Introduction to the Soft - Collinear Effective Theory

Lecture 2

Iain Stewart MIT

Heavy Quark Physics
Dubna International Summer School
August, 2008

Lets first recall a few things from Lecture I

SCET_{I} for energetic jets

usoft \& collinear modes

$$
\begin{array}{rlr}
q_{u s} \sim \lambda^{3} & \xi_{n} \sim \lambda & \\
A_{u s}^{\mu} \sim \lambda^{2} & \left(A_{n}^{+}, A_{n}^{-}, A_{n}^{\perp}\right) & \sim\left(\lambda^{2}, 1, \lambda\right) \\
& & \sim p_{c}^{\mu}
\end{array}
$$

two types of derivatives:

$$
{\underset{\sim}{\mathcal{P}}}_{\substack{\mu \\ \xi_{n, p}(x), \lambda^{2}}}^{i \partial^{\mu} \xi_{n, p}(x),} \quad \mathcal{P}^{\mu} q_{u s}(x)=0, \quad i \partial^{\mu} q_{u s}(x)
$$

LO SCET ${ }_{\text {I }}$ Lagrangians

$$
\begin{aligned}
i D_{\perp}^{n \mu} & =\mathcal{P}_{\perp}^{\mu}+g A_{n}^{\perp \mu} \\
i \bar{n} \cdot D_{n} & =\bar{n} \cdot \mathcal{P}+g \bar{n} \cdot A_{n} \\
i D_{u s}^{\mu} & =i \partial^{\mu}+g A_{u s}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{c}^{(0)} & =\bar{\xi}_{n}\left\{n \cdot i D_{u s}+g n \cdot A_{n}+i \not D_{\perp}^{n} \frac{1}{i \bar{n} \cdot D_{n}} i \not D_{\perp}^{n}\right\} \frac{\hbar}{2} \xi_{n} \\
\mathcal{L}_{c g}^{(0)} & =\mathcal{L}_{c g}^{(0)}\left(A_{n}^{\mu}, n \cdot A_{u s}\right), \quad \mathcal{L}_{u s}^{(0)}=\mathcal{L}^{\mathrm{QCD}}\left(q_{u s}, A_{u s}^{\mu}\right)
\end{aligned}
$$

Outline for Lecture 2

- Wilson lines and the heavy-light current
- Gauge Invariance, Reparmaterization Invariance
- Hard-Collinear and Ultrasoft-Collinear Factorization
- SCET Loops, IR divergences, zero-bin
- RGE and Sudakov double logarithms
- $B \rightarrow X_{s} \gamma$ factorization theorem

$$
\left(A_{n}^{+}, \widehat{A}, A_{n}^{\perp}\right) \sim\left(\lambda^{2}, 1, \lambda\right) \sim p^{\mu}
$$

We can build LO operators with any number of A_{n}^{-}fields.
Should we be concerned?

Currents eg. $\bar{u} \Gamma b$ involves both collinear and usoft objects

SCET

$$
\bar{\xi}_{n} \frac{\left(-g \bar{n} \cdot A_{n}\right)}{\bar{n} \cdot q} \Gamma h_{v}
$$

offshell $\quad k^{\mu}=m_{b} v^{\mu}+\frac{n^{\mu}}{2} \bar{n} \cdot q+\ldots$

$$
k^{2}-m_{b}^{2}=n \cdot v m_{b} \bar{n} \cdot q+\ldots \sim \lambda^{0}
$$

$$
\operatorname{graph}=\bar{u}_{n} \Gamma \frac{i\left(\not \nless+m_{b}\right)}{k^{2}-m_{b}^{2}} i g T^{A} \gamma^{\mu} u_{v}=\frac{-g}{n \cdot v m_{b} \bar{n} \cdot q} \bar{u}_{n} \Gamma\left[m_{b}(1+\nLeftarrow)+\frac{\not x}{2} \bar{n} \cdot q\right]\left(\frac{\not x}{2} \bar{n}^{\mu}\right) T^{A} u_{v}
$$

$$
=\frac{-g \bar{n}^{\mu}}{\bar{n} \cdot q} \bar{u}_{n} \Gamma T^{A}\left\{\frac{\frac{n^{2}}{2}(1-\psi)+n \cdot v+0}{n \cdot v}\right\} u_{v}=\frac{-g \bar{n}^{\mu}}{\bar{n} \cdot q} \bar{u}_{n} \Gamma T^{A} u_{v}
$$

Currents

 eg. $\bar{u} \Gamma b$ involvenumber of gluons now add any number of gluons

$$
\begin{aligned}
& \bar{u} \Gamma b \longrightarrow \bar{\xi}_{n} W \Gamma h_{v} \quad \text { get a Wilson line } \\
& \text { emeele } \\
& =g^{m} \sum_{\text {perms }} \frac{\left(\bar{n}^{\mu m} T^{A_{m}}\right) \cdots\left(\bar{n}^{\mu_{1}} T^{A_{1}}\right)}{\left[\bar{n} \cdot q_{1}\right]\left[\bar{n} \cdot\left(q_{1}+q_{2}\right)\right] \cdots\left[\bar{n} \cdot \sum_{i=1}^{m} q_{i}\right]} \\
& \sim \lambda^{0} \text { no cost to } \\
& \downarrow \text { add these gluons } \\
& \text { momentum space Wilson line } \\
& \text { position space Wilson line } \\
& W(y,-\infty)=P \exp \left(i g \int_{-\infty}^{y} d s \bar{n} \cdot A_{n}\left(s \bar{n}^{\mu}\right)\right)
\end{aligned}
$$

