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So far

• Wilson coefficients & hard-collinear factorization

• Introduction to Lecture I SCET1 , SCET11 
degrees of freedomCollinear & Soft

Construction of HQET 
•
•
• SCET1  propagators, field power counting 
• Leading Lagrangian

• Gauge symmetry and reparameterizations in SCET

Lecture II

• Field redefinition & ultrasoft-collinear factorization
• One-Loop ultrasoft and collinear graphs, IR divergences

Heavy-light current and Wilson lines•
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Lecture 3  Outline

• SCET11, building blocks, exploiting SCET1

• Jet Production

• More on large logs, Evolution with Convolutions

Factorization for B → Dπ ,
• eg. of power corrections in SCET1   

• B → Xsγ Factorization Theorem

B → π"ν̄•

e+e− → JnJn̄X

• Renormalization group evolution & Sudakov logs
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Renormalization in SCET  
&  

Summing Sudakov Logs
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graph sum =
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Renormalize Heavy to Light Current in SCET
Cbare = C + (Zc − 1)C

Zc = 1− αs(µ)CF

4π

( 1
ε2

+
5
2ε

+
2
ε

ln
µ

ω

)

ω = mb

need to remove UV divergences

Compute the Anomalous Dimension

γc = −Z−1
c µ

d

dµ
Zc = µ

d

dµ

αs(µ)CF

4π

( 1
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+
5
2ε

+
2
ε

ln
µ

ω
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=
αs(µ)CF

4π

(−2
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− 5− 4 ln

µ

ω
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2
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= −αs(µ)CF

π

(
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µ

ω
+
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)

LL part of NLL

µ
d

dµ
αs(µ) = −2εαs(µ) + β[αs]

C(ω, µ)
[
(ξ̄nW )ω Γhv

]

µ
d

dµ
Cbare = 0 =⇒ µ

d

dµ
C(ω, µ) = γc(ω, µ)C(ω, µ)
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LL solution

Solve µ
d

dµ
ln C(ω, µ) = −αs(µ)CF

π
ln

µ

ω
µ

d

dµ
αs(µ) = −β0

2π
α2

s(µ)

use d ln(µ) = −2π

β0

dαs

α2
s

and integrate to obtain the solution

C(ω, µ) = C(ω, µ0) exp
[
−4πCF

β2
0αs(µ0)

(1
z
− 1 + ln z

)](µ0

ω

)2CF ln z/β0

boundary 
condition,
no large logs
for µ0 ∼ ω

∼ exp(αs ln2 +α2
s ln3 + . . .)

z ≡ αs(µ)
αs(µ0)

C(ω, µ) = C(ω, µ0) exp
[
−αsCF

π

(1
2

ln2 µ

µ0
+ ln

µ

µ0
ln

µ0

ω

)]
If β0 → 0 and αs = constant, then

Sudakov double logs exponentiated

,

cusp anomalous dimension
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Lectures on the Soft-Collinear Effective Theory

Iain Stewart, Benasque Summer School 2008
Problems for lecture 3

Problem 3) Decoupling of Soft and Collinear Gluons in SCETII

Consider an operator with one collinear quark and one soft quark in SCETII. This case
differs from SCETI in that soft gluons knock collinear quarks offshell and collinear gluons
knock soft quarks offshell. To be definite lets make the soft quark a heavy quark from
HQET, hv, and the energetic quark a massless collinear quark, ξn. The SCET operator will
be

(ξ̄nWn̄)Γ(S†
n
hv) (1)

where W is the Wilson line we saw in problem 2, and Sn is an exact analog of the Y from
lecture, but with As gluons rather than ultrasoft gluons. To find Eq. (1) requires tree level
matching (to determine the direction and gluon components appearing in the Wilson lines),
and gauge invariance (to ensure that loops do not spoil the structure so obtained). The first
non-trivial term in perturbation theory have one soft and one collinear gluon. By computing
the QCD graphs in Figure 1 expanded to LO, verify that the three-gluon interactions are
responsible for putting the gluons in the right order in Eq. (1).

qc

qs

!,b

µ,a

(a)

qc

qs

!,b

µ,a

(b) (c)

qc

qs

!,b

µ,a

FIG. 1: QCD graphs with collinear, qc, and soft, qs, momenta.

Problem 4) SCET Loops for Two-Jet Production

Consider the two-jet production process through a virtual photon in SCET, namely e+e− →
JnJn̄Xus where Jn is a jet in the n = (1, 0, 0,−1) direction, Jn̄ is a jet in the n̄ = (1, 0, 0, 1)
direction, and any remaining particles in the final state are ultrasoft, contained in Xus.
a) Write down two collinear quark Lagrangians, one for ξn fields and one for ξn̄ fields.
Interactions between these two types of collinear fields are hard, and so do not effect your
analysis. What are the Feynman rules for the ultrasoft gluon coupling to each of these
collinear quarks?
b) Start with JQCD = ψ̄γµψ and determine the appropriate LO SCET current JSCET =
ξ̄n · · · ξn̄, ie. fill in the dots with appropriate collinear Wilson lines and Dirac structure.
c) Draw the five one-loop Feynman diagrams that are non-zero for e+e− → qnq̄n̄ (use Feyn-
man gauge for all gluons when determining which graphs are zero). Here qn has n-collinear
momentum p, and q̄n̄ has n̄-collinear momentum p̄ and you should work in the CM frame.
All graphs but one can be directly read off using the loop computations done in lecture (or
given in the handout notes), as long as you use the same IR regulator. That is, you should
keep both collinear quarks offshell, p2 #= 0 and p̄2 #= 0. Compute the divergent terms in the
one remaining ultrasoft graph using dimensional regularization in the UV.
d) Add up the 1/ε terms from the graphs in c) and determine the lowest order anomalous
dimension equation for C the Wilson coefficient of JSCET. Solve this equation keeping only
the ln µ/Q term and using a fixed coupling αs, and then with a running coupling αs(µ).
(Voilá, Sudakov double logs resummed.)

Exercise
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SCETI

We built gauge invariant operators with nice power counting: 

eg.  LO heavy-to-light current 

=

∫
dω C(ω, µ) χ̄n,ω Γ H

n

v

eg.  a subleading current suppressed by  

J (0) =

∫

dω C(ω, µ)
[

(ξ̄nW )δ(ω − P̄
†)Γ(Y †

n
hv)

]

λ

J (1) =

∫
dω dω′ C(1)(ω, ω′, µ) χ̄n,ω ig /B⊥

ω′ Γ H
n

v

igB⊥µ

ω′ =
1

P̄
W

[

in̄·Dn, iD⊥µ

n

]

W †

= gA⊥µ

n + . . .

Construction of operators (using power counting, 
   ultrasoft & collinear gauge invariance, RPI)

δ(ω′ − P̄†)

,ω′
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near endpoint

Optical Thm:

b b
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q q

       

B

P
X

s standard OPE

endpoint region

resonance region

For EndPoint: , collinear, usoft,

Decay rate is given by factorized form
Korchemsky, Sterman (’94)

Iain Stewart – p.31

B → XsγEndpoint
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Steps 1, 2

B.P.S.

