Effective Field Theory

Iain Stewart MIT

The 19'th Taiwan Spring School on Particles and Fields April, 2006

Physics compartmentalized

But, one doesn't need nuclear physics to build a boat

Generality vs. Precision

Dynamics at long distance do not depend on the details of what happens at short distance In the quantum realm, $\lambda \sim \frac{1}{p}$, wavelength and momentum are related, so

> Low energy interactions do not depend on the details of high energy interactions

Good:

Bad:

we can focus on the relevant interactions & degrees of freedom

calculations are simpler

• we have to work harder to probe the interesting physics at short distances Newton didn't need quantum gravity for projectile motion

Outline

Lecture I

• Principles, Operators, Power Counting,

NRQED, Why the Sky is Blue, Weak Decays

Тор

- Operator Counting, Matching, Using Equations of Motion
- Quantum Loops, Renormalization and Decoupling
- Summing Large Logarithms

 Lecture II
 QCD, α_s matching, Heavy Quark Effective Theory (An Effective Theory for Static Sources)

 Lecture III
 Soft - Collinear Effective Theory

Masses

particle	mass
γ	$< 6 \times 10^{-17} \mathrm{eV}$
gluon	0 (theory)
$ u_e, u_\mu, u_ au$	$\Delta m_{sun}^2 = 8 \times 10^{-5} \mathrm{eV}^2$
	$\Delta m_{atm}^2 = 2 \times 10^{-3} \mathrm{eV}^2$
е	$0.511{ m MeV}$
u quark	$\sim 4{ m MeV}$
d quark	$\sim 7{ m MeV}$
μ	$106{ m MeV}$
s quark	$\sim 120{ m MeV}$
c quark	$\sim 1.4{ m GeV}$
au	$1.78{ m GeV}$
b quark	$\sim 4.5{ m GeV}$
W boson	$80.4{ m GeV}$
Z boson	$91.2{ m GeV}$
higgs	$> 114 \mathrm{GeV}$
t quark	$174{ m GeV}$

 $m_{\rm proton} \sim 1 \,{\rm GeV}$

Lecture I

EFT Concepts

- 1) The ingredients in any EFT: Relevant degrees of freedom, symmetries, scales & power counting
- 2) Renormalization: Meaning of parameters
- 3) Decoupling: Effects from Heavy Particles are suppressed
- 4) Matching: How we can encode dynamics of one theory into another
- 5) Running: Connecting physics at different momentum scales

Why not quarks? QCD? b-quark charge? e^+ ? weak force? m_{proton} ? spin?

$$\mathcal{L}(p, e^-, \gamma, b; \alpha, m_b) = \mathcal{L}(p, e^-, \gamma; \alpha') + \mathcal{O}\Big(\frac{p^2}{m_b^2}\Big)$$

coupling changed, it runs: $\alpha(0) = \frac{1}{137}$ $\alpha(m_W) = \frac{1}{128}$

• Insensitive to quarks in proton: $p_{\gamma} \sim m_e \alpha \ll (\text{proton size})^{-1} \sim \Lambda_{\text{QCD}} \sim 200 \,\text{MeV}$

suppressed

qq

 $r = \Lambda_{\rm OCD}^{-1}$

Insensitive to proton mass:

(static proton suffices) $m_e \alpha \ll m_p \sim 1 \,\mathrm{GeV}$

 $\mu \ll m_p \sim 1000$ hyperfine splitting $\sim \frac{m_e^2}{m_p} \frac{\mu_e \mu_p \alpha^4}{m_p}$ from QCD

but universal

Experiment for m_p , μ_p is more accurate that QCD computations

Leading Order

$$\mathcal{L}_0 = \psi^{\dagger} \Big(i\partial^0 - \frac{\nabla^2}{2m_e} + \dots \Big) \psi + \Psi^{\dagger} i\partial^0 \Psi + \text{``V''}(\psi^{\dagger}\psi)(\Psi^{\dagger}\Psi)$$

Symmetries of QED constrain the form of NRQED:

Charge conjugation ($e^+ \leftrightarrow e^-$) Parity ($\vec{x} \rightarrow -\vec{x}$) Time-Reversal ($t \rightarrow -t$) constrain the \mathcal{L}_n 's Gauge Symmetry Spin-Statistics Theorem Why $\mathcal{L}_{\text{QED}} = \overline{\psi}(i\not\!\!D - m)\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$? Why \mathcal{L}_{SM} ?