Exercise

SCET Operators with Collinear Quarks and Wilson Lines

a) Start with the QCD Lagrangian for a massive quark and decompose $\not D$ in terms of n, \bar{n}, and \perp components. As in lecture, write $\psi=\xi_{n}+\zeta_{\bar{n}}$ where $\not \hbar \xi_{n}=0$ and $\vec{\eta} \zeta_{\bar{n}}=0$ and determine which products of fields are non-zero. Keeping all the non-zero terms, integrate out the field $\zeta_{\bar{n}}$ to generate an effective action for the massive collinear quark ξ_{n}.
[With power counting $m \sim p_{\perp} \sim Q \lambda \ll Q$ this is the starting point to derive the action for a massive collinear quark, ie. prior to decomposing the gluon field into collinear and ultrasoft pieces and prior to distinguishing between large and small momenta. The remaining steps are the same as those discussed in lecture except that you keep the mass. The mass terms that you have derived are important for considering how a collinear Lagrangian of light quarks u, d, s explicitly breaks chiral symmetry. They are also relevant for discussing an energetic jet initiated by a massive quark, when the jet energy $Q \gg m$.]
(b) To get more familiar with Wilson lines lets consider the current for a $b \rightarrow u$ transition. In QCD $J=\bar{u} \Gamma b$. For SCET we did a matching calculation to find the leading order current

$$
\begin{equation*}
J^{(0)}=\bar{\xi}_{n} W \Gamma h_{v}, \tag{2}
\end{equation*}
$$

where W included terms involving the order λ^{0} collinear gluon field $\bar{n} \cdot A_{n}$. In lecture we explicitly computed the term in W with one $\bar{n} \cdot A_{n}$ field and wrote down the result for any number of $\bar{n} \cdot A_{n}$ fields. Do the matching computation for two $\bar{n} \cdot A_{n}$ fields (by expanding QCD diagrams with offshell propagators). Verify that the result for one and two $\bar{n} \cdot A_{n}$ fields agree with the momentum space Feynman rules derived from the position space Wilson line

$$
W\left(y^{+}\right)=P \exp \left(i g \int_{-\infty}^{0} d s \bar{n} \cdot A_{n}\left(s \bar{n}+y^{+}\right)\right)
$$

where P is path-ordering.

Interaction of modes: Offshell versus Onshell

Which fields can interact in a local way?

these three are all in $\mathrm{SCET}_{\mathrm{I}}$

this generated the Wilson line W in the $\operatorname{SCET}_{\mathrm{I}}$ computation we just discussed
$\mathrm{SCET}_{\mathrm{II}}: p_{s}^{2}, p_{c}^{2} \sim \lambda^{2}$

This makes interactions in SCET $_{\text {II }}$ more complicated to construct, so we postponed further discussion to after fully developing SCET $_{\text {I }}$

Our analysis of the Lagrangian and Current was tree level.
To determine what effect loops can have we will use Symmetries:

Gauge symmetry
Lorentz invariance (?)
(plus of course Power Counting)

Gauge symmetry $\quad U(x)=\exp \left[i \alpha^{A}(x) T^{A}\right]$ need to consider U's which leave us in the EFT collinear $\quad i \partial^{\mu} \mathcal{U}_{c}(x) \sim p_{c}^{\mu} \mathcal{U}_{c}(x) \leftrightarrow A_{n, q}^{\mu}$ usoft $\quad i \partial^{\mu} U_{u s}(x) \sim p_{u s}^{\mu} U_{u s}(x) \leftrightarrow A_{u s}^{\mu}$

Object	Collinear \mathcal{U}_{c}	Usoft $U_{u s}$
ξ_{n}	$\mathcal{U}_{c} \xi_{n}$	$U_{u s} \xi_{n}$
$g A_{n}^{\mu}$	$\mathcal{U}_{c} g A_{n}^{\mu} \mathcal{U}_{c}^{\dagger}+\mathcal{U}_{c}\left[i \mathcal{D}^{\mu}, \mathcal{U}_{c}^{\dagger}\right]$	$U_{u s} g A_{n}^{\mu} U_{u s}^{\dagger}$
W	$\mathcal{U}_{c} W$	$U_{u s} W U_{u s}^{\dagger}$
$q_{u s}$	$q_{u s}$	$U_{u s} q_{u s}$
$g A_{u s}^{\mu}$	$g A_{u s}^{\mu}$	$U_{u s} g A_{u s}^{\mu} U_{u s}^{\dagger}+U_{u s}\left[i \partial^{\mu}, U_{u s}^{\dagger}\right]$
Y	Y	$U_{u s} Y$

Connects:

$$
\begin{aligned}
& i D_{\perp}^{n \mu}=\mathcal{P}_{\perp}^{\mu}+g A_{n}^{\perp \mu} \quad i D_{u s}^{\mu}=i \partial^{\mu}+g A_{u s}^{\mu} \\
& i \bar{n} \cdot D_{n}=\bar{n} \cdot \mathcal{P}+g \bar{n} \cdot A_{n} \\
& i n \cdot \partial+g n \cdot A_{n}+g n \cdot A_{u s}
\end{aligned}
$$

in the table: $i \mathcal{D}^{\mu} \equiv \frac{n^{\mu}}{2} \bar{n} \cdot \mathcal{P}+\mathcal{P}_{\perp}^{\mu}+\frac{\bar{n}^{\mu}}{2}\left(i n \cdot \partial+g n \cdot A_{u s}\right)$

