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Soft - Collinear Effective Theory

matching, 

• Principles, Operators, Power Counting

Summing Logarithms,

,  

HQETαs

Matching, 
Using Equations of Motion, Renormalization and Decoupling

Loops, 

Weak Interactions at low energy
•

, [power counting velocity NRQCD]

E ! ΛQCD

An effective field theory for energetic hadrons & jets



Non-relativistic QCD



Systems with Two Heavy Particles

Degrees of Freedom

Momentum Regions

k0
k

hard: m m integrate these out

potential: mv2 mv ptnl gluons are not propagating

soft: mv mv radiative corrections, binding

ultrasoft: mv2 mv2 need multipole expansion

• E = p2/(2m) ∼ v2, count powers of v

O(v0) Kinetic Terms give potential quarks ψ, χ ∼ v3/2

soft gluons Aµ
s ∼ v (scale µS)

ultrasoft gluons Aµ
us ∼ v2 (scale µU )
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(and αs)

ψ, χ

Aµ

s , qs

A
µ

us

treat mv
2
! ΛQCD
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VII. NRQCD

e+e− → positronium (NRQED)

pe− → Hydrogen (NRQED)

bb̄, cc̄ → Υ, J/Ψ (NRQCD)

tt̄ → e+e− → tt̄ (NRQCD)

NN → deuteron (few nucleon EFT)

(66)

ψ(x) =
∑

p

eip·xψp(x) (67)

i∂µψp(x) ∼ (mv2)ψp(x)

LNRQCD = Lultrasoft + Lpotential + Lsoft (68)

eg.



Simplify p.c. and Implement multipole expansion
mv

2m v

m v

p

k

a)

p

Separate quark momenta Luke et al.

p index

continuous

like in HQET

Georgi (’90)

mv

mv
2

p

k

Interactions

4 quark operators:

p p!

-p -p!
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(board)

Power Counting

• Manifest power counting means each graph contributes at one
order in v

• power counting requires separating soft and ultrasoft fields

(seen in threshold expansion for any µ < m)

• Can associate all powers of v with vertices (Luke et al.)
δ = 5 +

∑
k(k − 5)V P

k + (k − 8)V U
k + (k − 4)V S

k −Ns

• Power counting of operators implies power counting of states

(Bodwin, Braaten, Lepage)

Power counting implies mv2 ↔ mv correlation Manohar, I.S., Hoang

in dimensional regularization (in vNRQCD)

• ψ ∼ (mv)3/2−ε, Aµ
s ∼ (mv)1−ε, Aµ

us ∼ (mv2)1−ε

• implies we need µU = µ2
S/m ∼ mv2, so take µU = mν2, µS = mν

• uniquely fixes powers of µU , µS in operators
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Basic Threshold Dynamics

and move with non-relativistic velocities

Coulombic Singularities sum insertions of

t

t
-

!
...

resonances overlap remnant only

LO:

An Effective Field Theory for

Non-Relativistic Bound States

systematically include relativistic and radiative

corrections from QCD

Coulombic:

Want an expansion:

LO NLO NNLO

Scales for :

all

Why use EFT?

The rest of the NRQCD discussion can be found at the 
end of Lecture II on the website



Lecture III  Outline
• d.o.f.,  SCET1 & SCET11,  Lagrangians

• Label Operators, Gauge Invariance, Wilson Lines, RPI,
  multipole expansion

• Hard-Collinear and Ultrasoft-Collinear Factorization

• IR divergences, Running

• B → Xsγ



mW

?

mb

ΛQCD

mc

ms

mu,d

 
b

B

B - decays by weak interactions:

B → Xsγ

B → Dπ

B → π"ν̄

B → ππB → ρρ

B → Kπ

B → K∗γ
B → ργ

B → Xu!ν̄

B → D∗η′
B → γ"ν̄E

E
The B is heavy, so many of its decay products 
are energetic,

Any other QCD process with large energy transfer:
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VIII. SCET

