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Lets first recall a few things
         from Lecture 1

2



LO SCET  Lagrangians

L(0)
cg = L(0)

cg (Aµ
n, n·Aus)

SCETI for energetic jets

usoft & collinear modes
ξn ∼ λ

L(0)
us = LQCD(qus, A

µ
us)

I

qus ∼ λ3

Aµ
us ∼ λ2

two types of derivatives:
Pµξn,p(x) , i∂µξn,p(x) i∂µqus(x)Pµqus(x) = 0, ,

Separate Momenta

label residual

HQET P µ = mbvµ + kµ hv(x) (Georgi)

SCET P µ = pµ + kµ ξn,p(x)

(1, λ)

Collinear Quarks

# ψ(x)→
∑

p e−ip·xξn,p(x)

# n/ ξn,p = 0

# ∂µ ξn,p ∼ (Qλ2) ξn,p

p

k

 Q

Q 
 

Q 

   !
2

 !

• But labels are changed

by SCET interactions p p!

q

Iain Stewart – p.8

λ
2

,

L(0)
c = ξ̄n

{
n · iDus + gn · An + i /Dn

⊥
1

in̄ · Dn
i /Dn
⊥

} /̄n

2
ξn

iDnµ
⊥ = Pµ

⊥ + gA⊥µ
n

iDµ
us = i∂µ + gAµ

us

in̄·Dn = n̄·P + gn̄·An

(A+
n , A−n , A⊥n ) ∼ (λ2, 1,λ)

∼ pµ
c

p+

c hard

!2

2

p-

Q

!Q
0

!Q !Q
0

us

n

p2 =Q2

p2 = "
2

p2 = Q"
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Outline for Lecture 2

Wilson lines and the heavy-light current
•
•

Gauge Invariance, Reparmaterization Invariance

Hard-Collinear and Ultrasoft-Collinear Factorization

SCET Loops, IR divergences, zero-bin

B → Xsγ factorization theorem

•

RGE and Sudakov double logarithms

•
•

•
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(A+
n , A−

n , A⊥
n ) ∼ (λ2, 1, λ) ∼ pµ

We can build LO operators with any number of         fields.
     
Should we be concerned?

A−n
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Currents eg. ū Γ b involves both collinear and usoft objects

8

pµ
π = (2.310 GeV, 0, 0,−2.306 GeV) = Qnµ Q " ΛQCD nµ = (1, 0, 0,−1) n2 = 0

Basis vectors nµ, n̄µ with n2 = 0, n̄2 = 0, n·n̄ = 2

pµ =
nµ

2
n̄ · p +

n̄µ

2
n · p + pµ

⊥

gµν =
nµn̄ν

2
+

n̄µnν

2
+ gµν

⊥ (69)

p+ ≡ n · p, p− ≡ n̄ · p

eg. n̄µ = (1, 0, 0, 1)

(p+, p−, p⊥) ∼ (Λ, Λ, Λ)

m2
X ∼ m2

B OPE in 1/mb (not SCET)

m2
X ∼ Λ2 not inclusive

m2
X ∼ ΛQ

Jet constituents: pµ ∼ (Λ, Q,
√

QΛ) ∼ Q(λ2, 1, λ)

λ ∼
√

Λ/Q

Usually m1 " Λ and
∑n

i=1 Ci(µ, m1) Oi(µ, Λ)

In SCET constituent p− ∼ mb ∼ Eπ p2 = p+p− + p2
⊥ p2 ∼ m2

1 p2 ∼ m2
2 p2 ∼ Q2 p2

c ∼ Λ2 p2
soft ∼ Λ2

∫

dω C(ω) O(ω)

ū Γ b

QCD SCET

ξ̄n Γ hv

no 
gluons

one 
gluon q

k

offshell
k2 −m2

b = n·v mbn̄· q + . . .

kµ = mbv
µ +

nµ

2
n̄· q + . . .

graph = ūnΓ
i(k/ + mb)
k2 −m2

b

igTAγµuv =
−g

n·v mb n̄·q ūnΓ
[
mb(1 + v/) +

n/

2
n̄·q

](n/

2
n̄µ

)
TAuv

=
−gn̄µ

n̄·q ūnΓTA

{ n/
2 (1− v/) + n·v + 0

n·v

}
uv =

−gn̄µ

n̄·q ūnΓTAuv

ξ̄n
(−gn̄·An)

n̄·q Γhv

∼ λ0
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Currents

ξ̄nW Γ hv

8
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√

QΛ) ∼ Q(λ2, 1, λ)

λ ∼
√
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Usually m1 " Λ and
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i=1 Ci(µ, m1) Oi(µ, Λ)

In SCET constituent p− ∼ mb ∼ Eπ p2 = p+p− + p2
⊥ p2 ∼ m2

1 p2 ∼ m2
2 p2 ∼ Q2 p2

c ∼ Λ2 p2
soft ∼ Λ2

∫

dω C(ω) O(ω)

ū Γ b

b

u

q1

qm

pb

p

qm

q2

q1

= iC(µ, n̄ · P )Γ gm
∑

perms
(n̄µmTAm)···(n̄µ1TA1)

[n̄·q1][n̄·(q1+q2)]···[n̄·
∑m

i=1 qi]

FIG. 4. Order λ0 Feynman rule for the effective theory heavy to light current with m collinear
gluons. The sum is over permutations of {1, . . . ,m} and the Wilson coefficient depends only on

the sum of momenta in the jet, P = p +
∑m

i=1 qi.

For a non-abelian gauge group a similar gauge invariance argument applies, however the

matching in Fig. 3 is more complicated. Eq. (24) remains valid, but with a more complicated

definition of the jet field. In momentum space we find

χn,P =
∑

k

∑

perms

(−g)k

k!

(
n̄ · An̄,q1

· · · n̄ · An̄,qk

[n̄ · q1][n̄ · (q1 + q2)] · · · [n̄ ·
∑k

i=1 qi]

)

ξn,p , (25)

where the permutation sum is over the indices (1, 2, . . . , k). The Feynman rules which follow

from Eqs. (24) and (25) are shown in Fig. 4. In position space the jet field takes the form

of a path-ordered exponential

χn(0) = P exp
(
−ig

∫ 0

−∞
ds n̄ · Ac(sn̄µ)

)
ξn(0) , (26)

where P denotes path ordering along the light-like line collinear to n̄.4

In the effective theory both heavy and light quarks are described by two component

spinors, so there are only four heavy to light currents at leading order in λ. We choose the

linearly independent set [χ̄n,P hv], [χ̄n,P γ5 hv], and [χ̄n,P γµ
⊥hv], where γµ

⊥=γµ−nµn̄//2−n̄µn//2

has only two non-zero terms. The matching of the heavy to light currents q̄Γb onto operators

in the effective theory is

q̄b → C1(µ) [χ̄n,P hv] , (27)

q̄γ5b → C2(µ) [χ̄n,P γ5hv] ,

q̄γµb → C3(µ) [χ̄n,P γ⊥
µ hv] +

{
C4(µ) nµ + C5(µ) vµ

}
[χ̄n,P hv] ,

q̄γµγ5b → C6(µ) iε⊥µν [χ̄n,P γν
⊥hv] −

{
C7(µ) nµ + C8(µ) vµ

}
[χ̄n,P γ5hv] ,

4Path-ordered exponentials are also introduced to sum up the couplings of soft gluons to a
collinear jet, see Ref. [19].
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=

momentum space Wilson line
∑

k

∑

perms

(−g)k

k!

(

n̄ · An̄,q1
· · · n̄ · An̄,qk

[n̄ · q1][n̄ · (q1 + q2)] · · · [n̄ ·

∑k
i=1 qi]

)

W =

position space Wilson line W (y,−∞) = P exp
(

ig
∫ y

−∞
ds n̄·An(sn̄µ)

)

        no cost to 
add these gluons
∼ λ0

now add any number of gluons

get a Wilson line

eg. ū Γ b involves both collinear and usoft objects
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1
Lectures on the Soft-Collinear Effective Theory

Iain Stewart, Benasque Summer School 2008

Problem 1) Practice with Operators in HQET

In this problem you will derive the HQET Lagrangian to O(1/mQ).

a) In lecture we made a change of variables to write the QCD Lagrangian as

LQCD = h̄v(iv · D)hv − H̄v(iv · D + 2mQ)Hv + Q̄v(i /DT )Hv + H̄v(i /DT )hv . (1)

We identified the first term as the leading order HQET Lagrangian. To obtain the terms
at O(1/mQ) at tree level we can integrate out the antiparticle field Hv by deriving its
equation of motion from Eq. (1). Derive the equation of motion for Hv, and use it to find
an operator expression relating Hv to hv, and to derive a tree level expression for LQCD

that is entirely in terms of hv.

b) Expand your result to O(1/mQ) and identify a term involving the kinetic operator
h̄v(iDT )2hv, and a term involving the chromomagnetic operator h̄vσµνGµνhv where Gµν

is the gluon field strength. What symmetries of the leading HQET Lagrangian do these
two terms violate? Consider Feynman diagrams that contain both the hv and Hv fields of
Eq. (1) and explain diagrammatically what you have done when you integrated out Hv in
the above manner.

Problem 2) SCET Operators with Collinear Quarks and Wilson Lines

a) Start with the QCD Lagrangian for a massive quark and decompose D/ in terms of n,
n̄, and ⊥ components. As in lecture, write ψ = ξn + ζn̄ where n/ξn = 0 and n̄/ζn̄ = 0 and
determine which products of fields are non-zero. Keeping all the non-zero terms, integrate
out the field ζn̄ to generate an effective action for the massive collinear quark ξn.

