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Effective Field Theories for Top-Jets:   SCET and HQET

• Factorization theorem for Jet Invariant Masses

•  Top mass measurements.  Why do we want a precision        ?

• Summation of Large Logs Q! mt ! Γt

• Predictions and Phenomenology 

•

• Summary

mt

•  Which mass?  Observables & Issues
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The top mass is a fundamental parameter
of the Standard Model

Q •

Γt = 1.4 GeV

Motivation

Important for precision e.w. constraints•

Top Yukawa coupling is large.  Top parameters 
are important for many new physics models

•

Top is very unstable, it decays before it
has a chance to hadronize.  How does
this effect jet observables involving 
top-quarks?

•

mt = 171.4± 2.1 GeV (already a 1% measurement!)

t→ bWfrom
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Figure 1: The predictions for MW and sin2 θeff in the SM and the MSSM (SPS1b). The
inner (blue) areas correspond to δmt = 0.1 GeV (LC), while the outer (green) areas arise
from δmt = 2 GeV (LHC). The anticipated experimental errors on MW and sin2 θeff at the
LHC/LC and at a LC with GigaZ option are indicated.

for mt̃1 , mt̃2 , mb̃1
, mb̃2

around their values given by SPS1b. The mixing angles in the t̃ and

b̃ sectors have been left unconstrained. The mass of the CP-odd Higgs boson MA is assumed
to be determined to about 10%, and it is assumed that tanβ ≈ 30± 4.5, where tan β is the
ratio of the vacuum expectation values of the two Higgs doublets of the MSSM.

The figure shows that the improvement in δmt from δmt = 2 GeV to δmt = 0.1 GeV
strongly reduces the parametric uncertainty in the prediction for the EWPO. In the SM
case it leads to a reduction by about a factor of 10 in the allowed parameter space of the
MW − sin2 θeff plane. In the MSSM case, where many additional parametric uncertainties
enter, a reduction by a factor of more than 2 is obtained in this example. This precision will
be crucial to establish effects of new physics via EWPO.

2.2 Indirect determination of the SM top Yukawa coupling

A high precision on mt is also important to obtain indirect constraints on the top Yukawa
coupling yt from EWPO [21]. The top Yukawa coupling enters the SM prediction of EWPO
starting at O(ααt) [27]. Indirect bounds on this coupling can be obtained if one assumes
that the usual relation between the Yukawa coupling and the top quark mass, yt =

√
2mt/v

(where v is the vacuum expectation value), is modified.
Assuming a precision of δmt = 2 GeV, an indirect determination of yt with an accuracy

4
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Figure 2: The prediction for mh in the mmax
h scenario is shown as a function of MA for

mt = 175 GeV and tan β = 5. The three bands correspond to δmt = 1, 2 GeV (LHC) and
δmt = 0.1 GeV (LC). The anticipated experimental error on mh at the LC is also indicated.

of predicted mh values (similar to the effect of δmt = 1 GeV). In this case the intrinsic
uncertainty would dominate, implying that a reduction of δmt = 1 GeV to δmt = 0.1 GeV
would lead to an only moderate improvement of the overall theoretical uncertainty of mh.

Confronting the theoretical prediction for mh with a precise measurement of the Higgs-
boson mass constitutes a very sensitive test of the MSSM, which allows us to obtain con-
straints on the model parameters. The sensitivity of the mh prediction on MA shown in
Fig. 2 cannot directly be translated into a prospective indirect determination of MA, how-
ever, since Fig. 2 shows the situation in a particular benchmark scenario [46] where, by
definition, certain fixed values of all other SUSY parameters are assumed. In a realistic situ-
ation the anticipated experimental errors of the other SUSY parameters, and possible effects
of intrinsic theoretical uncertainties, have to be taken into account. In the next section, we
will analyse the prospects for an indirect determination of SUSY parameters from precision
physics in the MSSM Higgs sector. In particular, we will consider two examples of parameter
determination in the stop sector of the MSSM.

3.2 Constraints on the parameters of the stop sector

Once a Higgs boson compatible with the MSSM predictions has been discovered, the depen-
dence of mh on the top and stop sectors can be utilized to determine unknown parameters
of the t̃ sector.

The mass matrix relating the interaction eigenstates t̃L and t̃R to the mass eigenstates

8
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How is it the top-mass measured?

pp → tt̄X

bW

σ

Γ

qq̄
′

e
+
ν

b̄W

two b-jets + 4 jets
two b-jets + 2 jets+leptons
two b-jets + leptons



How is it the top-mass measured?

Top Quark DecayTop Quark Decay

Within the SM:

mt > mW + mb dominant 2-body decay t Wb 

(t Ws, Wd CKM suppressed)

Assuming unitarity of 3-generation CKM matrix:

|Vtb| = 0.9990-0.9992 @ 90% CL B(t Wb) ~ 100%

t
SM 1.4 GeV at mt = 175 GeV

Top decays before top-flavored hadrons or tt-quarkonium bound 

states can form.

Top quark spin efficiently transferred to the final state. 

Typical final state signatures in top quark pair production:

require multipurpose detectors

QCDt

B(W qq) ~ 67%

B(W l )  ~ 11%, l=e, ,

jet

b-jet
b-jet

jet

jet jet

All-hadronic

(BR~46%, huge bckg)
Dilepton

(BR~5%, low bckg)

e,

b-jet

e,

b-jet

MET

jet

e,

b-jet
b-jet

jet

Lepton+jets

(BR~30%, moderate bckg)

MET

pp → tt̄X

bW

σ

Γ

qq̄
′

e
+
ν

b̄W

two b-jets + 4 jets
two b-jets + 2 jets+leptons
two b-jets + leptons
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Fitting Methods at Tevatron
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Note: Both methods 

(and many more are 

today used by D0 and 

CDF. This is not a 

review but a first order 

theorists view!
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Top Quark Mass: Template MethodsTop Quark Mass: Template Methods

Principle: perform kinematic fit and reconstruct top 

mass event by event. E.g. in lepton+jets channel:

Usually pick solution with lowest 2.

Build templates from MC for signal and background 

and compare to data.

Recent developments in this approach have lead to 

very precise top mass measurements:

Improve statistical power by defining four 
subsamples (based on number of tags) with 

different background content and sensitivity to 

mt.

Reduce JES systematic by using in-situ

hadronic W mass in tt events: simultaneous 

determination of mt and JES from reconstructed 

mt and MW templates. Implement constraint on 
JES from external measurement (~3%).

Many systematics are expected to decrease 

with larger data samples.

Lepton+jets ( 1 b-tag); Signal-only templates

Principle: compute event-by-event probability as 

a function of mt making use of all reconstructed 

objects in the events (integrate over unknowns). 
Maximize sensitivity by:

summing over all permutations of jets and neutrino 
solutions

allowing better measured events to contribute 

more.

Pioneered by DØ (Run I re-analysis in 

lepton+jets channel): statistical improvement was 
equivalent to x2.4 more data.

Being extensively used in Run II:

lepton+jets w/ (CDF,DØ) and w/o b-tagging (DØ): 
results competitive with Template Method

dilepton sample (CDF): statistical uncertainty not far 
from that in lepton+jets channel. Biggest limitation 
is b-jet energy scale.

)|()()();(
1

);( 2121 yxWqfqfdqdqmydmxP t

n

t

differential cross section (LO matrix element)

parton distribution functions

transfer function: mapping from
parton-level variables (y) to 

reconstructed-level variables (x)

Top Quark Mass: Dynamic MethodsTop Quark Mass: Dynamic Methods

Dilepton (1 fb-1)

Lepton+jets (370 pb-1)

(syst)GeV.JES)(statmt  416.170
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7.4
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solutions
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more.

Pioneered by DØ (Run I re-analysis in 

lepton+jets channel): statistical improvement was 
equivalent to x2.4 more data.
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lepton+jets w/ (CDF,DØ) and w/o b-tagging (DØ): 
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from A.Juste



Uncertainties

•
(eg. reconstruction)

determine parton momentum of daughters, combinatorics

• jet-energy scale:   calorimeter response, uninstrumented zones,
  multiple hard interactions, energy outside the jet “cone”, 
  underlying event (spectator partons)

• initial & final state radiation,  parton distribution functions,
  b-fragmentation

• which jet algorithm?  which Monte-Carlo?

• Statistics
• background (W+jets), b-tagging efficiency

Handles for a Precision MeasurementHandles for a Precision Measurement

Jet Energy Scale (JES)

Dominant systematic uncertainty in Run I measurements.

Top mass measurement requires precise mapping between 

reconstructed jets and original partons:

correct for detector, jet algorithm and physics effects.

What s crucial is the relative energy calibration between data 

and MC jets: Ejet/Ejet~1% mt ~ 1 GeV

Handles:

dijets, photon+jets, Z+jets 

W mass from W jj in top quark decays (in-situ calibration)

Z bb (verification of b-jet energy scale)

B-tagging: reduction of physics as well as combinatorial background

Sophisticated mass extraction techniques: maximize statistical                 

sensitivity; minimize some systematic uncertainties (e.g. JES)

Simulation: accurate detector modeling and state-of-the-art theoretical 

knowledge (gluon radiation, b-fragmentation, etc) required.

Golden channel: lepton+jets

Over-constrained kinematics

Combinatorial background:

2 solutions (MW constraint) 

12 possible jet-parton assignments.         

Can be reduced using b-tagging: 6 (1-btag), 2 (2 b-tags)

jet

e,

b-jet
b-jet

jet

MW

MW

W-mass helps

mt = 171.4± 1.2 (stat) ±1.8 (syst) GeV



Current Uncertainties

Future -LHC:

Future -ILC:

δmt ∼ 1 GeV systematics dominated 

top factory,  8 million tt̄ / year (at low luminosity)

e+e− → tt̄

pp→ tt̄X

exploit threshold region
√

s " 2mt

δmt ∼ 0.1 GeV

with high precision 
  theory calculations 
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Reconstruction at LHC and ILC

~

~

ATLAS (l+jets)

! Which parton shower MC to use ?

! Which jet algorithm ?

mt = 171.4± 1.2 (stat) ±1.8 (syst) GeV

Hoang, Manohar,
Teubner, I.S. 



What mass is it? m = 171.4± 1.2 (stat) ±1.8 (syst) GeV

pole mass?•
- ambiguity
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Reconstruction at LHC and ILC

ATLAS (l+jets)

~

~

δm ∼ ΛQCD ,  linear
sensitivity to IR momenta

- poor behavior of         expansionαs

- not used anymore for mb,mc

11
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The functions ωi(s) entering ωi
T,L(s) contain all the de-

pendence on
√

s, which cancels in the q2 spectrum. All
ln(µ/mb) terms that usually appear in the functions
ω77,79

i (s) have been moved into C7 (along with the ap-
propriate constant term contained in mb/m1S

b ).

The χj
i (s) containing the O(1/m2

b) corrections in
Eq. (13) can be extracted from Ref. [24]:

χ99
T (s) = −

λ1 + 3λ2

6
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APPENDIX B: NUMERICAL INPUTS

In this Appendix we collect all of our numerical inputs.
All values are taken from Ref. [38] except where stated
otherwise. To evaluate the Wilson coefficients we use

mW = 80.403 GeV ,

sin2 θW = 0.23122 ,

mpole
t = (171.4± 2.1)GeV ,

αs(mZ) = 0.1176 ,

µc
0 = 80 GeV ,

µt
0 = 120 GeV . (B1)

µ = 2.35 GeV µ = 4.7 GeV µ = 9.4 GeV

αs(µ) 0.2659 0.2140 0.1793

C1(µ) −0.4642 −0.2880 −0.1506

C2(µ) 1.019 1.007 1.001

C3(µ) −0.0096 −0.0043 −0.0017

C4(µ) −0.1247 −0.0795 −0.0508

C5(µ) 0.00069 0.00029 0.00009

C6(µ) 0.00205 0.00081 0.00026

C8(µ) −0.2012 −0.1778 −0.1598

mb(µ) 4.703 4.120 3.707

C7(µ) −0.3637 −0.3293 −0.2982

C7 −0.2435 −0.2611 −0.2687

C9(µ) 4.504 4.209 3.790

C9 4.258 4.207 4.188

C10 −4.175 −4.175 −4.175

TABLE I: Values of the Wilson coefficients to O(αs) at dif-
ferent low scales µ.

Here, µc,t
0 are the matching scales in the charm and top

sector, respectively, and we use the same values as in
Ref. [19]. For the top-quark mass we use the newest CDF
and D0 average [43]. The resulting values for the Wilson
coefficients at O(αs) run down to the low scale and the
corresponding values for the Ci according to Eq. (A2) are
listed in Table I. Note that the residual scale uncertainties
of C7 and especially C9 are much smaller than those of
C7,9(µ). We use a Mathematica code by Bobeth with
the initial conditions and renormalization group running
as given in Refs. [19, 20]. For C9(µ) this requires the
three-loop mixings calculated in Refs. [44].

In the decay rates we use

αem(mb) = 1/133 ,

|VtbV
∗
ts| = 41.09 × 10−3 ,

mB = 5.279 GeV ,

τB = 1.584 ps ,

mK∗ = 0.892 GeV ,

mb ≡ m1S
b = (4.70 ± 0.04)GeV ,e.g.

δm ∼ αs(Γ)Γ

mass?•

quark masses are Lagrangian parameters, use a suitable scheme

MS No

mpole −mMS(m) ∼ 8 GeV

Top Quark Physics at LHC, Bad Honnef , January 26-27 

2007
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Remarks on Quark Masses

top
some schemes are more
appropriate than others



Theory Issues for
•

• suitable top mass for jets

•

•

•

•

•

initial state radiation

final state radiation

jet observable 

underlying events

color reconnection

beam remnant

parton distributions•

• sum large logs Q! mt ! Γt

pp→ tt̄X



Theory Issues for
•

• suitable top mass for jets

•

•

•

•

•

initial state radiation

final state radiation

jet observable 

underlying events

color reconnection

beam remnant

parton distributions•

• sum large logs Q! mt ! Γt

pp→ tt̄X

Here we’ll study
e+e− → tt̄X

and the issues !

!

!

!!

!

!

We’ll take this calculation seriously,
it can be measured at a future ILC. 



Goals Use Effective Field Theory to:

• Prove factorization: separation of length scales & dynamics

• Quantify non-perturbative and perturbative effects, 
  universality, hopefully reduce experimental uncertainties 

• Simultaneously treat top production and top decay

Connect jet observables and a Lagrangian mass parameter•
(define a short-distance top-mass that is suitable for 
measurement with jets)



Hemisphere Invariant Masses

Measure what observable?

M2
t =

( ∑

i∈a

pµ
i

)2
M2

t̄ =
( ∑

i∈b

pµ
i

)2

d2σ

dM2
t dM2

t̄

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b



Hemisphere Invariant Masses

Measure what observable?

M2
t =

( ∑

i∈a

pµ
i

)2
M2

t̄ =
( ∑

i∈b

pµ
i

)2

d2σ

dM2
t dM2

t̄

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

st ≡M2
t −m2 ∼ mΓ$ m2 st̄ ≡M2

t̄ −m2 ∼ mΓ$ m2

Peak region:
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t̄

Invariant Mass Distribution
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t −m2 ∼ mΓ$ m2
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shape is a Breit Wigner
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d2σ

dM2
t dM2

t̄

Invariant Mass Distribution

st ≡M2
t −m2 ∼ mΓ$ m2

ŝt ≡
st

m
∼ Γ

A first guess might be that the
shape is a Breit Wigner

•

mΓ
s2

t + (mΓ)2
=

( Γ
m

) 1
ŝ2

t + Γ2

• Since                      we can calculate it and see. 
   Answer:  not quite.  Our guess is a bit too naive.

Γ! ΛQCD

ŝt

Breit-Wigner



Disparate Scales Effective Field Theory

Q! m! Γ ∼ ŝt,t̄



SCET =  Soft Collinear Effective TheoryQ! m

Top quarks are collinear.
thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b
Soft radiation btwn. jets.

(Bauer, Pirjol, I.S.; Fleming, Luke)



SCET =  Soft Collinear Effective TheoryQ! m

Top quarks are collinear.
thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b
Soft radiation btwn. jets.

(Bauer, Pirjol, I.S.; Fleming, Luke)

HQET =  Heavy Quark Effective Theorym! Γ ∼ ŝt,t̄

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

Fluctuations           , tops act 
  like static boosted color source

(Isgur, Wise, ...)