Process Non-Pert. functions Utility

B̄0 → D+π−, . . . ξ(w), φπ study QCD

B̄0 → D0π0, . . . S(k+
j ), φπ study QCD

B → Xendpt
s γ f(k+) new physics, measure f

B → Xendpt
u 'ν f(k+) measure |Vub|

B → π'ν, . . . φB(k+), φπ(x), ζπ(E) measure |Vub|, study QCD

B → γ'ν, γ'+'− φB measure φB, new physics

B → ππ, Kπ, . . . φB, φπ , ζπ(E) new physics, CP violation,

φK̄ , ζK(E) study QCD

B → K∗γ, ργ φB, φK , ζ⊥K∗(E) measure |Vtd/Vts|
φρ, ζ⊥ρ (E)

B → Xs'+'− f(k+) new physics

e−p → e−X fi/p(ξ), fg/p(ξ) study QCD , measure p.d.f’s

pp̄ → X'+'− fi/p(ξ), fg/p(ξ) study QCD

e−γ → e−π0 φπ measure φπ

γ∗M → M ′ φM , φM ′ study QCD

e+e− → jets study universality

e+e− → J/ΨX study QCD
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SCET can be used for:



Degrees of Freedom
B D!eg.

Pion has:

8

pµ
π = (2.310 GeV, 0, 0,−2.306 GeV) = Qnµ 8

pµ
π = (2.310 GeV, 0, 0,−2.306 GeV) = Qnµ Q " ΛQCD

8

pµ
π = (2.310 GeV, 0, 0,−2.306 GeV) = Qnµ Q " ΛQCD nµ = (1, 0, 0,−1)

Light - Cone coordinates:

8

pµ
π = (2.310 GeV, 0, 0,−2.306 GeV) = Qnµ Q " ΛQCD nµ = (1, 0, 0,−1) n2 = 0

Basis vectors nµ, n̄µ with n2 = 0, n̄2 = 0, n·n̄ = 2

pµ =
nµ

2
n̄ · p +

n̄µ

2
n · p + pµ

⊥

gµν =
nµn̄ν

2
+

n̄µnν

2
+ gµν

⊥ (69)

8

pµ
π = (2.310 GeV, 0, 0,−2.306 GeV) = Qnµ Q " ΛQCD nµ = (1, 0, 0,−1) n2 = 0

Basis vectors nµ, n̄µ with n2 = 0, n̄2 = 0, n·n̄ = 2

pµ =
nµ

2
n̄ · p +

n̄µ

2
n · p + pµ

⊥

gµν =
nµn̄ν

2
+

n̄µnν

2
+ gµν

⊥ (69)

8

pµ
π = (2.310 GeV, 0, 0,−2.306 GeV) = Qnµ Q " ΛQCD nµ = (1, 0, 0,−1) n2 = 0

Basis vectors nµ, n̄µ with n2 = 0, n̄2 = 0, n·n̄ = 2

pµ =
nµ

2
n̄ · p +

n̄µ

2
n · p + pµ

⊥

gµν =
nµn̄ν

2
+

n̄µnν

2
+ gµν

⊥ (69)
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eg. n̄µ = (1, 0, 0, 1)



B D!eg.

n
µ

!

Collinear constituents:
pµ

c = (p+, p−, p⊥) ∼
(Λ2

Q
,Q,Λ

)
∼ Q(λ2, 1, λ) λ =

Λ
Q

Just a boost of

8
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p+ ≡ n · p, p− ≡ n̄ · p

eg. n̄µ = (1, 0, 0, 1)

(p+, p−, p⊥) ∼ (Λ, Λ, Λ)

B
Soft Constituents

pµ
s = (p+, p−, p⊥) ∼ (Λ,Λ,Λ) D and

modes pµ = (+,−,⊥) p2 fields
collinear Q(λ2, 1, λ) Q2λ2 ξn, Aµ

n

soft Q(λ, λ, λ) Q2λ2 qs, Aµ
s

usoft Q(λ2, λ2, λ2) Q2λ4 qus, Aµ
us

SCETII Energetic hadrons λ =
Λ
Q



n
µ

X

B → Xsγeg.
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γ
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Collinear Propagator (board)