Gauge symmetry $\quad U(x)=\exp \left[i \alpha^{A}(x) T^{A}\right]$ need to consider U's which leave us in the EFT
collinear $\quad i \partial^{\mu} \mathcal{U}_{c}(x) \sim p_{c}^{\mu} \mathcal{U}_{c}(x) \leftrightarrow A_{n, q}^{\mu}$
usoft $\quad i \partial^{\mu} U_{u s}(x) \sim p_{u s}^{\mu} U_{u s}(x) \leftrightarrow A_{u s}^{\mu}$

Object	Collinear \mathcal{U}_{c}	Usoft $U_{u s}$
ξ_{n}	$\mathcal{U}_{c} \xi_{n}$	$U_{u s} \xi_{n}$
$g A_{n}^{\mu}$	$\mathcal{U}_{c} g A_{n}^{\mu} \mathcal{U}_{c}^{\dagger}+\mathcal{U}_{c}\left[i \mathcal{D}^{\mu}, \mathcal{U}_{c}^{\dagger}\right]$	$U_{u s} g A_{n}^{\mu} U_{u s}^{\dagger}$
W	$\mathcal{U}_{c} W$	$U_{u s} W U_{u s}^{\dagger}$
$q_{u s}$	$q_{u s}$	$U_{u s} q_{u s}$
$g A_{u s}^{\mu}$	$g A_{u s}^{\mu}$	$U_{u s} g A_{u s}^{\mu} U_{u s}^{\dagger}+U_{u s}\left[i \partial^{\mu}, U_{u s}^{\dagger}\right]$
Y	Y	$U_{u s} Y$

our current $\quad\left(\bar{\xi}_{n} W\right) \Gamma h_{v} \rightarrow\left(\bar{\xi}_{n} \mathcal{U}_{c}^{\dagger} \mathcal{U}_{c} W\right) \Gamma h_{v}=\left(\bar{\xi}_{n} W\right) \Gamma h_{v}$ is invariant:

$$
\rightarrow\left(\bar{\xi}_{n} U_{u s}^{\dagger} U_{u s} W\right) U_{u s}^{\dagger} \Gamma U_{u s} h_{v}=\left(\bar{\xi}_{n} W\right) \Gamma h_{v}
$$

Reparameterization Invariance (RPI)

n, \bar{n} break Lorentz invariance, restored within collinear cone by reparameterization transformations that preserve power counting. Three types:

unique

$$
\mathcal{L}_{c}^{(0)}=\bar{\xi}_{n}\left\{n \cdot i D_{u s}+g n \cdot A_{n}+i D_{\perp}^{c} \frac{1}{i \bar{n} \cdot D_{c}} i D_{\perp}^{c}\right\} \frac{\hbar \hbar}{2} \xi_{n}
$$

Factorization from SCET

Wilson Coefficients and Hard - Collinear Factorization

$\begin{aligned} \text { hard: } & p^{\mu} \sim \frac{(+,-, \perp)}{(1,1,1)} \\ \text { collinear: } & p^{\mu} \sim\left(\lambda^{2}, 1, \lambda\right)\end{aligned}$
can exchange momenta

Constrained by gauge invariance:

$C(\overline{\mathcal{P}}, \mu)$: they depend on large momenta picked out by $\overline{\mathcal{P}}=\bar{n} \cdot \mathcal{P} \sim \lambda^{0}$

$$
\text { eg. } \quad C(-\overline{\mathcal{P}}, \mu)\left(\bar{\xi}_{n} W\right) \Gamma h_{v}=\underbrace{\left(\bar{\xi}_{n} W\right)}_{\begin{array}{r}
\text { only the product } \\
\text { is gauge invariant }
\end{array}} \Gamma h_{v} C\left(\overline{\mathcal{P}}^{\dagger}, \mu\right)
$$

implies convolutions between coefficients and operators

Write

$$
\left.\begin{array}{rl}
\left(\bar{\xi}_{n} W\right) \Gamma h_{v} C\left(\overline{\mathcal{P}}^{\dagger}, \mu\right)=\int d \omega C(\omega, \mu) & {\left[\left(\bar{\xi}_{n} W\right) \delta\left(\omega-\overline{\mathcal{P}}^{\dagger}\right) \Gamma\right.} \\
v
\end{array}\right]=\int d \omega C(\omega, \mu) O(\omega, \mu)
$$

hard-collinear

In general:

$$
\begin{aligned}
f\left(i \bar{n} \cdot D_{c}\right) & =W f(\overline{\mathcal{P}}) W^{\dagger} \\
& =\int d \omega f(\omega)\left[W \delta(\omega-\overline{\mathcal{P}}) W^{\dagger}\right]
\end{aligned}
$$

hard coefficient $p^{2} \sim Q^{2} \quad \begin{array}{r}\text { in collinear } \\ \text { operator }\end{array} p^{2} \sim Q^{2} \lambda^{2}$
We can trade $\bar{n} \cdot A$ for the Wilson line $W[\bar{n} \cdot A]$

$$
\text { Properties of } \mathcal{L}_{c}^{(0)}=\bar{\xi}_{n}\left\{n \cdot i D_{u s}+g n \cdot A_{n}+i D_{\perp}^{n} \frac{1}{i \bar{n} \cdot D_{n}} i \not D_{\perp}^{n}\right\} \frac{\hbar}{2} \xi_{n}
$$