Beneke, Chapovsky, Signer, Zanderighi
unstable particle EFT

! m



Brief Intro to SCET
SCET [λ ∼ m/Q" 1] bHQET [Γ/m" 1]

n-collinear (ξn, Aµ
n) pµ

n∼Q(λ2, 1,λ) n-ucollinear (hv+ , Aµ
v+) kµ∼Γ(λ2, 1,λ)

n̄-collinear (ξn̄, Aµ
n̄) pµ

n̄∼Q(1,λ2,λ) n̄-ucollinear (hv− , Aµ
v−) kµ∼Γ(1,λ2,λ)

Crosstalk: soft (qs, Aµ
s ) pµ

s ∼Q(λ2,λ2,λ2) same soft (qs, Aµ
s ) pµ

s ∼(∆,∆,∆)

TABLE I: Summary of the fields required in SCET and bHQET. The first field in each bracket is
a quark, and the second is a gluon. The scaling of momentum components is given for (p+, p−, p⊥)
and the “u” prefactor stands for ultra. After factorization, the soft fields on the last line can be
treated as one universal cross-talk theory that communicates with collinear fields in both SCET
and bHQET through two kinematic variables.

where !n can be thought of as the direction of the top jet and −!n as the direction of the

antitop jet (!n2 = 1, n2 = 0, n̄2 = 0) . Any momentum can then be decomposed as

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ

⊥ , (9)

and we denote momentum components in this light cone basis as (p+, p−, p⊥) = (n·p, n̄·p, p⊥).

The square of the momentum vector pµ then reads p2 = p+p− + p2
⊥. It is also convenient to

denote the momentum of collinear particles in the !n and −!n directions by the subscripts n

and n̄ respectively, which corresponds to the large energy modes in the corresponding jets.

Thus we have collinear labels

n for the top-jet, n̄ for the antitop-jet . (10)

The momentum of soft particles will be denoted by a subscript s. The momenta of the

collinear and soft modes2 have the typical scalings shown in Table IIA in the SCET column,

where here λ is the small expansion parameter. A particle with components scaling as

(λ2, 1, λ) has a small ⊥-momentum relative to its energy, and is said to be collinear to the

nµ direction etc. Both λ and the hard scale Q have a size that depends on the particular

process under study. For example, in B → Xsγ the hard scale is the b-quark mass mb, and

the expansion parameter is
√

ΛQCD/mb. For pair production of top jets, the hard scale Q

is the center of mass energy, and the SCET expansion parameter is

λ ∼ m

Q
. (11)

It follows that the typical virtuality of the collinear and soft modes in SCET satisfy

st ∼ st̄ ∼ m2, and p2
s ∼

m4

Q2
. (12)

2 In some factorization theorems it is necessary to distinguish between soft and ultrasoft particles, and
between two versions of SCET: called SCETI and SCETII. In this paper we only deal with SCETI with
ultrasoft gluons. For simplicity we will therefore use the terms ultrasoft and soft interchangeably.
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Since m4/Q2 ! Λ2
QCD , the soft modes in this theory st ill contain perturbat ive components

as well as the underlying non-perturbat ive dynamics at smaller scales. Using m = 171 G e V
this is true for Q <∼ 40 Te V i.e. for any conceivable c.m. energy of a future L inear Collider.
T he soft part icles correspond to modes with wavelengths that allow cross talk between the
two jets. T he n-collinear, n̄-collinear, and soft modes are described by separate quark and
gluon fields which are also listed in Table I I A . H ard modes have already been integrated
out when Q C D is matched onto SC E T .

A t leading order the SC E T Lagrangian for collinear part icles in different direct ions can
be writ ten as a soft Lagrangian plus a sum of collinear terms [35], L(0) = Ls +

∑
ni
L(0)

ni .
T he sum sat isfies the constraint ni · nj ! λ2 for i #= j , with the choice of λ determining
what is meant by dist inct collinear direct ions. T he collinear part icles in different sectors
only interact via soft gluon exchange or hard interact ions in external operators. W hen the
⊥-momentum of the collinear part icles is of the same size as the quark mass the result for
the leading order collinear Lagrangian [19, 20] must include the quark mass terms derived in
Ref. [23] (see also Ref. [44]). T he collinear quark Lagrangian for the direct ion n is therefore
given by

L(0)
qn = ξ̄n

[
in ·Ds + gn · An + (iD/⊥c −m)Wn

1
n̄·PW †

n(iD/⊥c + m)
] n̄/

2
ξn , (13)

with D⊥
c ∼ m ! D⊥

s . T here is also an n-collinear Lagrangian for gluons [21]. Here the soft
and collinear covariant derivat ives are

iDµ
s = i∂µ + gAµ

s , iDµ
c = Pµ + gAµ

n , (14)

where Pµ is a label operator picking out the large collinear momentum of order one and λ of
a collinear field [20], while the part ial derivat ive acts on the residual momentum components
∂µ ∼ λ2 . T he term Wn is the momentum space W ilson line built out of collinear gluon fields

Wn(x) =
∑

perms

exp
(
− g

P̄
n̄ · An(x)

)
. (15)

We also note that E q. (13) is the bare Lagrangian. In part icular, any mass definit ion can
be chosen for m through an appropriate renormalizat ion condit ion without breaking the
power-count ing. A t O(αs) these mass-schemes are the same as those in Q C D [45], because
the self-energy graphs are direct ly related.

A n example of an external operator that connects different collinear sectors is the jet
product ion current , which couples to the γ∗ or Z∗ . In Q C D the product ion matrix element
is 〈X|J µ

a,v|0〉 where 〈X| is the final state. T he required vector and axial currents are given
by

J µ
v (x) = ψ̄(x)γµψ(x) , J µ

a (x) = ψ̄(x)γµγ5ψ(x) , (16)

11

LO collinear Lagrangian:

eikonal
soft couplings

collinear Wilson line

Wn = P exp
(
ig

∫ ∞

0
ds n̄·An(sn̄)

)



Ultrasoft - Collinear Factorization

Multipole Expansion: L(0)
c = ξ̄n

{
n · iDus + gn · An + i /Dc

⊥
1

in̄ · Dc
i /Dc
⊥

} /̄n

2
ξn

usoft gluons have eikonal  Feynman 
rules and induce eikonal propagators k

i
n·k+iε k

i
−n·k+iε k

i
−n·k−iε k

i
n·k−iε

(Y+ ξ+
n ) (ξ̄+

n Y
†
+) (ξ̄−n Y

†
−) (Y− ξ−n )

FIG. 1: Eikonal iε prescriptions for incoming/outgoing quarks and antiquarks and the result that
reproduces this with an ultrasoft Wilson line and sterile quark field.

Since the dependence on s0 sometimes causes confusion, we explore some of the subtleties
in this section, in particular, why it is important to remember that factors of Y , Y † can
also be induced in the interpolating fields for incoming and outgoing collinear states, and
why a common choice for s0 = s †

0 is sufficient to properly reproduce the iε prescription in
perturbative computations. In many processes (examples being color allowed B → Dπ and
B → Xsγ) the s0 dependence of the Wilson lines cancels and the following considerations
are not crucial. In other processes, however, the path for the Wilson line is important for the
final result, particularly when these Wilson lines do not entirely cancel. An example of this
is jet event shapes as discussed in Refs. [28–30]. See also the discussion of path dependence
in eikonal lines in Refs. [31–37].

First consider the perturbative computation of attachments of usoft gluons to incoming
and outgoing quark and antiquark lines. The results for the eikonal factors for one gluon
are summarized in Fig. 1, and can be computed directly with the SCET collinear quark
Lagrangian (or from an appropriate limit of the QCD propagator). These attachments seem
to force one to make a particular choice for s0 and s0, see for example the recent detailed
study in Ref. [30]. In our notation it is straightforward to show that this choice corresponds
to

s0 = −∞ sign(P̄) , s0 = +∞ sign(P̄†) ,

{

P̃=P̃
′
=P , for P̄ , P̄† > 0

P̃=P̃
′
=P , for P̄ , P̄† < 0

. (21)

To see this take a quark with label n̄·p > 0 and an antiquark with label n̄·p′ < 0, and note
that

Y ξn,p = P̃ exp
(

ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

ξ+
n,p = P exp

(

ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

ξ+
n,p ≡ Y+ξ+

n,p , (22)

ξ̄n,pY
†= ξ̄+

n,pP̃
′
exp

(

−ig

∫ 0

∞

ds n·Aus(x
µ
s )

)

= ξ̄+
n,pP exp

(

ig

∫ ∞

0

ds n·Aus(x
µ
s )

)

≡ ξ̄+
n,pY

†
+ ,

Y ξn,p′ = P̃ exp
(

ig

∫ 0

∞

ds n·Aus(x
µ
s )

)

ξ−n,p′ = P exp
(

−ig

∫ ∞

0

ds n·Aus(x
µ
s )

)

ξ−n,p′ ≡ Y−ξ−n,p′ ,

ξ̄n,p′Y
†= ξ̄−n,p′P̃

′
exp

(

−ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

= ξ̄−n,p′P exp
(

−ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

≡ ξ̄−n,p′Y
†
− .

This is in agreement with the Ỹ = Y−, Y † = Y †
−, Y = Y+, Ỹ † = Y †

+ used in [30] for the
production and annihilation of antiparticles and the annihilation and production of parti-
cles respectively. The results in Eq. (22) reproduce the natural choice of having incoming
quarks/antiquarks enter from −∞, while outgoing quarks/antiquarks extend out to +∞.
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is jet event shapes as discussed in Refs. [28–30]. See also the discussion of path dependence
in eikonal lines in Refs. [31–37].
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+ used in [30] for the
production and annihilation of antiparticles and the annihilation and production of parti-
cles respectively. The results in Eq. (22) reproduce the natural choice of having incoming
quarks/antiquarks enter from −∞, while outgoing quarks/antiquarks extend out to +∞.
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ξn → Y ξn An → Y AnY †, Y (x) = P exp
(
ig

∫ 0

−∞
ds n·Aus(x+ns)

)

n·DusY =0, Y †Y =1

Field Redefinition: 

choice of ±∞

here is irrelevant
if one is careful



Brief Intro to SCET
SCET [λ ∼ m/Q" 1] bHQET [Γ/m" 1]

n-collinear (ξn, Aµ
n) pµ

n∼Q(λ2, 1,λ) n-ucollinear (hv+ , Aµ
v+) kµ∼Γ(λ2, 1,λ)

n̄-collinear (ξn̄, Aµ
n̄) pµ

n̄∼Q(1,λ2,λ) n̄-ucollinear (hv− , Aµ
v−) kµ∼Γ(1,λ2,λ)

Crosstalk: soft (qs, Aµ
s ) pµ

s ∼Q(λ2,λ2,λ2) same soft (qs, Aµ
s ) pµ

s ∼(∆,∆,∆)

TABLE I: Summary of the fields required in SCET and bHQET. The first field in each bracket is
a quark, and the second is a gluon. The scaling of momentum components is given for (p+, p−, p⊥)
and the “u” prefactor stands for ultra. After factorization, the soft fields on the last line can be
treated as one universal cross-talk theory that communicates with collinear fields in both SCET
and bHQET through two kinematic variables.

where !n can be thought of as the direction of the top jet and −!n as the direction of the

antitop jet (!n2 = 1, n2 = 0, n̄2 = 0) . Any momentum can then be decomposed as

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ

⊥ , (9)

and we denote momentum components in this light cone basis as (p+, p−, p⊥) = (n·p, n̄·p, p⊥).

The square of the momentum vector pµ then reads p2 = p+p− + p2
⊥. It is also convenient to

denote the momentum of collinear particles in the !n and −!n directions by the subscripts n

and n̄ respectively, which corresponds to the large energy modes in the corresponding jets.

Thus we have collinear labels

n for the top-jet, n̄ for the antitop-jet . (10)

The momentum of soft particles will be denoted by a subscript s. The momenta of the

collinear and soft modes2 have the typical scalings shown in Table IIA in the SCET column,

where here λ is the small expansion parameter. A particle with components scaling as

(λ2, 1, λ) has a small ⊥-momentum relative to its energy, and is said to be collinear to the

nµ direction etc. Both λ and the hard scale Q have a size that depends on the particular

process under study. For example, in B → Xsγ the hard scale is the b-quark mass mb, and

the expansion parameter is
√

ΛQCD/mb. For pair production of top jets, the hard scale Q

is the center of mass energy, and the SCET expansion parameter is

λ ∼ m

Q
. (11)

It follows that the typical virtuality of the collinear and soft modes in SCET satisfy

st ∼ st̄ ∼ m2, and p2
s ∼

m4

Q2
. (12)

2 In some factorization theorems it is necessary to distinguish between soft and ultrasoft particles, and
between two versions of SCET: called SCETI and SCETII. In this paper we only deal with SCETI with
ultrasoft gluons. For simplicity we will therefore use the terms ultrasoft and soft interchangeably.
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Degrees of
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(+,−,⊥)
light-cone coordinatesquark

fields gluon
fields

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

Since m4/Q2 ! Λ2
QCD , the soft modes in this theory st ill contain perturbat ive components

as well as the underlying non-perturbat ive dynamics at smaller scales. Using m = 171 G e V
this is true for Q <∼ 40 Te V i.e. for any conceivable c.m. energy of a future L inear Collider.
T he soft part icles correspond to modes with wavelengths that allow cross talk between the
two jets. T he n-collinear, n̄-collinear, and soft modes are described by separate quark and
gluon fields which are also listed in Table I I A . H ard modes have already been integrated
out when Q C D is matched onto SC E T .

A t leading order the SC E T Lagrangian for collinear part icles in different direct ions can
be writ ten as a soft Lagrangian plus a sum of collinear terms [35], L(0) = Ls +

∑
ni
L(0)

ni .
T he sum sat isfies the constraint ni · nj ! λ2 for i #= j , with the choice of λ determining
what is meant by dist inct collinear direct ions. T he collinear part icles in different sectors
only interact via soft gluon exchange or hard interact ions in external operators. W hen the
⊥-momentum of the collinear part icles is of the same size as the quark mass the result for
the leading order collinear Lagrangian [19, 20] must include the quark mass terms derived in
Ref. [23] (see also Ref. [44]). T he collinear quark Lagrangian for the direct ion n is therefore
given by

L(0)
qn = ξ̄n

[
in ·Ds + gn · An + (iD/⊥c −m)Wn

1
n̄·PW †

n(iD/⊥c + m)
] n̄/

2
ξn , (13)

with D⊥
c ∼ m ! D⊥

s . T here is also an n-collinear Lagrangian for gluons [21]. Here the soft
and collinear covariant derivat ives are

iDµ
s = i∂µ + gAµ

s , iDµ
c = Pµ + gAµ

n , (14)

where Pµ is a label operator picking out the large collinear momentum of order one and λ of
a collinear field [20], while the part ial derivat ive acts on the residual momentum components
∂µ ∼ λ2 . T he term Wn is the momentum space W ilson line built out of collinear gluon fields

Wn(x) =
∑

perms

exp
(
− g

P̄
n̄ · An(x)

)
. (15)

We also note that E q. (13) is the bare Lagrangian. In part icular, any mass definit ion can
be chosen for m through an appropriate renormalizat ion condit ion without breaking the
power-count ing. A t O(αs) these mass-schemes are the same as those in Q C D [45], because
the self-energy graphs are direct ly related.