Match:

label conservation

Factor usoft:

Iain Stewart – p.32

Tµ
µ =

∣

∣C(mb)
∣

∣

2
∫

d4xei(mb
n̄

2
−q)·x

〈

B
∣

∣

∣
T [h̄vY ](x)[Y †hv](0)

∣

∣

∣
B

〉

×

〈

0
∣

∣

∣
T [W †ξn](x)[ξ̄nW ](0)

∣

∣

∣
0
〉

× [Γµ ⊗ Γµ]

ξ̄nWΓµhv → ξ̄nWΓµY †
n hv

=
∣

∣C(mb)
∣

∣

2
∫

d
4
x

∫

d4k

(2π)4
e
i(mb

n̄

2
−q−k)·x

〈

B

∣

∣

∣
T [h̄vY ](x)[Y †

hv](0)
∣

∣

∣
B

〉

×JP (k) × [Γµ ⊗ Γµ]
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Convolution JP (k) = JP (k+)

Im T
µ
µ =

∣

∣C(mb)
∣

∣

2
∫

d
4
x

∫

d4k

(2π)4
e
i(mb

n̄

2
−q−k)·x

〈

B

∣

∣

∣
T [h̄vY ](x)[Y †

hv](0)
∣

∣

∣
B

〉

×ImJP (k+)

=
∣

∣C(mb)
∣

∣

2
∫

dk
+

[
∫

dx−

4π
e
i(mb−2Eγ−k+)x−/2

〈

B

∣

∣

∣
T [h̄vY ](x)[Y †

hv](0)
∣

∣

∣
B

〉

]

×ImJP (k+)

=
∣

∣C(mb)
∣

∣

2

∫

dk
+
S(2Eγ − mb + k

+)ImJP (k+)

as desired
nonpert. shape 

functioncalculablecalculable

p2 ∼ m2
b p2 ∼ mbΛQCD p2 ! Λ2

QCD

To minimize large logs we want to evaluate these functions at different µ ’s
∼ µ2

h ∼ µ2
J ∼ µ2

Λ

1
Γ0

dΓ
dEγ

= H(mb, µ)
∫

dk+J(k+, µ) S(2Eγ −mb + k+, µ)
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p+

cn

usoft

h
ard

!2

2

p-

Q

!Q
0

!Q !Q
0

our result for the RGE 
for C, allows us to write

•

µh

µJµΛ

H(mb, µJ) = H(mb, µh) UH(mb, µh, µJ)

• need to be able to run the shape 
 function up to       µJ

µΛ

or we could run the jet and hard 
functions down to   

Lets consider the jet function & its RGE
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The Jet Function

Jn(Qr+
n , µ) =

−1
8πNcQ

Disc
∫

d4x eirn·x 〈0|T χ̄n,Q(0)/̂̄nχn(x)|0〉

a) b) c) d) e)

!m2

FIG. 5: SCET graphs for the one-loop top-quark jet function. Dashed lines are n-collinear quarks
and springs are n-collinear gluons. {forwardI}

where s = s + i0. To take the discontinuity it is convenient to switch to dimensionless

variables which will appear in the +-functions, so we let x = s/κ2
1 where x is dimensionless

and κ1 > 0 is dummy scale with dimensions of mass. Using

Disc
i

2π

1

x + i0
= δ(x), Disc

i

2π

ln(−x − i0)

x + i0
=

[θ(x)

x

]

+
,

Disc
i

2π

ln2(−x − i0)

x + i0
= −

π2

3
δ(x) +

[2θ(x)ln(x)

x

]

+
, (58) {discontinuities

we find that up to one-loop order the bare SCET jet function is

Jbare
n (s) = δ(s) +

αsCF

4π

{

8

κ2
1

[κ2
1θ(s) ln

(

s
κ2
1

)

s

]

+

−
4

κ2
1

[

1

ε
+1+ln

(m2

κ2
1

)

+ln
(µ2

κ2
1

)

][

κ2
1θ(s)

s

]

+

+ δ(s)

[

4

ε2
+

4

ε
ln

(µ2

κ2
1

)

+
3

ε
+2 ln2

(µ2

κ2
1

)

+2 ln2
(m2

κ2
1

)

+3 ln
(µ2

κ2
1

)

+ln
(m2

κ2
1

)

+8−
π2

3

]}

.

(59) {Jbare}

This implies that the Z-factor defined in Eq. (28) is

ZJn(s−s′) = δ(s−s′) +
αsCF

4π

{

δ(s−s′)

[

4

ε2
+

4

ε
ln

(µ2

κ2
1

)

+
3

ε

]

−
4

ε κ2
1

[

κ2
1θ(s−s′)

s−s′

]

+

}

, (60) {ZJ}

which gives the anomalous dimension

γJn(s − s′) =
αsCF

π

{

2

κ2
1

[

κ2
1θ(s−s′)

s−s′

]

+

+ δ(s−s′)

[

− 2 ln
(µ2

κ2
1

)

−
3

2

]}

. (61) {gammaJn}

Despite appearances Jbare
n (s), ZJn(s − s′), and γJn(s − s′) are all independent of the choice

for κ1. In Appendix C we presented a general solution to anomalous dimension equations in-

volving a +-function and δ-function. Applying this to Eq. (61) to derive the renormalization

group evolution from a low-scale µm up to µ gives

UJn(s − s′, µ, µm) =
eL1

(

µ2
m eγE

)ω1

Γ(−ω1)

[

θ(s−s′)

(s−s′)1+ω1

]

+

, (62) {UJ}

where

ω1(µ, µm) = −
4CF

β0
ln

[ αs(µ)

αs(µm)

]

, eL1(µ,µm) =
( µ

µm

)

8CF
β0

[

αs(µ)

αs(µm)

]

16πCF
β2
0αs(µm)

−
3CF
β0

. (63) {wL1}

20

tree level: one loop:

RGE: µ
d

dµ
J(s, µ) =

∫
ds′ γJ(s− s′, µ) J(s′, µ)

solution J(s, µ) =
∫

ds′ UJ(s− s′, µ, µ0) J(s′, µ0)

∑

Xn

1
4Nc

tr
〈
0
∣∣/̄nχn(x)

∣∣Xn

〉〈
Xn

∣∣χn,Q(0)
∣∣0

〉
= Q

∫
d4rn

(2π)3
e−irn·xJn(Qr+

n , µ)

UJ(s− s′, µ, µ0) =
eK

(
eγE

)ω

µ2
0 Γ(−ω)

[
(µ2

0)1+ωθ(s− s′)
(s− s′)1+ω

]

+
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More examples which involve convolutions

twist 2 operators

J (0) =

∫
dω C(ω, µ) χ̄n,ω /̄n χn

label on 2nd block of 
fields is fixed by 

mom.cons. in m.elt.

DIS   p.d.f•
〈

pn(p−)
∣

∣J (0)
∣

∣pn(p−)〉 =

∫

dω C(ω, Q, µ) fi/p(ω/p−, µ)

=
Q

x

∫ 1

x
dξ C(

Qξ

x
, Q, µ) fi/p(ξ, µ)

p− =

Q

x

{

O(ω)

light-cone
distrib.π•

〈

πn(p−
π

)
∣

∣J (0)
∣

∣0〉 =

∫

dω C(ω, µ) φπ(ω/p−
π

, µ) = p−
π

∫ 1

0
dx C(xp−

π
, µ) φπ(x, µ)

Matrix Elements

p+

cn

h
ard

!2

2

p-

Q

!Q
0

!Q !Q
0
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Factorization formulas of this type have also been
derived for the power corrections using SCET

1
Γ0

dΓ
dEγ

= H(mb, µ)
∫

dk+J(k+, µ) S(2Eγ −mb + k+, µ)

+ . . .
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SCETII

modes

So far we have considered inclusive processes with jets, or 
processes with only one identified hadron like DIS

•

• SCETII allows us to treat cases with two or more hadrons 
eg. B → π"ν̄B → Dπ , ,

λ =
Λ

Q

p+

c hard

!2

2

p-

Q

!Q
0

cn

!Q !Q
0

s
!Q

!Q

p2 = "
2
QCD

hcn

hc
n

perturbative

n

B → ππ
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SCETII

modes

So far we have considered inclusive processes with jets, or 
processes with only one identified hadron like DIS

•

• SCETII allows us to treat cases with two or more hadrons 
eg. B → π"ν̄B → Dπ , ,

λ =
Λ

Q

p+

c hard

!2

2

p-

Q

!Q
0

cn

!Q !Q
0

s
!Q

!Q

p2 = "
2
QCD

hcn

hc
n

perturbative

n

B → ππ
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SCETII

modes

So far we have considered inclusive processes with jets, or 
processes with only one identified hadron like DIS

•

• SCETII allows us to treat cases with two or more hadrons 
eg. B → π"ν̄B → Dπ , ,

λ =
Λ

Q

p+

c hard

!2

2

p-

Q

!Q
0

cn

!Q !Q
0

s
!Q

!Q

p2 = "
2
QCD

hcn

hc
n

perturbative

n

B → ππ

18



Constructing Operators

• For simplicity consider a collinear (cn) and a soft (s) mode

SCETII

We can construct operators directly from QCD by integrating out 
  the offshell modes

q = qs + qn ∼ Q(λ, 1, λ) q2
∼ Qλ " Λ

2in h.c. 

Factorization of Soft Gluons

soft gluons can not couple to collinear particles in a local way

(i) soft gauge invariance requires a soft Wilson line

e.g.