Power Counting for 
Collinear Fields

(board)



Currents

(board)

eg. ū Γ b involves both collinear and ultrasoft objects

ξ̄nW Γ hv

b

u

W = P exp
(
ig

∫ y
−∞ ds n̄·An(sn̄µ)

)
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Interaction of modes:  Offshell versus Onshell
(board)



Separate Momenta (multipole expansion)Separate Momenta

label residual

HQET P µ = mbvµ + kµ hv(x) (Georgi)

SCET P µ = pµ + kµ ξn,p(x)

(1, λ)

Collinear Quarks

# ψ(x)→
∑

p e−ip·xξn,p(x)

# n/ ξn,p = 0

# ∂µ ξn,p ∼ (Qλ2) ξn,p

p

k

 Q

Q 
 

Q 

   !
2

 !

• But labels are changed

by SCET interactions p p!

q

Iain Stewart – p.8
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Separate Momenta

Introduce Label Operator

Pµ(
φ†

q1 · · ·φp1 · · ·
)

= (pµ
1 +. . .−qµ

1 −. . .)
(
φ†

q1 · · ·φp1 · · ·
)

• Can pull phases to front of operators

i∂µe−ip·x φp(x) = e−ip·x(Pµ + i∂µ)φp(x)

Iain Stewart – p.9
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derivative
for labels

usual
derivative



• Labels are changed by collinear interactions

Separate Momenta

label residual

HQET + (Georgi)

SCET +

Collinear Quarks

p

k

 Q

Q! 
2

Q! 

But labels are changed

by SCET interactions p p!

q

Iain Stewart – p.23

• Labels are preserved by ultrasoft interactions

p p

collinear

ultrasoft



Power Counting SummaryPower Counting

Type (p+, p−, p⊥) Fields Field Scaling

collinear (λ2, 1, λ) ξn,p λ

(A+
n,p, A

−
n,p, A

⊥
n,p) (λ2, 1,λ)

soft (λ, λ, λ) qs,p λ3/2

Aµ
s,p λ

usoft (λ2, λ2, λ2) qus λ3

Aµ
us λ2

Make kinetic terms order λ0
∫

d4X ξ̄n,p′
n̄/
2

(
in·∂ + . . .

)
ξn,p

λ0 = λ−4 λ λ2 λ

• At leading power only λ0 interactions are required

• n̄ · An,q ∼ n̄ · qi ∼ λ0 operators are f(n̄·An,q, n̄·qi)

Iain Stewart – p.10
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• At leading power only λ0 interactions are required

• n̄ · An,q ∼ n̄ · qi ∼ λ0 operators are f(n̄·An,q, n̄·qi)

Iain Stewart – p.10

Power Counting

In an arbitrary graph, Euler identities allow all powers of to be
associated just with vertices

B D

!

At leading power only interactions are required

ie. external currents and Lagrangians

Iain Stewart – p.5

Power counting can be assigned to vertices
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4 ψ χn̄ = n̄/n/
4 ψ

L =
(

χ̄n̄ + ξ̄n

)

[

i
n/

2
n̄ · D + i

n̄/

2
n · D + iD/⊥

]

(

ξn + χn̄

)

= ξ̄n
n/

2
in̄ · D ξn + ξ̄n̄ i

n̄/

2
ξn̄n · D + iD/⊥

]

(

ξn + ξn̄

)

(70)
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In SCET constituent p− ∼ mb ∼ Eπ p2 = p+p− + p2
⊥ p2 ∼ m2

1 p2 ∼ m2
2 p2 ∼ Q2 p2

c ∼ Λ2 p2
soft ∼ Λ2

∫

dω C(ω) O(ω)

ū Γ b
LQCD = ψ̄ iD/ ψ Write ψ = ξn + χn̄ ξn = n/n̄/

4 ψ χn̄ = n̄/n/
4 ψ

L =
(

χ̄n̄ + ξ̄n

)