1) has particles and antiparticles, pair creation \& annihilation

$$
\frac{i n \nsim}{2} \frac{\theta(\bar{n} \cdot p)}{n \cdot p+\frac{p^{2}}{\bar{n} \cdot p}+i \epsilon}+\frac{i \not n \nmid}{2} \frac{\theta(-\bar{n} \cdot p)}{n \cdot p+\frac{p^{2}}{\bar{n} \cdot p}-i \epsilon}=\frac{i \not n}{2} \frac{\bar{n} \cdot p}{n \cdot p \bar{n} \cdot p+p_{\perp}^{2}+i \epsilon}=\frac{i \not n k}{2} \frac{\bar{n} \cdot p}{p^{2}+i \epsilon}
$$

2) all components of A_{n}^{μ} couple to ξ_{n}

all components of p \& q appear

3) only $n \cdot A_{u s}$ couple at LO, only depends on $n \cdot k_{u s}$ momentum

Ultrasoft - Collinear Factorization

Multipole Expansion:

$$
\mathcal{L}_{c}^{(0)}=\overline{\bar{n}}_{n}\left\{n \cdot i D_{u s}+g n \cdot A_{n}+i D_{\perp}^{c} \frac{1}{i \bar{n} \cdot D_{c}} i D_{\perp}^{c}\right\} \frac{\hbar_{1}}{2} \xi_{n}
$$

usoft gluons have eikonal Feynman rules and induce eikonal propagators

Field Redefinition:

$$
\begin{array}{lr}
\xi_{n} \rightarrow Y \xi_{n}, \quad A_{n} \rightarrow Y A_{n} Y^{\dagger} & Y(x)=P \exp \left(i g \int_{-\infty}^{0} d s n \cdot A_{u s}(x+n s)\right) \\
\text { gives: } & n \cdot D_{u s} Y=0, Y^{\dagger} Y=1
\end{array}
$$

$$
\mathcal{L}_{c}^{(0)}=\bar{\xi}_{n}\left\{n \cdot i D_{\mathrm{us}}+\ldots\right\} \frac{\bar{\hbar}}{2} \xi_{n} \rightarrow \bar{\xi}_{n}\left\{n \cdot i D_{c}+i D_{\perp}^{\rho_{\perp}} \frac{1}{i \bar{n} \cdot D_{c}} i D_{\perp}\right\} \frac{\vec{n}}{2} \xi_{n}
$$

Moves all usoft gluons to operators, simplifies cancellations

Field Theory gives the same results pre- and post- field redefinition, but the organization is different

Ultrasoft - Collinear Factorization:

$$
\text { eg1. } J=\left(\bar{\xi}_{n} W\right)_{\omega} \Gamma h_{v} \rightarrow\left(\bar{\xi}_{n} Y^{\dagger} Y W Y^{\dagger}\right)_{\omega} \Gamma h_{v}=\left(\bar{\xi}_{n} W\right)_{\omega} \Gamma\left(Y^{\dagger} h_{v}\right)
$$

note: not upset by hard-collinear momentum fraction since ultrasoft gluons carry no hard momenta
so usoft-collinear factorization is also simply a property of SCET
eg2. No ultrasoft fields

$$
J=\left(\bar{\xi}_{n} W\right)_{\omega_{1}} \Gamma\left(W^{\dagger} \xi_{n}\right)_{\omega_{2}} \rightarrow\left(\bar{\xi}_{n} W\right)_{\omega_{1}} Y^{\dagger} Y \Gamma\left(W^{\dagger} \xi_{n}\right)_{\omega_{2}}=\left(\bar{\xi}_{n} W\right)_{\omega_{1}} \Gamma\left(W^{\dagger} \xi_{n}\right)_{\omega_{2}}
$$

color transparency

Loops in SCET and QCD

Study: IR divergences, UV divergences, and Matching

Consider heavy to light current

QCD

$$
J^{\mathrm{QCD}}=\bar{s} \Gamma b \quad \Gamma=\sigma^{\mu \nu} \quad \text { has UV c.t. } \quad \bar{n} \cdot p=m_{b}
$$

sum $=-\frac{\alpha_{s}}{3 \pi}\left[\ln ^{2}\left(\frac{-p^{2}}{m_{b}^{2}}\right)+\frac{3}{2} \ln \left(\frac{-p^{2}}{m_{b}^{2}}\right)+\frac{1}{\epsilon_{\mathrm{IR}}}+2 \ln \left(\frac{\mu^{2}}{m_{b}^{2}}\right)+\right.$ constants $]$