(ii) built up by integrating out offshell flucutations

C 

S 

S 

C 

builds up

C 

S 

C 

S 
switch order

Can be shown to all orders

Iain Stewart – p.29

Factorization of Soft Gluons

soft gluons can not couple to collinear particles in a local way

(i) soft gauge invariance requires a soft Wilson line

e.g.

(ii) built up by integrating out offshell flucutations

C 

S 

S 

C 

builds up

C 

S 

C 

S 
switch order

Can be shown to all orders

Iain Stewart – p.29

builds up ξ̄n S†
n

Γ W qs

ξ̄n W Γ S†
n

qsswitches order

soft Wilson line+ . . .

+ . . .

Soft & Collinear 
Gauge Invariant

Soft-Collinear Factorization
19



A Simpler Method: use factorization in SCET1

p+

c

!2

2

p-

Q

!Q
0

!Q !Q
0

s=us

!Q

!Q

p2 = "
2
QCD

hcn
n

1) Match QCD onto SCETI
2) Factorize usoft with field

redefinition
3) Match onto SCET

{hcn,us} {cn, s}

II

eg. J = (ξ̄nW )Γhv

J = (ξ̄nW )Γ(S†
n
hv)

= (ξ̄nW )Γ(Y †
n
hv)

In this matching, the power of        can only increase and does so due to 
change in scaling to uncontracted fields

λ

20



Exclusive Example B → DπProof for B → Dπ

Steps

• Match at µ2 ∼ Q2 onto SCETI [Decouple ξ → Y ξ(0)]
[

c̄ b
][

d̄ u
]

[

c̄ T Ab
][

d̄ T Au
]

}

=⇒

{

[

h̄
(c)
v′ h

(b)
v

][

ξ̄
(0)
n,p′W (0)C0(P̄+)W (0)†ξ

(0)
n,p

]

[

h̄
(c)
v′ Y T AY † h

(b)
v

][

ξ̄
(0)
n,p′W (0)C8(P̄+)T AW (0)†ξ

(0)
n,p

]

• Match at µ2 ∼ QΛ onto SCETII

[

h̄
(c)
v′ h(b)

v

][

ξ̄n,p′WC0(P̄+)W †ξn,p

]

[

h̄
(c)
v′ ST AS† h(b)

v

][

ξ̄n,p′WC8(P̄+)T AW †ξn,p

]

• Take matrix elements
〈

πn

∣

∣ξ̄
(0)
n,p′ W (0)C0(P̄+)W (0)†ξ(0)

n,p

∣

∣0
〉

=
i

2
fπEπ

∫

dx C[2Eπ(2x − 1)]φπ(x)

〈Dv′ |h̄v′Γhhv|Bv〉 = F B→D(0)

〈Dπ|c̄būd|B〉 = N FB→D

∫ 1

0
dxT (x, µ) φπ(x, µ)

Iain Stewart – p.21
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ξ̄n,p′WC8(P̄+)T AW †ξn,p

]

• Take matrix elements
〈

πn

∣

∣ξ̄
(0)
n,p′ W (0)C0(P̄+)W (0)†ξ(0)

n,p

∣

∣0
〉

=
i

2
fπEπ

∫

dx C[2Eπ(2x − 1)]φπ(x)

〈Dv′ |h̄v′Γhhv|Bv〉 = F B→D(0)

〈Dπ|c̄būd|B〉 = N FB→D

∫ 1

0
dxT (x, µ) φπ(x, µ)
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octet m.elt. 
will vanish

Factorized!
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c̄ b
][

d̄ u
]
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d̄ T Au
]

}
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(c)
v′ h

(b)
v
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ξ̄
(0)
n,p′W (0)C0(P̄+)W (0)†ξ

(0)
n,p

]

[

h̄
(c)
v′ Y T AY † h

(b)
v
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(0)
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b

d

c

u

d

d

(a)

(   )s

AD(∗)

00 = N (∗)
0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φM (x)

B̄0 → D0π0 ,
B̄0 → D∗0π0

T{O(0)L(1)
ξq L

(1)
ξq }

L
(1)
ξq = (q̄Y )ig /B⊥

n,ω′χn
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Another Exclusive Example B → π"ν̄ (B → ππ)

B M

Λ~p 22 Λ~p 22Λ~p2 Q

~p2 Q2

Requires a power 
suppressed interaction

needs time-ordered products of 
SCET1

with
L

(1)
ξq = (q̄Y )ig /B⊥

n,ω′χn ,...

Q(1)
= χ̄n,ωig /B⊥

n,ω′ΓH
n

v

Q(0)
= χ̄n,ωΓH

n

v

f(E) =
∫

dz T (z,E) ζBM
J (z,E) + C(E) ζBM (E)

same functions in 
universality at EΛ

B → ππ

SCET11

ζBM
J (z) = fMfB

∫ 1

0
dx

∫ ∞

0
dk+J(z, x, k+, E)φM (x)φB(k+)

(further factorization)

ζBM = ?
4

While this introduces a factor of Y † into the leading cur-
rent, it only appears in the combination Hv = [Y †hv]

J (0) = CΓ(ω1)
(

ξ̄(0)
n W (0)

)

ω1
ΓHv . (12)

The situation is similar in L(1)
ξq and L(2b)

ξq , where usoft
fields/interactions now only appear in the combination
Q = [Y †qus]. On the other hand we have

L(1)
ξξ = ξ̄(0)

n

[

Y †iD/⊥usY
] 1

in̄·D(0)
c

iD/(0)
c,⊥

n̄/

2
ξ(0)
n + h.c.,(13)

L(2a)
ξq = ig ξ̄(0)

n
1

in̄·D(0)
c

[

Y †M/ Y
]

W (0)Q + h.c. .

Thus, the time-ordered products fall into two categories:
“factorizable”, T F

{0,1,2,3}, in which the usoft interactions

all occur in Hv and Q , and “non-factorizable”, T NF
{4,5,6},

with an additional [Y †Dµ
usY ] or [Y †M/ Y ]. It can be

clearly seen that there is no double counting when the
soft and hard contributions are defined this way. The
matching onto SCETII for these two cases is discussed
separately.

For the factorizable terms T F
i = T [JF

i , iLF
i ] each JF

and LF splits into collinear and usoft parts in SCETI ,
JF = T ′(ωj)J ωj

ΓHv, LF = QJ + h.c., where J ’s de-
note products of collinear fields. To factorize these time-
ordered products we follow Ref. [7]. From momentum
conservation we have ω1 + ω2 → n̄ ·pM of meson M , so
we suppress this dependence and let ω̄ = ω1−ω2. With
this notation we can write

T F
i = T ′

i (ω̄)

∫

d4xT
[

Jω̄(0)ΓH(0) Q(x)J (x)
]

(14)

= Ti(ω̄)

∫

d4xT
[

Jω̄(0)ΓcJ (x)
]

T
[

Q(x)ΓsH(0)
]

,

where T ′
i (ω̄) is {CΓ(n̄·pM ), Ba

Γ(n̄·pM ), Bb
Γ(n̄·pM , ω̄), CΓ(n̄·

pM )}. In the second line we performed a Fierz trans-
formation on the color and spin indices, absorbing pref-
actors to give T (ω̄), and dropping a T A ⊗ T A which
gives no contribution in SCETII . We now lower the off-
shellness of the external collinear particles to p2

c ∼ Λ2.
The T F

i run exactly like their JF
i currents. Since we

have explicitly kept the usoft part of the momentum
of collinear particles, matching onto SCETII amounts to
setting pc

⊥ = n ·pc = 0 on external lines and expanding
the T F

i ’s. Matching at µ0 %
√

QΛ the usoft fields become
soft (eg. Y → S), and the collinear T-product matches
onto a bilinear collinear quark operator in SCETII ,

T
[

J ω̄(0)J (x)
]

= δ(x+)δ2(x⊥)

∫

dη̄

∫

dk+e
i
2

k+x−

(15)

×J(ω̄, η̄, k+) [ξ̄II
n WΓcδ(η̄−P̄+)W †ξII

n ] .

