary, producing calculable

strong phases [1]. Imaginary Λ/E corrections can compete with these. It is known from

8

similar for TJ ’s in terms of b(f)
i ’s

Matching

Note:  have not 
used isospin here



Phenomenology for                   
7

are better understood the polarization measurements do
not provide a clean signal of physics beyond the standard
model.

We finally examine in some detail the predictions of
this paper for B → ππ decays, and show that they re-
produce the existing data. The present world averages
are [26]

Sππ = −0.74± 0.16, Cππ = −0.46± 0.13 ,

Br(B+ → π0π+) = (5.2 ± 0.8)× 10−6 ,

Br(B0 → π+π−) = (4.6 ± 0.4)× 10−6 ,

Br(B0 → π0π0) = (1.9 ± 0.5)× 10−6 , (31)

where the branching fractions are CP averages. The am-
plitudes are naturally divided into two pieces with differ-
ent CKM factors, as A ≡ λ(d)

u T + λ(d)
c P , where T and

P are usually called “tree” and “penguin” amplitudes.
The decay amplitudes for B → ππ can be written in a
model-independent way as

A(B̄0 → π+π−) = λ(d)
u Tc(1 + rc eiδceiγ) ,

A(B̄0 → π0π0) = λ(d)
u Tn(1 + rn eiδneiγ) ,√

2A(B− → π0π−) = λ(d)
u T , (32)

where (rc, δc) and (rn, δn) parameterize the ratio of tree
to penguin contributions to B0 → π+π− and B0 → π0π0,
respectively. We have neglected small electroweak pen-
guin contributions. Isospin gives the relations

T = Tc + Tn , Tcrce
iδc + Tnrneiδn = 0 , (33)

leaving only 5 independent strong interaction parameters
in Eq. (32).

In the first step of the analysis, we assume that β, γ are
known, use this to disentangle the tree and penguin am-
plitudes, and thus extract the five parameters in Eq. (32).
In a second step, these parameters are compared with
the leading order predictions from SCET, and used to
extract the nonperturbative parameters appearing in the
factorization formula Eq. (24), working at tree level in
matching at the hard scale. The resulting SCET param-
eters are then used to predict values for |Vub|f+(0) and
Br(B0 → π0π0) as functions of γ.

Assuming values for the CKM angles β and γ we can
use the 5 pieces of experimental data given in Eq. (31) to
determine the 5 parameters in Eq. (32). Using (β, γ) =
(23◦, 64◦) and the data for the CP asymmetries we find
for the penguin parameters rc and δc

rc = 0.75± 0.35 , δc = −44◦ ± 12◦ . (34)

This is in good agreement with the recent determinations
of these parameters in Refs. [27]. Using the branching
ratio data as input, we can determine the tree parameters
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FIG. 4: Constraints on the triangle of tree amplitudes T/Tc−
Tn/Tc = 1 from current world averaged data on B → ππ. The
shaded regions show the two 1-σ regions for γ = 64◦ including
the error correlation between |t| and |tn|. The central values
for γ = 54◦ and γ = 74◦ are also shown.
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Some of the errors in Eqs. (34) and (35) have sizeable
correlations. The results for the tree triangle are shown
graphically in Fig. 4. The two γ = 64◦ solutions cor-
respond to those in Eq. (35) and the ellipses denote 1σ
contours. Also shown in this figure is the isospin tree tri-
angle, which for the reduced tree level amplitudes reads
1 + tn = t. There are two strong phases in this triangle
which are also shown in the figure, namely θ between T
and Tc and θn between Tn and Tc.

As a second step the extracted amplitudes are com-
pared with the predictions of this paper at leading order
in Λ/mb and tree level in the SCET Wilson coefficient
c(d)
i and b(d)

i . At this order our result has four indepen-
dent parameters. The tree amplitudes T, Tc are given
by the factorization relation Eq. (18) and depend on the
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are better understood the polarization measurements do
not provide a clean signal of physics beyond the standard
model.