SCET $_{\text {I }} \quad J^{\text {SCET }}=\left(\bar{\xi}_{n} W\right)_{\omega} \Gamma h_{v}$

usoft gluon graphs

$$
C(\bar{n} \cdot p) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}+i 0\right)(v \cdot k+i 0)\left(n \cdot k+p^{2} / \bar{n} \cdot p+i 0\right)}
$$

$$
=-C(\bar{n} \cdot p)\left(\bar{u}_{n} \Gamma u_{v}\right) \frac{\alpha_{s} C_{F}}{4 \pi}\left[\frac{1}{\epsilon^{2}}+\frac{2}{\epsilon} \ln \left(\frac{\mu \bar{n} \cdot p}{-p^{2}}\right)+2 \ln ^{2}\left(\frac{\mu \bar{n} \cdot p}{-p^{2}}\right)+\ldots\right]
$$

$$
Z_{h_{v}}=1+\frac{\alpha_{s} C_{F}}{4 \pi}\left(\frac{2}{\epsilon_{\mathrm{UV}}}-\frac{2}{\epsilon_{\mathrm{IR}}}\right)
$$

$$
C_{F}=4 / 3
$$

$$
\propto n^{2}=0
$$

Feyn. Gauge

collinear gluon graphs

same IR regulators

"zero-bin" $\sum_{q \neq 0, q \neq-p} \int \frac{d^{4} q_{r}}{(2 \pi)^{4}} \Longrightarrow \int \frac{d^{4} q}{(2 \pi)^{4}} \quad$ is okay with \quad our regulator (more on this later)

so graph $\propto C(\bar{n} \cdot p) \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{2 \bar{n} \cdot(q+p)}{(\bar{n} \cdot q+i 0)\left((q+p)^{2}+i 0\right)\left(q^{2}+i 0\right)}$
graph $=-C(\bar{n} \cdot p)\left(\bar{u}_{n} \Gamma u_{v}\right) \frac{\alpha_{s} C_{F}}{4 \pi}\left[\frac{-2}{\epsilon^{2}}-\frac{2}{\epsilon}-\frac{2}{\epsilon} \ln \left(\frac{\mu^{2}}{-p^{2}}\right)-\ln ^{2}\left(\frac{\mu^{2}}{-p^{2}}\right)-2 \ln \left(\frac{\mu^{2}}{-p^{2}}\right)+\ldots\right]$
$\mathrm{SCET}_{1} \quad J^{\mathrm{SCET}}=\left(\bar{\xi}_{n} W\right)_{\omega} \Gamma h_{v}$ more collinear gluon graphs
$\bar{n} \cdot p=m_{b}$
Feyn. Gauge
same IR regulators

$$
Z_{\xi}=1+\frac{\alpha_{s} C_{F}}{4 \pi}\left[\frac{1}{\epsilon_{\mathrm{UV}}}+\ln \left(\frac{\mu^{2}}{-p^{2}}\right)\right]
$$

$$
\propto \bar{n}^{2}=0
$$

$$
\ldots
$$

Compare QCD and SCET

QCD

b)

c)

sum $=-\frac{\alpha_{s}}{3 \pi}\left[\ln ^{2}\left(\frac{-p^{2}}{m_{b}^{2}}\right)+\frac{3}{2} \ln \left(\frac{-p^{2}}{m_{b}^{2}}\right)+\frac{1}{\epsilon_{\mathrm{IR}}}+2 \ln \left(\frac{\mu^{2}}{m_{b}^{2}}\right)+\right.$ constants $]$
SCET

b)

c)

d)

same IR divergences
Sum $=\quad-\frac{\alpha_{s}}{3 \pi}\left[\frac{\left.\ln ^{2}\left(\frac{-p^{2}}{m_{b}^{2}}\right)+\frac{3}{2} \ln \left(\frac{-p^{2}}{m_{b}^{2}}\right)+\frac{1}{\epsilon_{\text {IR }}}\right]}{}\right.$

$$
\left.-\frac{1}{\epsilon_{\mathrm{UV}}^{2}}-\frac{5}{2 \epsilon_{\mathrm{UV}}}-\frac{2}{\epsilon_{\mathrm{UV}}} \ln \left(\frac{\mu}{m_{b}}\right)-2 \ln ^{2}\left(\frac{\mu}{m_{b}}\right)-\frac{3}{2} \ln \left(\frac{\mu^{2}}{m_{b}^{2}}\right)+\text { constants }\right]
$$

UV renormalization in SCET sums double Sudakov logs
remaining terms in SCET \& QCD give one-loop matching for $C\left(\bar{n} \cdot p=m_{b}, \mu\right)$
$\sum_{q \neq 0, q \neq-p} \int \frac{d^{4} q_{r}}{(2 \pi)^{4}} \stackrel{?}{\Longrightarrow} \int \frac{d^{4} q}{(2 \pi)^{4}}$
These restrictions ensure that the collinear graph does not double count the IR momentum region taken care of by the usoft graph

General (regulator independent) formula is:

For our example

using dim.reg. in UV

$$
p^{2} \neq 0 \text { in } \mathrm{IR}
$$

$$
\begin{gathered}
\sum_{q \neq 0, q \neq-p} \int \frac{d^{4} q_{r}}{(2 \pi)^{4}} \frac{2 \bar{n} \cdot(q+p)}{\left(\bar{n} \cdot q+i 0^{+}\right)\left((q+p)^{2}+i 0^{+}\right)\left(q^{2}+i 0^{+}\right)} \quad \begin{array}{c}
\text { avoids double counti } \\
\text { the usoft region }
\end{array} \\
=\int \frac{d^{d} q}{(2 \pi)^{d}}\left[\frac{2 \bar{n} \cdot(q+p)}{\left(\bar{n} \cdot q+i 0^{+}\right)\left[(q+p)^{2}+i 0^{+}\right]\left(q^{2}+i 0^{+}\right)}-\frac{2 \bar{n} \cdot p}{\left(\bar{n} \cdot q+i 0^{+}\right)\left[n \cdot q \bar{n} \cdot p+p^{2}+i 0^{+}\right]\left(q^{2}+i 0^{+}\right)}\right] \\
=-\frac{i}{16 \pi^{2}}\left[-\frac{2}{\epsilon_{\mathrm{IR}} \epsilon_{\mathrm{UV}}}-\frac{2}{\epsilon_{\mathrm{IR}}} \ln \left(\frac{\mu^{2}}{-p^{2}}\right)-\ln ^{2}\left(\frac{\mu^{2}}{-p^{2}}\right)+\left(\frac{2}{\epsilon_{\mathrm{IR}}}-\frac{2}{\epsilon_{\mathrm{UV}}}\right) \ln \left(\frac{\mu}{\bar{n} \cdot p}\right)+\ldots\right. \\
\left.-\left(\frac{2}{\epsilon_{\mathrm{UV}}}-\frac{2}{\epsilon_{\mathrm{IR}}}\right)\left\{\frac{1}{\epsilon_{\mathrm{UV}}}+\ln \left(\frac{\mu^{2}}{-p^{2}}\right)-\ln \left(\frac{\mu}{\bar{n} \cdot p}\right)\right\}\right]
\end{gathered}
$$