A n example of an external operator that connects different collinear sectors is the jet
product ion current , which couples to the γ∗ or Z∗ . In Q C D the product ion matrix element
is 〈X|J µ

a,v|0〉 where 〈X| is the final state. T he required vector and axial currents are given
by

J µ
v (x) = ψ̄(x)γµψ(x) , J µ

a (x) = ψ̄(x)γµγ5ψ(x) , (16)

11

LO collinear Lagrangian:

Production Current:

n

n ψ̄ Γµψ → (ξ̄nWn)ω Γµ(W †
n̄ξn̄)ω̄ = (ξ̄nWn)ω Y †

n ΓµYn̄(W †
n̄ξn̄)ω̄}

J µ
i
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Brief Intro to unstable boosted HQET

SCET [λ ∼ m/Q" 1] bHQET [Γ/m" 1]
n-collinear (ξn, Aµ

n) pµ
n∼Q(λ2, 1,λ) n-ucollinear (hv+ , Aµ

v+) kµ∼Γ(λ2, 1,λ)
n̄-collinear (ξn̄, Aµ

n̄) pµ
n̄∼Q(1,λ2,λ) n̄-ucollinear (hv− , Aµ

v−) kµ∼Γ(1,λ2,λ)
Crosstalk: soft (qs, Aµ

s ) pµ
s ∼Q(λ2,λ2,λ2) same soft (qs, Aµ

s ) pµ
s ∼(∆,∆,∆)

TABLE I: Summary of the fields required in SCET and bHQET. The first field in each bracket is
a quark, and the second is a gluon. The scaling of momentum components is given for (p+, p−, p⊥)
and the “u” prefactor stands for ultra. After factorization, the soft fields on the last line can be
treated as one universal cross-talk theory that communicates with collinear fields in both SCET
and bHQET through two kinematic variables.

where !n can be thought of as the direction of the top jet and −!n as the direction of the

antitop jet (!n2 = 1, n2 = 0, n̄2 = 0) . Any momentum can then be decomposed as

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ

⊥ , (9)

and we denote momentum components in this light cone basis as (p+, p−, p⊥) = (n·p, n̄·p, p⊥).

The square of the momentum vector pµ then reads p2 = p+p− + p2
⊥. It is also convenient to

denote the momentum of collinear particles in the !n and −!n directions by the subscripts n

and n̄ respectively, which corresponds to the large energy modes in the corresponding jets.

Thus we have collinear labels

n for the top-jet, n̄ for the antitop-jet . (10)

The momentum of soft particles will be denoted by a subscript s. The momenta of the

collinear and soft modes2 have the typical scalings shown in Table IIA in the SCET column,

where here λ is the small expansion parameter. A particle with components scaling as

(λ2, 1, λ) has a small ⊥-momentum relative to its energy, and is said to be collinear to the

nµ direction etc. Both λ and the hard scale Q have a size that depends on the particular

process under study. For example, in B → Xsγ the hard scale is the b-quark mass mb, and

the expansion parameter is
√

ΛQCD/mb. For pair production of top jets, the hard scale Q

is the center of mass energy, and the SCET expansion parameter is

λ ∼ m

Q
. (11)

It follows that the typical virtuality of the collinear and soft modes in SCET satisfy

st ∼ st̄ ∼ m2, and p2
s ∼

m4

Q2
. (12)

2 In some factorization theorems it is necessary to distinguish between soft and ultrasoft particles, and
between two versions of SCET: called SCETI and SCETII. In this paper we only deal with SCETI with
ultrasoft gluons. For simplicity we will therefore use the terms ultrasoft and soft interchangeably.
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one HQET for top

one HQET for antitop

although any value ∆ > ΛQCD can be considered. So we must switch from SCET onto these

HQET theories, and also consider what happens to the decay interaction in Eq. (29). We

describe the boosted HQET theories in detail in the next section, and we also discuss how

the soft cross-talk interactions remains active when the fluctuations at the top mass scale

m are integrated out.

Since the above Lagrangians and currents are LO in λ, it is natural to ask about the role

power corrections. As it turns out, higher order Lagrangians and currents give corrections

to our analysis at O(αsm/Q), O(∆/Q), O(m2/Q2), or O(Γ/m). The absence of O(m/Q)

implies that the m/Q expansion does not significantly modify the top-mass determination.

The leading action contains all m/Q corrections that do not involve an additional perturba-

tive gluon, so the corrections are O(αsm/Q). Furthermore, many of the higher order m/Q

corrections have the form of normalization corrections, and thus do not change the shape of

the invariant mass distribution. Subleading soft interactions are O(∆/Q). The interplay of

our hemisphere invariant mass variable with the top decay can induce O(m2/Q2) corrections,

as we discuss later on. Finally there will be power corrections of O(Γ/m) in bHQET.

B. Boosted HQET with Unstable Particles and Soft Cross-Talk

Boosted Heavy Quarks. HQET [36, 37, 38, 39, 40] is an effective theory describing the

interactions of a heavy quark with soft degrees of freedom, and also plays a crucial role for

jets initiated by massive unstable particles in the peak regions close to the heavy particles

mass shell. The momentum of a heavy quark interacting with soft degrees of freedom can

be written as

pµ = mvµ + kµ, (30)

where kµ denotes momentum fluctuations due to interactions with the soft degrees of freedom

and is much smaller than the heavy quark mass |kµ|! m. Also typically vµ ∼ 1 so that we

are parametrically close to the top quark quark rest-frame, vµ = (1,#0).

In the top-quark rest frame, kµ ∼ Γ ! m, and refers to momentum fluctuations of the

top due to interactions with gluons collinear to its direction which preserve the invariant

mass conditions ŝt, ŝt̄ ∼ Γ ! m. For our top-quark analysis, the center of mass frame is

the most convenient to setup the degrees of freedom. In this frame the gluons collinear

to the top-quark which preserve the invariant mass condition will be called ultra-collinear

(ucollinear) in the n direction. A different set of n̄-ucollinear gluons interact with the antitop

quark which moves in the n̄ direction. The leading order Lagrangian of the EFT describing

the evolution and decay of the top or antitop close to it’s mass shell is given by

L+ = h̄v+

(
iv+ · D+ − δm +

i

2
Γ
)
hv+ , L− = h̄v−

(
iv− · D− − δm +

i

2
Γ
)
hv− , (31)

15
our observable is inclusive in

top decay products

fluctuations
beneath the mass

where the + and − subscripts refer to the top and ant itop sectors respect ively, and iDµ
± =

i∂µ + gAµ
±. T hese H Q E T s represent an expansion in Γ/m. T he H Q E T field hv+ annihilates

top quarks, while hv− creates ant itop quarks. In the c.m. frame the components of kµ are
no longer homogeneous in size, and vµ

± /∼ 1. Instead for the ( + ,−,⊥) components we have

vµ
+ =

(
m

Q
,
Q

m
, 0⊥

)
, kµ

+ ∼ Γ

(
m

Q
,
Q

m
, 1

)
, (32)

vµ
− =

(
Q

m
,
m

Q
, 0⊥

)
, kµ

− ∼ Γ

(
Q

m
,
m

Q
, 1

)
.

T his is easily obtained by boost ing from the rest frame of the top and ant itop respect ively
with a boost factor of Q/m. In this naming scheme we will cont inue to call the gluons
that govern the cross-talk between top and ant itop jets soft. We emphasize that they are
not included in L± , since they have nothing to do with the gluons in standard H Q E T . Soft
gluon interact ions will be added below. To avoid double count ing between the soft gluons,
the ultracollinear gluons are defined with zero-bin subtract ions [51], so that for example
n̄·k+ $= 0 and n·k− $= 0.

T he leading order Lagrangians L± contain a residual mass term δm which has to be chosen
according to the desired top quark mass scheme. For a given top mass scheme m, the residual
mass term is determined by its relat ion to the pole mass mpole = m + δm. A nt icipat ing
that we have to switch to a properly defined short-distance mass definit ion [52, 53, 54, 55]
when higher order Q C D correct ions are included, we note that only short-distance mass
definit ions are allowed which do not violate the power count ing of the bH Q E T theories,
δm ∼ Γ. T his excludes for example the use of the well known MS mass, since in this
scheme δm = αsm% Γ. In pract ice, this means that using the MS leads to an inconsistent
perturbat ive expansion as explained in sect ion I I I G . T his is the reason why the MS mass
can not be measured direct ly from reconstruct ion.

T he leading order Lagrangians L± also contain top-width terms iΓ/2. A n effect ive field
theory treatment of the evolut ion and decay of a massive unstable part icle close to its mass
shell was developed in [8, 25, 41, 42, 43]. T he examples treated, were the resonant product ion
of a single unstable scalar part icle, and the leading and subleading width correct ions to
threshold tt̄ product ion. In our case, we deal with the energet ic pair product ion of massive
unstable fermions, and we arrive at two copies of this unstable H Q E T corresponding to the
top and ant itop sectors. In these two H Q E T theories we treat the top and ant itop decays
as totally inclusive, since we do not require detailed different ial informat ion on the decay
products. So the total top width Γ appears as an imaginary mass term in L± , which is
obtained by simply matching the imaginary part of the top and ant itop self-energy graphs
from SC E T onto bH Q E T . A s we show in Sec. I I I, this inclusive treatment of the top decay
is consistent with the hemisphere invariant mass definit ion we employ in this work up to
power correct ions of order (m/Q)2. We will come back to the role of higher order power
correct ions in the treatment of the finite top lifet ime at the end of this sect ion.
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pµ = mvµ
+ + kµ

collinear, but with
smaller overall scale

mass scheme
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δm = mpole −m
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FIG. 4: Example of the cancellation of soft gluon attachments to the decay products.

was devised in Refs. [30, 56].) The result of this procedure is exactly Eqs. (31) and (39).

Thus, the result for ∆! mΓ/Q is the same as for ∆ ∼ mΓ/Q.

We conclude that at leading order the interaction of the bHQET heavy quarks with

soft gluons are described by Eq. (39) just as they were in massive SCET. Thus this matrix

element can be used to define a soft function S, that describes the cross-talk between massive

top-quarks which have fluctuations below the mass scale m, and we can use Eq. (31) for the

remaining dynamics at LO. Thus, the dynamics separates in the manner shown in Fig. 2,

into two decoupled HQET’s and a decoupled soft-sector. In section III F below we will derive

the same result in an alternative manner, starting from the factorization theorem for the

cross-section in SCET. In this approach the definition of the jet functions and soft-cross

talk matrix elements are defined in SCET, and the matching onto bHQET only affects the

jet function. In this case the soft couplings are formulated by a matrix element from the

factorization theorem, and there is no need to consider soft couplings to fields in the bHQET

Lagrangian.

Decay Product Interactions. It is conspicuous that in the leading order bHQET setup,

gluon exchange involving top and antitop decay products is not present. We now show

that this treatment is correct and discuss the size of possible power corrections. Since we

are interested in top/antitop invariant masses in the peak region, we only have to consider

ucollinear and soft gluons. Concerning ucollinear gluons it is convenient to switch for each

bHQET into the respective heavy quark rest frame where vµ
± = (1, 0, 0, 0) and the ucollinear

gluons have momenta kµ ∼ Γ # m. For the hemisphere invariant masses we can treat the

top decay as fully inclusive at leading order (see Sec. III), so we can address the issue by

analyzing possible cuts from the top/antitop final states in electroweak contributions to the

bHQET matching conditions [42]. At leading order in the expansion in Γ/m there are cuts

from the top/antitop self energy which lead to the width terms in L±. Subleading finite

lifetime corrections to the heavy quark bilinear terms are suppressed by Γ/m and physically

related to the lifetime-dilations coming from residual momentum fluctuations of the heavy

quark. Furthermore, due to gauge invariance finite lifetime matching contributions can not

arise for the v± · A± couplings in the covariant derivatives of L±. Diagrammatically this

involves a cancellation between the graphs in Fig. 4 including all possible cuts. Diagram a

is a vertex correction, while diagram b is a wave-function-type contribution. Since momenta
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in the cut graphs are of order m, at leading order we can take the ucollinear gluons to

have momentum kµ = 0. In this situation the two diagrams cancel due to gauge invariance.

Thus, at leading order there are no finite lifetime effects involving ucollinear gluon exchange.

Effects from the sum of the diagrams in Fig. 4 that do not cancel are suppressed by at least

a factor αsΓ/m relative to the leading order factorization theorem.

Next consider soft gluon interactions. Using the proof above for the universality of the soft

cross-talk matrix element in Eq. (39) and repeating the arguments made for the ucollinear

gluon interactions we find that the dominant soft gluon interactions involving top/antitop

decay products are described by possible cuts of electroweak matching contributions of the

n ·As and n̄ ·As couplings in Eq. (34). In this case the same cancellation as for the ucollinear

gluons takes place since the average soft gluon energy in the top/antitop rest frame is still

∆ and thus much smaller than m. Thus interactions involving top/antitop decays products

and soft gluons are suppressed by at least a factor ∆/m. Numerical studies in Ref. [57] have

estimated QCD interconnection effects based on nonperturbative models.

Having defined the EFT’s we now turn to the derivation of the factorization theorem.

III. FACTORIZED CROSS-SECTION AND INVARIANT MASS DEFINITIONS

A. The QCD Cross-Section

We start with the general expression of the cross-section for top-antitop quark production,

e+e− → γ∗, Z∗ → tt̄ + X. The final state we are interested in is observed as the top and

antitop jets plus soft radiation J(t)J(t̄)Xs. We remind the reader that we refer to all

the jets coming from the top and antitop quark decay collectively as top and antitop jets,

respectively. But we stress that despite the language, our analysis is still perfectly consistent

with the fact that the different jets from each the top and antitop decay can be resolved in

the experimental analysis.

The full cross-section is

σ =
res.∑

X

(2π)4 δ4(q − pX)
∑

i=a,v

Li
µν 〈0|J

ν†
i (0)|X〉〈X|J µ

i (0)|0〉 , (40)

where the initial state total leptonic momentum is q = pe− + pe+ , Q2 = q2, and the QCD

currents J µ
v,a are given in Eqs. (16). The superscript res. on the summation symbol denotes

a restriction on the sum over final states X, to give J(t)J(t̄)Xs. These final states contain

top and antitop jets with invariant masses close to the top quark mass. The explicit form

of these restrictions depends on the specific jet and invariant mass definitions used. For the

hemisphere invariant mass prescription these restrictions will be implemented explicitly in

Sec. III E below, while other methods are discussed in Sec. V.

In Eq. (40) we include photon and Z boson exchange, and imply an angular average of the

leptonic tensor, to obtain the parity conserving Li
µν with a sum over vector and axial-vector
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FIG. 3: Final state jets in SCET for stable top-quarks with invariant mass ∼ m2. The invariant
mass is restricted and the top-decay products become explicit by matching onto HQET.

and for convenience we will adopt the short-hand notation J µ
i = ψ̄(x)Γµ

i ψ(x). The matching

relation of these QCD currents to SCET currents is given by the convolution formula [19]

J µ
i (0) =

∫
dω dω̄ C(ω, ω̄, µ)J (0)µ

i (ω, ω̄, µ) , (17)

where C contains short-distance dynamics at the scale Q, while J (0)µ
i describes fluctuations

at all longer distance scales. The SCET production current at leading order in λ is given by

J (0)µ
i (ω, ω̄, µ) = χ̄n,ω(0)Γµ

i χn̄,ω̄(0) , (18)

where χn,ω(0) = δ(ω − n̄ ·P)(W †
nξn)(0) and χn̄,ω̄(0) = δ(ω̄ − n ·P)(W †

n̄ξn̄)(0). Here the (0)

indicates that the fields are at coordinate xµ = 0, and we recall that this xµ dependence

carries information about the residual momenta at the scale Qλ2 = m2/Q. The dependence

on larger momenta is encoded in labels on the collinear fields [20], and, for example, δ(ω −
n̄ · P ) forces the total minus-label-momentum of (W †

nξn) to be ω. We also use the notation

χn = (W †
nξn) and χn̄ = (W †

n̄ξn̄).

One can decouple the soft and collinear modes in L(0)
qn by performing a field redefinition

on collinear fields [21]

ξn → Ynξn , Aµ
n → Yn Aµ

n Y †
n , (19)

where Yn is a soft Wilson line

Yn(x) = P exp
(
− ig

∫ ∞

0

ds n·As(ns+x)
)

. (20)

This gives

Y †
n (x) = P exp

(
ig

∫ ∞

0

ds n·As(ns+x)
)

, (21)

which satisfies Y †
nYn = 1. For two-jet production the factorization is most transparent [26]

with the reference point s0 = ∞ shown in Eq. (20). The gluon fields are either antipath-

ordered (for P) or path-ordered (for P). We use the same Wilson line for both the quark
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Wilson coefficient SCET current
(ξ̄nWn)ω Y †

n ΓµYn̄(W †
n̄ξn̄)ω̄

χ̄n,ω Y †
n ΓµYn̄χn̄,ω̄≡

Momentum conservation:

→ C(Q,Q, µ)



the n and n̄ directions (see Sec. IIA). However, only |C(Q, µ)|2 will appear in the final

factorization theorem.