We finally examine in some detail the predictions of
this paper for B → ππ decays, and show that they re-
produce the existing data. The present world averages
are [26]

Sππ = −0.74± 0.16, Cππ = −0.46± 0.13 ,

Br(B+ → π0π+) = (5.2 ± 0.8)× 10−6 ,

Br(B0 → π+π−) = (4.6 ± 0.4)× 10−6 ,

Br(B0 → π0π0) = (1.9 ± 0.5)× 10−6 , (31)

where the branching fractions are CP averages. The am-
plitudes are naturally divided into two pieces with differ-
ent CKM factors, as A ≡ λ(d)

u T + λ(d)
c P , where T and

P are usually called “tree” and “penguin” amplitudes.
The decay amplitudes for B → ππ can be written in a
model-independent way as

A(B̄0 → π+π−) = λ(d)
u Tc(1 + rc eiδceiγ) ,

A(B̄0 → π0π0) = λ(d)
u Tn(1 + rn eiδneiγ) ,√

2A(B− → π0π−) = λ(d)
u T , (32)

where (rc, δc) and (rn, δn) parameterize the ratio of tree
to penguin contributions to B0 → π+π− and B0 → π0π0,
respectively. We have neglected small electroweak pen-
guin contributions. Isospin gives the relations

T = Tc + Tn , Tcrce
iδc + Tnrneiδn = 0 , (33)

leaving only 5 independent strong interaction parameters
in Eq. (32).

In the first step of the analysis, we assume that β, γ are
known, use this to disentangle the tree and penguin am-
plitudes, and thus extract the five parameters in Eq. (32).
In a second step, these parameters are compared with
the leading order predictions from SCET, and used to
extract the nonperturbative parameters appearing in the
factorization formula Eq. (24), working at tree level in
matching at the hard scale. The resulting SCET param-
eters are then used to predict values for |Vub|f+(0) and
Br(B0 → π0π0) as functions of γ.

Assuming values for the CKM angles β and γ we can
use the 5 pieces of experimental data given in Eq. (31) to
determine the 5 parameters in Eq. (32). Using (β, γ) =
(23◦, 64◦) and the data for the CP asymmetries we find
for the penguin parameters rc and δc

rc = 0.75± 0.35 , δc = −44◦ ± 12◦ . (34)

This is in good agreement with the recent determinations
of these parameters in Refs. [27]. Using the branching
ratio data as input, we can determine the tree parameters
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FIG. 4: Constraints on the triangle of tree amplitudes T/Tc−
Tn/Tc = 1 from current world averaged data on B → ππ. The
shaded regions show the two 1-σ regions for γ = 64◦ including
the error correlation between |t| and |tn|. The central values
for γ = 54◦ and γ = 74◦ are also shown.

as well. We find

|T | = Nπ (0.29 ± 0.02)
(3.9× 10−3

|Vub|
)

, (35)

|t| = 2.07± 0.42 , |tn| =

{
1.15± 0.33 (I)
1.42± 0.35 (II)

,

where Nπ = GF√
2
m2

Bfπ and we defined

t =
T

Tc
, tn =

Tn

Tc
. (36)

Some of the errors in Eqs. (34) and (35) have sizeable
correlations. The results for the tree triangle are shown
graphically in Fig. 4. The two γ = 64◦ solutions cor-
respond to those in Eq. (35) and the ellipses denote 1σ
contours. Also shown in this figure is the isospin tree tri-
angle, which for the reduced tree level amplitudes reads
1 + tn = t. There are two strong phases in this triangle
which are also shown in the figure, namely θ between T
and Tc and θn between Tn and Tc.

As a second step the extracted amplitudes are com-
pared with the predictions of this paper at leading order
in Λ/mb and tree level in the SCET Wilson coefficient
c(d)
i and b(d)

i . At this order our result has four indepen-
dent parameters. The tree amplitudes T, Tc are given
by the factorization relation Eq. (18) and depend on the
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correlations. The results for the tree triangle are shown
graphically in Fig. 4. The two γ = 64◦ solutions cor-
respond to those in Eq. (35) and the ellipses denote 1σ
contours. Also shown in this figure is the isospin tree tri-
angle, which for the reduced tree level amplitudes reads
1 + tn = t. There are two strong phases in this triangle
which are also shown in the figure, namely θ between T
and Tc and θn between Tn and Tc.