[With power counting m ∼ p⊥ ∼ Qλ $ Q this is the starting point to derive the action for a
massive collinear quark, ie. prior to decomposing the gluon field into collinear and ultrasoft
pieces and prior to distinguishing between large and small momenta. The remaining steps
are the same as those discussed in lecture except that you keep the mass. The mass terms
that you have derived are important for considering how a collinear Lagrangian of light
quarks u, d, s explicitly breaks chiral symmetry. They are also relevant for discussing an
energetic jet initiated by a massive quark, when the jet energy Q % m.]

b) To get more familiar with Wilson lines lets consider the current for a b → u transition. In
QCD J = ūΓb. For SCET we did a matching calculation to find the leading order current

J (0) = ξ̄nWΓhv , (2)

where W included terms involving the order λ0 collinear gluon field n̄ · An. In lecture we
explicitly computed the term in W with one n̄ · An field and wrote down the result for any
number of n̄ · An fields. Do the matching computation for two n̄ · An fields (by expanding
QCD diagrams with offshell propagators). Verify that the result for one and two n̄ ·An fields
agree with the momentum space Feynman rules derived from the position space Wilson line

W (y+) = P exp
(

ig
∫ 0

−∞

ds n̄·An(sn̄ + y+)
)

,

where P is path-ordering.

Exercise
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Interaction of modes:  Offshell versus Onshell
Which fields can interact in a local way?

collinear

usoft

collinear collinear

collinear

collinear

usoft b

collinear

offshell

usoft

collinear

collinear

soft 

collinear

offshell

these three are all in SCETI

this generated the Wilson line W in the SCET
computation we just discussed

SCET    :II This makes interactions in SCET II
more complicated to construct, so we 
postponed further discussion to after 
fully developing SCET I

I

p2
s, p

2
c ∼ λ2

(ps + pc)2 = p−c p+
s ∼ λps

pc
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To determine what effect loops can have we will
use Symmetries:

Gauge symmetry

Lorentz invariance (?)

  Our analysis of the Lagrangian and Current was tree level.

(plus of course Power Counting) 
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Gauge symmetry
9

U(x) = exp
[

iαA(x)T A
] need to consider U’s 

which leave us in the EFT
collinear

usoft

9

i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

Object Collinear Uc Usoft Uus

ξn Uc ξn Uus ξn

gA
µ
n Uc gA

µ
n U†

c + Uc
[

iDµ,U†
c
]

Uus gA
µ
n U

†
us

W Uc W Uus W U †
us

qus qus Uus qus

gAµ
us gAµ

us UusgAµ
usU

†
us + Uus[i∂µ, U †

us]

Y Y Uus Y

TABLE I: Gauge transformations for the collinear and usoft fields from Ref. [4], where iDµ ≡
nµ

2 P̄ + Pµ
⊥ + n̄µ

2 i n·Dus. The collinear fields and transformations are understood to have momen-
tum labels and involve convolutions, but for simplicity these indices are suppressed. The usoft
transformations do not change the momentum labels of collinear fields.

Objects Collinear Uc Soft Us

ξn Uc ξn ξn

gAµ
n Uc gAµ

n U†
c + Uc

[

i∂µ
c U†

c
]

gAµ
n

W Uc W W

qs qs Us qs

gAµ
s gAµ

s Us gAµ
s U †

s + Us[i∂
µ
s , U †

s ]

S S Us S

TABLE II: Gauge transformations for collinear and soft fields in SCETII from Ref. [4]. Momentum
labels are suppressed, and ∂µ

c and ∂µ
s are defined to only pick out collinear and soft momenta

respectively. Here i∂µ
c "= iDµ since usoft fields are not included in SCETII.

• Power counting: Restricts the type of fields and derivatives allowed in the operator

• Gauge invariance: Requires operators to be built out of gauge invariant building
blocks.

• Reparameterization invariance: Corresponds to the restoration of Lorentz invariance
order by order in λ.

• Locality: The theory SCETI is only non-local in O(Q) momenta. Only inverse powers
of the large label momentum are allowed and collinear Wilson lines have to be built
out of O(1) gluons.

Note that SCETI is constructed in a local manner, but after doing this it is useful to consider
a field redefinition ξn → Y ξn which introduces non-locality at the usoft scale. The locality
restriction does not apply to SCETII . Integrating out p2 ∼ QΛ modes immediately results
in operators involving the soft Wilson line S [4], and it contains inverse powers of 1/Λ
momenta. In the following we will focus on gauge invariance and discuss subtleties which
arise in constructing invariant operators at subleading order.

The gauge transformations for the SCET fields were derived in [4] and are summarized
in Tables I and II. Here ∂µ

c Uc ∼ Q(λ2, 1, λ), ∂µ
s Us ∼ Qλ, and ∂µUus ∼ Qλ2 distinguish the

3

i∂µUus(x) ∼ pµ

usUus(x) ↔ Aµ

us

iDnµ
⊥ = Pµ

⊥ + gA⊥µ
n iDµ

us = i∂µ + gAµ
us

in̄·Dn = n̄·P + gn̄·An

Connects:

in·∂ + gn·An + gn·Aus

iDµ ≡ nµ

2
n̄·P + Pµ

⊥ +
n̄µ

2
(in·∂ + gn·Aus)in the table:
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order by order in λ.
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momenta. In the following we will focus on gauge invariance and discuss subtleties which
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The gauge transformations for the SCET fields were derived in [4] and are summarized
in Tables I and II. Here ∂µ

c Uc ∼ Q(λ2, 1, λ), ∂µ
s Us ∼ Qλ, and ∂µUus ∼ Qλ2 distinguish the

3

i∂µUus(x) ∼ pµ

usUus(x) ↔ Aµ

us

our current
is invariant:

(ξ̄nW )Γhv
→ (ξ̄nU

†
c
UcW )Γhv = (ξ̄nW )Γhv

→ (ξ̄nU†
us

UusW )U†
us

ΓUushv = (ξ̄nW )Γhv
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Reparameterization Invariance (RPI)

9

i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

i∂µUus(x) ∼ pµ
c Uus(x) ↔ Aµ

us (75)

n n̄, break Lorentz invariance, restored within collinear cone by 
reparameterization transformations that preserve power 
counting.  Three types:

(b) Any choice of the reference light-cone vectors n and n̄ satisfying

n2 = 0 , n̄2 = 0 , n · n̄ = 2 , (3)

are equally good, and can not change physical predictions.

For type (b) the most general infinitesimal change in n and n̄ which preserves Eq. (3) is a
linear combination of

(I)





nµ → nµ + ∆⊥

µ

n̄µ → n̄µ

(II)





nµ → nµ

n̄µ → n̄µ + ε⊥µ
(III)





nµ → (1 + α) nµ

n̄µ → (1− α) n̄µ

, (4)

where {∆⊥
µ , ε⊥µ , α} are five infinitesimal parameters, and n̄ ·ε⊥ = n ·ε⊥ = n̄ ·∆⊥ = n ·∆⊥ = 0.

Invariance under subset (I) of these transformations has already been explored in Ref. [15],
and used to derive important constraints on the next-to-leading order collinear Lagrangian
and heavy-to-light currents. Here we explore the consequences of invariance under the full set
of reparameterization transformations and extend the analysis of class (I) transformations
to higher orders in λ. In particular we show that the transformations in classes (II) and (III)
are necessary to rule out the possibility of additional operators in the lowest order collinear
Lagrangian that are allowed by power counting and gauge invariance.

As might be expected the collinear reparameterization invariance is a manifestation of
the Lorentz symmetry that was broken by introducing the vectors n and n̄. Essentially
reparameterization invariance restores Lorentz invariance to SCET order by order in λ. The
five parameters in Eq. (4) correspond to the five generators of the Lorentz group which are
“broken” by introducing the vectors n and n̄, namely {nµMµν , n̄µMµν}. If the perpendicular
directions are 1, 2 then the five broken generators are Q±

1 = J1±K2, Q±
2 = J2±K1, and K3.

The type (I) transformations are equivalent to the combined actions of an infinitesimal boost
in the x (y) direction and a rotation around the y (x) axis, such that n̄µ is left invariant
with generators (Q−

1 , Q+
2 ). Type (II) transformations are similar but (Q+

1 , Q−
2 ) leave nµ

invariant, while transformation (III) is a boost along the 3 direction (K3).
In SCET one introduces three classes of fields: collinear, soft and ultrasoft (usoft), with

momentum scaling as Q(λ2, 1, λ), Q(λ, λ, λ) and Q(λ2, λ2, λ2), respectively. For our purposes
the interesting fields are those for collinear quarks (ξn,p), collinear gluons (An,q), and usoft
gluons (Au). At tree level the transition from QCD to collinear quark fields can be achieved
by a field redefinition [2]

ψ(x) =
∑

p

e−ip·x
[
1 +

1

n̄ · D D/⊥ n̄/

2

]
ξn,p, (5)

where the two-component collinear quark field ξn satisfies [1]

n/n̄/

4
ξn = ξn , n/ ξn = 0 . (6)

The covariant derivatives are further decomposed into two parts, Dµ = Dµ
c + Dµ

u , where Dµ
c

and Dµ
u involve collinear and usoft momenta and gauge fields respectively. To distinguish

3

n
µ

n
µ

n
µ

n̄
µ

n̄
µ

n̄
µ

simultaneous
rescaling 

(longitudinal boost)

L(0)
c = ξ̄n

{
n · iDus + gn · An + i /Dc

⊥
1

in̄ · Dc
i /Dc
⊥

} /̄n

2
ξn

unique

∆
⊥
µ ∼ λ ε

⊥
µ ∼ λ

0
α ∼ λ

0

(I) (II) !    "
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Factorization from SCET
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Wilson Coefficients and Hard - Collinear Factorization

9

i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

i∂µUus(x) ∼ pµ
c Uus(x) ↔ Aµ

us (75)

n n̄

ξ̄niDµ
⊥

1

in̄ · D
iD⊥

µ
n̄/

2
ξn (76)

IX. HARD-COLLINEAR FACTORIZATION

C(P̄ , µ): they depend on large momenta picked out by P̄ = n̄·P ∼ λ0

eg.