[

i
n/

2
n̄ · D + i

n̄/

2
n · D + iD/⊥

]

(

ξn + χn̄

)

= ξ̄n
n/

2
in̄ · D ξn + ξ̄n̄ i

n̄/

2
ξn̄n · D + iD/⊥

]

(

ξn + ξn̄

)

(70)

e.o.m:
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⊥

gµν =
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n̄µnν
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+ gµν
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χ̄n̄ + ξ̄n
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i
n/

2
n̄ · D + i

n̄/

2
n · D + iD/⊥
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(

ξn + χn̄

)

=
(

ξ̄n
n/

2
in̄ · D ξn

)

+
(

χ̄n̄
n/

2
in̄ · D χn̄

)

+
(

ξ̄n iD/⊥ χn̄

)

+
(

χ̄n̄ iD/⊥ ξn

)

(70)

δ
δχ̄n̄
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ξ̄n
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in̄ · D ξn
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in̄ · D χn̄
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δ
δχ̄n̄

in̄ · Dχn̄ +
n̄/

2
iD/⊥ξn = 0 (71):
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δ
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χn̄ =
1

in̄ · D
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ξn (72)
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in̄ · D
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ξn (73)
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(board)
L(0)

c = ξ̄n

{
n · iDus + gn · An + i /Dc

⊥
1

in̄ · Dc
i /Dc
⊥

} /̄n

2
ξn



Use Symmetries Power counting, Gauge symmetry, Discrete,  
Lorentz invariance (?)

  That was tree level.

Gauge symmetry

9

U(x) = exp
[

iαA(x)T A
]

need to consider U’s 
which leave us in the EFT

collinear
usoft

9

i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

9

i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

i∂µUus(x) ∼ pµ
c Uus(x) ↔ Aµ

us (75)

Object Collinear Uc Usoft Uus

ξn Uc ξn Uus ξn

gA
µ
n Uc gA

µ
n U†

c + Uc
[

iDµ,U†
c
]

Uus gA
µ
n U

†
us

W Uc W Uus W U †
us

qus qus Uus qus

gAµ
us gAµ

us UusgAµ
usU

†
us + Uus[i∂µ, U †

us]

Y Y Uus Y

TABLE I: Gauge transformations for the collinear and usoft fields from Ref. [4], where iDµ ≡
nµ

2 P̄ + Pµ
⊥ + n̄µ

2 i n·Dus. The collinear fields and transformations are understood to have momen-
tum labels and involve convolutions, but for simplicity these indices are suppressed. The usoft
transformations do not change the momentum labels of collinear fields.

Objects Collinear Uc Soft Us

ξn Uc ξn ξn

gAµ
n Uc gAµ

n U†
c + Uc

[

i∂µ
c U†

c
]

gAµ
n

W Uc W W

qs qs Us qs

gAµ
s gAµ

s Us gAµ
s U †

s + Us[i∂
µ
s , U †

s ]

S S Us S

TABLE II: Gauge transformations for collinear and soft fields in SCETII from Ref. [4]. Momentum
labels are suppressed, and ∂µ

c and ∂µ
s are defined to only pick out collinear and soft momenta

respectively. Here i∂µ
c "= iDµ since usoft fields are not included in SCETII.

• Power counting: Restricts the type of fields and derivatives allowed in the operator

• Gauge invariance: Requires operators to be built out of gauge invariant building
blocks.

• Reparameterization invariance: Corresponds to the restoration of Lorentz invariance
order by order in λ.

• Locality: The theory SCETI is only non-local in O(Q) momenta. Only inverse powers
of the large label momentum are allowed and collinear Wilson lines have to be built
out of O(1) gluons.

Note that SCETI is constructed in a local manner, but after doing this it is useful to consider
a field redefinition ξn → Y ξn which introduces non-locality at the usoft scale. The locality
restriction does not apply to SCETII . Integrating out p2 ∼ QΛ modes immediately results
in operators involving the soft Wilson line S [4], and it contains inverse powers of 1/Λ
momenta. In the following we will focus on gauge invariance and discuss subtleties which
arise in constructing invariant operators at subleading order.