Observed d.o.f. Use:

Symmetries

Lorentz Invariance Gauge Invariance $SU(3) \times SU(2) \times U(1)$ Unitarity (Hermitian \mathcal{L})

Renormalizability (absorb divergences from loops in finite # of parameters) this was not in our list!

Modern Definition: renormalizable order by order in power expansion

Ken Wilson

 $\mathcal{L} = \mathcal{L}_0 + \sum_{n=1}^{\infty} \epsilon^n \, \mathcal{L}_n$ $n \equiv 1$

Power Counting in Mass Dimension ← Dimension of Operators (Marginal, Irrelevant, Relevant Operators)

Consider
$$S[\phi] = \int d^d x \left(\frac{1}{2}\partial_\mu\phi\partial^\mu\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4 - \frac{\tau}{6!}\phi^6\right)$$

(board)

eg. Standard Model

$$C = i\gamma_{2}\gamma_{0} \qquad \text{Left-handed Lepton doublet}$$

$$\mathcal{L} = \mathcal{L}^{\dim-4} + \frac{1}{\Lambda^{\text{new}}} \Big[L_{L}^{T\,i} C\epsilon_{ij} H^{j} H^{\ell} \epsilon_{\ell k} L_{L}^{k} \Big] + \mathcal{L}^{\dim-6} + \dots$$

$$\overset{}{\wedge} \text{Higgs SU(2) doublet}$$

Exercise 1: Show that this is most general dim-5 operator that is consistent with the symmetries of the Standard Model

When the Higgs gets a vev this gives a small Majorana Neutrino Mass

eg. Why the Sky is Blue

Low energy scattering of photons from neutral atoms in their ground state $E_{\gamma} \ll \Delta E \sim m_e \alpha^2 \ll a_0^{-1} \sim m_e \alpha \ll M_{\rm atom}$

• Let $v^{\mu} = (1, 0, 0, 0)$, atoms are static $\mathcal{L} = \phi_v^{\dagger} i \partial^0 \phi_v = \phi_v^{\dagger} i v \cdot \partial \phi_v$ ϕ_v is field which destroys an atom, mass dim. $[\phi_v] = 3/2$ • Interactions are constrained by gauge invariance, parity & charge conjugation. Consider

$$\mathcal{L}^{\text{int}} = \tau_1 \ \phi_v^{\dagger} \ \phi_v F_{\mu\nu} F^{\mu\nu} + \tau_2 \ \phi_v^{\dagger} \ \phi_v v^{\lambda} F_{\lambda\mu} v_{\sigma} F^{\sigma\mu} \qquad \text{even number of } F_{\mu\nu}^{} \text{'s}$$

$$[F_{\mu\nu}] = 2 \quad \text{so} \quad [\tau_1] = [\tau_2] = -3 \qquad \qquad \partial^{\mu} F_{\mu\nu} = 0, \ v^{\mu} \partial_{\mu} \phi_v = 0$$

• Very low energy photons do not probe inside the atom, so expect cross section to depend on size of atom: $\tau_1 \sim \tau_2 \sim a_0^3$ blue light is scattered $[\sigma] = -2$ so $\sigma \propto E_{\gamma}^4 a_0^6$ $\sigma \propto |A|^2 \sim \tau_i^2$

stronger than red light

Exercise 2:

Consider QED for photon momenta much less than the mass of the electron.

By constructing an appropriate operator in a low energy EFT, estimate the cross section for $\gamma \gamma \rightarrow \gamma \gamma$ with 10 keV photons. Include factors of e in your estimate, by considering which QED graphs generate your operator.