2

I
.

W
H

Y
T

H
E

S
K

Y
I
S

B
L
U

E

E
γ
!

∆
E

∼
m

e
α

2
!

a−
1

0
∼

m
e
α
!

M
a
to

m
(1

0)

vµ
=

(1
,0

,0
,0

)
(1

1)

L
=

φ
† v

i∂
0
φ

v
=

φ
† v

iv
·∂

φ
v

(1
2)

[φ
v
]
=

3/
2

(1
3)

L
in

t
=

τ 1
φ
† v
φ

v
F

µ
ν
F

µ
ν

+
τ 2

φ
† v
φ

v
vλ

F
λ

µ
v σ

F
σ

µ
(1

4)

+
τ 3

φ
† v
φ

v
(v

λ
i∂

λ
)F

µ
ν
F

µ
ν

(1
5)

ev
en

nu
m

b
er

of
F

µ
ν
’s

n
o

F̃
µ

ν
h
er

e

∂
µ
F

µ
ν

=
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Properties of 

1)

2)

3)

has particles and antiparticles, pair creation & annihilation

L(0)
c = ξ̄n

{
n · iDus + gn · An + i /Dn

⊥
1

in̄ · Dn
i /Dn
⊥

} /̄n

2
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in/

2
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in/

2
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2
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=
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2
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p2 + iε

all components of Aµ
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p

q
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(p + q)2 + iε
all components of 

p & q appear  n
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k
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Ultrasoft - Collinear Factorization

Multipole Expansion: L(0)
c = ξ̄n

{
n · iDus + gn · An + i /Dc

⊥
1

in̄ · Dc
i /Dc
⊥

} /̄n

2
ξn

usoft gluons have eikonal  Feynman 
rules and induce eikonal propagators

gives:

Factorization of Usoft Gluons

Consider the following field redefinitions in SCET

ξn,p = Yn ξ(0)
n,p , An,q = Yn A(0)

n,q Y †
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ig
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)
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n Yn = 1
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]
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• W = YnW (0)Y †
n
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n,q, n·Aus) = L(ξ(0)

n,p, A
(0)µ
n,q , 0)

Moves all usoft gluons to operators, simplifies cancellations

eg1. J = ξ̄(0)
n W (0) Γ Y †

n hv

eg2. J = ξ̄nW Γ W †ξn = ξ̄(0)
n W (0) Γ W (0)†ξ(0)

n

Iain Stewart – p.15
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FIG. 1: Eikonal iε prescriptions for incoming/outgoing quarks and antiquarks and the result that
reproduces this with an ultrasoft Wilson line and sterile quark field.

Since the dependence on s0 sometimes causes confusion, we explore some of the subtleties
in this section, in particular, why it is important to remember that factors of Y , Y † can
also be induced in the interpolating fields for incoming and outgoing collinear states, and
why a common choice for s0 = s †

0 is sufficient to properly reproduce the iε prescription in
perturbative computations. In many processes (examples being color allowed B → Dπ and
B → Xsγ) the s0 dependence of the Wilson lines cancels and the following considerations
are not crucial. In other processes, however, the path for the Wilson line is important for the
final result, particularly when these Wilson lines do not entirely cancel. An example of this
is jet event shapes as discussed in Refs. [28–30]. See also the discussion of path dependence
in eikonal lines in Refs. [31–37].

First consider the perturbative computation of attachments of usoft gluons to incoming
and outgoing quark and antiquark lines. The results for the eikonal factors for one gluon
are summarized in Fig. 1, and can be computed directly with the SCET collinear quark
Lagrangian (or from an appropriate limit of the QCD propagator). These attachments seem
to force one to make a particular choice for s0 and s0, see for example the recent detailed
study in Ref. [30]. In our notation it is straightforward to show that this choice corresponds
to

s0 = −∞ sign(P̄) , s0 = +∞ sign(P̄†) ,

{

P̃=P̃
′
=P , for P̄ , P̄† > 0

P̃=P̃
′
=P , for P̄ , P̄† < 0

. (21)

To see this take a quark with label n̄·p > 0 and an antiquark with label n̄·p′ < 0, and note
that
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− .

This is in agreement with the Ỹ = Y−, Y † = Y †
−, Y = Y+, Ỹ † = Y †

+ used in [30] for the
production and annihilation of antiparticles and the annihilation and production of parti-
cles respectively. The results in Eq. (22) reproduce the natural choice of having incoming
quarks/antiquarks enter from −∞, while outgoing quarks/antiquarks extend out to +∞.
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≡ ξ̄+
n,pY

†
+ ,

Y ξn,p′ = P̃ exp
(

ig

∫ 0

∞

ds n·Aus(x
µ
s )

)

ξ−n,p′ = P exp
(

−ig

∫ ∞

0

ds n·Aus(x
µ
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)

ξ−n,p′ ≡ Y−ξ−n,p′ ,

ξ̄n,p′Y
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′
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(

−ig
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−∞

ds n·Aus(x
µ
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≡ ξ̄−n,p′Y
†
− .

This is in agreement with the Ỹ = Y−, Y † = Y †
−, Y = Y+, Ỹ † = Y †

+ used in [30] for the
production and annihilation of antiparticles and the annihilation and production of parti-
cles respectively. The results in Eq. (22) reproduce the natural choice of having incoming
quarks/antiquarks enter from −∞, while outgoing quarks/antiquarks extend out to +∞.

7

ξn → Y ξn An → Y AnY †, Y (x) = P exp
(
ig

∫ 0

−∞
ds n·Aus(x+ns)

)

n·DusY =0, Y †Y =1

Field Redefinition: 

choice of ±∞

here is irrelevant
if one is careful
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IR divergences, UV divergences, and Matching
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FIG. 6. Order λ0 effective theory diagrams for the heavy to light current at one loop.

From Eq. (35) we see that the logarithms in diagrams with collinear gluons are small at a

scale µ ∼
√

p2
⊥ ∼ Qλ. For the graphs with soft gluons the logarithms are small at a different

scale µ ∼ p2
⊥/(n̄ · p) ∼ Qλ2. Running the collinear-soft theory from µ = Q to µ = Qλ

therefore sums all logarithms originating from collinear effects and part of the logarithms

from soft exchange. At µ = Qλ collinear gluons may be integrated out and one matches onto

a theory containing only soft degrees of freedom. The running in this soft theory includes

the remaining logarithms from soft exchange, which would need to be taken into account to

sum all Sudakov logarithms.

To run between Q and Qλ we add up the ultraviolet divergences in the soft and collinear

diagrams in Eqs. (35) and (36). This gives the counterterm in the effective theory

Zi = 1 +
αs(µ)CF

4π

[
1

ε2
+

2

ε
ln

( µ

n̄ · P
)

+
5

2ε

]
. (37)

For b → sγ, n̄ ·P = mb and Eq. (37) agrees with Ref. [6]. Since µ > Qλ the counterterm can

depend on the label n̄ · P ∼ Q, but does not depend on P⊥ ∼ Qλ. Zi could also have been

calculated directly from the matching result in Eq. (31). Since the effective theory reproduces

all the infrared divergences in the full theory, the effective theory UV divergences are simply

the negative of the full theory IR divergences when pure dimensional regularization is used.

This alternative approach also gives Eq. (37).

In the effective theory the current ξ̄n,pΓhv factors out of the diagrams in Fig. 6 so it is

obvious that Zi is independent of the spin structure of the current. Thus, all the coefficients

satisfy the same renormalization group equation (RGE)

µ
d

dµ
Ci(µ) = γ(µ)Ci(µ) . (38)

The LO anomalous dimension is determined by the ln(µ)/ε term in Eq. (37) (whose coeffi-

cient is determined by the 1/ε2 term). The NLO anomalous dimension has a contribution

from the 1/ε terms in Eq. (37), as well as a contribution from the ln(µ)/ε term in the two

loop Zi counterterm:

17
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From Eq. (35) we see that the logarithms in diagrams with collinear gluons are small at a
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⊥/(n̄ · p) ∼ Qλ2. Running the collinear-soft theory from µ = Q to µ = Qλ

therefore sums all logarithms originating from collinear effects and part of the logarithms

from soft exchange. At µ = Qλ collinear gluons may be integrated out and one matches onto

a theory containing only soft degrees of freedom. The running in this soft theory includes

the remaining logarithms from soft exchange, which would need to be taken into account to
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For b → sγ, n̄ ·P = mb and Eq. (37) agrees with Ref. [6]. Since µ > Qλ the counterterm can

depend on the label n̄ · P ∼ Q, but does not depend on P⊥ ∼ Qλ. Zi could also have been

calculated directly from the matching result in Eq. (31). Since the effective theory reproduces

all the infrared divergences in the full theory, the effective theory UV divergences are simply

the negative of the full theory IR divergences when pure dimensional regularization is used.

This alternative approach also gives Eq. (37).