Using Eqs. (17) and (18) in Eq.(40), the cross-section in SCET takes the form

σ =
∑

!n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)
∑

i

L(i)
µν

∫
dω dω̄ dω′ dω̄′

×C(ω, ω̄)C∗(ω′, ω̄′)〈0|χ̄n̄,ω̄′Γ̄ν
j χn,ω′ |XnXn̄Xs〉〈XnXn̄Xs|χn,ωΓµ

i χn̄,ω̄|0〉 . (44)

Here we have pulled out an explicit sum over the top jet label directions &n and keep only

two collinear sectors L(0)
n and L(0)

n̄ for the SCET description of top and antitop jets. This

allows us to explicitly carry out the integral over the top jet directions &n in Sec. IIID in

parallel to implementing factorization.

In Eq. (44) we have decomposed the final states |X〉 into a soft sector |Xs〉 and collinear

sectors |Xn〉, |Xn̄〉 in the &n and &̄n directions respectively

|X〉 = |XnXn̄Xs〉 . (45)

Since the hard production scale is integrated out by the matching procedure, these states

now form a complete set of final states that can be produced by the SCET currents J µ
i .

This already implements part of the restrictions, “res”, in the sum over states in Eq. (44).

The momentum PX of the final state |X〉 is also decomposed into the momentum of the

collinear and soft sectors:

PX = PXn + PXn̄ + PXs. (46)

Because the set of hadrons observed in the detector has a well defined set of momenta, it is

possible to impose criteria on the hadrons in the final state to associate them with one of

Xn, Xn̄, or Xs. Thus, the hadronic two-jet state factorizes as a direct product

|X〉 = |Xn〉|Xn̄〉|Xs〉 . (47)

This factorization is also a manifest property of the hadronic states in SCET.

For quark and gluon states in SCET the difference from the purely hadronic case is that

the analog states in Eq. (47) can carry global color quantum numbers. After having made

the soft-collinear decoupling field redefinition, the individual Lagrangians for these sectors

are decoupled, and they only organize themselves into color singlets in the matrix elements

which appear in the observable cross-section. We can take this as a manifestation of quark-

hadron duality. Using the soft-collinear decoupling property from section IIA we can write

the matrix elements in Eq. (44) as
〈
0
∣∣χa

n̄,ω̄′(Y n̄)ba (ΓYnχn,ω′)b
∣∣XnXn̄Xs

〉〈
XnXn̄Xs

∣∣(χn,ωY †
n Γ)c (Y

†
n̄)dcχd

n̄,ω̄

∣∣0
〉

(48)

=
〈
0
∣∣χa

n̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣χa′

n̄,ω̄

∣∣0
〉〈

0
∣∣χb

n,ω′

∣∣Xn

〉〈
Xn

∣∣χb′

n,ω

∣∣0
〉

×
〈
0
∣∣(Y n̄)ca(ΓYn)cb

∣∣Xs

〉〈
Xs

∣∣(Y †
nΓ)b′c′

(Y
†
n̄)a′c′∣∣0

〉
,
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SCET cross-section:

where here roman indices are for color and spin and |Xn〉 and |Xn̄〉 are color triplets. Next
we rearrange the color and spinor indices so that they are fully contracted within each of the
n-collinear, n̄-collinear, and soft product of matrix elements. T his makes explicit the fact
that in SC E T each of these contribut ions to the cross-sect ion must separately be a spin and
color singlet . A lthough it is not absolutely necessary to make this arrangement of indices
manifest at this point , it does allow us to avoid carrying around unnecessary indices (a similar
manipulat ion was used for B → Xsγ in Ref. [60]). For color, our |Xn̄〉〈Xn̄| forces the indices
on χa

n̄ and χa′
n̄ to be the same, so

〈
0
∣∣χa

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χa′
n̄

∣∣0
〉

= (δaa′
/Nc)

〈
0
∣∣χb

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χb
n̄

∣∣0
〉

. A
similar result holds for the n-collinear matrix elements. For spin we can use the SC E T F ierz
formula

1⊗ 1 =
1
2

[( n̄/

2
)
⊗

(n/

2
)

+
(−n̄/γ5

2
)
⊗

(n/γ5

2
)

+
(−n̄/γα

⊥
2

)
⊗

(n/γ⊥
α

2
)]

, (49)

which is valid when the ident ity matrices are inserted so that the n/ terms on the R HS
appear between χn̄ · · · χn̄ without addit ional n̄/ factors next to these fields (or the analogous
statement with n ↔ n̄). Combining the color and spin index rearrangement , the matrix
element in E q. (48) becomes

tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

][〈
0
∣∣χa

n̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣
( n/

4Nc
χn̄,ω̄

)a∣∣0
〉] [〈

0
∣∣
( n̄/

4Nc
χn,ω′

)b∣∣Xn

〉〈
Xn

∣∣χb
n,ω

∣∣0
〉]

×
[〈

0
∣∣(Y n̄)ca′

(Yn)cb′∣∣Xs

〉〈
Xs

∣∣(Y †
n )b′c′

(Y
†
n̄)a′c′∣∣0

〉]

≡ tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

]
tr

(〈
0
∣∣χn̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉)

tr
(〈

0
∣∣/̄̂nχn,ω′

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉)

× tr
(〈

0
∣∣Y n̄Yn

∣∣Xs

〉〈
Xs

∣∣Y †
n Y

†
n̄

∣∣0
〉)

, (50)

where for convenience we defined

/̂n ≡ n//(4Nc) , /̄̂n ≡ n̄//(4Nc) . (51)

Note that only the first term on the R HS of E q. (49) contributes because the collinear states
give at least one matrix element which is zero when we have a γ5 or γα

⊥ . T his factorizes the
SC E T cross-sect ion into a product of three singlets under spin and color. For convenience
we will in the following suppress writ ing these explicit traces on the matrix elements.

Using E q. (50) in E q. (44), the factorized SC E T cross sect ion takes the form

σ = K0

∑

$n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs )〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉 (52)

×
∫

dω dω̄ dω′ dω̄′ C(ω, ω̄)C†(ω′, ω̄′)〈0|/̄̂nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 ,

where we defined the normalizat ion factor

K0 =
∑

i=v,a

L(i)
µν Tr

[n/

2
Γµ

i

n̄/

2
Γ

ν
j

]
= −2gµν

⊥

∑

i=v,a

L(i)
µν

=
32π2α2

3Q4

[
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4(v2

e + a2
e)(v2

t + a2
t )

(Q2 −m2
Z )2

]
. (53)
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which is valid when the identity matrices are inserted so that the n/ terms on the RHS
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element in Eq. (48) becomes

tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

][〈
0
∣∣χa

n̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣
( n/

4Nc
χn̄,ω̄

)a∣∣0
〉] [〈

0
∣∣
( n̄/

4Nc
χn,ω′

)b∣∣Xn

〉〈
Xn

∣∣χb
n,ω

∣∣0
〉]

×
[〈

0
∣∣(Y n̄)ca′

(Yn)
cb′∣∣Xs

〉〈
Xs

∣∣(Y †
n )b′c′

(Y
†
n̄)a′c′∣∣0

〉]

≡ tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

]
tr

(〈
0
∣∣χn̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉)

tr
(〈

0
∣∣/̂̄nχn,ω′

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉)

× tr
(〈

0
∣∣Y n̄Yn

∣∣Xs

〉〈
Xs

∣∣Y †
n Y

†
n̄

∣∣0
〉)

, (50)

where for convenience we defined

/̂n ≡ n//(4Nc) , /̂̄n ≡ n̄//(4Nc) . (51)

Note that only the first term on the RHS of Eq. (49) contributes because the collinear states

give at least one matrix element which is zero when we have a γ5 or γα
⊥. This factorizes the

SCET cross-section into a product of three singlets under spin and color. For convenience

we will in the following suppress writing these explicit traces on the matrix elements.

Using Eq. (50) in Eq. (44), the factorized SCET cross section takes the form

σ = K0

∑

$n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉 (52)

×
∫

dω dω̄ dω′ dω̄′ C(ω, ω̄)C†(ω′, ω̄′)〈0|/̂̄nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 ,

where we defined the normalization factor

K0 =
∑

i=v,a

L(i)
µνTr

[n/

2
Γµ

i

n̄/

2
Γ

ν
j

]
= −2gµν

⊥

∑

i=v,a

L(i)
µν

=
32π2α2

3Q4

[
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4(v2

e + a2
e)(v

2
t + a2

t )

(Q2 −m2
Z)2

]
. (53)
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the n and n̄ directions (see Sec. IIA). However, only |C(Q, µ)|2 will appear in the final

factorization theorem.

Using Eqs. (17) and (18) in Eq.(40), the cross-section in SCET takes the form

σ =
∑

!n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)
∑

i

L(i)
µν

∫
dω dω̄ dω′ dω̄′

×C(ω, ω̄)C∗(ω′, ω̄′)〈0|χ̄n̄,ω̄′Γ̄ν
j χn,ω′ |XnXn̄Xs〉〈XnXn̄Xs|χn,ωΓµ

i χn̄,ω̄|0〉 . (44)

Here we have pulled out an explicit sum over the top jet label directions &n and keep only

two collinear sectors L(0)
n and L(0)

n̄ for the SCET description of top and antitop jets. This

allows us to explicitly carry out the integral over the top jet directions &n in Sec. IIID in

parallel to implementing factorization.

In Eq. (44) we have decomposed the final states |X〉 into a soft sector |Xs〉 and collinear

sectors |Xn〉, |Xn̄〉 in the &n and &̄n directions respectively

|X〉 = |XnXn̄Xs〉 . (45)

Since the hard production scale is integrated out by the matching procedure, these states

now form a complete set of final states that can be produced by the SCET currents J µ
i .

This already implements part of the restrictions, “res”, in the sum over states in Eq. (44).

The momentum PX of the final state |X〉 is also decomposed into the momentum of the

collinear and soft sectors:

PX = PXn + PXn̄ + PXs. (46)

Because the set of hadrons observed in the detector has a well defined set of momenta, it is

possible to impose criteria on the hadrons in the final state to associate them with one of

Xn, Xn̄, or Xs. Thus, the hadronic two-jet state factorizes as a direct product

|X〉 = |Xn〉|Xn̄〉|Xs〉 . (47)

This factorization is also a manifest property of the hadronic states in SCET.

For quark and gluon states in SCET the difference from the purely hadronic case is that

the analog states in Eq. (47) can carry global color quantum numbers. After having made

the soft-collinear decoupling field redefinition, the individual Lagrangians for these sectors

are decoupled, and they only organize themselves into color singlets in the matrix elements

which appear in the observable cross-section. We can take this as a manifestation of quark-

hadron duality. Using the soft-collinear decoupling property from section IIA we can write

the matrix elements in Eq. (44) as
〈
0
∣∣χa

n̄,ω̄′(Y n̄)ba (ΓYnχn,ω′)b
∣∣XnXn̄Xs

〉〈
XnXn̄Xs

∣∣(χn,ωY †
n Γ)c (Y

†
n̄)dcχd

n̄,ω̄

∣∣0
〉

(48)

=
〈
0
∣∣χa

n̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣χa′

n̄,ω̄

∣∣0
〉〈

0
∣∣χb

n,ω′

∣∣Xn

〉〈
Xn

∣∣χb′

n,ω

∣∣0
〉

×
〈
0
∣∣(Y n̄)ca(ΓYn)cb

∣∣Xs

〉〈
Xs

∣∣(Y †
nΓ)b′c′

(Y
†
n̄)a′c′∣∣0

〉
,
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SCET cross-section:

where here roman indices are for color and spin and |Xn〉 and |Xn̄〉 are color triplets. Next
we rearrange the color and spinor indices so that they are fully contracted within each of the
n-collinear, n̄-collinear, and soft product of matrix elements. T his makes explicit the fact
that in SC E T each of these contribut ions to the cross-sect ion must separately be a spin and
color singlet . A lthough it is not absolutely necessary to make this arrangement of indices
manifest at this point , it does allow us to avoid carrying around unnecessary indices (a similar
manipulat ion was used for B → Xsγ in Ref. [60]). For color, our |Xn̄〉〈Xn̄| forces the indices
on χa

n̄ and χa′
n̄ to be the same, so

〈
0
∣∣χa

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χa′
n̄

∣∣0
〉

= (δaa′
/Nc)

〈
0
∣∣χb

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χb
n̄

∣∣0
〉

. A
similar result holds for the n-collinear matrix elements. For spin we can use the SC E T F ierz
formula

1⊗ 1 =
1
2

[( n̄/

2
)
⊗

(n/

2
)

+
(−n̄/γ5

2
)
⊗

(n/γ5

2
)

+
(−n̄/γα

⊥
2

)
⊗

(n/γ⊥
α

2
)]

, (49)

which is valid when the ident ity matrices are inserted so that the n/ terms on the R HS
appear between χn̄ · · · χn̄ without addit ional n̄/ factors next to these fields (or the analogous
statement with n ↔ n̄). Combining the color and spin index rearrangement , the matrix
element in E q. (48) becomes

tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

][〈
0
∣∣χa

n̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣
( n/

4Nc
χn̄,ω̄

)a∣∣0
〉] [〈

0
∣∣
( n̄/

4Nc
χn,ω′

)b∣∣Xn

〉〈
Xn

∣∣χb
n,ω

∣∣0
〉]

×
[〈

0
∣∣(Y n̄)ca′

(Yn)cb′∣∣Xs

〉〈
Xs

∣∣(Y †
n )b′c′

(Y
†
n̄)a′c′∣∣0

〉]

≡ tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

]
tr

(〈
0
∣∣χn̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉)

tr
(〈

0
∣∣/̄̂nχn,ω′

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉)

× tr
(〈

0
∣∣Y n̄Yn

∣∣Xs

〉〈
Xs

∣∣Y †
n Y

†
n̄

∣∣0
〉)

, (50)

where for convenience we defined

/̂n ≡ n//(4Nc) , /̄̂n ≡ n̄//(4Nc) . (51)

Note that only the first term on the R HS of E q. (49) contributes because the collinear states
give at least one matrix element which is zero when we have a γ5 or γα

⊥ . T his factorizes the
SC E T cross-sect ion into a product of three singlets under spin and color. For convenience
we will in the following suppress writ ing these explicit traces on the matrix elements.

Using E q. (50) in E q. (44), the factorized SC E T cross sect ion takes the form

σ = K0

∑

$n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs )〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉 (52)

×
∫

dω dω̄ dω′ dω̄′ C(ω, ω̄)C†(ω′, ω̄′)〈0|/̄̂nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 ,

where we defined the normalizat ion factor

K0 =
∑

i=v,a

L(i)
µν Tr

[n/

2
Γµ

i

n̄/

2
Γ

ν
j

]
= −2gµν

⊥

∑

i=v,a

L(i)
µν

=
32π2α2

3Q4

[
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4(v2

e + a2
e)(v2

t + a2
t )

(Q2 −m2
Z )2

]
. (53)
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where here roman indices are for color and spin and |Xn〉 and |Xn̄〉 are color triplets. Next

we rearrange the color and spinor indices so that they are fully contracted within each of the

n-collinear, n̄-collinear, and soft product of matrix elements. This makes explicit the fact

that in SCET each of these contributions to the cross-section must separately be a spin and

color singlet. Although it is not absolutely necessary to make this arrangement of indices

manifest at this point, it does allow us to avoid carrying around unnecessary indices (a similar

manipulation was used for B → Xsγ in Ref. [60]). For color, our |Xn̄〉〈Xn̄| forces the indices

on χa
n̄ and χa′

n̄ to be the same, so
〈
0
∣∣χa

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χa′
n̄

∣∣0
〉

= (δaa′
/Nc)

〈
0
∣∣χb

n̄

∣∣Xn̄

〉〈
Xn̄

∣∣χb
n̄

∣∣0
〉
. A

similar result holds for the n-collinear matrix elements. For spin we can use the SCET Fierz

formula

1⊗ 1 =
1

2

[( n̄/

2

)
⊗

(n/

2

)
+

(−n̄/γ5

2

)
⊗

(n/γ5

2

)
+

(−n̄/γα
⊥

2

)
⊗

(n/γ⊥
α

2

)]
, (49)

which is valid when the identity matrices are inserted so that the n/ terms on the RHS

appear between χn̄ · · · χn̄ without additional n̄/ factors next to these fields (or the analogous

statement with n ↔ n̄). Combining the color and spin index rearrangement, the matrix

element in Eq. (48) becomes

tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

][〈
0
∣∣χa

n̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣
( n/

4Nc
χn̄,ω̄

)a∣∣0
〉] [〈

0
∣∣
( n̄/

4Nc
χn,ω′

)b∣∣Xn

〉〈
Xn

∣∣χb
n,ω

∣∣0
〉]

×
[〈

0
∣∣(Y n̄)ca′

(Yn)
cb′∣∣Xs

〉〈
Xs

∣∣(Y †
n )b′c′

(Y
†
n̄)a′c′∣∣0

〉]

≡ tr
[n/

2
Γµ

i

n̄/

2
Γ̄ν

j

]
tr

(〈
0
∣∣χn̄,ω̄′

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉)

tr
(〈

0
∣∣/̂̄nχn,ω′

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉)

× tr
(〈

0
∣∣Y n̄Yn

∣∣Xs

〉〈
Xs

∣∣Y †
n Y

†
n̄

∣∣0
〉)

, (50)

where for convenience we defined

/̂n ≡ n//(4Nc) , /̂̄n ≡ n̄//(4Nc) . (51)

Note that only the first term on the RHS of Eq. (49) contributes because the collinear states

give at least one matrix element which is zero when we have a γ5 or γα
⊥. This factorizes the

SCET cross-section into a product of three singlets under spin and color. For convenience

we will in the following suppress writing these explicit traces on the matrix elements.