As a second step the extracted amplitudes are com-
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Tn/Tc = 1 from current world averaged data on B → ππ. The
shaded regions show the two 1-σ regions for γ = 64◦ including
the error correlation between |t| and |tn|. The central values
for γ = 54◦ and γ = 74◦ are also shown.
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FIG. 5: Model independent results for ζBπ , ζBπ
J , and the

B → π form factor f+(q2 = 0) as a function of γ. The shaded
bands show the 1-σ errors propagated from the B → ππ data.

non-perturbative parameters ζBπ , ζBπ
J ,

T = Nπ
1
3
(C1 + C2)

[
4ζBπ + (4 + 〈ū−1〉π)ζBπ

J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
C2 + C3

3

)
ζBπ
J

]
,

where 〈ū−1〉π =
∫ 1
0 φπ(u)/(1−u), and ζBπ

J =
∫

dz ζBπ
J (z).

The penguin amplitude also gets a contribution from the
complex Aππ

cc̄ amplitude, so

P ≡ −
∣∣∣λ(d)

u

λ(d)
c

∣∣∣ Tc rc eiδc = Nπ

[(
C4 +

C3

3

)
ζBπ

+
(

C4+(1+〈ū−1〉π)
C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=64◦ =

(
0.05± 0.05

)(3.9× 10−3

|Vub|
)

, (40)

ζBπ
J

∣∣
γ=64◦ =

(
0.11± 0.03

)(3.9× 10−3

|Vub|
)

,

where the quoted errors are propagated from the exper-
imental errors from |T | and |t| in Eq. (35). Using the
results for rc and δc in Eq. (34) and |Vcb| = 0.041 the
penguin amplitude is

P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦ =

(
0.17± 0.02

)(3.9× 10−3

|Vub|
)

. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).
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bands show the 1-σ errors propagated from the B → ππ data.
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J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
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C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find
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P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦ =

(
0.17± 0.02

)(3.9× 10−3

|Vub|
)

. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).

fit 4 parameters

LO in Λ/E ,    LO in αs(mb) for T’s(
ζBπ, ζBπ

J , P (or Acc̄)
) do not need 

ie. 
|tn|

Br(B0 → π0π0)

T, |t|

rc, δc

ζBπ ! ζBπ
J

QCDF used

compatible with
large Acc̄

At this order the “Tree” isospin 
triangle is predicted to be flat



8

FIG. 5: Model independent results for ζBπ , ζBπ
J , and the

B → π form factor f+(q2 = 0) as a function of γ. The shaded
bands show the 1-σ errors propagated from the B → ππ data.

non-perturbative parameters ζBπ , ζBπ
J ,

T = Nπ
1
3
(C1 + C2)

[
4ζBπ + (4 + 〈ū−1〉π)ζBπ

J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
C2 + C3

3

)
ζBπ
J

]
,

where 〈ū−1〉π =
∫ 1
0 φπ(u)/(1−u), and ζBπ

J =
∫

dz ζBπ
J (z).

The penguin amplitude also gets a contribution from the
complex Aππ

cc̄ amplitude, so

P ≡ −
∣∣∣λ(d)

u

λ(d)
c

∣∣∣ Tc rc eiδc = Nπ

[(
C4 +

C3

3

)
ζBπ

+
(

C4+(1+〈ū−1〉π)
C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=64◦ =

(
0.05± 0.05

)(3.9× 10−3

|Vub|
)

, (40)

ζBπ
J

∣∣
γ=64◦ =

(
0.11± 0.03

)(3.9× 10−3

|Vub|
)

,

where the quoted errors are propagated from the exper-
imental errors from |T | and |t| in Eq. (35). Using the
results for rc and δc in Eq. (34) and |Vcb| = 0.041 the
penguin amplitude is

P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦ =

(
0.17± 0.02

)(3.9× 10−3

|Vub|
)

. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).

Predictions
9

Our analysis can also be used to make a prediction for
Br(B0 → π0π0). At tree level in SCET |tn| = |t| − 1
which gives

Γ̄(B0 → π0π0)
Γ̄(B− → π0π−)

(43)

=
( |t|−1

|t|
)2

+
r2
c

|t|2 −
2rc

|t|
(
1− 1

|t|
)

cos(δc) cos(γ) .