In the effective theory the current ξ̄n,pΓhv factors out of the diagrams in Fig. 6 so it is

obvious that Zi is independent of the spin structure of the current. Thus, all the coefficients

satisfy the same renormalization group equation (RGE)

µ
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The LO anomalous dimension is determined by the ln(µ)/ε term in Eq. (37) (whose coeffi-

cient is determined by the 1/ε2 term). The NLO anomalous dimension has a contribution

from the 1/ε terms in Eq. (37), as well as a contribution from the ln(µ)/ε term in the two

loop Zi counterterm:
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For b → sγ, n̄ ·P = mb and Eq. (37) agrees with Ref. [6]. Since µ > Qλ the counterterm can

depend on the label n̄ · P ∼ Q, but does not depend on P⊥ ∼ Qλ. Zi could also have been

calculated directly from the matching result in Eq. (31). Since the effective theory reproduces
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From Eq. (35) we see that the logarithms in diagrams with collinear gluons are small at a
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√
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⊥ ∼ Qλ. For the graphs with soft gluons the logarithms are small at a different

scale µ ∼ p2
⊥/(n̄ · p) ∼ Qλ2. Running the collinear-soft theory from µ = Q to µ = Qλ

therefore sums all logarithms originating from collinear effects and part of the logarithms

from soft exchange. At µ = Qλ collinear gluons may be integrated out and one matches onto

a theory containing only soft degrees of freedom. The running in this soft theory includes

the remaining logarithms from soft exchange, which would need to be taken into account to
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For b → sγ, n̄ ·P = mb and Eq. (37) agrees with Ref. [6]. Since µ > Qλ the counterterm can

depend on the label n̄ · P ∼ Q, but does not depend on P⊥ ∼ Qλ. Zi could also have been

calculated directly from the matching result in Eq. (31). Since the effective theory reproduces

all the infrared divergences in the full theory, the effective theory UV divergences are simply

the negative of the full theory IR divergences when pure dimensional regularization is used.

This alternative approach also gives Eq. (37).

In the effective theory the current ξ̄n,pΓhv factors out of the diagrams in Fig. 6 so it is
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satisfy the same renormalization group equation (RGE)
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(more on this later)

“zero-bin”

23



SCET

9

i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

i∂µUus(x) ∼ pµ
c Uus(x) ↔ Aµ

us (75)

n n̄

ξ̄niDµ
⊥

1

in̄ · D
iD⊥

µ
n̄/

2
ξn (76)

IX. HARD-COLLINEAR FACTORIZATION

C(P̄ , µ): they depend on large momenta picked out by P̄ = n̄·P ∼ λ0

C(−P̄, µ)
(

ξ̄nW
)

Γhv =
(

ξ̄nW
)

Γhv C(P̄†, µ) (77)

(

ξ̄nW
)

Γhv C(P̄†, µ) =

∫

dω C(ω, µ)
[

(

ξ̄nW
)

δ(ω − P̄†)Γhv

]

=

∫

dω C(ω, µ)O(ω, µ) (78)

In general:

f(in̄ · Dc) = Wf(P̄)W †

=

∫

dω f(ω)
[

W δ(ω − P̄)W †
]

(79)

p2 ∼ Q2 p2 ∼ Q2λ2

L(0)
c = ξ̄n

{

n · iDus + . . .
} n̄/

2
ξn → ξ̄n

{

n · iDc + iD/c
⊥

1

in̄ · Dc
iD/c

⊥

} n̄/

2
ξn (80)

J = (ξ̄nW )ωΓhv → (ξ̄nY †Y WY †)ωΓhv = (ξ̄nW )ωΓ(Y †hv) (81)

J = (ξ̄nW )ω1Γ(W †ξn)ω2 → (ξ̄nW )ω1Y
†Y Γ(W †ξn)ω2 = (ξ̄nW )ω1Γ(W †ξn)ω2 (82)

X. IR DIVERGENCES AND LOOPS

JQCD = s̄ Γ b

JSCET = (ξ̄nW )ωΓhv

∝ n̄
2

= 0

I Feyn. Gauge
n̄·p = mb

same IR regulatorsmore collinear gluon graphs

∝ n̄
2

= 0

a) c) e)

b) d) f)

FIG. 6. Order λ0 effective theory diagrams for the heavy to light current at one loop.

From Eq. (35) we see that the logarithms in diagrams with collinear gluons are small at a

scale µ ∼
√

p2
⊥ ∼ Qλ. For the graphs with soft gluons the logarithms are small at a different
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⊥/(n̄ · p) ∼ Qλ2. Running the collinear-soft theory from µ = Q to µ = Qλ

therefore sums all logarithms originating from collinear effects and part of the logarithms

from soft exchange. At µ = Qλ collinear gluons may be integrated out and one matches onto

a theory containing only soft degrees of freedom. The running in this soft theory includes

the remaining logarithms from soft exchange, which would need to be taken into account to

sum all Sudakov logarithms.

To run between Q and Qλ we add up the ultraviolet divergences in the soft and collinear

diagrams in Eqs. (35) and (36). This gives the counterterm in the effective theory
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For b → sγ, n̄ ·P = mb and Eq. (37) agrees with Ref. [6]. Since µ > Qλ the counterterm can

depend on the label n̄ · P ∼ Q, but does not depend on P⊥ ∼ Qλ. Zi could also have been

calculated directly from the matching result in Eq. (31). Since the effective theory reproduces

all the infrared divergences in the full theory, the effective theory UV divergences are simply

the negative of the full theory IR divergences when pure dimensional regularization is used.

This alternative approach also gives Eq. (37).

In the effective theory the current ξ̄n,pΓhv factors out of the diagrams in Fig. 6 so it is

obvious that Zi is independent of the spin structure of the current. Thus, all the coefficients

satisfy the same renormalization group equation (RGE)

µ
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Ci(µ) = γ(µ)Ci(µ) . (38)

The LO anomalous dimension is determined by the ln(µ)/ε term in Eq. (37) (whose coeffi-

cient is determined by the 1/ε2 term). The NLO anomalous dimension has a contribution

from the 1/ε terms in Eq. (37), as well as a contribution from the ln(µ)/ε term in the two
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i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

i∂µUus(x) ∼ pµ
c Uus(x) ↔ Aµ

us (75)

n n̄

ξ̄niDµ
⊥

1

in̄ · D
iD⊥

µ
n̄/

2
ξn (76)

IX. HARD-COLLINEAR FACTORIZATION

C(P̄ , µ): they depend on large momenta picked out by P̄ = n̄·P ∼ λ0

C(−P̄, µ)
(

ξ̄nW
)

Γhv =
(

ξ̄nW
)

Γhv C(P̄†, µ) (77)

(

ξ̄nW
)

Γhv C(P̄†, µ) =

∫

dω C(ω, µ)
[

(

ξ̄nW
)

δ(ω − P̄†)Γhv

]

=

∫

dω C(ω, µ)O(ω, µ) (78)

In general:

f(in̄ · Dc) = Wf(P̄)W †

=

∫

dω f(ω)
[

W δ(ω − P̄)W †
]

(79)

p2 ∼ Q2 p2 ∼ Q2λ2

L(0)
c = ξ̄n

{

n · iDus + . . .
} n̄/

2
ξn → ξ̄n

{

n · iDc + iD/c
⊥

1

in̄ · Dc
iD/c

⊥

} n̄/

2
ξn (80)

J = (ξ̄nW )ωΓhv → (ξ̄nY †Y WY †)ωΓhv = (ξ̄nW )ωΓ(Y †hv) (81)

J = (ξ̄nW )ω1Γ(W †ξn)ω2 → (ξ̄nW )ω1Y
†Y Γ(W †ξn)ω2 = (ξ̄nW )ω1Γ(W †ξn)ω2 (82)

X. IR DIVERGENCES AND LOOPS

JQCD = s̄ Γ b

JSCET = (ξ̄nW )ωΓhv

Γ = σµν

−
αs

3π

[

ln2
(−p2

m2
b

)

+
3

2
ln

(−p2

m2
b

)

+
1

εIR
+ 2 ln

( µ2

m2
b

)

+ constants

]

(83)

p2 %= 0 for s-quark 1/εIR for b-quark

−
αs

3π

[

ln2
(−p2

m2
b

)

+
3

2
ln

(−p2

m2
b

)

+
1

εIR
+ 2 ln

( µ2

m2
b

)

+ constants

]

(84)10

−
αs

3π

[

ln2
(−p2

m2
b

)

+
3

2
ln

(−p2

m2
b

)

+
1

εIR

−
1

ε2UV

−
5

2εUV
−

2

εUV
ln

( µ

mb

)

− 2 ln2
( µ

mb

)

−
3

2
ln

( µ2

m2
b

)

+ constants

]

(84)

same IR divergences

UV renormalization in SCET 
sums double Sudakov logs

remaining terms in SCET & 
QCD give one-loop matching 
for C(n̄·p = mb, µ)
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∑

q !=0,q !=−p

∫
d4qr

(2π)4
=⇒

∫
d4q

(2π)4
?