Using Eq. (50) in Eq. (44), the factorized SCET cross section takes the form

σ = K0

∑

$n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉 (52)

×
∫

dω dω̄ dω′ dω̄′ C(ω, ω̄)C†(ω′, ω̄′)〈0|/̂̄nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 ,

where we defined the normalization factor

K0 =
∑

i=v,a

L(i)
µνTr

[n/

2
Γµ

i

n̄/

2
Γ

ν
j

]
= −2gµν

⊥

∑

i=v,a

L(i)
µν

=
32π2α2

3Q4

[
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4(v2

e + a2
e)(v

2
t + a2

t )

(Q2 −m2
Z)2

]
. (53)
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FIG. 3: One-loop vertex corrections in QCD. {qcdloops}

whre the correct complex structure is obtained by taking ∆2+i0. For the SCET computation

we have the graphs in Fig. 4 which are evaluated in Eqs. (A4,A5) of Appendix A with non-

zero ∆2 = p2 − m2 and ∆̄2 = p̄2 − m2. The sum of collinear and soft vertex graphs,

wavefunction counterterm, and residue is V4a + V4b + V4c + Γµ
i (Zξ − 1) + Γµ

i (Rξ − 1). Taking

∆̄ = ∆ > 0 and again taking ∆2 " m2 " Q2 this gives

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[

1 +
αsCF

4π

{

2

ε2
+

3

ε
+

2

ε
ln

( µ2

−Q2

)

+ 2 ln2
( µ2

−∆2

)

(46)

+2 ln2
( m2

−∆2

)

− ln2
( µ2Q2

(−∆2)(∆2)

)

+ 4 ln
( m2

−∆2

)

+ 3 ln
( µ2

m2

)

+ 8 +
π2

2

}]

.

The remaining divergences in Eq. (46) are cancelled by the counterterm for the Wilson

coefficient, ZC − 1, giving

Zc = 1 −
αsCF

4π

[

2

ε2
+

3

ε
+

2

ε
ln

( µ2

−Q2 − i0

)

]

, (47) {Zc}

and the renormalized amplitude in SCET

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[

1 +
αsCF

4π

{

2 ln2
( µ2

−∆2

)

+ 2 ln2
( m2

−∆2

)

− ln2
(µ2Q2

−∆4

)

+4 ln
( m2

−∆2

)

+ 3 ln
( µ2

m2

)

+ 8 +
π2

2

}]

. (48)

Subtracting Eqs. (48) from (45) all dependence on the IR scales m and ∆ cancels. This

demonstrates that massive SCET has the same IR structure as in QCD. Evaluating the

difference at µ = µQ gives

C(µQ, Q) = 1 +
αsCF

4π

[

− ln2
( µ2

Q

−Q2−i0

)

− 3 ln
( µ2

Q

−Q2−i0

)

− 8 +
π2

6

]

. (49)

Since µQ % Q there are no large logs in the matching, as expected.

Since the result in Eq. (49) is independent of the IR regulator choice it should agree with

that of the massless production current. In Ref. [18] the matching coefficient was computed

using onshell massless quarks, and Eq. (49) agrees with their result. With their regulator
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a) b) c) d)

e)

FIG. 4: Nonzero one-loop vertex and self-energy corrections in massive SCET. Gluons with a line

through them are collinear, while those without are soft. {scetloops}

the SCET computation was scaleless. To see more explicitly how the massless computation

gives the same matching coefficient we repeat the steps with an offshellness p2 = p̄2 ! m2.

For this case the renormalized one loop QCD amplitude is:

〈p, p̄|J µ
i |0〉

∣

∣

∣

QCD
= Γµ

i ZJ

[

1+CF
αs

4π

{

−ln
(−Q2

µ2

)

−2 ln2
( p2

Q2

)

−4 ln
( p2

Q2

)

−
2π2

3

}]

, (50) {Jmatrixqcd

and from Eqs. (A4) and (A5) the renormalized amplitude in SCET is

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[

1+
αsCF

4π

{

2 ln2
( µ2

−p2

)

−ln2
(µ2Q2

−p4

)

+4 ln
( µ2

−p2

)

+8 −
5π2

6

}]

. (51) {masslessscetvertex

To obtain Eq. (51) the same ZC counterterm in Eq. (47) was used. Taking the difference,

Eq. (50) minus (51), gives exactly Eq. (49) as expected.

The presence of the imaginary part in C(Q, µ) indicates that short distance contributions

of the full QCD current contains a discontinuity. To see why this occurs, note that the

QCD current describes the production of on-shell n and n̄ particles, which are contained in

the SCET result, but also includes the production of particles in other collinear directions

which we integrate out into C(Q, µ).The full theory amplitude in Eq. (50) does not contain

an imaginary part in the double logarithmic term for p2 > 0. This is reproduced in SCET

only once we add imaginary parts from the short distance coefficient and from the SCET

loop graphs. In the SCET cross section only the amplitude-squared appears, and here the

unphysial imaginary parts cancel both in HQ = |C(Q, µ)|2, and in the square of the loop

graphs. This ensures that the coefficient HQ in the factorization theorem has a proper short

distance interpretation. The relevant matching coefficient is therefore

HQ(Q, µQ) = 1 +
αsCF

4π

[

−2 ln2
(Q2

µ2
Q

)

+ 6 ln
(Q2

µ2
Q

)

− 16 +
5π2

3

]

. (52)

To evolve the Wilson coefficient to lower scales we need to solve the RG equation in

Eq. (26). The anomalous dimensions are obtained from Zc in Eq. (47) and using µd/dµαs =

18

parts, i = v, a. For convenience we also include the charges and boson propagators, and the

cross-section prefactor 1/(2Q2), so that

L(v)
µν = −8π2α2

3Q4

(
gµν −

qµqν

Q2

)[
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4(v2

e + a2
e)v

2
t

(Q2 −m2
Z)2

]
,

L(a)
µν = −8π2α2

3Q4

(
gµν −

qµqν

Q2

)[
Q4 (v2

e + a2
e)a

2
t

(Q2 −m2
Z)2

]
. (41)

Here et is the top-quark charge, and

vf =
T f

3 − 2Qf sin2 θW

2 sin θW cos θW
, af =

T f
3

2 sin θW cos θW
, (42)

where T f
3 is the third component of weak isospin, and θW is the weak mixing angle.

B. The SCET Cross-Section

We now proceed by using the fact that the states are restricted to be dijet-like through

the constraint that the top and antitop jet invariant masses are close to the top quark

mass, as illustrated in Fig. 3. In this section we reformulate the cross section by using the

more specific SCET currents of Eq. (18) that are suitable for this kinematic situation. We

integrate out the hard production energy scale Q by matching the SCET currents onto the

QCD currents giving us via the matching relation (17) a new expression for the cross-section

defined with matrix elements in SCET.

The SCET currents in Eq. (18) correctly reproduce the long distance physics of the

QCD current, and the difference in the short distance physics is contained in the Wilson

coefficient C(ω, ω̄, µ). We will see momentarily that momentum conservation dictates that

the final form of the cross-section depends only on C(Q,−Q, µ) ≡ C(Q, µ). In Ref. [58] the

Wilson coefficient at one loop was computed. It is independent of the Dirac structure Γi and

also of whether or not the collinear quarks are massive (the latter fact is demonstrated in

Ref. [59] where the matching computation for the corresponding vertex diagrams is carried

out explicitly for finite heavy quark mass). The result is

C(Q, µ) = 1 +
αsCF

4π

[
3 log

−Q2−i0

µ2
− log2 −Q2−i0

µ2
− 8 +

π2

6

]
. (43)

At the matching scale µ = Q this Wilson coefficient does not contain any large logarithms.

The product of the Wilson coefficient C(Q, µ) and the SCET matrix element is independent

of the scale µ, and renormalization group (RG) evolution determines the Wilson coefficient

at a lower scale µ. This RG evolution of the hard Wilson coefficient sums logarithms of

µ/Q with µ ≥ m. The Wilson coefficient contains an imaginary part that arises from real

QCD intermediates states in the QCD vertex diagram that are not accounted for in the

corresponding SCET diagrams when the collinear action only contains the two sectors for
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Specify hemisphere invariant masses for the jets:

invariant mass of all the final state part icles in each hemisphere. A s we show explicit ly below,
the requirement that these jet invariant masses are both close to the top mass, automat ically
restricts the final state to be dijet-like, and eliminates the need to introduce any addit ional
event-shape constraint . We stress that some mechanism to control the soft part icles is
absolutely crucial for establishing the factorizat ion theorem and the unique definit ion of
the soft funct ion S . Here this is accomplished by the fact that all soft part icles enter the
invariant mass variables M 2

t,t̄ .
T he invariant mass of each hemisphere includes contribut ions from both soft and collinear

part icles. T he total momentum of the collinear part icles in the n-hemisphere is PXn and in
the n̄-hemisphere is PXn̄ . T he total final state soft momentum KXs is split between the two
hemispheres and can be divided as:

KXs = ka
s + kb

s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respect ively. I t is useful to think of these hemisphere momenta as the result of
hemisphere pro ject ion operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these pro ject ion operators act on each state |Xs〉, pick out the soft partons
in the respect ive hemisphere and add up their total momentum. Note that the eigenvalues
are depend on the state Xs, so ka

s = ka
s [Xs] and kb

s = kb
s[Xs]. We can now define the invariant

mass of each jet as (PXn + ka
s )2 and (PXn̄ + kb

s)2 for the n and n̄ hemispheres respect ively.
T he delta funct ions δ4(pn − PXn ) δ4(pn̄ − PXn̄ ) in the second line of E q. (65) allow us to
define the jet invariant masses in terms of pn, pn̄ as (pn + ka

s )2 and (pn̄ + kb
s)2 for the n and

n̄ hemispheres respect ively.
Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definit ions of the operators P̂a and P̂b . Running a jet
algorithm in inclusive e+e− mode [61] each soft parton is st ill accounted for, having a certain
probability of being assigned to either the top or the ant itop invariant mass. We discuss
other algorithms in sect ion V .

If the top quark were a stable part icle these invariant mass definit ions would be obvious
because n- and n̄-collinear part icles would be fully radiated into the n- and n̄-hemispheres,
respect ively. D ue to the finite lifet ime of the top quark, however, we need to convince
ourselves that this invariant mass definit ion st ill works if the n- and n̄-collinear momenta
of the top and ant itop quarks, respect ively, are distributed among their decay products. So
let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with
respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final
state part icles appearing in the n̄-hemisphere of the ant itop quark only if these final state
part icles have an angle (defined in the top rest frame) smaller than m/Q with respect to

28

total soft momentum is the sum of momentum in each hemisphere

invariant mass of all the final state particles in each hemisphere. As we show explicitly below,

the requirement that these jet invariant masses are both close to the top mass, automatically

restricts the final state to be dijet-like, and eliminates the need to introduce any additional

event-shape constraint. We stress that some mechanism to control the soft particles is

absolutely crucial for establishing the factorization theorem and the unique definition of

the soft function S. Here this is accomplished by the fact that all soft particles enter the

invariant mass variables M 2
t,t̄.

The invariant mass of each hemisphere includes contributions from both soft and collinear

particles. The total momentum of the collinear particles in the n-hemisphere is PXn and in

the n̄-hemisphere is PXn̄ . The total final state soft momentum KXs is split between the two

hemispheres and can be divided as:

KXs = ka
s + kb

s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respectively. It is useful to think of these hemisphere momenta as the result of

hemisphere projection operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these projection operators act on each state |Xs〉, pick out the soft partons

in the respective hemisphere and add up their total momentum. Note that the eigenvalues

are depend on the state Xs, so ka
s = ka

s [Xs] and kb
s = kb

s[Xs]. We can now define the invariant

mass of each jet as (PXn + ka
s )

2 and (PXn̄ + kb
s)

2 for the n and n̄ hemispheres respectively.

The delta functions δ4(pn − PXn) δ4(pn̄ − PXn̄) in the second line of Eq. (65) allow us to

define the jet invariant masses in terms of pn, pn̄ as (pn + ka
s )

2 and (pn̄ + kb
s)

2 for the n and

n̄ hemispheres respectively.

Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definitions of the operators P̂a and P̂b. Running a jet

algorithm in inclusive e+e− mode [61] each soft parton is still accounted for, having a certain

probability of being assigned to either the top or the antitop invariant mass. We discuss

other algorithms in section V.

If the top quark were a stable particle these invariant mass definitions would be obvious

because n- and n̄-collinear particles would be fully radiated into the n- and n̄-hemispheres,

respectively. Due to the finite lifetime of the top quark, however, we need to convince

ourselves that this invariant mass definition still works if the n- and n̄-collinear momenta

of the top and antitop quarks, respectively, are distributed among their decay products. So

let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with

respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final

state particles appearing in the n̄-hemisphere of the antitop quark only if these final state

particles have an angle (defined in the top rest frame) smaller than m/Q with respect to
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Specify hemisphere invariant masses for the jets:
the antiparticle direction. On the other hand, the top spin is only about 20% polarized

(for unpolarized e+e− beams and upon averaging over the directions of the thrust axis) [62],

and thus the top decay products in the top rest frame are distributed isotropically to a

rather good approximation. The fraction of events in this kinematical situation is therefore

suppressed by (m/Q)2 and can be neglected at leading order in the power counting. Of

course the analogous conclusion also applies to the antitop quark in the n̄ hemisphere. So at

leading order in the power counting it is consistent to employ the invariant mass definition

of the previous paragraph.

The jet invariant mass definitions can be implemented into the cross-section of Eq. (69)

by inserting underneath the
∑

Xs
the identity relation

1 =

∫
dM2

t δ
(
(pn + ka

s )
2 −M2

t

) ∫
dM2

t̄ δ
(
(pn̄ + kb

s)
2 −M2

t̄

)

=

∫
dM2

t δ
(
(pn + ka

s )
2 −m2 − st

) ∫
dM2

t̄ δ
(
(pn̄ + kb

s)
2 −m2 − st̄

)
, (73)

where st(Mt) and st̄(Mt̄) from Eq. (1), i.e. it should be understood that st,t̄ are functions

of M2
t,t̄. In the second line m is defined as the pole mass. It is straightforward to switch

the final result to a suitable short distance mass definition, as we explain in section IIIG.