- singularity from $\bar{n} \cdot q \rightarrow 0$ cancels between the two terms
- UV collinear singularity comes from $\bar{n} \cdot q \rightarrow \infty$ (in subtraction term)
- standard calc. tool of taking $\epsilon_{\mathrm{IR}}=\epsilon_{\mathrm{UV}}$ with no subtraction gives the same answer
eg. of another regulator
Cutoffs: $\quad \Omega_{\perp}^{2} \leq \vec{q}_{\perp}^{2} \leq \Lambda_{\perp}^{2} \quad \Omega_{-}^{2} \leq\left(q^{-}\right)^{2} \leq \Lambda_{-}^{2}$ no constraint on q^{+}, p onshell

QCD

$$
I_{\mathrm{full}}^{b \rightarrow s \gamma}=\frac{i}{8 \pi^{2}}\left[\operatorname{Li}_{2}\left(\frac{-\Omega_{\perp}^{2}}{\Omega_{-}^{2}}\right)+\ln \left(\frac{\Omega_{-}}{p^{-}}\right) \ln \left(\frac{\Omega_{-} p^{-}}{\Omega_{\perp}^{2}}\right)\right]+\ldots
$$

$\mathrm{SCET} \quad I_{\mathrm{us}}^{b \rightarrow s \gamma}=\frac{i}{8 \pi^{2}}\left[\operatorname{Li}_{2}\left(\frac{-\Omega_{\perp}^{2}}{\Omega_{-}^{2}}\right)+\ln \left(\frac{\Omega_{-}}{\Lambda_{-}}\right) \ln \left(\frac{\Omega_{-} \Lambda_{-}}{\Omega_{\perp}^{2}}\right)\right]$

$$
\begin{gathered}
\mathrm{I}_{\mathrm{C}}^{b \rightarrow s \gamma}=\frac{i}{8 \pi^{2}}\left[-\ln \left(\frac{\Omega_{\perp}^{2}}{\Lambda_{\perp}^{2}}\right) \ln \left(\frac{\Omega_{-}}{p^{-}}\right)\right]-\frac{i}{8 \pi^{2}}\left[-\ln \left(\frac{\Omega_{\perp}^{2}}{\Lambda_{\perp}^{2}}\right) \ln \left(\frac{\Omega_{-}}{\Lambda_{-}}\right)\right]=\frac{\mathrm{i}}{8 \pi^{2}}\left[-\ln \left(\frac{\Omega_{\perp}^{2}}{\Lambda_{\perp}^{2}}\right) \ln \left(\frac{\Lambda_{-}}{\mathrm{p}^{-}}\right)\right]+\ldots \\
I_{\mathrm{us}}^{b \rightarrow s \gamma}+I_{\mathrm{C}}^{b \rightarrow s \gamma}=\frac{i}{8 \pi^{2}}\left[\operatorname{Li}_{2}\left(\frac{-\Omega_{\perp}^{2}}{\Omega_{-}^{2}}\right)+\ln \left(\frac{\Omega_{-}}{p^{-}}\right) \ln \left(\frac{\Omega_{-} p^{-}}{\Omega_{\perp}^{2}}\right)+\ln ^{2}\left(\frac{\Lambda_{\perp}}{p^{-}}\right)-\ln ^{2}\left(\frac{\Lambda_{\perp}}{\Lambda_{-}}\right)\right]+\ldots \\
p-=m_{b}=
\end{gathered}
$$

IR matches again
but ONLY with the non-zero subtraction term included

Renormalization in SCET \& Summing Sudakov Logs

Renormalize Heavy to Light Current in SCET

$C(\omega, \mu)\left[\left(\bar{\xi}_{n} W\right)_{\omega} \Gamma h_{v}\right] \quad C^{\text {bare }}=C+\left(Z_{c}-1\right) C \quad \omega=m_{b}$
graph sum $=-\frac{\alpha_{s}}{3 \pi}\left[\ln ^{2}\left(\frac{-p^{2}}{m_{b}^{2}}\right)+\frac{3}{2} \ln \left(\frac{-p^{2}}{m_{b}^{2}}\right)+\frac{1}{\epsilon_{\mathrm{IR}}}\right.$

$$
\left.-\frac{1}{\epsilon_{\mathrm{UV}}^{2}}-\frac{5}{2 \epsilon_{\mathrm{UV}}}-\frac{2}{\epsilon_{\mathrm{UV}}} \ln \left(\frac{\mu}{m_{b}}\right)-2 \ln ^{2}\left(\frac{\mu}{m_{b}}\right)-\frac{3}{2} \ln \left(\frac{\mu^{2}}{m_{b}^{2}}\right)+\text { constants }\right]
$$

need $\quad Z_{c}=1-\frac{\alpha_{s}(\mu) C_{F}}{4 \pi}\left(\frac{1}{\epsilon^{2}}+\frac{5}{2 \epsilon}+\frac{2}{\epsilon} \ln \frac{\mu}{\omega}\right)$ to remove UV divergences