These restrictions ensure that the collinear graph does not
double count the IR momentum region taken care of by the 
usoft graph

∑

p1 !=0

∫

dp1r F (qb)(p1) =

∫

dp1

[

F (qb)(p1) − F
(qb→qa)
subt (p1)

]

General (regulator independent) formula is:

IR UV

p
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p
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zero-bin subtraction
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For our example

=
∑

q !=0, q !=−p

∫
d4qr

(2π)4
2n̄·(q + p)

(n̄·q+i0+)((q + p)2+i0+)(q2+i0+)

using dim.reg. in UV
p
2 != 0 in IR

B. Offshell Regulator with Dimensional Regularization for B → Xsγ

We now repeat the calculation of the effective theory diagrams in the previous section but

keep p2 "= 0 to regulate the infrared and use dimensional regularization for the ultraviolet,

D = 4 − 2ε. The full theory integral is

Ib→sγ
full =

∫

dDq

(2π)D

4pb · p
(q2 + i0+)(q2 + 2pb · q + i0+)[(q + p)2 + i0+]

. (55)

The SCET integrals are

Ib→sγ
us =

∫

dDk

(2π)D

1

(k2 + i0+)(v ·k + i0+)(n·k + p2/n̄·p + i0+)
,

Ĩb→sγ
C =

∫

dDq

(2π)D

2n̄·(q + p)

(n̄·q + i0+)[(q + p)2 + i0+](q2 + i0+)
,

Ib→sγ
0 =

∫

dDq

(2π)D

2n̄·p
(n̄·q + i0+)(n·q n̄·p + p2 + i0+)(q2 + i0+)

. (56)

Again, one can see that as n̄ · q → 0 the difference Ĩb→sγ
C − Ib→sγ

0 does not have an infrared

divergence from this region. However in IC alone, there is an infrared divergence from this

region that is not regulated by p2 "= 0. It is regulated by dimensional regularization, and so

contributes to the 1/ε singular terms. Evaluating the above integrals we find,

Ib→sγ
full = −

i

16π2

[

ln2
( −p2

[n̄·p]2

)

]

+ . . . ,

Ib→sγ
us = −

i

16π2

[

1

ε2
UV

+
2

εUV
ln

(µn̄·p
−p2

)

+ 2 ln2
(µn̄·p
−p2

)

]

+ . . . ,

Ĩb→sγ
C = −

i

16π2

[

−
2

εIRεUV
−

2

εIR
ln

( µ2

−p2

)

− ln2
( µ2

−p2

)

+
( 2

εIR
−

2

εUV

)

ln
( µ

n̄·p

)

]

+ . . . ,

Ib→sγ
0 = −

i

16π2

[

( 2

εUV
−

2

εIR

){ 1

εUV
+ ln

( µ2

−p2

)

− ln
( µ

n̄·p

)}

]

, (57)

where we have distinguished between ultraviolet and infrared divergences. Here we see that

the zero-bin contribution Ib→sγ
0 is responsible for canceling IR divergences in Ĩb→sγ

C that were

not regulated by the offshellness,

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 = −

i

16π2

[

−
2

ε2
UV

−
2

εUV
ln

( µ2

−p2

)

− ln2
( µ2

−p2

)

]

+ . . . . (58)

angles opposite to the collinear direction. The renormalizability properties of field theory only appear for

large momenta, and the zero-bin turns this divergence into a true UV divergence. One must be careful

about the distinction between angles for particle and antiparticle poles when determining that the n̄·k → 0

divergence is IR.
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. (56)

Again, one can see that as n̄ · q → 0 the difference Ĩb→sγ
C − Ib→sγ

0 does not have an infrared

divergence from this region. However in IC alone, there is an infrared divergence from this

region that is not regulated by p2 "= 0. It is regulated by dimensional regularization, and so

contributes to the 1/ε singular terms. Evaluating the above integrals we find,

Ib→sγ
full = −

i

16π2

[

ln2
( −p2

[n̄·p]2

)

]

+ . . . ,

Ib→sγ
us = −

i

16π2

[

1

ε2
UV

+
2

εUV
ln

(µn̄·p
−p2

)

+ 2 ln2
(µn̄·p
−p2

)

]

+ . . . ,

Ĩb→sγ
C = −

i

16π2

[

−
2

εIRεUV
−

2

εIR
ln

( µ2

−p2

)

− ln2
( µ2

−p2

)

+
( 2

εIR
−

2

εUV

)

ln
( µ

n̄·p

)

]

+ . . . ,

Ib→sγ
0 = −

i

16π2

[

( 2

εUV
−

2

εIR

){ 1

εUV
+ ln

( µ2

−p2

)

− ln
( µ

n̄·p

)}

]

, (57)

where we have distinguished between ultraviolet and infrared divergences. Here we see that

the zero-bin contribution Ib→sγ
0 is responsible for canceling IR divergences in Ĩb→sγ

C that were

not regulated by the offshellness,

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 = −

i

16π2

[

−
2

ε2
UV

−
2

εUV
ln

( µ2

−p2

)

− ln2
( µ2

−p2

)

]

+ . . . . (58)

angles opposite to the collinear direction. The renormalizability properties of field theory only appear for

large momenta, and the zero-bin turns this divergence into a true UV divergence. One must be careful

about the distinction between angles for particle and antiparticle poles when determining that the n̄·k → 0

divergence is IR.
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B. Offshell Regulator with Dimensional Regularization for B → Xsγ

We now repeat the calculation of the effective theory diagrams in the previous section but

keep p2 "= 0 to regulate the infrared and use dimensional regularization for the ultraviolet,

D = 4 − 2ε. The full theory integral is

Ib→sγ
full =

∫

dDq

(2π)D

4pb · p
(q2 + i0+)(q2 + 2pb · q + i0+)[(q + p)2 + i0+]

. (55)

The SCET integrals are

Ib→sγ
us =

∫

dDk

(2π)D

1

(k2 + i0+)(v ·k + i0+)(n·k + p2/n̄·p + i0+)
,

Ĩb→sγ
C =

∫

dDq

(2π)D

2n̄·(q + p)

(n̄·q + i0+)[(q + p)2 + i0+](q2 + i0+)
,

Ib→sγ
0 =

∫

dDq

(2π)D

2n̄·p
(n̄·q + i0+)(n·q n̄·p + p2 + i0+)(q2 + i0+)

. (56)

Again, one can see that as n̄ · q → 0 the difference Ĩb→sγ
C − Ib→sγ

0 does not have an infrared

divergence from this region. However in IC alone, there is an infrared divergence from this

region that is not regulated by p2 "= 0. It is regulated by dimensional regularization, and so

contributes to the 1/ε singular terms. Evaluating the above integrals we find,

Ib→sγ
full = −

i

16π2

[

ln2
( −p2

[n̄·p]2

)

]

+ . . . ,

Ib→sγ
us = −

i

16π2

[

1

ε2
UV

+
2

εUV
ln

(µn̄·p
−p2

)

+ 2 ln2
(µn̄·p
−p2

)

]

+ . . . ,

Ĩb→sγ
C = −

i

16π2

[

−
2

εIRεUV
−

2

εIR
ln

( µ2

−p2

)

− ln2
( µ2

−p2

)

+
( 2

εIR
−

2

εUV

)

ln
( µ

n̄·p

)

]

+ . . . ,

Ib→sγ
0 = −

i

16π2

[

( 2

εUV
−

2

εIR

){ 1

εUV
+ ln

( µ2

−p2

)

− ln
( µ

n̄·p

)}

]

, (57)

where we have distinguished between ultraviolet and infrared divergences. Here we see that

the zero-bin contribution Ib→sγ
0 is responsible for canceling IR divergences in Ĩb→sγ

C that were

not regulated by the offshellness,

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 = −

i

16π2

[

−
2

ε2
UV

−
2

εUV
ln

( µ2

−p2

)

− ln2
( µ2

−p2

)

]

+ . . . . (58)

angles opposite to the collinear direction. The renormalizability properties of field theory only appear for

large momenta, and the zero-bin turns this divergence into a true UV divergence. One must be careful

about the distinction between angles for particle and antiparticle poles when determining that the n̄·k → 0

divergence is IR.
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B. Offshell Regulator with Dimensional Regularization for B → Xsγ

We now repeat the calculation of the effective theory diagrams in the previous section but

keep p2 "= 0 to regulate the infrared and use dimensional regularization for the ultraviolet,

D = 4 − 2ε. The full theory integral is

Ib→sγ
full =

∫

dDq

(2π)D

4pb · p
(q2 + i0+)(q2 + 2pb · q + i0+)[(q + p)2 + i0+]

. (55)

The SCET integrals are

Ib→sγ
us =

∫

dDk

(2π)D

1

(k2 + i0+)(v ·k + i0+)(n·k + p2/n̄·p + i0+)
,

Ĩb→sγ
C =

∫

dDq

(2π)D

2n̄·(q + p)

(n̄·q + i0+)[(q + p)2 + i0+](q2 + i0+)
,

Ib→sγ
0 =

∫

dDq

(2π)D

2n̄·p
(n̄·q + i0+)(n·q n̄·p + p2 + i0+)(q2 + i0+)

. (56)

Again, one can see that as n̄ · q → 0 the difference Ĩb→sγ
C − Ib→sγ

0 does not have an infrared

divergence from this region. However in IC alone, there is an infrared divergence from this

region that is not regulated by p2 "= 0. It is regulated by dimensional regularization, and so

contributes to the 1/ε singular terms. Evaluating the above integrals we find,

Ib→sγ
full = −

i

16π2

[

ln2
( −p2

[n̄·p]2

)

]

+ . . . ,

Ib→sγ
us = −

i

16π2

[

1

ε2
UV

+
2

εUV
ln

(µn̄·p
−p2

)

+ 2 ln2
(µn̄·p
−p2

)

]

+ . . . ,

Ĩb→sγ
C = −

i

16π2

[

−
2

εIRεUV
−

2

εIR
ln

( µ2

−p2

)

− ln2
( µ2

−p2

)

+
( 2

εIR
−

2

εUV

)

ln
( µ

n̄·p

)

]

+ . . . ,

Ib→sγ
0 = −

i

16π2

[

( 2

εUV
−

2

εIR

){ 1

εUV
+ ln

( µ2

−p2

)

− ln
( µ

n̄·p

)}

]

, (57)

where we have distinguished between ultraviolet and infrared divergences. Here we see that

the zero-bin contribution Ib→sγ
0 is responsible for canceling IR divergences in Ĩb→sγ

C that were

not regulated by the offshellness,

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 = −

i

16π2

[

−
2

ε2
UV

−
2

εUV
ln

( µ2

−p2

)

− ln2
( µ2

−p2

)

]

+ . . . . (58)

angles opposite to the collinear direction. The renormalizability properties of field theory only appear for

large momenta, and the zero-bin turns this divergence into a true UV divergence. One must be careful

about the distinction between angles for particle and antiparticle poles when determining that the n̄·k → 0

divergence is IR.