Decomposing the δ-functions at leading order gives

δ((pn + ka
s )

2 −m2 − st) =
1

Q
δ
(
k+

n + k+a
s − m2 + st

Q

)
,

δ((pn̄ + kb
s)

2 −m2 − st̄) =
1

Q
δ
(
k−n̄ + k−b

s − m2 + st̄

Q

)
, (74)

where we set p̃−n = p̃+
n̄ = Q due to δ-functions from Eq. (67). Carrying out the integration

over k+
s and k−s in Eq. (69) sets the arguments of the soft function to z± = 0. Inserting the

identity relation

1 =

∫
d"+d"−δ("+ − k+a

s )δ("− − k−b
s ) (75)

the differential cross-section then reads

d2σ

dM2
t dM2

t̄

=
σ0

Q2

∣∣C(Q, µ)
∣∣2

∫
dk+

n dk−n̄ d"+ d"−δ
(
k+

n + "+ − m2 + st

Q

)
δ
(
k−n̄ + "− − m2 + st̄

Q

)

×
∑

Xn

1

2π

∫
d4x eik+

n x−/2 tr
〈
0
∣∣/̂̄nχn(x)

∣∣Xn

〉〈
Xn

∣∣χn,Q(0)
∣∣0

〉

×
∑

Xn̄

1

2π

∫
d4y eik−n̄ y+/2 tr

〈
0
∣∣χn̄(y)

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,−Q(0)
∣∣0

〉

×
∑

Xs

1

Nc
δ("+ − k+a

s )δ("− − k−b
s )tr〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †

n Y
†
n̄(0)|0〉 , (76)
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Insert:

invariant mass of all the final state part icles in each hemisphere. A s we show explicit ly below,
the requirement that these jet invariant masses are both close to the top mass, automat ically
restricts the final state to be dijet-like, and eliminates the need to introduce any addit ional
event-shape constraint . We stress that some mechanism to control the soft part icles is
absolutely crucial for establishing the factorizat ion theorem and the unique definit ion of
the soft funct ion S . Here this is accomplished by the fact that all soft part icles enter the
invariant mass variables M 2

t,t̄ .
T he invariant mass of each hemisphere includes contribut ions from both soft and collinear

part icles. T he total momentum of the collinear part icles in the n-hemisphere is PXn and in
the n̄-hemisphere is PXn̄ . T he total final state soft momentum KXs is split between the two
hemispheres and can be divided as:

KXs = ka
s + kb

s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respect ively. I t is useful to think of these hemisphere momenta as the result of
hemisphere pro ject ion operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these pro ject ion operators act on each state |Xs〉, pick out the soft partons
in the respect ive hemisphere and add up their total momentum. Note that the eigenvalues
are depend on the state Xs, so ka

s = ka
s [Xs] and kb

s = kb
s[Xs]. We can now define the invariant

mass of each jet as (PXn + ka
s )2 and (PXn̄ + kb

s)2 for the n and n̄ hemispheres respect ively.
T he delta funct ions δ4(pn − PXn ) δ4(pn̄ − PXn̄ ) in the second line of E q. (65) allow us to
define the jet invariant masses in terms of pn, pn̄ as (pn + ka

s )2 and (pn̄ + kb
s)2 for the n and

n̄ hemispheres respect ively.
Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definit ions of the operators P̂a and P̂b . Running a jet
algorithm in inclusive e+e− mode [61] each soft parton is st ill accounted for, having a certain
probability of being assigned to either the top or the ant itop invariant mass. We discuss
other algorithms in sect ion V .

If the top quark were a stable part icle these invariant mass definit ions would be obvious
because n- and n̄-collinear part icles would be fully radiated into the n- and n̄-hemispheres,
respect ively. D ue to the finite lifet ime of the top quark, however, we need to convince
ourselves that this invariant mass definit ion st ill works if the n- and n̄-collinear momenta
of the top and ant itop quarks, respect ively, are distributed among their decay products. So
let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with
respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final
state part icles appearing in the n̄-hemisphere of the ant itop quark only if these final state
part icles have an angle (defined in the top rest frame) smaller than m/Q with respect to
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total soft momentum is the sum of momentum in each hemisphere

invariant mass of all the final state particles in each hemisphere. As we show explicitly below,

the requirement that these jet invariant masses are both close to the top mass, automatically

restricts the final state to be dijet-like, and eliminates the need to introduce any additional

event-shape constraint. We stress that some mechanism to control the soft particles is

absolutely crucial for establishing the factorization theorem and the unique definition of

the soft function S. Here this is accomplished by the fact that all soft particles enter the

invariant mass variables M 2
t,t̄.

The invariant mass of each hemisphere includes contributions from both soft and collinear

particles. The total momentum of the collinear particles in the n-hemisphere is PXn and in

the n̄-hemisphere is PXn̄ . The total final state soft momentum KXs is split between the two

hemispheres and can be divided as:

KXs = ka
s + kb

s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respectively. It is useful to think of these hemisphere momenta as the result of

hemisphere projection operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these projection operators act on each state |Xs〉, pick out the soft partons

in the respective hemisphere and add up their total momentum. Note that the eigenvalues

are depend on the state Xs, so ka
s = ka

s [Xs] and kb
s = kb

s[Xs]. We can now define the invariant

mass of each jet as (PXn + ka
s )

2 and (PXn̄ + kb
s)

2 for the n and n̄ hemispheres respectively.

The delta functions δ4(pn − PXn) δ4(pn̄ − PXn̄) in the second line of Eq. (65) allow us to

define the jet invariant masses in terms of pn, pn̄ as (pn + ka
s )

2 and (pn̄ + kb
s)

2 for the n and

n̄ hemispheres respectively.

Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definitions of the operators P̂a and P̂b. Running a jet

algorithm in inclusive e+e− mode [61] each soft parton is still accounted for, having a certain

probability of being assigned to either the top or the antitop invariant mass. We discuss

other algorithms in section V.

If the top quark were a stable particle these invariant mass definitions would be obvious

because n- and n̄-collinear particles would be fully radiated into the n- and n̄-hemispheres,

respectively. Due to the finite lifetime of the top quark, however, we need to convince

ourselves that this invariant mass definition still works if the n- and n̄-collinear momenta

of the top and antitop quarks, respectively, are distributed among their decay products. So

let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with

respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final

state particles appearing in the n̄-hemisphere of the antitop quark only if these final state

particles have an angle (defined in the top rest frame) smaller than m/Q with respect to
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Specify hemisphere invariant masses for the jets:
the antiparticle direction. On the other hand, the top spin is only about 20% polarized

(for unpolarized e+e− beams and upon averaging over the directions of the thrust axis) [62],

and thus the top decay products in the top rest frame are distributed isotropically to a

rather good approximation. The fraction of events in this kinematical situation is therefore

suppressed by (m/Q)2 and can be neglected at leading order in the power counting. Of

course the analogous conclusion also applies to the antitop quark in the n̄ hemisphere. So at

leading order in the power counting it is consistent to employ the invariant mass definition

of the previous paragraph.

The jet invariant mass definitions can be implemented into the cross-section of Eq. (69)

by inserting underneath the
∑

Xs
the identity relation

1 =

∫
dM2

t δ
(
(pn + ka

s )
2 −M2

t

) ∫
dM2

t̄ δ
(
(pn̄ + kb

s)
2 −M2

t̄

)

=

∫
dM2

t δ
(
(pn + ka

s )
2 −m2 − st

) ∫
dM2

t̄ δ
(
(pn̄ + kb

s)
2 −m2 − st̄

)
, (73)

where st(Mt) and st̄(Mt̄) from Eq. (1), i.e. it should be understood that st,t̄ are functions

of M2
t,t̄. In the second line m is defined as the pole mass. It is straightforward to switch

the final result to a suitable short distance mass definition, as we explain in section IIIG.

Decomposing the δ-functions at leading order gives

δ((pn + ka
s )

2 −m2 − st) =
1

Q
δ
(
k+

n + k+a
s − m2 + st

Q

)
,

δ((pn̄ + kb
s)

2 −m2 − st̄) =
1

Q
δ
(
k−n̄ + k−b

s − m2 + st̄

Q

)
, (74)

where we set p̃−n = p̃+
n̄ = Q due to δ-functions from Eq. (67). Carrying out the integration

over k+
s and k−s in Eq. (69) sets the arguments of the soft function to z± = 0. Inserting the

identity relation

1 =

∫
d"+d"−δ("+ − k+a

s )δ("− − k−b
s ) (75)

the differential cross-section then reads

d2σ

dM2
t dM2

t̄

=
σ0

Q2

∣∣C(Q, µ)
∣∣2

∫
dk+

n dk−n̄ d"+ d"−δ
(
k+

n + "+ − m2 + st

Q

)
δ
(
k−n̄ + "− − m2 + st̄

Q

)

×
∑

Xn

1

2π

∫
d4x eik+

n x−/2 tr
〈
0
∣∣/̂̄nχn(x)

∣∣Xn

〉〈
Xn

∣∣χn,Q(0)
∣∣0

〉

×
∑

Xn̄

1

2π

∫
d4y eik−n̄ y+/2 tr

〈
0
∣∣χn̄(y)

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,−Q(0)
∣∣0

〉

×
∑

Xs

1

Nc
δ("+ − k+a

s )δ("− − k−b
s )tr〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †

n Y
†
n̄(0)|0〉 , (76)
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Insert:

invariant mass of all the final state part icles in each hemisphere. A s we show explicit ly below,
the requirement that these jet invariant masses are both close to the top mass, automat ically
restricts the final state to be dijet-like, and eliminates the need to introduce any addit ional
event-shape constraint . We stress that some mechanism to control the soft part icles is
absolutely crucial for establishing the factorizat ion theorem and the unique definit ion of
the soft funct ion S . Here this is accomplished by the fact that all soft part icles enter the
invariant mass variables M 2

t,t̄ .
T he invariant mass of each hemisphere includes contribut ions from both soft and collinear

part icles. T he total momentum of the collinear part icles in the n-hemisphere is PXn and in
the n̄-hemisphere is PXn̄ . T he total final state soft momentum KXs is split between the two
hemispheres and can be divided as:

KXs = ka
s + kb

s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respect ively. I t is useful to think of these hemisphere momenta as the result of
hemisphere pro ject ion operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these pro ject ion operators act on each state |Xs〉, pick out the soft partons
in the respect ive hemisphere and add up their total momentum. Note that the eigenvalues
are depend on the state Xs, so ka

s = ka
s [Xs] and kb

s = kb
s[Xs]. We can now define the invariant

mass of each jet as (PXn + ka
s )2 and (PXn̄ + kb

s)2 for the n and n̄ hemispheres respect ively.
T he delta funct ions δ4(pn − PXn ) δ4(pn̄ − PXn̄ ) in the second line of E q. (65) allow us to
define the jet invariant masses in terms of pn, pn̄ as (pn + ka

s )2 and (pn̄ + kb
s)2 for the n and

n̄ hemispheres respect ively.
Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definit ions of the operators P̂a and P̂b . Running a jet
algorithm in inclusive e+e− mode [61] each soft parton is st ill accounted for, having a certain
probability of being assigned to either the top or the ant itop invariant mass. We discuss
other algorithms in sect ion V .

If the top quark were a stable part icle these invariant mass definit ions would be obvious
because n- and n̄-collinear part icles would be fully radiated into the n- and n̄-hemispheres,
respect ively. D ue to the finite lifet ime of the top quark, however, we need to convince
ourselves that this invariant mass definit ion st ill works if the n- and n̄-collinear momenta
of the top and ant itop quarks, respect ively, are distributed among their decay products. So
let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with
respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final
state part icles appearing in the n̄-hemisphere of the ant itop quark only if these final state
part icles have an angle (defined in the top rest frame) smaller than m/Q with respect to
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total soft momentum is the sum of momentum in each hemisphere

invariant mass of all the final state particles in each hemisphere. As we show explicitly below,

the requirement that these jet invariant masses are both close to the top mass, automatically

restricts the final state to be dijet-like, and eliminates the need to introduce any additional

event-shape constraint. We stress that some mechanism to control the soft particles is

absolutely crucial for establishing the factorization theorem and the unique definition of

the soft function S. Here this is accomplished by the fact that all soft particles enter the

invariant mass variables M 2
t,t̄.

The invariant mass of each hemisphere includes contributions from both soft and collinear

particles. The total momentum of the collinear particles in the n-hemisphere is PXn and in

the n̄-hemisphere is PXn̄ . The total final state soft momentum KXs is split between the two

hemispheres and can be divided as:

KXs = ka
s + kb

s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respectively. It is useful to think of these hemisphere momenta as the result of

hemisphere projection operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these projection operators act on each state |Xs〉, pick out the soft partons

in the respective hemisphere and add up their total momentum. Note that the eigenvalues

are depend on the state Xs, so ka
s = ka

s [Xs] and kb
s = kb

s[Xs]. We can now define the invariant

mass of each jet as (PXn + ka
s )

2 and (PXn̄ + kb
s)

2 for the n and n̄ hemispheres respectively.

The delta functions δ4(pn − PXn) δ4(pn̄ − PXn̄) in the second line of Eq. (65) allow us to

define the jet invariant masses in terms of pn, pn̄ as (pn + ka
s )

2 and (pn̄ + kb
s)

2 for the n and

n̄ hemispheres respectively.

Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definitions of the operators P̂a and P̂b. Running a jet

algorithm in inclusive e+e− mode [61] each soft parton is still accounted for, having a certain

probability of being assigned to either the top or the antitop invariant mass. We discuss

other algorithms in section V.

If the top quark were a stable particle these invariant mass definitions would be obvious

because n- and n̄-collinear particles would be fully radiated into the n- and n̄-hemispheres,

respectively. Due to the finite lifetime of the top quark, however, we need to convince

ourselves that this invariant mass definition still works if the n- and n̄-collinear momenta

of the top and antitop quarks, respectively, are distributed among their decay products. So

let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with

respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final

state particles appearing in the n̄-hemisphere of the antitop quark only if these final state

particles have an angle (defined in the top rest frame) smaller than m/Q with respect to
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SCET factorization Theorem:

ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞
d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%

+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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 n,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{  n,Q(0)/̂̄n  n(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{  ̄ n̄(x)/̂n  n̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2  
dM2

t dM2
t̄

=  0 HQ(Q, µ)

∫ ∞

−∞
d  +d  − Jn(st − Q  +, µ)Jn̄(st̄ − Q  −, µ)Shemi(  +,  −, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(  +,  −, µ) =
1

Nc

∑

Xs

 (  + − k+a
s )  (  − − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) =  (st), Jn̄(st̄) =  (st̄), and Shemi(  +,  −) =

 (  +)  (  −), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

 0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(  +,  −) is governed by non-perturbative QCD

effects. The momentum variables  ± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(  +,  −) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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FIG. 5: SCET graphs for the one-loop top-quark jet function. Dashed lines are n-collinear quarks
and springs are n-collinear gluons. {forwardI}

where s = s + i0. To take the discontinuity it is convenient to switch to dimensionless

variables which will appear in the +-functions, so we let x = s/κ2
1 where x is dimensionless

and κ1 > 0 is dummy scale with dimensions of mass. Using

Disc
i

2π

1

x + i0
= δ(x), Disc

i

2π

ln(−x − i0)

x + i0
=

[θ(x)

x

]

+
,

Disc
i

2π

ln2(−x − i0)

x + i0
= −

π2

3
δ(x) +

[2θ(x)ln(x)

x

]

+
, (58) {discontinuities

we find that up to one-loop order the bare SCET jet function is

Jbare
n (s) = δ(s) +

αsCF

4π

{

8

κ2
1

[κ2
1θ(s) ln

(

s
κ2
1

)

s

]

+

−
4

κ2
1

[

1

ε
+1+ln

(m2

κ2
1

)

+ln
(µ2

κ2
1

)

][

κ2
1θ(s)

s

]

+

+ δ(s)

[

4

ε2
+

4

ε
ln

(µ2

κ2
1

)

+
3

ε
+2 ln2

(µ2

κ2
1

)

+2 ln2
(m2

κ2
1

)

+3 ln
(µ2

κ2
1

)

+ln
(m2

κ2
1

)

+8−
π2

3

]}

.