The jet function J(ω̄, η̄, k+) is the Wilson coefficient for
this matching step. Inserting this in (14),

T F
i =

∫

dω̄ dη̄ dk+ T (ω̄) J(ω̄, η̄, k+) O(η̄, k+) , (16)

O(η̄, k+) = [ ξ̄II
n W δ(η̄−P̄+)ΓcW

†ξII
n ][ q̄sSΓsδ(P+−k+)S†hs

v ],

a)

J
(m )

L!q
(n )" 

b)

J
(m )

L!q

L!!
(n " " 

(n )" 

)

FIG. 3: Tree level graphs in SCETI . The graphs in a) are
from T1,2,4, while those in b) are from T0,1,3,4,5,6.

where O(η̄, k+) is the full operator in SCETII . Now
taking the SCETII matrix element gives

〈Mn|O(η̄, k+)|Bv〉 = NfMfB φM (x)φ+
B(k+) , (17)

where N is a normalization factor and x = η̄/(4E)+1/2.
Combining Eqs.(16) and (17) reproduces Eq. (3).

For the non-factorizable operators T NF
i , it is not possi-

ble to write the matrix elements as in fF . Instead when
matched onto SCETII these terms give fNF in Eq. (4)
and should be understood to define the soft nonperturba-
tive effects for the form factors. It remains to show that
they satisfy the form factor relations [4, 16]. Since the rel-
evant time-ordered products only contain the current J0,
the argument is the same as in [4]: any Dirac structure
in heavy-to-light currents can be reduced to only three,
ξ̄nWhv, ξ̄nWγ5hv and ξ̄nWγµ

⊥hv. These three operators
contribute only to B → P , B → V|| and B → V⊥, re-
spectively, where P , (V||, V⊥) denote pseudoscalar, (lon-
gitudinally, transversely) polarized vector mesons. For
J0 this is true even in arbitrary time-ordered products
with Lagrangian insertions, since Lagrangians are parity
even Lorentz scalars. The fF term breaks these relations,
but is calculable. At higher order in λ non-factorizable
contributions will also break these relations, since sub-
leading currents appear in time-ordered products with
nonfactorizable Lagrangian insertions.

The matrix elements of T F
1,2 contain only φ+

B to all or-

ders in αs since inserting a projector next to ξn in L(1)
ξq ,

the qus appears as q̄usn/n̄/ in the Fierzed operators. On
the other hand, T F

3 (which may contribute at O(α2
s))

has only q̄usn̄/ and so is proportional to φ−
B . However,

T F
3 ’s matrix element involves J0 and therefore satisfies

the same symmetry relations as the nonfactorizable ma-
trix elements in fNF [21]. Therefore it can be absorbed
into a redefinition of the ζM

k ’s to all orders in perturba-
tion theory.

The last step is to understand the power counting of
the two contributions in Eqs. (3,4). When we expand to
match onto SCETII the new operators and coefficients
scale with 1/Q in the same way as those in SCETI, up
to a global 1/Q from switching from the ξI

n to ξII
n fields.

The one exception is T F
0 , since it is odd in the number

of D⊥
c derivatives and this extra ⊥ gets suppressed by

at least one power of λ. Therefore, T F
i and T NF

i con-
tribute at the same order in 1/Q to the form factors. We
find a generic form factor to scale as (Λ/Q)3/2, which is
Λ2/Q2 suppressed compared to the scaling in mb near
q2
max derived from HQET [10].

has endpoint singularities

which make them ill-defined, even in dimensional regularization. In previous computa-

tions, it has been argued that these pinch singularities should be dropped in evaluating

box graphs at any order in v [9, 11, 12]. Pinch singularities are also a problem for the

method of regions [13]. A direct application of the method of regions for d4k leads

to ill-defined integrals, so it should only be applied to NRQCD after first doing the

energy integrals. The zero-bin subtraction modifies the soft box graphs so that pinch

singularities are absent, and the graphs are well defined.

2. The zero-bin subtraction automatically implements the previously studied pullup

mechanism in NRQCD [14, 15], which was shown to be a necessary part of the defini-

tion of this type of theory with multiple overlapping low energy modes. Through the

pullup, infrared (IR) divergences in soft diagrams are converted to ultraviolet (UV)

divergences and contribute to anomalous dimensions.

3. There is a similar pullup mechanism at work in SCET for collinear diagrams. The

anomalous dimensions of the SCET currents for endpoint B → Xsγ and B → Xu"ν̄

were computed in Ref. [1, 2] from the 1/ε and 1/ε2 terms. Some of these terms in the

collinear graphs are actually infrared divergences. The zero-bin subtraction converts

these infrared divergences to ultraviolet divergences so that IR-logs in QCD can be

resummed as UV-logs in the effective theory. This formally justifies the results used

for anomalous dimensions in these computations, and in subsequent work for other

processes with similar anomalous dimensions eg. [16, 17, 18, 19, 20, 21].

4. In high energy inclusive production such as γ∗ → qq̄g, there is a potential double

counting at the corners of the Dalitz plot in SCET, which is resolved by properly

taking into account the zero-bin in both fully differential and partially integrated

cross sections.

5. In high energy exclusive production, such as γ∗ → πρ or γ∗ → ππ, there are un-

physical singularities in convolution integrals of some hard kernels with the light-cone

wavefunctions φπ(x). For example

∫ 1

0

dx
φπ(x)

x2
,

(2)

which is divergent at x → 0 if φπ(x) vanishes linearly as x → 0. The same is true for

exclusive light meson form factors at large Q2, as well as processes like B → π"ν̄ and

B → ππ for Eπ " ΛQCD. The zero-bin subtraction implies that these kernels must be

treated as a distribution we call ø, and have a finite convolution with φπ(x):

∫ 1

0

dx
φπ(x)

x2
→

∫ 1

0

dx
φπ(x)

(x2)ø
=

∫ 1

0

dx
φπ(x) − φπ(0) − xφ′

π(x)

x2
< ∞ . (3)

4

similar
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Hemisphere Invariant Masses

What observable?

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

d2σ

dM2 dM2

M2 =
( ∑

i∈a

pµ
i

)2
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( ∑

i∈b

pµ
i

)2
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In QCD:

in the cut graphs are of order m, at leading order we can take the ucollinear gluons to

have momentum kµ = 0. In this situation the two diagrams cancel due to gauge invariance.

Thus, at leading order there are no finite lifetime effects involving ucollinear gluon exchange.

Effects from the sum of the diagrams in Fig. 4 that do not cancel are suppressed by at least

a factor αsΓ/m relative to the leading order factorization theorem.

Next consider soft gluon interactions. Using the proof above for the universality of the soft

cross-talk matrix element in Eq. (39) and repeating the arguments made for the ucollinear

gluon interactions we find that the dominant soft gluon interactions involving top/antitop

decay products are described by possible cuts of electroweak matching contributions of the

n ·As and n̄ ·As couplings in Eq. (34). In this case the same cancellation as for the ucollinear

gluons takes place since the average soft gluon energy in the top/antitop rest frame is still

∆ and thus much smaller than m. Thus interactions involving top/antitop decays products

and soft gluons are suppressed by at least a factor ∆/m. Numerical studies in Ref. [57] have

estimated QCD interconnection effects based on nonperturbative models.

Having defined the EFT’s we now turn to the derivation of the factorization theorem.

III. FACTORIZED CROSS-SECTION AND INVARIANT MASS DEFINITIONS

A. The QCD Cross-Section

We start with the general expression of the cross-section for top-antitop quark production,

e+e− → γ∗, Z∗ → tt̄ + X. The final state we are interested in is observed as the top and

antitop jets plus soft radiation J(t)J(t̄)Xs. We remind the reader that we refer to all

the jets coming from the top and antitop quark decay collectively as top and antitop jets,

respectively. But we stress that despite the language, our analysis is still perfectly consistent

with the fact that the different jets from each the top and antitop decay can be resolved in

the experimental analysis.

The full cross-section is

σ =
res.∑

X

(2π)4 δ4(q − pX)
∑

i=a,v

Li
µν 〈0|J

ν†
i (0)|X〉〈X|J µ

i (0)|0〉 , (40)

where the initial state total leptonic momentum is q = pe− + pe+ , Q2 = q2, and the QCD

currents J µ
v,a are given in Eqs. (16). The superscript res. on the summation symbol denotes

a restriction on the sum over final states X, to give J(t)J(t̄)Xs. These final states contain

top and antitop jets with invariant masses close to the top quark mass. The explicit form

of these restrictions depends on the specific jet and invariant mass definitions used. For the

hemisphere invariant mass prescription these restrictions will be implemented explicitly in

Sec. III E below, while other methods are discussed in Sec. V.