33

• UV collinear singularity comes from n̄·q → ∞

• standard calc. tool of taking εIR = εUV with no subtraction 
gives the same answer

(in subtraction term)

avoids double counting 
the usoft region

=

∫

ddq

(2π)d

[

2n̄ · (q + p)

(n̄ · q+i0+)[(q + p)2+i0+](q2+i0+)
−

2n̄ · p

(n̄ · q+i0+)[n·q n̄·p+p2+i0+](q2+i0+)

]

= subtraction

• singularity from n̄·q → 0 cancels between the two terms

27



eg. of another regulator 
Cutoffs:  Ω2

−
≤ (q−)2 ≤ Λ2

−

no constraint on q+ ,   p onshell
can be evaluated to give

Ib→sγ
full =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

]

+ . . . ,

Ib→sγ
us =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

Λ−

)

ln
(Ω−Λ−

Ω2
⊥

)

]

,

Ĩb→sγ
C =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

p−

)

]

+ . . . ,

Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

Λ−

)

]

. (52)

The full result for the collinear graph is therefore

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Λ−

p−

)

]

+ . . . , (53)

and we see that the zero-bin subtraction Ib→sγ
0 has converted an IR divergence ln(Ω−) for

the q− variable in Ĩb→sγ
C into a UV divergence, ln(Λ−). The sum of the SCETI effective

theory contributions gives

Ib→sγ
us + Ib→sγ

C =
i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

+ ln2
(Λ⊥

p−

)

−ln2
(Λ⊥

Λ−

)

]

+ . . . . (54)

The first two terms on the r.h.s. contain the infrared divergences and exactly reproduce

these divergences in the full theory result Ib→sγ
full . Furthermore, the last two terms in Eq. (54)

depend only on the ultraviolet cutoffs and the large label momentum p− and can be compen-

sated by a counterterm for the current in SCETI. If Ib→sγ
0 in Eq. (53) had been left out, then

we would not properly reproduce the IR divergences in the full theory result. Furthermore,

without Ib→sγ
0 , the ultraviolet cutoff dependent term would have cross terms ln(Λ−) ln(Ω2

⊥)

and ln(Λ2
⊥) ln(Ω−) and it would not be possible to cancel the cutoff dependence by a coun-

terterm independent of the IR regulator.

The above calculation was performed for the current J (0) in Eq. (43). Since our regulator

leaves all external lines onshell we obtain exactly the same results if we had started with

the current J ′(0) in Eq. (44), which is obtained after making a field redefinition involving the

Wilson line Y . Since we work onshell the two forms of the current are equivalent, and the

Feynman rule from the Wilson line Y give exactly the same integral in Eq. (48). Thus our

implementation of a cutoff IR regulator does not destroy the eikonal factorization embodied

by the field redefinitions involving the Wilson line Y . This property of the field theory is

not maintained with the offshellness IR regulator which we consider in the next section.

This should be considered as a fault of this IR regulator as pointed out in Ref. [63]. In

Ref. [63] an energy dependent gluon mass regulator was studied which also preserves the

field redefinition.13

13 Ref. [63] also argued that the n̄·k → 0 divergence must be treated as a UV in the EFT since it comes from
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can be evaluated to give

Ib→sγ
full =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

]

+ . . . ,

Ib→sγ
us =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

Λ−

)

ln
(Ω−Λ−

Ω2
⊥

)

]

,

Ĩb→sγ
C =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

p−

)

]

+ . . . ,

Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

Λ−

)

]

. (52)

The full result for the collinear graph is therefore

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Λ−

p−

)

]

+ . . . , (53)

and we see that the zero-bin subtraction Ib→sγ
0 has converted an IR divergence ln(Ω−) for

the q− variable in Ĩb→sγ
C into a UV divergence, ln(Λ−). The sum of the SCETI effective

theory contributions gives

Ib→sγ
us + Ib→sγ

C =
i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

+ ln2
(Λ⊥

p−

)

−ln2
(Λ⊥

Λ−

)

]

+ . . . . (54)

The first two terms on the r.h.s. contain the infrared divergences and exactly reproduce

these divergences in the full theory result Ib→sγ
full . Furthermore, the last two terms in Eq. (54)

depend only on the ultraviolet cutoffs and the large label momentum p− and can be compen-

sated by a counterterm for the current in SCETI. If Ib→sγ
0 in Eq. (53) had been left out, then

we would not properly reproduce the IR divergences in the full theory result. Furthermore,

without Ib→sγ
0 , the ultraviolet cutoff dependent term would have cross terms ln(Λ−) ln(Ω2

⊥)

and ln(Λ2
⊥) ln(Ω−) and it would not be possible to cancel the cutoff dependence by a coun-

terterm independent of the IR regulator.

The above calculation was performed for the current J (0) in Eq. (43). Since our regulator

leaves all external lines onshell we obtain exactly the same results if we had started with

the current J ′(0) in Eq. (44), which is obtained after making a field redefinition involving the

Wilson line Y . Since we work onshell the two forms of the current are equivalent, and the

Feynman rule from the Wilson line Y give exactly the same integral in Eq. (48). Thus our

implementation of a cutoff IR regulator does not destroy the eikonal factorization embodied

by the field redefinitions involving the Wilson line Y . This property of the field theory is

not maintained with the offshellness IR regulator which we consider in the next section.

This should be considered as a fault of this IR regulator as pointed out in Ref. [63]. In

Ref. [63] an energy dependent gluon mass regulator was studied which also preserves the

field redefinition.13

13 Ref. [63] also argued that the n̄·k → 0 divergence must be treated as a UV in the EFT since it comes from
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SCET

QCD

can be evalua ted to give

I b→sγ
full =

i
8π2

[

L i2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

]

+ . . . ,

I b→sγ
us =

i
8π2

[

L i2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

Λ−

)

ln
(Ω−Λ−

Ω2
⊥

)

]

,

Ĩ b→sγ
C =

i
8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

p−

)

]

+ . . . ,

I b→sγ
0 =

i
8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

Λ−

)

]

. (52)

T he full result for the collinear graph is therefore

I b→sγ
C = Ĩ b→sγ

C − I b→sγ
0 =

i
8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Λ−

p−

)

]

+ . . . , (53)

and we see tha t the zero-bin subtract ion I b→sγ
0 has converted an I R divergence ln(Ω−) for

the q− variable in Ĩ b→sγ
C into a U V divergence, ln(Λ−). T he sum of the SC E T I effect ive

theory contribut ions gives

I b→sγ
us + I b→sγ

C =
i

8π2

[

L i2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

+ ln2
(Λ⊥

p−

)

− ln2
(Λ⊥

Λ−

)

]

+ . . . . (54)

T he first two terms on the r.h.s. contain the infrared divergences and exact ly reproduce
these divergences in the full theory result I b→sγ

full . Furthermore, the last two terms in E q. (54)
depend only on the ultraviolet cutoffs and the large label momentum p− and can be compen-
sa ted by a counterterm for the current in SC E T I . If I b→sγ

0 in E q. (53) had been left out , then
we would not properly reproduce the I R divergences in the full theory result . Furthermore,
without I b→sγ

0 , the ultraviolet cutoff dependent term would have cross terms ln(Λ−) ln(Ω2
⊥)

and ln(Λ2
⊥) ln(Ω−) and it would not be possible to cancel the cutoff dependence by a coun-

terterm independent of the I R regula tor.
T he above calcula t ion was performed for the current J (0) in E q. (43). Since our regula tor

leaves all ex ternal lines onshell we obtain exact ly the same results if we had started with
the current J ′(0) in E q. (44), which is obtained after making a field redefinit ion involving the
W ilson line Y . Since we work onshell the two forms of the current are equivalent , and the
Feynman rule from the W ilson line Y give exact ly the same integral in E q. (48). T hus our
implementa t ion of a cutoff I R regula tor does not destroy the eikonal factoriza t ion embodied
by the field redefinit ions involving the W ilson line Y . T his property of the field theory is
not maintained with the offshellness I R regula tor which we consider in the nex t sect ion.
T his should be considered as a fault of this I R regula tor as pointed out in Ref. [63]. In
Ref. [63] an energy dependent gluon mass regula tor was studied which also preserves the
field redefinit ion.13

13 Ref. [63] also argued that the n̄·k → 0 divergence must be treated as a UV in the EFT since it comes from
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can be evaluated to give

Ib→sγ
full =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

]

+ . . . ,

Ib→sγ
us =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

Λ−

)

ln
(Ω−Λ−

Ω2
⊥

)

]

,

Ĩb→sγ
C =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

p−

)

]

+ . . . ,

Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

Λ−

)

]

. (52)

The full result for the collinear graph is therefore

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Λ−

p−

)

]

+ . . . , (53)

and we see that the zero-bin subtraction Ib→sγ
0 has converted an IR divergence ln(Ω−) for

the q− variable in Ĩb→sγ
C into a UV divergence, ln(Λ−). The sum of the SCETI effective

theory contributions gives

Ib→sγ
us + Ib→sγ

C =
i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

+ ln2
(Λ⊥

p−

)

−ln2
(Λ⊥

Λ−

)

]

+ . . . . (54)

The first two terms on the r.h.s. contain the infrared divergences and exactly reproduce

these divergences in the full theory result Ib→sγ
full . Furthermore, the last two terms in Eq. (54)

depend only on the ultraviolet cutoffs and the large label momentum p− and can be compen-

sated by a counterterm for the current in SCETI. If Ib→sγ
0 in Eq. (53) had been left out, then

we would not properly reproduce the IR divergences in the full theory result. Furthermore,

without Ib→sγ
0 , the ultraviolet cutoff dependent term would have cross terms ln(Λ−) ln(Ω2

⊥)

and ln(Λ2
⊥) ln(Ω−) and it would not be possible to cancel the cutoff dependence by a coun-

terterm independent of the IR regulator.