(59) {Jbare}

This implies that the Z-factor defined in Eq. (28) is

ZJn(s−s′) = δ(s−s′) +
αsCF

4π

{

δ(s−s′)

[

4

ε2
+

4

ε
ln

(µ2

κ2
1

)

+
3

ε

]

−
4

ε κ2
1

[

κ2
1θ(s−s′)

s−s′

]

+

}

, (60) {ZJ}

which gives the anomalous dimension

γJn(s − s′) =
αsCF

π

{

2

κ2
1

[

κ2
1θ(s−s′)

s−s′

]

+

+ δ(s−s′)

[

− 2 ln
(µ2

κ2
1

)

−
3

2

]}

. (61) {gammaJn}

Despite appearances Jbare
n (s), ZJn(s − s′), and γJn(s − s′) are all independent of the choice

for κ1. In Appendix C we presented a general solution to anomalous dimension equations in-

volving a +-function and δ-function. Applying this to Eq. (61) to derive the renormalization

group evolution from a low-scale µm up to µ gives

UJn(s − s′, µ, µm) =
eL1

(

µ2
m eγE

)ω1

Γ(−ω1)

[

θ(s−s′)

(s−s′)1+ω1

]

+

, (62) {UJ}

where

ω1(µ, µm) = −
4CF

β0
ln

[ αs(µ)

αs(µm)

]

, eL1(µ,µm) =
( µ

µm

)

8CF
β0

[

αs(µ)

αs(µm)

]

16πCF
β2
0αs(µm)

−
3CF
β0

. (63) {wL1}
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 n,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{  n,Q(0)/̂̄n  n(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{  ̄ n̄(x)/̂n  n̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2  
dM2

t dM2
t̄

=  0 HQ(Q, µ)

∫ ∞

−∞
d  +d  − Jn(st − Q  +, µ)Jn̄(st̄ − Q  −, µ)Shemi(  +,  −, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(  +,  −, µ) =
1

Nc

∑

Xs

 (  + − k+a
s )  (  − − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) =  (st), Jn̄(st̄) =  (st̄), and Shemi(  +,  −) =

 (  +)  (  −), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

 0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(  +,  −) is governed by non-perturbative QCD

effects. The momentum variables  ± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(  +,  −) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞
d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%

+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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FIG. 6: Graphs for the hemisphere soft function at one-loop. In this figure the double solid lines
denote Y -Wilson lines,and the line with ticks is the final state cut. {softgraphs}

Eqs. (62,63) give the solution for the RG-evolution of the SCET jet function up to µ, via

Jn(s, µ) =
∫

ds′ UJn(s − s′, µ, µm)Jn(s′, µm).

Finally we return to the renormalized jet function. For the stable-top renormalized jet-

function at one-loop order this gives

Jn(s, m, Γ = 0, µ) = δ(s) +
αsCF

4π

{
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+8−
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3

]}

, (64) {Jren}

where x = s/κ2
1. From this result we can immediately see why further matching and RG-

evolution are needed to deal with the large hierarchy of scales in Jn. For s ∼ mΓ no

choice of µ minimizes all the large logarithms. The terms in which the large logs appear are

controlled by the choice of κ1, but no choice of κ1 removes them completely. For example,

with κ1 = m and µ = m we still have ln(x) ∼ ln(Γ/m); while for κ2
1 = mΓ and µ = κ1 we

have ln(m2/κ2
1) ∼ ln(Γ/m). This motivates the matching onto bHQET and RG-evolution

between m and Γ to be carried out below. For later convenience we quote the result for Jn

with the choice κ1 = m,

Jn(s, m, Γ = 0, µ) = δ(s) +
αsCF

4π

{

8

m2

[

θ(x) ln(x)

x

]

+

−
4

m2

[

1+ln
( µ2

m2

)

][

θ(x)

x

]

+

+ δ(s)

[

2 ln2
( µ2

m2

)

+3 ln
( µ2

m2

)

+8−
π2

3

]}

. (65) {Jrenm}

C. Hemisphere Soft Function and its Running

{sect:soft}

In this section we compute the renormalization group evolution of the hemisphere soft-

function, Shemi(&+, &−, µ). Although this function is non-perturbative, its dependence on the

scale µ can be computed in perturbation theory, and is the same as the µ-dependence of

Shemi defined with partonic matrix elements.

To compute Shemi we use the squared matrix-element expression in Eq. (13) involving the

states |Xs〉. At O(αs) the corresponding diagrams are shown in Fig. 6, where the double
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ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞
d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%

+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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ŝt = st/m! m match onto HQET

a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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FIG. 8: bHQET graphs for the top-quark jet function. {forwardII}

The solution of the RG equation in Eq. (35) is straightforward and we find

UHm(µ, µm) =

[

αs(µ)

αs(µm)

](4CF /β0)(ln(Q2/m2)−1)

, (86) {hqetrun}

where Hm(m, µ) = UHm(µ, µm)Hm(m, µm) is given in Eq. (84). Note that the RGE solution

for Cm(m, µ) contains an extra phase

Cm(m, µ) =
√

Hm(m, µ)

[

αs(µ)

αs(µm)

]−2πi
CF
β0

, (87)

but this does not affect the physical cross-section.

B. bHQET Jet functions Matching and Running

{sect:bHQETJet

Next we compute the bHQET jet functions defined in Eq. (18) perturbatively in αs. As

in the SCET section the results for B+ and B− are related by v+ ↔ v−. We determine the

bHQET jet function renormalization factor ZB, the jet anomalous dimension γB, and the

evolution kernel UB. We also compute the renormalized bHQET jet-functions which give

one-loop corrections to the Breit-Wigner distributions. By comparing this result with the

jet-functions in SCET we verify that the IR divergences agree, and that the same matching

coefficient Hm in Eq. (84) is reproduced.

At tree level the bHQET jet function are given by the discontinuity of the HQET prop-

agator which includes the width

Btree
+ (ŝ) = Disc

i

2πm

1

ŝ + iΓ
=

1

mπ

Γ

ŝ2 + Γ2
. (88)

At one loop the jet function is given by the discontinuities of the diagrams shown in Fig. (8).

Results for individual graphs are given in the appendix. The sum of graphs is

B8a + B8b + B8c =
iαsCF

8π2m

1

ŝ + iΓ

{

2

ε2
+

4

ε
ln

(

µ

−ŝ − iΓ

)

+
2

ε

+4 ln2

(

µ

−ŝ − iΓ

)

+ 4 ln

(

µ

−ŝ − iΓ

)

+ 4 +
5π2

6

}

. (89)

Taking the discontinuity gives the one-loop bHQET jet function. However, it is simpler to

work with the one loop result before taking the discontinuity which we denote by B. The
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For the SCET collinear degrees of freedom the power counting for the virtuality is p2
c ∼

m2. Thus, Jn and Jn̄ describe the physics of jets with an invariant mass up to M 2 ∼ µ2 ∼ m2.

However, the restriction of being in the peak region means that M 2−m2 ∼ mΓ # m2. This

disparity gives rise to the large logarithms in the collinear jet functions. Intuitively, this can

also be understood by noting that if one starts out with a top quark that is close to its mass

shell, a typical collinear SCET gluon will knock the top far offshell so that p2
c −m2 ∼ m2.

By restricting the jet functions to p2
c−m2 ∼ mΓ we forbid such real radiation contributions,

but not virtual contributions. The latter must be integrated out explicitly by switching

to the description of the jet functions in the boosted unstable HQET theories discussed in

Sec. II B. In these HQETs the only fluctuations are due to low energy ultracollinear gluons

that preserve the condition M 2 −m2 ∼ mΓ # m2.

To determine the definitions of the bHQET jet functions we follow the same procedure as

for the bHQET current in Eq. (35), namely boost the SCET jet function in Eq. (80) to the

heavy quark rest frame, giving ψ̄(x)W (x)W (0)ψ(0), then match onto HQET ψ(x) → hv(x).

We then boost back to the moving frame where v → v±. The spin structure can also be

simplified to give

1

Q
χn,Q

ˆ̄/nχn →
1

Q
h̄v+

ˆ̄/n hv+ =
v+ · n̄
4NcQ

h̄v+hv+ =
1

4Ncm
h̄v+hv+ . (83)

Thus the bHQET jet functions are defined as

B+(2v+ ·k) =
−1

8πNcm

∫
d4x eik·x Disc 〈0|T{h̄v+(0)Wn(0)W †

n(x)hv+(x)}|0〉 ,

B−(2v− ·k) =
1

8πNcm

∫
d4x eik·x Disc 〈0|T{h̄v−(x)Wn̄(x)W †

n̄(0)hv−(0)}|0〉. (84)

These bHQET jet functions can be calculated using the usual Feynman rules of HQET

except that the gluons have ucollinear scaling as in Eq. (32). The W -Wilson lines in B±

also contain these boosted gluons. Since p2
n −m2 = 2mv+ · k and p2

n̄ −m2 = 2mv− · k, we

can identify the arguments of the bHQET jet functions as

2v+ · k =
st

m
= ŝt , 2v− · k =

st̄

m
= ŝt̄ . (85)

In the factorization theorem these arguments are shifted by the soft gluon momenta as shown

in Eq. (90) below. Recall that the fields hv+ and hv− are defined with zero-bin subtractions

on their ultracollinear momenta. For Eq. (84) these subtractions can be thought of as being

inherited from the SCET fields in the matching. They remove the light-cone singularities

n · k → 0 and n̄ · k → 0 in B+ and B− respectively, and are important to ensure that the

width Γ is sufficient to make B± infrared finite.

In general the matching of the jet functions in SCET onto those in bHQET could take

the form

Jn,n̄(mŝ, Γ, µ) =

∫ ∞

−∞
dŝ′ T±(ŝ, ŝ′, m, µ) B±(ŝ′, Γ, µ), (86)
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bare expression for this quant ity is given by

Bbare
± (ŝ) =

i

2πm

1
ŝ + iΓ

{

1 +
iαsCF

4π

[

2
ε2

+
4
ε

ln
(

µ

−ŝ − iΓ

)

+
2
ε

+ 4 ln2

(

µ

−ŝ − iΓ

)

+ 4 ln
(

µ

−ŝ − iΓ

)

+ 4 +
5π2

6

]}

. (90)

Taking the discont inuity of Bbare
± gives the bH Q E T jet funct ion a t one loop

Bbare
± (ŝ) =

1
πm

Γ

ŝ2 + Γ2

{

1 +
αsCF

4π

[

2
ε2

+
2
ε

(

ln
(

µ2

ŝ2 + Γ2

)

+
2ŝ

Γ
arctan

(

Γ

ŝ

))

+
2
ε

+ ln2

(

µ2

ŝ2 + Γ2

)

+ 2 ln
(

µ2

ŝ2 + Γ2

)

− 4arctan2

(

Γ

ŝ

)

+ 4
ŝ

Γ
arctan

(

Γ

ŝ

)(

ln
(

µ2

ŝ2 + Γ2

)

+ 1
)

+ 4 +
5π2

6

]}

. (91)

T he counterterm and bH Q E T ma tching coefficient can be obtained from either E q. (90) or
E q. (91). However the solut ion of the R G E is much simpler to obtain if we work with Bbare

± ,
which we will do from here on out . T he counterterm which subtracts off the divergences
from either E q. (90) or E q. (91) when convoluted with the renormalized bH Q E T jet funct ion
is

ZB±
(ŝ− ŝ′) = δ(ŝ− ŝ′) +

αsCF

4π

{

δ(ŝ− ŝ′)
[

2
ε2

+
4
ε

ln
(

µ

κ3

)

+
2
ε

]

−
4

κ3ε

[

κ3θ(ŝ − ŝ′)
ŝ − ŝ′

]

+

}

. (92) {ZBp}

Note care must be taken when comput ing the integral in E q. (37) when the plus funct ion
above is convoluted with the tree-level B reit- W igner. We have allowed for an arbitrary
rescaling of ŝ → κ3 x. To determine the bH Q E T jet funct ion W ilson coefficient a t order αs

we need to ma tch the one loop bH Q E T result to the one loop SC E T result . Since we are
working with B± we can ma tch to the SC E T result before taking the discont inuity. A t tree
level this is given by the collinear propaga tor, and a t one loop the result is given by E q. (57).
Since the top quark is stable in SC E T we take the Γ → 0 limit of E q. (90) in the ma tching.
We obtain

T±(µ, m) = 1 +
αsCF

4π

(

ln2m2

µ2
− ln

m2

µ2
+ 4 +

π2

6

)

. (93)

T he logarithms are minimized a t the ma tching scale µ ≈ m.
Nex t we turn to the running of the bH Q E T jet funct ion. T he anomalous dimension

determined from E q. (92) is

γB±
(ŝ − ŝ′, µ) =

αsCF

π

{

2
[

κ3θ(ŝ′ − ŝ)
ŝ′ − ŝ

]

+

−

[

2ln
(

µ

κ3

)

+ 1
]

δ(s′ − s)
}

(94)

T he renormaliza t ion group evolut ion of the bH Q E T jet funct ions is

UB±
(ŝ − ŝ′, µ, µi) =

eL3(µ,µi)
(

µi eγE )ω1

Γ(−ω1)

[

θ(ŝ − ŝ′)
(ŝ − ŝ′)1+ω1

]

+

, (95)
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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done!

Everything but S_hemi
is calculable, and it has 
been measured using 
massless event shapes

At tree level:
a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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E q. (90) is our final result in terms of the pole mass m. T he analogous result for a short
distance mass is given in the next sect ion. Here Hm(m, Q/m, µm, µ) is the hard coefficient
Hm(m, µm) run down from µm to µ, and we st ill have HQ(Q, µm) = |C(Q, µm)|2, and the
soft funct ion with W ilson lines evaluated at x = 0,

Shemi(!+, !−, µ) =
1
Nc

∑

Xs

δ(!+−k+a
s )δ(!−−k−b

s )〈0|(Y n̄)ca′
(Yn)cb′|Xs〉〈Xs|(Y †

n )b′c′
(Y †

n̄)a′c′|0〉 .

(91)

For completeness we wrote out the color indices from E q. (50). I ts interest ing to note that
in the result in E q. (90) the the final matrix elements only involve W ilson lines (since the
coupling of gluons to a heavy quark field hv+ in B+ is the same as to a W ilson line Wv+ ).

To conclude this sect ion we finally repeat the computat ion of the tree level bH Q E T
jet funct ions, but now for the realist ic case with Γ $= 0 in the H Q E T propagators. T he
computat ion is done at a scale µ % Γ, but the µ dependence does not show up at tree level.
F ig. 6b gives

Btree
± (ŝ, Γ) =

−1
8πNcm

(−2Nc) D isc
( i

v± · k + iΓ/2

)
=

1
4πm

Im
( −2

v± · k + iΓ/2

)

=
1

πm

Γ

ŝ2 + Γ2
. (92)

T hus we see that B±(ŝ) are equal to B reit- W igners at lowest order in αs . A t higher orders
in perturbat ion theory the width will cut off the I R divergences that would otherwise occur
at ŝ = 0. T he funct ions B± at the scale µΓ can therefore be computed perturbat ively
to any desired order in αs . In general the perturbat ive “matching” correct ions will lead
to distort ions of the tree-level B reit- W igner distribut ions shown in E q. (92), as does the
potent ial separate running between µ∆ and µΓ discussed below in sect ion I I I H .

G. A Short-Distance Top-Mass for Jets

T he derivat ion of the factorizat ion formulae (90) in the previous sect ion was given in the
pole mass scheme4 , mpole . I t is, however, well known that the pole mass definit ion leads to
an art ificially enhanced sensit ivity to small momenta in Feynman diagrams (see Ref. [63] for
a review) and, as a consequence, to art ificially large perturbat ive correct ions. T his behavior
is part icularly important for observables that have a strong dependence on the heavy quark
mass [52, 53, 54, 55]. From a nonperturbat ive point of view, this feature is related to an
intrinsic ambiguity in the heavy quark pole mass parameter of order the hadronizat ion scale
ΛQCD , and is somet imes referred to as the O(ΛQCD)-renormalon problem of the pole mass.

4 In Eq. (90) we used m for the pole mass, but in this section we write mpole, and reserve “m” for a generic
mass-scheme.

35

our  Breit-Wigner

• B.W.  receives calculable perturbative corrections
• cross-section depends on non.pert. soft function, not just B.W.’s

** the B.W. is only a good approx. for collinear top & gluons **
• in the fact. thm. we remove largest component of soft momentum

from the inv.mass. to get the argument for the B.W. 

Hm = T+T−



Eq. (90) is our final result in terms of the pole mass m. The analogous result for a short

distance mass is given in the next section. Here Hm(m, Q/m, µm, µ) is the hard coefficient

Hm(m, µm) run down from µm to µ, and we still have HQ(Q, µm) = |C(Q, µm)|2, and the

soft function with Wilson lines evaluated at x = 0,

Shemi(!
+, !−, µ) =

1

Nc

∑

Xs

δ(!+−k+a
s )δ(!−−k−b

s )〈0|(Y n̄)ca′
(Yn)

cb′|Xs〉〈Xs|(Y †
n )b′c′

(Y
†
n̄)a′c′|0〉 .