In Eq. (40) we include photon and Z boson exchange, and imply an angular average of the

leptonic tensor, to obtain the parity conserving Li
µν with a sum over vector and axial-vector
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a restricted set of states:  

lepton tensor,

by using EFT’s we will be able to move these 
restrictions into the operators

γ & Z exchange

In SCET:

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

FIG. 3: Final state jets in SCET for stable top-quarks with invariant mass ∼ m2. The invariant
mass is restricted and the top-decay products become explicit by matching onto HQET.

and for convenience we will adopt the short-hand notation J µ
i = ψ̄(x)Γµ

i ψ(x). The matching

relation of these QCD currents to SCET currents is given by the convolution formula [19]

J µ
i (0) =

∫
dω dω̄ C(ω, ω̄, µ)J (0)µ

i (ω, ω̄, µ) , (17)

where C contains short-distance dynamics at the scale Q, while J (0)µ
i describes fluctuations

at all longer distance scales. The SCET production current at leading order in λ is given by

J (0)µ
i (ω, ω̄, µ) = χ̄n,ω(0)Γµ

i χn̄,ω̄(0) , (18)

where χn,ω(0) = δ(ω − n̄ ·P)(W †
nξn)(0) and χn̄,ω̄(0) = δ(ω̄ − n ·P)(W †

n̄ξn̄)(0). Here the (0)

indicates that the fields are at coordinate xµ = 0, and we recall that this xµ dependence

carries information about the residual momenta at the scale Qλ2 = m2/Q. The dependence

on larger momenta is encoded in labels on the collinear fields [20], and, for example, δ(ω −
n̄ · P ) forces the total minus-label-momentum of (W †

nξn) to be ω. We also use the notation

χn = (W †
nξn) and χn̄ = (W †

n̄ξn̄).

One can decouple the soft and collinear modes in L(0)
qn by performing a field redefinition

on collinear fields [21]

ξn → Ynξn , Aµ
n → Yn Aµ

n Y †
n , (19)

where Yn is a soft Wilson line

Yn(x) = P exp
(
− ig

∫ ∞

0

ds n·As(ns+x)
)

. (20)

This gives

Y †
n (x) = P exp

(
ig

∫ ∞

0

ds n·As(ns+x)
)

, (21)

which satisfies Y †
nYn = 1. For two-jet production the factorization is most transparent [26]

with the reference point s0 = ∞ shown in Eq. (20). The gluon fields are either antipath-

ordered (for P) or path-ordered (for P). We use the same Wilson line for both the quark

12

Wilson coefficient SCET current
(ξ̄nWn)ω Y †

n ΓµYn̄(W †
n̄ξn̄)ω̄

χ̄n,ω Y †
n ΓµYn̄χn̄,ω̄≡

Momentum conservation:

→ C(Q,Q, µ)

s ≡M2 " Q2
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the n and n̄ directions (see Sec. IIA). However, only |C(Q, µ)|2 will appear in the final

factorization theorem.

Using Eqs. (17) and (18) in Eq.(40), the cross-section in SCET takes the form

σ =
∑

!n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)
∑

i

L(i)
µν

∫
dω dω̄ dω′ dω̄′

×C(ω, ω̄)C∗(ω′, ω̄′)〈0|χ̄n̄,ω̄′Γ̄ν
j χn,ω′ |XnXn̄Xs〉〈XnXn̄Xs|χn,ωΓµ

i χn̄,ω̄|0〉 . (44)

Here we have pulled out an explicit sum over the top jet label directions &n and keep only

two collinear sectors L(0)
n and L(0)

n̄ for the SCET description of top and antitop jets. This

allows us to explicitly carry out the integral over the top jet directions &n in Sec. IIID in

parallel to implementing factorization.

In Eq. (44) we have decomposed the final states |X〉 into a soft sector |Xs〉 and collinear

sectors |Xn〉, |Xn̄〉 in the &n and &̄n directions respectively

|X〉 = |XnXn̄Xs〉 . (45)

Since the hard production scale is integrated out by the matching procedure, these states

now form a complete set of final states that can be produced by the SCET currents J µ
i .

This already implements part of the restrictions, “res”, in the sum over states in Eq. (44).

The momentum PX of the final state |X〉 is also decomposed into the momentum of the

collinear and soft sectors:

PX = PXn + PXn̄ + PXs. (46)

Because the set of hadrons observed in the detector has a well defined set of momenta, it is

possible to impose criteria on the hadrons in the final state to associate them with one of

Xn, Xn̄, or Xs. Thus, the hadronic two-jet state factorizes as a direct product

|X〉 = |Xn〉|Xn̄〉|Xs〉 . (47)

This factorization is also a manifest property of the hadronic states in SCET.

For quark and gluon states in SCET the difference from the purely hadronic case is that

the analog states in Eq. (47) can carry global color quantum numbers. After having made

the soft-collinear decoupling field redefinition, the individual Lagrangians for these sectors

are decoupled, and they only organize themselves into color singlets in the matrix elements

which appear in the observable cross-section. We can take this as a manifestation of quark-

hadron duality. Using the soft-collinear decoupling property from section IIA we can write

the matrix elements in Eq. (44) as
〈
0
∣∣χa

n̄,ω̄′(Y n̄)ba (ΓYnχn,ω′)b
∣∣XnXn̄Xs

〉〈
XnXn̄Xs

∣∣(χn,ωY †
n Γ)c (Y

†
n̄)dcχd

n̄,ω̄

∣∣0
〉

(48)

=
〈
0
∣∣χa

n̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣χa′

n̄,ω̄

∣∣0
〉〈

0
∣∣χb

n,ω′

∣∣Xn

〉〈
Xn

∣∣χb′

n,ω

∣∣0
〉

×
〈
0
∣∣(Y n̄)ca(ΓYn)cb

∣∣Xs

〉〈
Xs

∣∣(Y †
nΓ)b′c′

(Y
†
n̄)a′c′∣∣0

〉
,
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SCET cross-section:

where here roman indices are for color and spin and |Xn〉 and |Xn̄〉 are color triplets. Next

we rearrange the color and spinor indices so that they are fully contracted within each of the

n-collinear, n̄-collinear, and soft product of matrix elements. This makes explicit the fact

that in SCET each of these contributions to the cross-section must separately be a spin and

color singlet. Although it is not absolutely necessary to make this arrangement of indices

manifest at this point, it does allow us to avoid carrying around unnecessary indices (a similar

manipulation was used for B → Xsγ in Ref. [60]). For color, our |Xn̄〉〈Xn̄| forces the indices

on χa
n̄ and χa′

n̄ to be the same, so
〈
0
∣∣χa

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χa′
n̄

∣∣0
〉

= (δaa′
/Nc)

〈
0
∣∣χb

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χb
n̄

∣∣0
〉
. A

similar result holds for the n-collinear matrix elements. For spin we can use the SCET Fierz

formula

1⊗ 1 =
1

2

[( n̄/

2

)
⊗

(n/

2

)
+

(−n̄/γ5

2

)
⊗

(n/γ5

2

)
+

(−n̄/γα
⊥

2

)
⊗

(n/γ⊥
α

2

)]
, (49)

which is valid when the identity matrices are inserted so that the n/ terms on the RHS

appear between χn̄ · · · χn̄ without additional n̄/ factors next to these fields (or the analogous

statement with n ↔ n̄). Combining the color and spin index rearrangement, the matrix

element in Eq. (48) becomes

tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

][〈
0
∣∣χa

n̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣
( n/

4Nc
χn̄,ω̄

)a∣∣0
〉] [〈

0
∣∣
( n̄/

4Nc
χn,ω′

)b∣∣Xn

〉〈
Xn

∣∣χb
n,ω

∣∣0
〉]

×
[〈

0
∣∣(Y n̄)ca′

(Yn)
cb′∣∣Xs

〉〈
Xs

∣∣(Y †
n )b′c′

(Y
†
n̄)a′c′∣∣0

〉]

≡ tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

]
tr

(〈
0
∣∣χn̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉)

tr
(〈

0
∣∣/̂̄nχn,ω′

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉)

× tr
(〈

0
∣∣Y n̄Yn

∣∣Xs

〉〈
Xs

∣∣Y †
n Y

†
n̄

∣∣0
〉)

, (50)

where for convenience we defined

/̂n ≡ n//(4Nc) , /̂̄n ≡ n̄//(4Nc) . (51)

Note that only the first term on the RHS of Eq. (49) contributes because the collinear states

give at least one matrix element which is zero when we have a γ5 or γα
⊥. This factorizes the

SCET cross-section into a product of three singlets under spin and color. For convenience

we will in the following suppress writing these explicit traces on the matrix elements.