The above calculation was performed for the current J (0) in Eq. (43). Since our regulator

leaves all external lines onshell we obtain exactly the same results if we had started with

the current J ′(0) in Eq. (44), which is obtained after making a field redefinition involving the

Wilson line Y . Since we work onshell the two forms of the current are equivalent, and the

Feynman rule from the Wilson line Y give exactly the same integral in Eq. (48). Thus our

implementation of a cutoff IR regulator does not destroy the eikonal factorization embodied

by the field redefinitions involving the Wilson line Y . This property of the field theory is

not maintained with the offshellness IR regulator which we consider in the next section.

This should be considered as a fault of this IR regulator as pointed out in Ref. [63]. In

Ref. [63] an energy dependent gluon mass regulator was studied which also preserves the

field redefinition.13

13 Ref. [63] also argued that the n̄·k → 0 divergence must be treated as a UV in the EFT since it comes from
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can be evaluated to give

Ib→sγ
full =
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8π2
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+ . . . ,
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)

]

,

Ĩb→sγ
C =

i

8π2

[

− ln
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⊥

Λ2
⊥

)

ln
(Ω−

p−

)

]

+ . . . ,

Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

Λ−

)

]

. (52)

The full result for the collinear graph is therefore

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Λ−

p−

)

]

+ . . . , (53)

and we see that the zero-bin subtraction Ib→sγ
0 has converted an IR divergence ln(Ω−) for

the q− variable in Ĩb→sγ
C into a UV divergence, ln(Λ−). The sum of the SCETI effective

theory contributions gives

Ib→sγ
us + Ib→sγ

C =
i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

+ ln2
(Λ⊥

p−

)

−ln2
(Λ⊥

Λ−

)

]

+ . . . . (54)

The first two terms on the r.h.s. contain the infrared divergences and exactly reproduce

these divergences in the full theory result Ib→sγ
full . Furthermore, the last two terms in Eq. (54)

depend only on the ultraviolet cutoffs and the large label momentum p− and can be compen-

sated by a counterterm for the current in SCETI. If Ib→sγ
0 in Eq. (53) had been left out, then

we would not properly reproduce the IR divergences in the full theory result. Furthermore,

without Ib→sγ
0 , the ultraviolet cutoff dependent term would have cross terms ln(Λ−) ln(Ω2

⊥)

and ln(Λ2
⊥) ln(Ω−) and it would not be possible to cancel the cutoff dependence by a coun-

terterm independent of the IR regulator.

The above calculation was performed for the current J (0) in Eq. (43). Since our regulator

leaves all external lines onshell we obtain exactly the same results if we had started with

the current J ′(0) in Eq. (44), which is obtained after making a field redefinition involving the

Wilson line Y . Since we work onshell the two forms of the current are equivalent, and the

Feynman rule from the Wilson line Y give exactly the same integral in Eq. (48). Thus our

implementation of a cutoff IR regulator does not destroy the eikonal factorization embodied

by the field redefinitions involving the Wilson line Y . This property of the field theory is

not maintained with the offshellness IR regulator which we consider in the next section.

This should be considered as a fault of this IR regulator as pointed out in Ref. [63]. In

Ref. [63] an energy dependent gluon mass regulator was studied which also preserves the

field redefinition.13

13 Ref. [63] also argued that the n̄·k → 0 divergence must be treated as a UV in the EFT since it comes from
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can be evalua ted to give

I b→sγ
full =

i
8π2

[

L i2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

]

+ . . . ,

I b→sγ
us =

i
8π2

[

L i2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

Λ−

)

ln
(Ω−Λ−

Ω2
⊥

)

]

,

Ĩ b→sγ
C =

i
8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

p−

)

]

+ . . . ,

I b→sγ
0 =

i
8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

Λ−

)

]

. (52)

T he full result for the collinear graph is therefore

I b→sγ
C = Ĩ b→sγ

C − I b→sγ
0 =

i
8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Λ−

p−

)

]

+ . . . , (53)

and we see tha t the zero-bin subtract ion I b→sγ
0 has converted an I R divergence ln(Ω−) for

the q− variable in Ĩ b→sγ
C into a U V divergence, ln(Λ−). T he sum of the SC E T I effect ive

theory contribut ions gives

I b→sγ
us + I b→sγ

C =
i

8π2

[

L i2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

+ ln2
(Λ⊥

p−

)

− ln2
(Λ⊥

Λ−

)

]

+ . . . . (54)

T he first two terms on the r.h.s. contain the infrared divergences and exact ly reproduce
these divergences in the full theory result I b→sγ

full . Furthermore, the last two terms in E q. (54)
depend only on the ultraviolet cutoffs and the large label momentum p− and can be compen-
sa ted by a counterterm for the current in SC E T I . If I b→sγ

0 in E q. (53) had been left out , then
we would not properly reproduce the I R divergences in the full theory result . Furthermore,
without I b→sγ

0 , the ultraviolet cutoff dependent term would have cross terms ln(Λ−) ln(Ω2
⊥)

and ln(Λ2
⊥) ln(Ω−) and it would not be possible to cancel the cutoff dependence by a coun-

terterm independent of the I R regula tor.
T he above calcula t ion was performed for the current J (0) in E q. (43). Since our regula tor

leaves all ex ternal lines onshell we obtain exact ly the same results if we had started with
the current J ′(0) in E q. (44), which is obtained after making a field redefinit ion involving the
W ilson line Y . Since we work onshell the two forms of the current are equivalent , and the
Feynman rule from the W ilson line Y give exact ly the same integral in E q. (48). T hus our
implementa t ion of a cutoff I R regula tor does not destroy the eikonal factoriza t ion embodied
by the field redefinit ions involving the W ilson line Y . T his property of the field theory is
not maintained with the offshellness I R regula tor which we consider in the nex t sect ion.
T his should be considered as a fault of this I R regula tor as pointed out in Ref. [63]. In
Ref. [63] an energy dependent gluon mass regula tor was studied which also preserves the
field redefinit ion.13

13 Ref. [63] also argued that the n̄·k → 0 divergence must be treated as a UV in the EFT since it comes from
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=

can be evaluated to give

Ib→sγ
full =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

]

+ . . . ,

Ib→sγ
us =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

Λ−

)

ln
(Ω−Λ−

Ω2
⊥

)

]

,

Ĩb→sγ
C =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

p−

)

]

+ . . . ,

Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

Λ−

)

]

. (52)

The full result for the collinear graph is therefore

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Λ−

p−

)

]

+ . . . , (53)

and we see that the zero-bin subtraction Ib→sγ
0 has converted an IR divergence ln(Ω−) for

the q− variable in Ĩb→sγ
C into a UV divergence, ln(Λ−). The sum of the SCETI effective

theory contributions gives

Ib→sγ
us + Ib→sγ

C =
i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

+ ln2
(Λ⊥

p−

)

−ln2
(Λ⊥

Λ−

)

]

+ . . . . (54)

The first two terms on the r.h.s. contain the infrared divergences and exactly reproduce

these divergences in the full theory result Ib→sγ
full . Furthermore, the last two terms in Eq. (54)

depend only on the ultraviolet cutoffs and the large label momentum p− and can be compen-

sated by a counterterm for the current in SCETI. If Ib→sγ
0 in Eq. (53) had been left out, then

we would not properly reproduce the IR divergences in the full theory result. Furthermore,

without Ib→sγ
0 , the ultraviolet cutoff dependent term would have cross terms ln(Λ−) ln(Ω2

⊥)

and ln(Λ2
⊥) ln(Ω−) and it would not be possible to cancel the cutoff dependence by a coun-

terterm independent of the IR regulator.

The above calculation was performed for the current J (0) in Eq. (43). Since our regulator

leaves all external lines onshell we obtain exactly the same results if we had started with

the current J ′(0) in Eq. (44), which is obtained after making a field redefinition involving the

Wilson line Y . Since we work onshell the two forms of the current are equivalent, and the

Feynman rule from the Wilson line Y give exactly the same integral in Eq. (48). Thus our

implementation of a cutoff IR regulator does not destroy the eikonal factorization embodied

by the field redefinitions involving the Wilson line Y . This property of the field theory is

not maintained with the offshellness IR regulator which we consider in the next section.

This should be considered as a fault of this IR regulator as pointed out in Ref. [63]. In

Ref. [63] an energy dependent gluon mass regulator was studied which also preserves the

field redefinition.13

13 Ref. [63] also argued that the n̄·k → 0 divergence must be treated as a UV in the EFT since it comes from
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can be evaluated to give

Ib→sγ
full =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

]

+ . . . ,

Ib→sγ
us =

i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

Λ−

)

ln
(Ω−Λ−

Ω2
⊥

)

]

,

Ĩb→sγ
C =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

p−

)

]

+ . . . ,

Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Ω−

Λ−

)

]

. (52)

The full result for the collinear graph is therefore

Ib→sγ
C = Ĩb→sγ

C − Ib→sγ
0 =

i

8π2

[

− ln
(Ω2

⊥

Λ2
⊥

)

ln
(Λ−

p−

)

]

+ . . . , (53)

and we see that the zero-bin subtraction Ib→sγ
0 has converted an IR divergence ln(Ω−) for

the q− variable in Ĩb→sγ
C into a UV divergence, ln(Λ−). The sum of the SCETI effective

theory contributions gives

Ib→sγ
us + Ib→sγ

C =
i

8π2

[

Li2
(−Ω2

⊥

Ω2
−

)

+ ln
(Ω−

p−

)

ln
(Ω−p−

Ω2
⊥

)

+ ln2
(Λ⊥

p−

)

−ln2
(Λ⊥

Λ−

)

]

+ . . . . (54)

The first two terms on the r.h.s. contain the infrared divergences and exactly reproduce

these divergences in the full theory result Ib→sγ
full . Furthermore, the last two terms in Eq. (54)

depend only on the ultraviolet cutoffs and the large label momentum p− and can be compen-

sated by a counterterm for the current in SCETI. If Ib→sγ
0 in Eq. (53) had been left out, then

we would not properly reproduce the IR divergences in the full theory result. Furthermore,

without Ib→sγ
0 , the ultraviolet cutoff dependent term would have cross terms ln(Λ−) ln(Ω2

⊥)

and ln(Λ2
⊥) ln(Ω−) and it would not be possible to cancel the cutoff dependence by a coun-

terterm independent of the IR regulator.