Compute the Anomalous Dimension

$$
\begin{aligned}
& \mu \frac{d}{d \mu} C^{\text {bare }}=0 \Longrightarrow \frac{\mu \frac{d}{d \mu} C(\omega, \mu)=\gamma_{c}(\omega, \mu) C(\omega, \mu)}{\mu \frac{d}{d \mu} \alpha_{s}(\mu)=-2 \epsilon \alpha_{s}(\mu)+\beta\left[\alpha_{s}\right]} \\
& \gamma_{c}=-Z_{c}^{-1} \mu \frac{d}{d \mu} Z_{c}=\mu \frac{d}{d \mu} \frac{\alpha_{s}(\mu) C_{F}}{4 \pi}\left(\frac{1}{\epsilon^{2}}+\frac{5}{2 \epsilon}+\frac{2}{\epsilon} \ln \frac{\mu}{\omega}\right) \\
& \quad=\frac{\alpha_{s}(\mu) C_{F}}{4 \pi}\left(\frac{-2}{\epsilon}-5-4 \ln \frac{\mu}{\omega}+\nmid \frac{2}{\epsilon}\right)=-\frac{\alpha_{s}(\mu) C_{F}}{\pi}\left(\ln \frac{\mu}{\omega}+\frac{5}{4}\right)
\end{aligned}
$$

LL solution

Solve $\quad \mu \frac{d}{d \mu} \ln C(\omega, \mu)=-\frac{\alpha_{s}(\mu) C_{F}}{\pi} \ln \frac{\mu}{\omega}, \quad \mu \frac{d}{d \mu} \alpha_{s} \mu \quad \square-\frac{\beta_{0}}{\pi} \alpha_{s}^{2} \mu$
use $d \ln (\mu)=-\frac{2 \pi}{\beta_{0}} \frac{d \alpha_{s}}{\alpha_{s}^{2}}$ and integrate to obtain the solution
$C(\omega, \mu)=C\left(\omega, \mu_{0}\right) \exp \left[\frac{-4 \pi C_{F}}{\beta_{0}^{2} \alpha_{s}\left(\mu_{0}\right)}\left(\frac{1}{z}-1+\ln z\right)\right]\left(\frac{\mu_{0}}{\omega}\right)^{2 C_{F} \ln z / \beta_{0}}$
boundary condition, no large logs for $\mu_{0} \sim \omega$

If $\beta_{0} \rightarrow 0$ and $\alpha_{s}=\mathrm{constant}$, then

$$
C(\omega, \mu)=C\left(\omega, \mu_{0}\right) \exp \left[\frac{-\alpha_{s} C_{F}}{\pi}\left(\frac{1}{2} \ln ^{2} \frac{\mu}{\mu_{0}}+\ln \frac{\mu}{\mu_{0}} \ln \frac{\mu_{0}}{\omega}\right)\right]
$$

Sudakov double logs exponentiated

Exercise

SCET Loops for Two-Jet Production

Consider the two-jet production process through a virtual photon in SCET, namely $e^{+} e^{-} \rightarrow$ $J_{n} J_{\bar{n}} X_{u s}$ where J_{n} is a jet in the $n=(1,0,0,-1)$ direction, $J_{\bar{n}}$ is a jet in the $\bar{n}=(1,0,0,1)$ direction, and any remaining particles in the final state are ultrasoft, contained in $X_{u s}$.
a) Write down two collinear quark Lagrangians, one for ξ_{n} fields and one for $\xi_{\bar{n}}$ fields. Interactions between these two types of collinear fields are hard, and so do not effect your analysis. What are the Feynman rules for the ultrasoft gluon coupling to each of these collinear quarks?
b) Start with $J^{\mathrm{QCD}}=\bar{\psi} \gamma_{\mu} \psi$ and determine the appropriate LO SCET current $J^{\mathrm{SCET}}=$ $\bar{\xi}_{n} \cdots \xi_{\bar{n}}$, ie. fill in the dots with appropriate collinear Wilson lines and Dirac structure.
c) Draw the five one-loop Feynman diagrams that are non-zero for $e^{+} e^{-} \rightarrow q_{n} \bar{q}_{\bar{n}}$ (use Feynman gauge for all gluons when determining which graphs are zero). Here q_{n} has n-collinear momentum p, and $\bar{q}_{\bar{n}}$ has \bar{n}-collinear momentum \bar{p} and you should work in the CM frame. All graphs but one can be directly read off using the loop computations done in lecture (or given in the handout notes), as long as you use the same IR regulator. That is, you should keep both collinear quarks offshell, $p^{2} \neq 0$ and $\bar{p}^{2} \neq 0$. Compute the divergent terms in the one remaining ultrasoft graph using dimensional regularization in the UV.
d) Add up the $1 / \epsilon$ terms from the graphs in c) and determine the lowest order anomalous dimension equation for C the Wilson coefficient of J^{SCET}. Solve this equation keeping only the $\ln \mu / Q$ term and using a fixed coupling α_{s}, and then with a running coupling $\alpha_{s}(\mu)$. (Voilá, Sudakov double logs resummed.)