Using Eq. (50) in Eq. (44), the factorized SCET cross section takes the form

σ = K0

∑

$n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉 (52)

×
∫

dω dω̄ dω′ dω̄′ C(ω, ω̄)C†(ω′, ω̄′)〈0|/̂̄nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 ,

where we defined the normalization factor

K0 =
∑

i=v,a

L(i)
µνTr

[n/

2
Γµ

i

n̄/

2
Γ

ν
j

]
= −2gµν

⊥

∑

i=v,a

L(i)
µν

=
32π2α2

3Q4

[
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4(v2

e + a2
e)(v

2
t + a2

t )

(Q2 −m2
Z)2

]
. (53)
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where here roman indices are for color and spin and |Xn〉 and |Xn̄〉 are color triplets. Next

we rearrange the color and spinor indices so that they are fully contracted within each of the

n-collinear, n̄-collinear, and soft product of matrix elements. This makes explicit the fact

that in SCET each of these contributions to the cross-section must separately be a spin and

color singlet. Although it is not absolutely necessary to make this arrangement of indices

manifest at this point, it does allow us to avoid carrying around unnecessary indices (a similar

manipulation was used for B → Xsγ in Ref. [60]). For color, our |Xn̄〉〈Xn̄| forces the indices

on χa
n̄ and χa′

n̄ to be the same, so
〈
0
∣∣χa

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χa′
n̄

∣∣0
〉

= (δaa′
/Nc)

〈
0
∣∣χb

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χb
n̄

∣∣0
〉
. A

similar result holds for the n-collinear matrix elements. For spin we can use the SCET Fierz

formula

1⊗ 1 =
1

2

[( n̄/

2

)
⊗

(n/

2

)
+

(−n̄/γ5

2

)
⊗

(n/γ5

2

)
+

(−n̄/γα
⊥

2

)
⊗

(n/γ⊥
α

2

)]
, (49)

which is valid when the identity matrices are inserted so that the n/ terms on the RHS

appear between χn̄ · · · χn̄ without additional n̄/ factors next to these fields (or the analogous

statement with n ↔ n̄). Combining the color and spin index rearrangement, the matrix

element in Eq. (48) becomes

tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

][〈
0
∣∣χa

n̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣
( n/

4Nc
χn̄,ω̄

)a∣∣0
〉] [〈

0
∣∣
( n̄/

4Nc
χn,ω′

)b∣∣Xn

〉〈
Xn

∣∣χb
n,ω

∣∣0
〉]

×
[〈

0
∣∣(Y n̄)ca′

(Yn)
cb′∣∣Xs

〉〈
Xs

∣∣(Y †
n )b′c′

(Y
†
n̄)a′c′∣∣0

〉]

≡ tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

]
tr

(〈
0
∣∣χn̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉)

tr
(〈

0
∣∣/̂̄nχn,ω′

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉)

× tr
(〈

0
∣∣Y n̄Yn

∣∣Xs

〉〈
Xs

∣∣Y †
n Y

†
n̄

∣∣0
〉)

, (50)

where for convenience we defined

/̂n ≡ n//(4Nc) , /̂̄n ≡ n̄//(4Nc) . (51)

Note that only the first term on the RHS of Eq. (49) contributes because the collinear states

give at least one matrix element which is zero when we have a γ5 or γα
⊥. This factorizes the

SCET cross-section into a product of three singlets under spin and color. For convenience

we will in the following suppress writing these explicit traces on the matrix elements.

Using Eq. (50) in Eq. (44), the factorized SCET cross section takes the form

σ = K0

∑

$n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉 (52)

×
∫

dω dω̄ dω′ dω̄′ C(ω, ω̄)C†(ω′, ω̄′)〈0|/̂̄nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 ,

where we defined the normalization factor

K0 =
∑

i=v,a

L(i)
µνTr

[n/

2
Γµ

i

n̄/

2
Γ

ν
j

]
= −2gµν

⊥

∑

i=v,a

L(i)
µν

=
32π2α2

3Q4

[
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4(v2

e + a2
e)(v

2
t + a2

t )

(Q2 −m2
Z)2

]
. (53)
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FIG. 3: One-loop vertex corrections in QCD. {qcdloops}

whre the correct complex structure is obtained by taking ∆2+i0. For the SCET computation

we have the graphs in Fig. 4 which are evaluated in Eqs. (A4,A5) of Appendix A with non-

zero ∆2 = p2 − m2 and ∆̄2 = p̄2 − m2. The sum of collinear and soft vertex graphs,

wavefunction counterterm, and residue is V4a + V4b + V4c + Γµ
i (Zξ − 1) + Γµ

i (Rξ − 1). Taking

∆̄ = ∆ > 0 and again taking ∆2 " m2 " Q2 this gives

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[

1 +
αsCF

4π

{

2

ε2
+

3

ε
+

2

ε
ln

( µ2

−Q2

)

+ 2 ln2
( µ2

−∆2

)

(46)

+2 ln2
( m2

−∆2

)

− ln2
( µ2Q2

(−∆2)(∆2)

)

+ 4 ln
( m2

−∆2

)

+ 3 ln
( µ2

m2

)

+ 8 +
π2

2

}]

.

The remaining divergences in Eq. (46) are cancelled by the counterterm for the Wilson

coefficient, ZC − 1, giving

Zc = 1 −
αsCF

4π

[

2

ε2
+

3

ε
+

2

ε
ln

( µ2

−Q2 − i0

)

]

, (47) {Zc}

and the renormalized amplitude in SCET

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[

1 +
αsCF

4π

{

2 ln2
( µ2

−∆2

)

+ 2 ln2
( m2

−∆2

)

− ln2
(µ2Q2

−∆4

)

+4 ln
( m2

−∆2

)

+ 3 ln
( µ2

m2

)

+ 8 +
π2

2

}]

. (48)

Subtracting Eqs. (48) from (45) all dependence on the IR scales m and ∆ cancels. This

demonstrates that massive SCET has the same IR structure as in QCD. Evaluating the

difference at µ = µQ gives

C(µQ, Q) = 1 +
αsCF

4π

[

− ln2
( µ2

Q

−Q2−i0

)

− 3 ln
( µ2

Q

−Q2−i0

)

− 8 +
π2

6

]

. (49)

Since µQ % Q there are no large logs in the matching, as expected.

Since the result in Eq. (49) is independent of the IR regulator choice it should agree with

that of the massless production current. In Ref. [18] the matching coefficient was computed

using onshell massless quarks, and Eq. (49) agrees with their result. With their regulator
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a) b) c) d)

e)

FIG. 4: Nonzero one-loop vertex and self-energy corrections in massive SCET. Gluons with a line

through them are collinear, while those without are soft. {scetloops}

the SCET computation was scaleless. To see more explicitly how the massless computation

gives the same matching coefficient we repeat the steps with an offshellness p2 = p̄2 ! m2.

For this case the renormalized one loop QCD amplitude is:

〈p, p̄|J µ
i |0〉

∣

∣

∣

QCD
= Γµ

i ZJ

[

1+CF
αs

4π

{

−ln
(−Q2

µ2

)

−2 ln2
( p2

Q2

)

−4 ln
( p2

Q2

)

−
2π2

3

}]

, (50) {Jmatrixqcd

and from Eqs. (A4) and (A5) the renormalized amplitude in SCET is

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[

1+
αsCF

4π

{

2 ln2
( µ2

−p2

)

−ln2
(µ2Q2

−p4

)

+4 ln
( µ2

−p2

)

+8 −
5π2

6

}]

. (51) {masslessscetvertex

To obtain Eq. (51) the same ZC counterterm in Eq. (47) was used. Taking the difference,

Eq. (50) minus (51), gives exactly Eq. (49) as expected.