Thus we predict

Br(B0→π0π0) =


(1.0 ± 0.7)×10−6, γ = 54◦

(1.3 ± 0.6)×10−6, γ = 64◦

(1.8 ± 0.7)×10−6, γ = 74◦
. (44)

These results are all in reasonable agreement with the
current world average. The uncertainty quoted in
Eq. (44) is only from the inputs in Eq. (43), and will
be directly reduced when the first four measurements in
Eq.(31) improve. Since the ζBπ

J term in Eq. (40) is >∼ ζBπ

our results for Br(B0 → π0π0) are not contaminated
and we expect that theoretical uncertainty from power
corrections plus αs(mb) corrections will add a ∼ 20-30%
uncertainty to the results in Eq. (44). Note that one can
turn the analysis in Eq. (44) around and use the data
on B → ππ in Eq. (31) to give a new method for deter-
mining the value of γ, where the theoretical input from
factorization is that the tree triangle is flat.

Our values in Eq. (44) are somewhat larger than the
central values predicted in QCDF (∼ 0.3 × 10−6 [4]) or
pQCD (∼ 0.2 × 10−6 [31]). For γ = 54◦ the first term
in Eq. (43) dominates our result, while the r2

c penguin
term has a large cancellation with the interference term
∝ cos(γ). For larger γ’s this cancellation becomes less
effective and Br(B0 → π0π0) increases. In QCDF ζBπ

dominates over a small ζBπ
J , but has a small coefficient

∝ C2 + C1/3, so the first term in Eq. (43) is small. In
pQCD the Ma,e terms which are multiplied by C1 are
also small for B → π0π0.

In this paper we have used SCET to derive a factor-
ization theorem for B → M1M2 decays and explored
the theoretical and phenomenological implications. Sev-
eral issues for B → M1M2 still remain to be resolved.
A factorization formula for the charming penguin con-
tribution should be worked out, and polarization effects
should investigated beyond leading order. It needs to
be shown that the n–n̄ factorization is not spoiled by
Glauber degrees of freedom. The one loop ∆bi’s need
to be computed, as well as a resummation of Sudakov
logarithms which are given by the evolution equations
for the SCET operators. Charming penguin effects need
to be better understood in an effective theory approach,
and a full factorization theorem for the Acc̄ amplitude
should be worked out. Finally, power corrections (in-
cluding so called chirally enhanced terms, annihilation
contributions, and C1Λ/E terms) should be studied us-
ing SCET.
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FIG. 5: Model independent results for ζBπ , ζBπ
J , and the

B → π form factor f+(q2 = 0) as a function of γ. The shaded
bands show the 1-σ errors propagated from the B → ππ data.

non-perturbative parameters ζBπ , ζBπ
J ,

T = Nπ
1
3
(C1 + C2)

[
4ζBπ + (4 + 〈ū−1〉π)ζBπ

J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
C2 + C3

3

)
ζBπ
J

]
,

where 〈ū−1〉π =
∫ 1
0 φπ(u)/(1−u), and ζBπ

J =
∫

dz ζBπ
J (z).

The penguin amplitude also gets a contribution from the
complex Aππ

cc̄ amplitude, so

P ≡ −
∣∣∣λ(d)

u

λ(d)
c

∣∣∣ Tc rc eiδc = Nπ

[(
C4 +

C3

3

)
ζBπ

+
(

C4+(1+〈ū−1〉π)
C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=64◦ =

(
0.05± 0.05

)(3.9× 10−3

|Vub|
)

, (40)

ζBπ
J

∣∣
γ=64◦ =

(
0.11± 0.03

)(3.9× 10−3

|Vub|
)

,

where the quoted errors are propagated from the exper-
imental errors from |T | and |t| in Eq. (35). Using the
results for rc and δc in Eq. (34) and |Vcb| = 0.041 the
penguin amplitude is

P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦ =

(
0.17± 0.02

)(3.9× 10−3

|Vub|
)

. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).

I)

II) only expt. only expt.