The gauge transformations for the SCET fields were derived in [4] and are summarized
in Tables I and II. Here ∂µ

c Uc ∼ Q(λ2, 1, λ), ∂µ
s Us ∼ Qλ, and ∂µUus ∼ Qλ2 distinguish the

3

reconsider current (board)



Reparameterization Invariance (RPI)

9

i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

i∂µUus(x) ∼ pµ
c Uus(x) ↔ Aµ

us (75)

n n̄, break Lorentz invariance, restored within collinear cone 
  by RPI,  three types

(b) Any choice of the reference light-cone vectors n and n̄ satisfying

n2 = 0 , n̄2 = 0 , n · n̄ = 2 , (3)

are equally good, and can not change physical predictions.

For type (b) the most general infinitesimal change in n and n̄ which preserves Eq. (3) is a
linear combination of

(I)





nµ → nµ + ∆⊥

µ

n̄µ → n̄µ

(II)





nµ → nµ

n̄µ → n̄µ + ε⊥µ
(III)





nµ → (1 + α) nµ

n̄µ → (1− α) n̄µ

, (4)

where {∆⊥
µ , ε⊥µ , α} are five infinitesimal parameters, and n̄ ·ε⊥ = n ·ε⊥ = n̄ ·∆⊥ = n ·∆⊥ = 0.

Invariance under subset (I) of these transformations has already been explored in Ref. [15],
and used to derive important constraints on the next-to-leading order collinear Lagrangian
and heavy-to-light currents. Here we explore the consequences of invariance under the full set
of reparameterization transformations and extend the analysis of class (I) transformations
to higher orders in λ. In particular we show that the transformations in classes (II) and (III)
are necessary to rule out the possibility of additional operators in the lowest order collinear
Lagrangian that are allowed by power counting and gauge invariance.

As might be expected the collinear reparameterization invariance is a manifestation of
the Lorentz symmetry that was broken by introducing the vectors n and n̄. Essentially
reparameterization invariance restores Lorentz invariance to SCET order by order in λ. The
five parameters in Eq. (4) correspond to the five generators of the Lorentz group which are
“broken” by introducing the vectors n and n̄, namely {nµMµν , n̄µMµν}. If the perpendicular
directions are 1, 2 then the five broken generators are Q±

1 = J1±K2, Q±
2 = J2±K1, and K3.

The type (I) transformations are equivalent to the combined actions of an infinitesimal boost
in the x (y) direction and a rotation around the y (x) axis, such that n̄µ is left invariant
with generators (Q−

1 , Q+
2 ). Type (II) transformations are similar but (Q+

1 , Q−
2 ) leave nµ

invariant, while transformation (III) is a boost along the 3 direction (K3).
In SCET one introduces three classes of fields: collinear, soft and ultrasoft (usoft), with

momentum scaling as Q(λ2, 1, λ), Q(λ, λ, λ) and Q(λ2, λ2, λ2), respectively. For our purposes
the interesting fields are those for collinear quarks (ξn,p), collinear gluons (An,q), and usoft
gluons (Au). At tree level the transition from QCD to collinear quark fields can be achieved
by a field redefinition [2]

ψ(x) =
∑

p

e−ip·x
[
1 +

1

n̄ · D D/⊥ n̄/

2

]
ξn,p, (5)

where the two-component collinear quark field ξn satisfies [1]

n/n̄/

4
ξn = ξn , n/ ξn = 0 . (6)

The covariant derivatives are further decomposed into two parts, Dµ = Dµ
c + Dµ

u , where Dµ
c

and Dµ
u involve collinear and usoft momenta and gauge fields respectively. To distinguish