The presence of the imaginary part in C(Q, µ) indicates that short distance contributions

of the full QCD current contains a discontinuity. To see why this occurs, note that the

QCD current describes the production of on-shell n and n̄ particles, which are contained in

the SCET result, but also includes the production of particles in other collinear directions

which we integrate out into C(Q, µ).The full theory amplitude in Eq. (50) does not contain

an imaginary part in the double logarithmic term for p2 > 0. This is reproduced in SCET

only once we add imaginary parts from the short distance coefficient and from the SCET

loop graphs. In the SCET cross section only the amplitude-squared appears, and here the

unphysial imaginary parts cancel both in HQ = |C(Q, µ)|2, and in the square of the loop

graphs. This ensures that the coefficient HQ in the factorization theorem has a proper short

distance interpretation. The relevant matching coefficient is therefore

HQ(Q, µQ) = 1 +
αsCF

4π

[

−2 ln2
(Q2

µ2
Q

)

+ 6 ln
(Q2

µ2
Q

)

− 16 +
5π2

3

]

. (52)

To evolve the Wilson coefficient to lower scales we need to solve the RG equation in

Eq. (26). The anomalous dimensions are obtained from Zc in Eq. (47) and using µd/dµαs =

18

parts, i = v, a. For convenience we also include the charges and boson propagators, and the

cross-section prefactor 1/(2Q2), so that

L(v)
µν = −8π2α2

3Q4

(
gµν −

qµqν

Q2

)[
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4(v2

e + a2
e)v

2
t

(Q2 −m2
Z)2

]
,

L(a)
µν = −8π2α2

3Q4

(
gµν −

qµqν

Q2

)[
Q4 (v2

e + a2
e)a

2
t

(Q2 −m2
Z)2

]
. (41)

Here et is the top-quark charge, and

vf =
T f

3 − 2Qf sin2 θW

2 sin θW cos θW
, af =

T f
3

2 sin θW cos θW
, (42)

where T f
3 is the third component of weak isospin, and θW is the weak mixing angle.

B. The SCET Cross-Section

We now proceed by using the fact that the states are restricted to be dijet-like through

the constraint that the top and antitop jet invariant masses are close to the top quark

mass, as illustrated in Fig. 3. In this section we reformulate the cross section by using the

more specific SCET currents of Eq. (18) that are suitable for this kinematic situation. We

integrate out the hard production energy scale Q by matching the SCET currents onto the

QCD currents giving us via the matching relation (17) a new expression for the cross-section

defined with matrix elements in SCET.

The SCET currents in Eq. (18) correctly reproduce the long distance physics of the

QCD current, and the difference in the short distance physics is contained in the Wilson

coefficient C(ω, ω̄, µ). We will see momentarily that momentum conservation dictates that

the final form of the cross-section depends only on C(Q,−Q, µ) ≡ C(Q, µ). In Ref. [58] the

Wilson coefficient at one loop was computed. It is independent of the Dirac structure Γi and

also of whether or not the collinear quarks are massive (the latter fact is demonstrated in

Ref. [59] where the matching computation for the corresponding vertex diagrams is carried

out explicitly for finite heavy quark mass). The result is

C(Q, µ) = 1 +
αsCF

4π

[
3 log

−Q2−i0

µ2
− log2 −Q2−i0

µ2
− 8 +

π2

6

]
. (43)

At the matching scale µ = Q this Wilson coefficient does not contain any large logarithms.

The product of the Wilson coefficient C(Q, µ) and the SCET matrix element is independent

of the scale µ, and renormalization group (RG) evolution determines the Wilson coefficient

at a lower scale µ. This RG evolution of the hard Wilson coefficient sums logarithms of

µ/Q with µ ≥ m. The Wilson coefficient contains an imaginary part that arises from real

QCD intermediates states in the QCD vertex diagram that are not accounted for in the

corresponding SCET diagrams when the collinear action only contains the two sectors for
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gives one-loop

one-loop

′

difference

matching:
27



Specify hemisphere invariant masses for the jets:

Insert:

invariant mass of all the final state particles in each hemisphere. As we show explicitly below,

the requirement that these jet invariant masses are both close to the top mass, automatically

restricts the final state to be dijet-like, and eliminates the need to introduce any additional

event-shape constraint. We stress that some mechanism to control the soft particles is

absolutely crucial for establishing the factorization theorem and the unique definition of

the soft function S. Here this is accomplished by the fact that all soft particles enter the

invariant mass variables M 2
t,t̄.

The invariant mass of each hemisphere includes contributions from both soft and collinear

particles. The total momentum of the collinear particles in the n-hemisphere is PXn and in

the n̄-hemisphere is PXn̄ . The total final state soft momentum KXs is split between the two

hemispheres and can be divided as:

KXs = ka
s + kb

s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respectively. It is useful to think of these hemisphere momenta as the result of

hemisphere projection operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these projection operators act on each state |Xs〉, pick out the soft partons

in the respective hemisphere and add up their total momentum. Note that the eigenvalues

are depend on the state Xs, so ka
s = ka

s [Xs] and kb
s = kb

s[Xs]. We can now define the invariant

mass of each jet as (PXn + ka
s )

2 and (PXn̄ + kb
s)

2 for the n and n̄ hemispheres respectively.

The delta functions δ4(pn − PXn) δ4(pn̄ − PXn̄) in the second line of Eq. (65) allow us to

define the jet invariant masses in terms of pn, pn̄ as (pn + ka
s )

2 and (pn̄ + kb
s)

2 for the n and

n̄ hemispheres respectively.

Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definitions of the operators P̂a and P̂b. Running a jet

algorithm in inclusive e+e− mode [61] each soft parton is still accounted for, having a certain

probability of being assigned to either the top or the antitop invariant mass. We discuss

other algorithms in section V.

If the top quark were a stable particle these invariant mass definitions would be obvious

because n- and n̄-collinear particles would be fully radiated into the n- and n̄-hemispheres,

respectively. Due to the finite lifetime of the top quark, however, we need to convince

ourselves that this invariant mass definition still works if the n- and n̄-collinear momenta

of the top and antitop quarks, respectively, are distributed among their decay products. So

let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with

respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final

state particles appearing in the n̄-hemisphere of the antitop quark only if these final state

particles have an angle (defined in the top rest frame) smaller than m/Q with respect to

28

total soft momentum is the sum of momentum in each hemisphere

invariant mass of all the final state particles in each hemisphere. As we show explicitly below,

the requirement that these jet invariant masses are both close to the top mass, automatically

restricts the final state to be dijet-like, and eliminates the need to introduce any additional

event-shape constraint. We stress that some mechanism to control the soft particles is

absolutely crucial for establishing the factorization theorem and the unique definition of

the soft function S. Here this is accomplished by the fact that all soft particles enter the

invariant mass variables M 2
t,t̄.

The invariant mass of each hemisphere includes contributions from both soft and collinear

particles. The total momentum of the collinear particles in the n-hemisphere is PXn and in

the n̄-hemisphere is PXn̄ . The total final state soft momentum KXs is split between the two

hemispheres and can be divided as:

KXs = ka
s + kb

s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respectively. It is useful to think of these hemisphere momenta as the result of

hemisphere projection operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these projection operators act on each state |Xs〉, pick out the soft partons

in the respective hemisphere and add up their total momentum. Note that the eigenvalues

are depend on the state Xs, so ka
s = ka

s [Xs] and kb
s = kb

s[Xs]. We can now define the invariant

mass of each jet as (PXn + ka
s )

2 and (PXn̄ + kb
s)

2 for the n and n̄ hemispheres respectively.

The delta functions δ4(pn − PXn) δ4(pn̄ − PXn̄) in the second line of Eq. (65) allow us to

define the jet invariant masses in terms of pn, pn̄ as (pn + ka
s )

2 and (pn̄ + kb
s)

2 for the n and

n̄ hemispheres respectively.

Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definitions of the operators P̂a and P̂b. Running a jet

algorithm in inclusive e+e− mode [61] each soft parton is still accounted for, having a certain

probability of being assigned to either the top or the antitop invariant mass. We discuss

other algorithms in section V.