The above calculation was performed for the current J (0) in Eq. (43). Since our regulator

leaves all external lines onshell we obtain exactly the same results if we had started with

the current J ′(0) in Eq. (44), which is obtained after making a field redefinition involving the

Wilson line Y . Since we work onshell the two forms of the current are equivalent, and the

Feynman rule from the Wilson line Y give exactly the same integral in Eq. (48). Thus our

implementation of a cutoff IR regulator does not destroy the eikonal factorization embodied

by the field redefinitions involving the Wilson line Y . This property of the field theory is

not maintained with the offshellness IR regulator which we consider in the next section.

This should be considered as a fault of this IR regulator as pointed out in Ref. [63]. In

Ref. [63] an energy dependent gluon mass regulator was studied which also preserves the

field redefinition.13

13 Ref. [63] also argued that the n̄·k → 0 divergence must be treated as a UV in the EFT since it comes from
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p
−

= mb

IR matches again
but ONLY with the non-zero subtraction term included

Ω2
⊥ ≤ !q 2

⊥ ≤ Λ2
⊥
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Renormalization in SCET  
&  

Summing Sudakov Logs
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graph sum =

10

−
αs

3π

[

ln2
(−p2

m2
b

)

+
3

2
ln

(−p2

m2
b

)

+
1

εIR

−
1

ε2UV

−
5

2εUV
−

2

εUV
ln

( µ

mb

)

− 2 ln2
( µ

mb

)

−
3

2
ln

( µ2

m2
b

)

+ constants

]

(84)

Renormalize Heavy to Light Current in SCET
Cbare = C + (Zc − 1)C

Zc = 1− αs(µ)CF

4π

( 1
ε2

+
5
2ε

+
2
ε

ln
µ

ω

)

ω = mb

need to remove UV divergences

Compute the Anomalous Dimension

γc = −Z−1
c µ

d

dµ
Zc = µ

d

dµ

αs(µ)CF

4π

( 1
ε2

+
5
2ε

+
2
ε

ln
µ

ω

)

=
αs(µ)CF

4π

(−2
ε
− 5− 4 ln

µ

ω
+

2
ε

)
= −αs(µ)CF

π

(
ln

µ

ω
+

5
4

)

LL part of NLL

µ
d

dµ
αs(µ) = −2εαs(µ) + β[αs]

C(ω, µ)
[
(ξ̄nW )ω Γhv

]

µ
d

dµ
Cbare = 0 =⇒ µ

d

dµ
C(ω, µ) = γc(ω, µ)C(ω, µ)
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LL solution

Solve µ
d

dµ
ln C(ω, µ) = −αs(µ)CF

π
ln

µ

ω
µ

d

dµ
αs ! µ" #−

β0

 π
α2

s ! µ"

use d ln(µ) = −2π

β0

dαs

α2
s

and integrate to obtain the solution

C(ω, µ) = C(ω, µ0) exp
[
−4πCF

β2
0αs(µ0)

(1
z
− 1 + ln z

)](µ0

ω

)2CF ln z/β0

boundary 
condition,
no large logs
for µ0 ∼ ω

∼ exp(αs ln2 +α2
s ln3 + . . .)

z ≡ αs(µ)
αs(µ0)

C(ω, µ) = C(ω, µ0) exp
[
−αsCF

π

(1
2

ln2 µ

µ0
+ ln

µ

µ0
ln

µ0

ω

)]
If β0 → 0 and αs = constant, then

Sudakov double logs exponentiated

,

cusp anomalous dimension
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L ect u res on t he Sof t- C ollinear E  ect i ve T heor y

Iain Stewart, Benasque Summer School 2008
Problems for lecture 3

P roblem 3) D ecou pling of Sof t an d C ollinear G luons in S C E T II

Consider an operator with one collinear quark and one soft quark in SCETII. This case
differs from SCETI in that soft gluons knock collinear quarks offshell and collinear gluons
knock soft quarks offshell. To be definite lets make the soft quark a heavy quark from
HQET, hv, and the energetic quark a massless collinear quark, ξn. The SCET operator will
be

(ξ̄nWn̄)Γ(S†
n
hv) (1)

where W is the Wilson line we saw in problem 2, and Sn is an exact analog of the Y from
lecture, but with As gluons rather than ultrasoft gluons. To find Eq. (1) requires tree level
matching (to determine the direction and gluon components appearing in the Wilson lines),
and gauge invariance (to ensure that loops do not spoil the structure so obtained). The first
non-trivial term in perturbation theory have one soft and one collinear gluon. By computing
the QCD graphs in Figure 1 expanded to LO, verify that the three-gluon interactions are
responsible for putting the gluons in the right order in Eq. (1).

qc

qs

!,b

µ,a

(a)

qc

qs

!,b

µ,a

(b) (c)

qc

qs

!,b

µ,a

FIG. 1: QCD graphs with collinear, qc, and soft, qs, momenta.

P roblem 4) S C E T L oops for T wo-Jet P ro d uct ion
Consider the two-jet production process through a virtual photon in SCET, namely e+e− →
JnJn̄Xus where Jn is a jet in the n = (1, 0, 0,−1) direction, Jn̄ is a jet in the n̄ = (1, 0, 0, 1)
direction, and any remaining particles in the final state are ultrasoft, contained in Xus.
a) Write down two collinear quark Lagrangians, one for ξn fields and one for ξn̄ fields.
Interactions between these two types of collinear fields are hard, and so do not effect your
analysis. What are the Feynman rules for the ultrasoft gluon coupling to each of these
collinear quarks?
b) Start with JQCD = ψ̄γµψ and determine the appropriate LO SCET current JSCET =
ξ̄n · · · ξn̄, ie. fill in the dots with appropriate collinear Wilson lines and Dirac structure.
c) Draw the five one-loop Feynman diagrams that are non-zero for e+e− → qnq̄n̄ (use Feyn-
man gauge for all gluons when determining which graphs are zero). Here qn has n-collinear
momentum p, and q̄n̄ has n̄-collinear momentum p̄ and you should work in the CM frame.
All graphs but one can be directly read off using the loop computations done in lecture (or
given in the handout notes), as long as you use the same IR regulator. That is, you should
keep both collinear quarks offshell, p2 #= 0 and p̄2 #= 0. Compute the divergent terms in the
one remaining ultrasoft graph using dimensional regularization in the UV.
d) Add up the 1/ε terms from the graphs in c) and determine the lowest order anomalous
dimension equation for C the Wilson coefficient of JSCET. Solve this equation keeping only
the ln µ/Q term and using a fixed coupling αs, and then with a running coupling αs(µ).
(Voilá, Sudakov double logs resummed.)

Exercise
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Lets use our  LO heavy-to-light current 

=

∫
dω C(ω, µ) χ̄n,ω Γ H

n

vJ (0) =

∫

dω C(ω, µ)
[

(ξ̄nW )δ(ω − P̄
†)Γ(Y †

n
hv)

]

to derive a factorization theorem for the jet-like region of 

B → Xsγ
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near endpoint
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Decay rate is given by factorized form
Korchemsky, Sterman (’94)

Iain Stewart – p.31

B → XsγEndpoint
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We want to prove that the
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Steps 1, 2

B.P.S.

Match:

label conservation

Factor usoft:

Iain Stewart – p.32

Tµ
µ =

∣

∣C(mb)
∣

∣

2
∫

d4xei(mb
n̄

2
−q)·x

〈

B
∣

∣

∣
T [h̄vY ](x)[Y †hv](0)

∣

∣

∣
B

〉

×

〈

0
∣

∣

∣
T [W †ξn](x)[ξ̄nW ](0)

∣

∣

∣
0
〉

× [Γµ ⊗ Γµ]

ξ̄nWΓµhv → ξ̄nWΓµY †
n hv

=
∣

∣C(mb)
∣

∣

2
∫

d
4
x

∫

d4k

(2π)4
e
i(mb

n̄

2
−q−k)·x

〈

B

∣

∣

∣
T [h̄vY ](x)[Y †

hv](0)
∣

∣

∣
B

〉

×JP (k) × [Γµ ⊗ Γµ]
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Convolution JP (k) = JP (k+)

Im T
µ
µ =

∣

∣C(mb)
∣

∣

2
∫

d
4
x

∫

d4k

(2π)4
e
i(mb

n̄

2
−q−k)·x

〈

B

∣

∣

∣
T [h̄vY ](x)[Y †

hv](0)
∣

∣

∣
B

〉

×ImJP (k+)

=
∣

∣C(mb)
∣

∣

2
∫

dk
+

[
∫

dx−

4π
e
i(mb−2Eγ−k+)x−/2

〈

B

∣

∣

∣
T [h̄vY ](x)[Y †

hv](0)
∣

∣

∣
B

〉

]

×ImJP (k+)

=
∣

∣C(mb)
∣

∣

2

∫

dk
+
S(2Eγ − mb + k

+)ImJP (k+)

as desired
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