3

9

i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

i∂µUus(x) ∼ pµ
c Uus(x) ↔ Aµ

us (75)

n n̄

ξ̄niDµ
⊥

1

in̄ · D
iD⊥

µ
n̄/

2
ξn (76)eg.  rules out

L(0)
c = ξ̄n

{
n · iDus + gn · An + i /Dc

⊥
1

in̄ · Dc
i /Dc
⊥

} /̄n

2
ξn



Wilson Coefficients and Hard - Collinear Factorization

9
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us (75)

n n̄

ξ̄niDµ
⊥

1

in̄ · D
iD⊥

µ
n̄/

2
ξn (76)

IX. HARD-COLLINEAR FACTORIZATION

C(P̄ , µ): they depend on large momenta picked out by P̄ = n̄·P ∼ λ0

eg.

2

I
.

W
H

Y
T

H
E

S
K

Y
I
S

B
L
U

E

E
γ
!

∆
E

∼
m

e
α
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!

a−
1

0
∼

m
e
α
!

M
a
to

m
(1
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=
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,0
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i∂
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† v
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=
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† v
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+
τ 2

φ
† v
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v σ
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λ
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µ
ν
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ev
en
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b
er
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ν
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n
o
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µ
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∂
µ
F

µ
ν
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∂ µ
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ν
]
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6)

[τ
1
]
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2
]
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(1
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τ

2 i
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4 γ
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{ only the product
is gauge invariant
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IX. HARD-COLLINEAR FACTORIZATION

C(P̄ , µ): they depend on large momenta picked out by P̄ = n̄·P ∼ λ0

(

ξ̄nW
)

Γhv C(P̄†, µ) =

∫

dωC(ω, µ)
[

(

ξ̄nW
)

(77)

C(−P̄, µ)
(

ξ̄nW
)

Γhv =
(

ξ̄nW
)

Γhv C(P̄†, µ) (78)

Write
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ξ̄nW
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δ(ω − P̄†)Γhv
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=
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dω C(ω, µ)O(ω, µ) (78)

hard-collinear
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Multipole Expansion and Ultrasoft - Collinear Factorization

Multipole Expansion: 

L(0)
c = ξ̄n

{
n · iDus + gn · An + i /Dc

⊥
1

in̄ · Dc
i /Dc
⊥

} /̄n

2
ξn

usoft gluons have eikonal  Feynman rules 
and induce eikonal propagators(board)

ξn → Y ξn An → Y AnY †,
Y (x) = P exp

(
ig

∫ 0

−∞
ds n·Aus(x+ns)

)

n·DusY =0, Y †Y =1

Field Redefinition: (board)

gives:

Factorization of Usoft Gluons

Consider the following field redefinitions in SCET

ξn,p = Yn ξ(0)
n,p , An,q = Yn A(0)

n,q Y †
n

where Yn = Pexp
(
ig

∫ x
−∞ ds n·Aus(ns)

)
, n·DYn = 0, and Y †

n Yn = 1

Find

• Lq = ξ̄n,p′
[
in·D + . . .

]
ξn,p =⇒ ξ̄(0)

n,p′

[
in·∂ + . . .

]
ξ(0)
n,p

• W = YnW (0)Y †
n

• L(ξn,p, Aµ
n,q, n·Aus) = L(ξ(0)

n,p, A
(0)µ
n,q , 0)

Moves all usoft gluons to operators, simplifies cancellations

eg1. J = ξ̄(0)
n W (0) Γ Y †

n hv

eg2. J = ξ̄nW Γ W †ξn = ξ̄(0)
n W (0) Γ W (0)†ξ(0)

n

Iain Stewart – p.15
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J = (ξ̄nW )ωΓhv → (ξ̄nY †Y WY †)ωΓhv = (ξ̄nW )ωΓ(Y †hv) (81)

J = (ξ̄nW )ω1Γ(W †ξn)ω2 → (ξ̄nW )ω1Y
†Y Γ(W †ξn)ω2 = (ξ̄nW )ω1Γ(W †ξn)ω2 (82)

No ultrasoft fields

color transparency

Field Theory gives the same results pre- and post- field 
redefinition, but the organization is different

Ultrasoft - Collinear Factorization:

eg1.
note:  not upset by hard-collinear mometum fraction

since ultrasoft gluons carry no hard momenta
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FIG. 6. Order λ0 effective theory diagrams for the heavy to light current at one loop.