A(B− → π0π−) ∝ ζBπ +
(
1 +

〈ū−1〉π
4

)
ζBπ
J

naive factorization 
fails when ζBπ

J ∼ ζBπ

•

• values are substantially smaller 
than model estimates

Predict
an extra term C1

Nc
〈ū−1〉π ζBπ

J

ruins color suppression
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or turn this around and predict 
from flat “tree” triangle 

γ



 a lot of work left to do 

Open Issues in
• Factorization formula with charming penguins?

B →M1M2

• Power Corrections:
• expect nonperturbative phases δ ∼ 30◦

• C1Λ/E ∼ C2 " Cj≥3

“chirally” enhanced terms,  annihilation•
size of SU(3) breaking:  not just • fM also φM (x)



Outlook

• A lot of theory and phenomenology left to study ...

• The theory of nonleptonic B decays is challenging, but
progress is being made

• Allows power corrections to be addressed in a model independent way

• For B’s, need to carefully examine expansion for each process and improve
our understanding of power corrections to trust results beyond the 20%
level

SCET

We have only seen 
the tip of the iceberg



Comments on Kπ





• Separate physics at different momentum scales 
• Power expansion 
• Make symmetries explicit 
• Model independent, systematically improvable

Effective Field Theory

Effective Theories Expansion Parameter
(1) Electroweak (Fermi) Hamiltonian mb/mW ! 1
(2) Heavy Quark Effective Theory (HQET) Λ/mb ! 1
(3) Chiral Perturbation Theory, SU(3) mu,d,s/Λ! 1

All designed to separate hard ph ∼ Q and soft ps momenta, Q2 " p2
s

Allow for energetic hadrons =⇒ collinear pc, new class of processes

Q! ΛQCD Q = EH



∫ 1

0
dx φM (x) = 1 M = π,K, η

• Non-analytic terms vanish

• At NLO, ie with all the leading SU(3) violation:

Using chiral perturbation theory:

φπ(x) + 3φη(x) = 2
[
φK+(x) + φK−(x)

] “Gell-Mann 
Okubo”

all in 
fM

J.Chen, I.S. ’03

SU(3)  Violation



Bs → Dsπ

s

!"#$%&'()*#+,,- .'()*&#/0**1#2034)#5&0&)#64789 !-

!:!":
;"<

!:!":
;"< 7:#0#='&)4&70>#?'@)#A'*#?)0:B*74C##:9

DB>>3#*)%'4:&*B%&)@#?'@)#A'*#?747?0>#B4%)*&074&3#

74#&E)#('':&#'A#&E)#!:9

• pure “Tree” topology           gives interesting information

B D

!

ss

Br = (4.2± 1.6)× 10−3

from CDF

Using SU(3)
|T + E| = 5.9 ± 0.3
|T + C| = 7.7 ± 0.3

|T | = 7.3 ± 1.5



Two body nonleptonic decays.  Simple?

B

Γ =
|!pπ|

8πm2
B

|A|2 A = 〈ππ|Hweak|B〉

B

π

π

Note: Nonleptonic B-decays are 
not Gold Plated Observables for 

Lattice QCD



SCET Expansion  

LO: O(0) with L(0)

NNLO:

T{O(0) ,L(1)} ∼ O(1) with L(0)NLO:

with L(0)T{O(0) ,L(2)} ∼ T{O(1) ,L(1)}
∼ T{O(0),L(1),L(1)} ∼ O(2)



Chay, Kim

Bauer, Pirjol, Rothstein, I.S. 

same as form factors•

•

•

involves ζM1 , φB(r+), φMi(x)

B →M1M2 Factorization in SCET

• operators, exponentiation of soft & collinear gluons

• hard spectator & form factor terms  same operators

• long distance charming penguins
analysis for PP, PV, VV

unique function which is also in  

Λ2 ! EΛ! E2,m2
b

J(z, x, r+, E) B →M

A(B →M1M2) = Acc̄ + N

{
fM2 ζBM1

∫ 1

0
du T2ζ(u)φM2(u) + fM1 ζBM2

∫ 1

0
du T1ζ(u)φM1(u)

+
fBfM1fM2

mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz

∫ ∞
0
dk+ J(z, x, k+)

[
T2J(u, z)φM1(x)φM2(u) + T1J(u, z)φM2(x)φM1(u)

]
φ+

B(k+)
}B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'