Lets use our LO heavy-to-light current

$$
J^{(0)}=\int d \omega C(\omega, \mu)\left[\left(\bar{\xi}_{n} W\right) \delta\left(\omega-\overline{\mathcal{P}}^{\dagger}\right) \Gamma\left(Y_{n}^{\dagger} h_{v}\right)\right]=\int d \omega C(\omega, \mu) \bar{\chi}_{n, \omega} \Gamma \mathcal{H}_{v}^{n}
$$

to derive a factorization theorem for the jet-like region of

$$
B \rightarrow X_{s} \gamma
$$

Endpoint $B \rightarrow X_{s} \gamma$

Optical Thm: $\quad \Gamma \sim \operatorname{Im} \int d^{4} x e^{-i q \cdot x}\langle B| T\left\{J_{\mu}^{\dagger}(x) J^{\mu}(0)\right\}|B\rangle$

	$P_{X}^{2}=$
standard OPE	$\left.\sim m_{B}-2 E_{\gamma}\right)$
endpoint region	$\sim m_{B}^{2}$
resonance region	$\sim \Lambda_{Q C D}^{2}$
aCD	

For EndPoint: $\quad E_{\gamma} \gtrsim 2.2 \mathrm{GeV}, X_{s}$ collinear, B usoft, $\quad \lambda=\sqrt{\frac{\Lambda_{Q C D}}{m_{B}}}$
We want to prove that the
Decay rate is given by factorized form

$$
\frac{1}{\Gamma_{0}} \frac{d \Gamma}{d E_{\gamma}}=H\left(m_{b}, \mu\right) \int_{2 E_{\gamma}-m_{b}}^{\bar{\Lambda}} d k^{+} S\left(k^{+}, \mu\right) J\left(k^{+}+m_{b}-2 E_{\gamma}, \mu\right)
$$

Match: $\quad \bar{s} \Gamma_{\mu} b \rightarrow e^{i\left(m_{b} v-\mathcal{P}\right) \cdot x} C(\overline{\mathcal{P}}) \bar{\xi}_{n, p} W \gamma_{\mu}^{\perp} P_{L} h_{v}$

$$
T_{\mu}^{\mu}=\int d^{4} x e^{i\left(m_{b} \frac{\tilde{n}}{2}-q\right) \cdot x}\langle B| T J_{\mathrm{eff}}^{\dagger}(x) J_{\mathrm{eff}}(0)|B\rangle
$$

label conservation $\overline{\mathcal{P}} \rightarrow m_{b}$

Factor usoft: $\quad \bar{\xi}_{n} W \Gamma_{\mu} h_{v} \rightarrow \bar{\xi}_{n} W \Gamma_{\mu} Y_{n}^{\dagger} h_{v}$

$$
\begin{aligned}
T_{\mu}^{\mu}= & \left|C\left(m_{b}\right)\right|^{2} \int d^{4} x e^{i\left(m_{b} \frac{\bar{n}}{2}-q\right) \cdot x}\langle B| T\left[\bar{h}_{v} Y\right](x)\left[Y^{\dagger} h_{v}\right](0)|B\rangle \\
& \times\langle 0| T\left[W^{\dagger} \xi_{n}\right](x)\left[\bar{\xi}_{n} W\right](0)|0\rangle \times\left[\Gamma_{\mu} \otimes \Gamma^{\mu}\right] \\
= & \left|C\left(m_{b}\right)\right|^{2} \int d^{4} x \int \frac{d^{4} k}{(2 \pi)^{4}} e^{i\left(m_{b} \frac{\bar{n}}{2}-q-k\right) \cdot x}\langle B| T\left[\bar{h}_{v} Y\right](x)\left[Y^{\dagger} h_{v}\right](0)|B\rangle \\
& \times J_{P}(k) \times\left[\Gamma_{\mu} \otimes \Gamma^{\mu}\right]
\end{aligned}
$$

Convolution $\quad J_{P}(k)=J_{P}\left(k^{+}\right)$

$$
\begin{aligned}
& \operatorname{Im} T_{\mu}^{\mu}=\left|C\left(m_{b}\right)\right|^{2} \int d^{4} x \int \frac{d^{4} k}{(2 \pi)^{4}} e^{i\left(m_{b} \frac{\bar{n}}{2}-q-k\right) \cdot x}\langle B| T\left[\bar{h}_{v} Y\right](x)\left[Y^{\dagger} h_{v}\right](0)|B\rangle \\
& \times \operatorname{Im} J_{P}\left(k^{+}\right) \\
& =\left|C\left(m_{b}\right)\right|^{2} \int d k^{+}\left[\int \frac{d x^{-}}{4 \pi} e^{i\left(m_{b}-2 E_{\gamma}-k^{+}\right) x^{-} / 2}\langle B| T\left[\bar{h}_{v} Y\right](x)\left[Y^{\dagger} h_{v}\right](0)|B\rangle\right] \\
& \times \operatorname{Im} J_{P}\left(k^{+}\right) \\
& =\left|C\left(m_{b}\right)\right|^{2} \int d k^{+} S\left(2 E_{\gamma}-m_{b}+k^{+}\right) \operatorname{Im} J_{P}\left(k^{+}\right)
\end{aligned}
$$

as desired