From Eq. (35) we see that the logarithms in diagrams with collinear gluons are small at a

scale µ ∼
√

p2
⊥ ∼ Qλ. For the graphs with soft gluons the logarithms are small at a different

scale µ ∼ p2
⊥/(n̄ · p) ∼ Qλ2. Running the collinear-soft theory from µ = Q to µ = Qλ

therefore sums all logarithms originating from collinear effects and part of the logarithms

from soft exchange. At µ = Qλ collinear gluons may be integrated out and one matches onto

a theory containing only soft degrees of freedom. The running in this soft theory includes

the remaining logarithms from soft exchange, which would need to be taken into account to

sum all Sudakov logarithms.

To run between Q and Qλ we add up the ultraviolet divergences in the soft and collinear

diagrams in Eqs. (35) and (36). This gives the counterterm in the effective theory

Zi = 1 +
αs(µ)CF

4π

[
1

ε2
+

2

ε
ln

( µ

n̄ · P
)

+
5

2ε

]
. (37)

For b → sγ, n̄ ·P = mb and Eq. (37) agrees with Ref. [6]. Since µ > Qλ the counterterm can

depend on the label n̄ · P ∼ Q, but does not depend on P⊥ ∼ Qλ. Zi could also have been

calculated directly from the matching result in Eq. (31). Since the effective theory reproduces

all the infrared divergences in the full theory, the effective theory UV divergences are simply

the negative of the full theory IR divergences when pure dimensional regularization is used.

This alternative approach also gives Eq. (37).

In the effective theory the current ξ̄n,pΓhv factors out of the diagrams in Fig. 6 so it is

obvious that Zi is independent of the spin structure of the current. Thus, all the coefficients

satisfy the same renormalization group equation (RGE)

µ
d

dµ
Ci(µ) = γ(µ)Ci(µ) . (38)

The LO anomalous dimension is determined by the ln(µ)/ε term in Eq. (37) (whose coeffi-

cient is determined by the 1/ε2 term). The NLO anomalous dimension has a contribution

from the 1/ε terms in Eq. (37), as well as a contribution from the ln(µ)/ε term in the two

loop Zi counterterm:

17
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ω = mb in B → Xsγ

8

pµ
π = (2.310 GeV, 0, 0,−2.306 GeV) = Qnµ Q " ΛQCD nµ = (1, 0, 0,−1) n2 = 0

Basis vectors nµ, n̄µ with n2 = 0, n̄2 = 0, n·n̄ = 2

pµ =
nµ

2
n̄ · p +

n̄µ

2
n · p + pµ

⊥

gµν =
nµn̄ν

2
+

n̄µnν

2
+ gµν

⊥ (69)

p+ ≡ n · p, p− ≡ n̄ · p

eg. n̄µ = (1, 0, 0, 1)

(p+, p−, p⊥) ∼ (Λ, Λ, Λ)

m2
X ∼ m2

B OPE in 1/mb (not SCET)

m2
X ∼ Λ2 not inclusive

m2
X ∼ ΛQ

Jet constituents: pµ ∼ (Λ, Q,
√

QΛ) ∼ Q(λ2, 1, λ)

λ ∼
√

Λ/Q

Usually m1 " Λ and
∑n

i=1 Ci(µ, m1) Oi(µ, Λ)

In SCET constituent p− ∼ mb ∼ Eπ p2 = p+p− + p2
⊥ p2 ∼ m2

1 p2 ∼ m2
2 p2 ∼ Q2 p2

c ∼ Λ2 p2
soft ∼ Λ2

∫
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FIG. 1: Photon energy spectra in the Υ(4S) frame.