Can we really use equations of motion to simplify operators? $\partial^{\mu}F_{\mu\nu} = 0, v^{\mu}\partial_{\mu}\phi_{v} = 0$

eg. $p^2 \tau \ll 1$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \lambda \phi^4 + \tau g_1 \phi^6 + \tau g_2 \phi^3 \partial^2 \phi$$

e.o.m.
$$\partial^2 \phi = -m^2 \phi - -4\lambda \phi^3$$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \lambda' \phi^4 + \tau g_1' \phi^6 \qquad \qquad \lambda' = \lambda + m^2 g_2 \tau$$
$$g_1' = g_1 - 4\lambda g_2$$

(board)

Exercise 3: Demonstrate the equivalence for tree level 6-pt functions at $\mathcal{O}(\tau)$, pre- and post- the use of the equations of motion.

Regularization and Renormalization

Regularization: How we cutoff UV infinities in loop integrals Renormalization: How we pick a scheme to give definite meaning to parameters of a theory

Computations are easier if our regulator preserve symmetries and

preserves power counting by not mixing up terms of different order in the expansion

Dimensional Regularization $\int d^d p = \int dp \, p^{d-1} \, d\Omega_d \qquad d = 4 - 2\epsilon$

Linearity:

Scaling:

Translation:

$$\int d^{d}p \left[af(p) + bf(p)\right] = a \int d^{d}p \ f(p) + b \int d^{d}p \ g(p)$$
$$\int d^{d}p \ f(sp) = s^{-d} \int d^{d}p \ f(p)$$
$$\int d^{d}p \ f(p+q) = \int d^{d}p \ f(p)$$

 $\int d^d p(p^2)^{\alpha} = \begin{cases} 0 \text{ for } \alpha < 4 \text{ and } \alpha > 4 & \text{no power divergences} \\ \frac{i}{16\pi^2} \left(\frac{1}{\epsilon_{\rm UV}} - \frac{1}{\epsilon_{\rm IR}}\right) = 0 \text{ for } \alpha = 4 & \longleftarrow \text{ be careful !} \end{cases}$

Rescale couplings to keep them dimensionless

eg.
$$g^{(0)} = Z_g \mu^{\epsilon} g(\mu)$$

 μ is dim.reg. parameter and acts like a "resolution" in $\overline{\text{MS}}$ scheme

Mass independent regulator

eg.
$$\mathcal{L} = \bar{\psi}(i\partial \!\!/ - m)\psi - \frac{a}{M^2}(\bar{\psi}\psi)^2 + \dots \qquad m \ll M, \ a \sim 1$$

 $\int gives \qquad \delta m \sim \frac{i a}{M^2} \int \frac{d^4k}{(2\pi)^4} \frac{k+m}{k^2 - m^2} = \frac{i a}{M^2} \int \frac{d^4k}{(2\pi)^4} \frac{m}{k^2 - m^2}$
 $\delta m^{\text{cutoff}} \sim \frac{a}{M^2} \Lambda^2 + \dots \qquad \text{the cutoff indep. terms are "hidden"}$
 $\delta m^{\text{dim.reg.}} \sim \frac{a}{M^2} m^2 \qquad \text{small as expected, power counting manifest}$

Decoupling Theorem

If remaining low energy theory is renormalizable then all effects due to heavy particles appear as changes in the coupling constants or are suppressed by 1/M

requires a "physical" renormalization scheme,

not true in MS (board)

Solution: We must implement decoupling by hand at $\mu \approx m$

Wilsonian vs. Continuum EFT

EFT Principles

- 1) Dynamics at low E does not depend on details of dynamics at high E
- 2) Build an EFT using the relevant d.o.f. and known symmetries.
- 3) EFT has an infinite number of operators, but only a finite number are needed for a given precision as determined by the power counting. With this precision this set closes under renormalization.
- 4) EFT has same infrared but different ultraviolet than the more fundamental theory.
- 5) Nature of high energy theory shows up as couplings and symmetries in the low energy EFT.

Effective Field Theories of QCD