If the top quark were a stable particle these invariant mass definitions would be obvious

because n- and n̄-collinear particles would be fully radiated into the n- and n̄-hemispheres,

respectively. Due to the finite lifetime of the top quark, however, we need to convince

ourselves that this invariant mass definition still works if the n- and n̄-collinear momenta

of the top and antitop quarks, respectively, are distributed among their decay products. So

let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with

respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final

state particles appearing in the n̄-hemisphere of the antitop quark only if these final state

particles have an angle (defined in the top rest frame) smaller than m/Q with respect to

28

hemisphere projection operators

 ...  Some Algebra ...

expand:

1 =
∫

ds δ
(
(pn + ka

s )2 − s
) ∫

ds̄ δ
(
(pn̄ + kb

s)
2 − s̄

)

δ
(
(pn + ka

s )2 − s
)

=
1
Q

δ
(
k+

n + k+a
s − s

Q

)

δ
(
(pn̄ + kb

s)
2 − s̄

)
=

1
Q

δ
(
k−n + k−b

s − s̄

Q

)
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Factorization Theorem:

ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞
d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%

+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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Hard Function Quark Jet
Function

Anti-quark Jet
Function

Soft radiation
Function
universal

d2σ

ds ds̄
=

σ0

Q2

∣∣C(Q,µ)
∣∣2

∫
dk+

n dk−n̄ d"+ d"−δ
(
k+

n + "+− s

Q

)
δ
(
k−n̄ + "−− s̄

Q

)

×
∑

Xn

1
2π

∫
d4x eik+

n x−/2 tr
〈
0
∣∣/̂̄nχn(x)

∣∣Xn

〉〈
Xn

∣∣χ̄n,Q(0)
∣∣0

〉

×
∑

Xn̄

1
2π

∫
d4y eik−n̄ y+/2 tr

〈
0
∣∣χn̄(y)

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,−Q(0)
∣∣0

〉

×
∑

Xs

1
Nc

δ("+ − k+a
s )δ("− − k−b

s )tr〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉

d2σ

ds ds̄
= σ0 HQ(Q,µ)

∫ +∞

−∞
d"+d"− Jn(s−Q"+, µ) Jn̄(s̄−Q"−, µ) Shemi("+, "−, µ)
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ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞
d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%

+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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Soft function is perturbative if 
and is nonperturbative if

a)

nY

nY

nY

nY

b) c) d)

n n n n n n

n n n n n n

FIG. 6: Graphs for the hemisphere soft function at one-loop. In this figure the double solid lines
denote Y -Wilson lines,and the line with ticks is the final state cut. {softgraphs}

Eqs. (62,63) give the solution for the RG-evolution of the SCET jet function up to µ, via

Jn(s, µ) =
∫

ds′ UJn(s − s′, µ, µm)Jn(s′, µm).

Finally we return to the renormalized jet function. For the stable-top renormalized jet-

function at one-loop order this gives

Jn(s, m, Γ = 0, µ) = δ(s) +
αsCF

4π

{

8

κ2
1

[

θ(x) ln(x)

x

]

+

−
4

κ2
1

[

1+ln
(m2

κ2
1

)

+ln
(µ2

κ2
1

)

][

θ(x)

x

]

+

+ δ(s)

[

2 ln2
(µ2

κ2
1

)

+2 ln2
(m2

κ2
1

)

+3 ln
(µ2

κ2
1

)

+ln
(m2

κ2
1

)

+8−
π2

3

]}

, (64) {Jren}

where x = s/κ2
1. From this result we can immediately see why further matching and RG-

evolution are needed to deal with the large hierarchy of scales in Jn. For s ∼ mΓ no

choice of µ minimizes all the large logarithms. The terms in which the large logs appear are

controlled by the choice of κ1, but no choice of κ1 removes them completely. For example,

with κ1 = m and µ = m we still have ln(x) ∼ ln(Γ/m); while for κ2
1 = mΓ and µ = κ1 we

have ln(m2/κ2
1) ∼ ln(Γ/m). This motivates the matching onto bHQET and RG-evolution

between m and Γ to be carried out below. For later convenience we quote the result for Jn

with the choice κ1 = m,

Jn(s, m, Γ = 0, µ) = δ(s) +
αsCF

4π

{

8

m2

[

θ(x) ln(x)

x

]

+

−
4

m2

[

1+ln
( µ2

m2

)

][

θ(x)

x

]

+

+ δ(s)

[

2 ln2
( µ2

m2

)

+3 ln
( µ2

m2

)

+8−
π2

3

]}

. (65) {Jrenm}

C. Hemisphere Soft Function and its Running

{sect:soft}

In this section we compute the renormalization group evolution of the hemisphere soft-

function, Shemi(&+, &−, µ). Although this function is non-perturbative, its dependence on the

scale µ can be computed in perturbation theory, and is the same as the µ-dependence of

Shemi defined with partonic matrix elements.

To compute Shemi we use the squared matrix-element expression in Eq. (13) involving the

states |Xs〉. At O(αs) the corresponding diagrams are shown in Fig. 6, where the double

21

Shemi(!+, !−, µ)

!+, !− ! ΛQCD

!+, !− ∼ ΛQCD

It is also universal, it appears in many different
event shapes (thrust, heavy-jet mass, ...) for both 
massless and massive jets
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Thrust

We can further simplify the form of the factorized cross-section. First we use the identities

〈Xn|χn,ω′|0〉 = 〈Xn|χnδω′,n̄·P†|0〉 = δω′,p−Xn
〈Xn|χn|0〉 ,

〈Xn̄|χn̄,ω̄′|0〉 = 〈Xn̄|χn̄δω̄′,n·P†|0〉 = δ−ω̄′,p+
Xn̄

〈Xn̄|χn̄|0〉 , (54)

with similar relations for the other two collinear matrix elements in Eq.(52). Combining this

with the relation δω′,p−Xn
δω,p−Xn

= δω′,ωδω,p−Xn
, and analog for p+

Xn̄
, we can write the product of

collinear matrix elements in Eq.(52) as

〈0|/̂̄nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉
= δω̄′,ω̄ δω′,ω 〈0|/̂̄nχn|Xn〉〈Xn|χn,ω|0〉〈0|χn̄|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 . (55)

Next we do the sums over ω′, ω̄′ to arrive at the form

σ = K0

∑

"n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉

×
∫

dω dω̄ |C(ω, ω̄)|2
〈
0
∣∣/̂̄nχn

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉〈

0
∣∣χn̄

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉
. (56)

Before proceeding, we pause to define the thrust axis which is needed to properly define

the invariant mass of jets and state its relation to the direction of the energetic collinear

degrees of freedom. Then in order to make the power counting manifest we decompose the

final state momenta into label and residual parts and perform some general manipulations of

the phase space integrals to setup a formula for the cross-section to be used for the remaining

calculation.

C. Thrust or Jet Axis

The thrust of any event is defined to be

T = max
t̂

∑
i |t̂ · pi|
Q

, (57)

where the sum is over the momenta pi of all the final state particles produced. The thrust

axis t̂ is chosen so that is maximizes the sum of particle momenta projected along t̂. In-

tuitively, for a dijet-like event the thrust axis corresponds to the axis along which most of

the momentum is deposited. Conversely, the thrust is close to its maximum for a dijet-like

event. We choose &n to point along t̂. For an event with exactly two massive stable particles

T =
√

Q2 − 4m2/Q = 1 − 2m2/Q2 + O(m4/Q4), is the maximum allowed thrust. Since we

are interested in thrusts in the dijet region for the top and antitop jets it is convenient to

define a shifted thrust parameter,

τ =

√

1− 4m2

Q2
− T = 1− 2m2

Q2
− T + O

(m4

Q4

)
. (58)
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Insert:

A very popular event shape is thrust

T = 1 dijet T =
1
2

1 =
∫

dT δ
(
1− T − s + s̄

Q2

)

Factorization theorem

with

dσ

dT
= σ0 H(Q,µ)

∫
ds JT (s, µ) Sthrust

(
Q(1− T )− s

Q
, µ

)

Sthrust(!, µ) =
∫ ∞

0
d!+d!− δ(!− !+ − !−) Shemi(!+, !−, µ)
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SCET  is a field theory which:
• explains how soft & collinear degrees of freedom communicate 

with each other, and with hard interactions
• organizes the interactions in a series expansion in 

• provides a simple operator language to derive factorization 
theorems in fairly general circumstances

eg.  unifies the treatment of factorization for exclusive and 
inclusive QCD processes

•

scale separation & decoupling

results are constrained by symmetries

•

n
µ

!

λ
which measures how collinear/soft the particles are

λ =
√

ΛQCD

mb
λ =

ΛQCD

mb

λ2 =
m2

X

Q2
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How is SCET used?

• cleanly separate short and long distance effects in QCD
derive new factorization theorems
find universal hadronic functions, exploit symmetries

• model independent, systematic expansion
study power corrections

• keep track of       dependence µ

sum large logarithms

The End

predict decay rates and cross sections
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