in OFF-subtracted ON data and MC using appropriate
control samples. We then scale the MC background sam-
ple according to the ratio of these efficiencies. The effi-
ciencies of the π0 and η vetoes for non-π0, non-η photons
are measured in data using one photon from a well re-
constructed π0 applying the veto without using the other
photon of the pair. The π0 veto efficiency is measured
using a sample of photons coming from measured π0

decays. We use partially reconstructed D∗+ → D0π+,
D0 → K−π+π0 decays where the π0 is replaced by the
candidate photon in the reconstruction. The η veto ef-
ficiency for photons from π0’s and event-shape criteria
efficiencies are measured using a π0 anti-veto sample. It
is made of photons passing all selection criteria except
the π0 veto, which are combined with another photon in
the event to give a π0-likelihood larger than 0.75. Other
efficiencies are measured using the signal sample.

The ratios of data and MC efficiencies versus E∗
γ are

fitted using first or second order polynomials, which are
used to scale the background MC. Most are found to be
statistically compatible with unity. An exception is the
efficiency of the requirement that 95% of the energy has
to be deposited in the central nine cells of the 5× 5 clus-
ter, which is found to be poorly modelled by our MC
for non-photon backgrounds. We estimate the efficiency
for data using a sample of candidate photons in OFF-
subtracted ON data by subtracting the known contri-
bution from real photons. This effectively increases the
yield of background (iv) by 50%.

The yield from the five background categories, after
having been properly scaled by the above described pro-
cedures, are subtracted from the OFF-subtracted spec-
trum. The result is shown in Fig. 1.

The spectrum contains 24350± 2140 ± 1260 events in

the 1.8–2.8 GeV energy range, where the two errors are
the statistical error of the OFF-subtracted ON data and
of the BB̄ background subtractions, and the systematic
error related to the data/MC efficiency ratio fits used in
the BB̄ background scaling. We correct this spectrum
for the signal selection efficiency function obtained from
signal MC, applying the same data/MC correction fac-
tors as for the generic photon background category (iii).
The average signal selection efficiency is 23%.

The efficiency-corrected spectrum is shown in Figure 2.
The two error bars for each point show the statistical
and the total error, including the systematic error which
is correlated among the points. As expected, the spec-
trum above the endpoint for decays of B mesons from
the Υ(4S) at about 3 GeV, is consistent with zero. Inte-
grating this spectrum from 1.8 to 2.8 GeV, we obtain a
partial branching fraction of

(

3.55 ± 0.32 + 0.29
− 0.30

)

× 10−4.

The systematic error contains the contribution from
the fits to data/MC efficiency ratios (±5.9%) to which we
add the following contributions in quadrature. The un-
certainty on the number of BB̄ events, which also affects
the weight applied to OFF events, contributes (+3.9

−4.5)%.
We estimate the error on the OFF data subtraction using
the result of the fit to the spectrum above the endpoint.
We integrate the resulting function in the 1.8–2.8 GeV
range and obtain a yield of +40 ± 160. We add ±200
to the systematic error (±0.8%). For the choice of the
polynomial functions in the data/MC efficiency ratio fits,
we perform the same fit increasing the polynomial or-
der by one. The contribution is ±1.3%. As we do not
measure the yields of photons from sources other than
π0’s and η’s in BB̄ events, we vary the expected yields
by ±20% to estimate the systematic error and obtain a
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FIG. 2: Efficiency-corrected photon energy spectrum. The
two error bars show the statistical and total errors.
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SCET  is a field theory which:
• explains how these degrees of freedom communicate with 

each other, and with hard interactions

• organizes the interactions in a series expansion in ΛQCD

E

• provides a simple operator language to derive factorization 
theorems in fairly general circumstances

eg.  unifies the treatment of factorization for exclusive and 
inclusive QCD processes

•

scale separation & decoupling

new symmetry constraints

•

n
µ

!



How is SCET used?

• cleanly separate short and long distance effects in QCD
derive new factorization theorems
find universal hadronic functions, exploit symmetries 
& relate different processes

• model independent, systematic expansion
study power corrections

• keep track of       dependence µ

sum logarithms,  reduce uncertainties

The End