(91)

For completeness we wrote out the color indices from Eq. (50). Its interesting to note that

in the result in Eq. (90) the the final matrix elements only involve Wilson lines (since the

coupling of gluons to a heavy quark field hv+ in B+ is the same as to a Wilson line Wv+).

To conclude this section we finally repeat the computation of the tree level bHQET

jet functions, but now for the realistic case with Γ $= 0 in the HQET propagators. The

computation is done at a scale µ % Γ, but the µ dependence does not show up at tree level.

Fig. 6b gives

Btree
± (ŝ, Γ) =

−1

8πNcm
(−2Nc) Disc

( i

v± · k + iΓ/2

)
=

1

4πm
Im

( −2

v± · k + iΓ/2

)

=
1

πm

Γ

ŝ2 + Γ2
. (92)

Thus we see that B±(ŝ) are equal to Breit-Wigners at lowest order in αs. At higher orders

in perturbation theory the width will cut off the IR divergences that would otherwise occur

at ŝ = 0. The functions B± at the scale µΓ can therefore be computed perturbatively

to any desired order in αs. In general the perturbative “matching” corrections will lead

to distortions of the tree-level Breit-Wigner distributions shown in Eq. (92), as does the

potential separate running between µ∆ and µΓ discussed below in section IIIH.

G. A Short-Distance Top-Mass for Jets

The derivation of the factorization formulae (90) in the previous section was given in the

pole mass scheme4, mpole. It is, however, well known that the pole mass definition leads to

an artificially enhanced sensitivity to small momenta in Feynman diagrams (see Ref. [63] for

a review) and, as a consequence, to artificially large perturbative corrections. This behavior

is particularly important for observables that have a strong dependence on the heavy quark

mass [52, 53, 54, 55]. From a nonperturbative point of view, this feature is related to an

intrinsic ambiguity in the heavy quark pole mass parameter of order the hadronization scale

ΛQCD, and is sometimes referred to as the O(ΛQCD)-renormalon problem of the pole mass.

4 In Eq. (90) we used m for the pole mass, but in this section we write mpole, and reserve “m” for a generic
mass-scheme.
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First, why not MS• ?
when we switch to a short-distance mass scheme we must expand in αs

Heavy quark mass definit ions that do not have such an O(ΛQCD) ambiguity are called short-
distance mass schemes.5 In the factorizat ion formulae in E q. (90), the top-mass appears in
the hard funct ion Hm and in the two jet funct ions B+(ŝt) and B−(ŝt̄). T he most important
sensit ivity to the top-mass scheme is in ŝt = (M2

t −m2)/m and ŝt̄ = (M2
t̄ −m2)/m, where

M2
t and M2

t̄ are scheme independent observables.
A specific short-distance top quark mass scheme “m” can be defined by a finite residual

mass term δm "= 0, as

mpole = m + δm , (93)

where δm starts at O(αs) or higher, and must be strict ly expanded perturbat ively to the
same order as other O(αs) correct ions. ( T his strict expansion does not apply to powers of
αs t imes logs that are summed up by renormalizat ion group improved perturbat ion theory.)
Let B+(ŝ, µ, δm) denote the jet-funct ion in the short-distance mass scheme specified by
δm. We can calculate B+(ŝ, µ, δm) in two equivalent ways. i) Use the pole-mass scheme
init ially by set t ing δm = 0 in E q. (31). In this case the mass-dependence appears in
ŝpole = (M2 −m2

pole)/mpole in B+ and we change the scheme with E q. (93). A lternat ively,
ii) treat δm "= 0 in E q. (31) as a vertex in Feynman diagrams, and take ŝ to be defined in
the short-distance mass scheme right from the start , so ŝ = (M 2 −m2)/m.

A s discussed in Sec. I I B , it is necessary that the residual mass term is consistent with
the bH Q E T power count ing, i.e.

δm ∼ ŝt ∼ ŝt̄ ∼ Γ . (94)

E q. (94) restricts us to a suitable class of short-distance mass schemes for jets. In any short-
distance mass scheme which violates E q. (94) the E F T expansion breaks down, and thus
the not ion of a top-quark B reit W igner distribut ion becomes invalid. T he most prominent
example for an excluded short-distance mass scheme is the MS mass scheme, m, for which
mpole−m = δm. Here δm $ 8 G e V % Γ, or parametrically δm ∼ αsm% Γ. Using E q. (92)
and convert ing to the MS scheme with the O(αs) residual mass term we have

B+(ŝ, µ, δm ) =
1

πm

{
Γ

[ (M2
t −m2)2

m2 + Γ2
] +

(4 ŝΓ) δm
[ (M2

t −m2)2

m2 + Γ2
]2

}
. (95)

Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is
supposed to be a perturbat ive correct ion. T his means that it is not the MS mass that is
ever direct ly measured from any reconstruct ion mass-measurement that uses a top B reit-
W igner at some level of the analysis. We stress that this statement applies to any top mass

5 In practice, determining the pole mass from the analysis of experimental data leads to values that depend
strongly on the order of perturbation theory that has been employed for the theoretical predictions. This
makes the treatment of theoretical errors difficult.
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Heavy quark mass definitions that do not have such an O(ΛQCD) ambiguity are called short-

distance mass schemes.5 In the factorization formulae in Eq. (90), the top-mass appears in

the hard function Hm and in the two jet functions B+(ŝt) and B−(ŝt̄). The most important

sensitivity to the top-mass scheme is in ŝt = (M2
t −m2)/m and ŝt̄ = (M2

t̄ −m2)/m, where

M2
t and M2

t̄ are scheme independent observables.

A specific short-distance top quark mass scheme “m” can be defined by a finite residual

mass term δm "= 0, as

mpole = m + δm , (93)

where δm starts at O(αs) or higher, and must be strictly expanded perturbatively to the

same order as other O(αs) corrections. (This strict expansion does not apply to powers of

αs times logs that are summed up by renormalization group improved perturbation theory.)

Let B+(ŝ, µ, δm) denote the jet-function in the short-distance mass scheme specified by

δm. We can calculate B+(ŝ, µ, δm) in two equivalent ways. i) Use the pole-mass scheme
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Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is

supposed to be a perturbative correction. This means that it is not the MS mass that is

ever directly measured from any reconstruction mass-measurement that uses a top Breit-

Wigner at some level of the analysis. We stress that this statement applies to any top mass

5 In practice, determining the pole mass from the analysis of experimental data leads to values that depend
strongly on the order of perturbation theory that has been employed for the theoretical predictions. This
makes the treatment of theoretical errors difficult.
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δm ∼ ŝt ∼ ŝt̄ ∼ Γ . (94)

Eq. (94) restricts us to a suitable class of short-distance mass schemes for jets. In any short-

distance mass scheme which violates Eq. (94) the EFT expansion breaks down, and thus

the notion of a top-quark Breit Wigner distribution becomes invalid. The most prominent

example for an excluded short-distance mass scheme is the MS mass scheme, m, for which

mpole−m = δm. Here δm $ 8 GeV% Γ, or parametrically δm ∼ αsm% Γ. Using Eq. (92)

and converting to the MS scheme with the O(αs) residual mass term we have
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t −m2)/m and ŝt̄ = (M2
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Eq. (90) is our final result in terms of the pole mass m. The analogous result for a short

distance mass is given in the next section. Here Hm(m, Q/m, µm, µ) is the hard coefficient

Hm(m, µm) run down from µm to µ, and we still have HQ(Q, µm) = |C(Q, µm)|2, and the

soft function with Wilson lines evaluated at x = 0,

Shemi(!
+, !−, µ) =

1

Nc

∑

Xs

δ(!+−k+a
s )δ(!−−k−b

s )〈0|(Y n̄)ca′
(Yn)

cb′|Xs〉〈Xs|(Y †
n )b′c′

(Y
†
n̄)a′c′|0〉 .
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For completeness we wrote out the color indices from Eq. (50). Its interesting to note that

in the result in Eq. (90) the the final matrix elements only involve Wilson lines (since the

coupling of gluons to a heavy quark field hv+ in B+ is the same as to a Wilson line Wv+).

To conclude this section we finally repeat the computation of the tree level bHQET

jet functions, but now for the realistic case with Γ $= 0 in the HQET propagators. The

computation is done at a scale µ % Γ, but the µ dependence does not show up at tree level.

Fig. 6b gives

Btree
± (ŝ, Γ) =

−1

8πNcm
(−2Nc) Disc

( i

v± · k + iΓ/2

)
=

1

4πm
Im

( −2

v± · k + iΓ/2

)

=
1

πm

Γ

ŝ2 + Γ2
. (92)

Thus we see that B±(ŝ) are equal to Breit-Wigners at lowest order in αs. At higher orders

in perturbation theory the width will cut off the IR divergences that would otherwise occur

at ŝ = 0. The functions B± at the scale µΓ can therefore be computed perturbatively

to any desired order in αs. In general the perturbative “matching” corrections will lead

to distortions of the tree-level Breit-Wigner distributions shown in Eq. (92), as does the

potential separate running between µ∆ and µΓ discussed below in section IIIH.

G. A Short-Distance Top-Mass for Jets

The derivation of the factorization formulae (90) in the previous section was given in the

pole mass scheme4, mpole. It is, however, well known that the pole mass definition leads to

an artificially enhanced sensitivity to small momenta in Feynman diagrams (see Ref. [63] for

a review) and, as a consequence, to artificially large perturbative corrections. This behavior

is particularly important for observables that have a strong dependence on the heavy quark

mass [52, 53, 54, 55]. From a nonperturbative point of view, this feature is related to an

intrinsic ambiguity in the heavy quark pole mass parameter of order the hadronization scale

ΛQCD, and is sometimes referred to as the O(ΛQCD)-renormalon problem of the pole mass.

4 In Eq. (90) we used m for the pole mass, but in this section we write mpole, and reserve “m” for a generic
mass-scheme.

35

First, why not MS• ?
when we switch to a short-distance mass scheme we must expand in αs

Heavy quark mass definit ions that do not have such an O(ΛQCD) ambiguity are called short-
distance mass schemes.5 In the factorizat ion formulae in E q. (90), the top-mass appears in
the hard funct ion Hm and in the two jet funct ions B+(ŝt) and B−(ŝt̄). T he most important
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Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is
supposed to be a perturbat ive correct ion. T his means that it is not the MS mass that is
ever direct ly measured from any reconstruct ion mass-measurement that uses a top B reit-
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5 In practice, determining the pole mass from the analysis of experimental data leads to values that depend
strongly on the order of perturbation theory that has been employed for the theoretical predictions. This
makes the treatment of theoretical errors difficult.
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δm ∼ ŝt ∼ ŝt̄ ∼ Γ . (94)

Eq. (94) restricts us to a suitable class of short-distance mass schemes for jets. In any short-

distance mass scheme which violates Eq. (94) the EFT expansion breaks down, and thus

the notion of a top-quark Breit Wigner distribution becomes invalid. The most prominent

example for an excluded short-distance mass scheme is the MS mass scheme, m, for which

mpole−m = δm. Here δm $ 8 GeV% Γ, or parametrically δm ∼ αsm% Γ. Using Eq. (92)

and converting to the MS scheme with the O(αs) residual mass term we have
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Let B+(ŝ, µ, δm) denote the jet-function in the short-distance mass scheme specified by
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determination that relies on the reconstruction of the peak position of an invariant mass

distribution.

To define a short distance scheme for jet reconstruction measurements, mJ , we choose the

residual mass term δmJ such that, order-by-order, the jet functions B± have their maximum

at ŝt = ŝt̄ = 0, where B+(ŝ) is the gauge invariant function defined in Eq. (84). So order-

by-order in perturbation theory the definition is given by the solution to

dB+(ŝ, µ, δmJ)

dŝ

∣∣∣∣
ŝ=0

= 0 . (96)

We call this mass definition the top quark jet-mass, mJ(µ) = mpole−δmJ . Since the bHQET

jet functions have a nonvanishing anomalous dimension, the top jet-mass depends on the

renormalization scale µ, at which the jet functions are computed perturbatively. Thus the

jet-mass is a running mass, similar to the MS mass, and different choices for µ ∼ Γ can in

principle be made.

To simplify the notation we will use the notation B̃+(ŝ, µ) for the bHQET jet-function

in the jet-mass scheme. At next-to-leading order in αs,
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where mJ = mJ(µ) and B+ is the pole-mass jet function to O(αs). Here we dropped all

corrections that are power suppressed by Γ/m. The one-loop relation between the pole and

jet-mass is [59]
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For µ = Γ we have δmJ # 0.26 GeV, so the jet-mass is quite close to the one-loop pole mass.

Equation (98) also shows that the jet-mass is substantially different from the short-distance

masses that are employed for tt̄-threshold analyses [12], where δm ∼ α2
sm ∼ 2 GeV is of

order the binding energy of the tt̄ quasi-bound state. Nevertheless, in some of the threshold

mass schemes [53, 54] δm is proportional to a cutoff scale that could in principle be adapted

such that they are numerically close to the jet-mass we are proposing. A detailed discussion

on the impact of switching from the pole to the jet-mass scheme at the one-loop level and at

higher orders will be given in Refs. [59] and [64], respectively. We remark that many other

schemes satisfying Eq. (94) can in principle be defined, but the existence of one such scheme

suffices.

The other function that must be modified in the factorization theorem is

Hm(m, Q/m, µm, µ∆). However this function only depends logarithmically on m, and
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So dropping these perturbatively suppressed power corrections we can simply replace m→
mJ in Hm. We note that any µ dependence from mJ (µ) in Hm is also power suppressed.
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Thus our final result for the cross-section in terms of the short-distance jet-mass is
(

d2σ

dM2
t dM2

t̄
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hemi

= σ0 HQ(Q, µm)Hm

(
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, µm, µ

)
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×
∫ ∞
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d"+d"− B̃+

(
ŝt −

Q"+

mJ
, Γ, µ

)
B̃−

(
ŝt̄ −

Q"−

mJ
, Γ, µ

)
Shemi("

+, "−, µ) ,

where the running jet-mass mJ = mJ(µ).

H. Renormalization-Group Evolution

In order to explain the µ-dependence of the factorization theorem in Eq. (100) we give a

brief discussion of the renormalization group evolution. A more detailed discussion is given

in Ref. [59]. Equation (100) depends on two renormalization scales, µm and µ. The matching

scale µm ∼ m was the endpoint of the evolution of the hard function HQ(Q, µm). From the

matching at m we get the dependence on µm in Hm, and from running below m we get an

additional dependence on µ as well as Q/m. The µ-dependence in Hm cancels against the

µ-dependence in the bHQET jet functions and the soft function.

To sum the remaining large logarithms we have in principle two choices. We can either

run the Wilson coefficient Hm, or we can run the individual functions B̃± and S. The

first option essentially corresponds to running the bHQET top pair production current of

Eq. (35), and we will call this method “top-down”. The relation

Hm

(
m,

Q

m
, µm, µ

)
= Hm(m, µm)UHm

(
µm, µ,

Q

m

)
(101)

defines the corresponding evolution factor UHm that is shown in Fig. 5. The second option

means running the jet functions B̃± and the soft function Shemi independently with the

evolution factors UB±(µ, µm) and US(µ, µm) respectively, and is also illustrated in Fig. 5.

This running involves convolutions, such as

µ
d

dµ
B̃+(ŝ, µ) =

∫
dŝ′ γB+(ŝ− ŝ′) B̃+(ŝ′, µ) ,

B̃+(ŝ, µm) =

∫
dŝ′ UB+(ŝ− ŝ′, µm, µ) B̃+(ŝ′, µ) , (102)

and analogously for B̃− and Shemi. Since this method for the running usually involves taking

the functions B± and Shemi as an input at the low scale (to avoid the appearance of large

logs) we will call this option “bottom-up”. Because the running of Hm is local (i.e. has no

convolution), this RG evolution only affects the normalization of the cross section and does

not change the dependence on st and st̄ in a non-trivial way. This is more difficult to discern

from the bottom-up running, but when the convolutions for B± and S are combined they

must become local. These cancellations are discussed in detail in Ref. [59] where also the

full leading log evolution is derived.
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where the running jet-mass mJ = mJ (µ).
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In order to explain the µ-dependence of the factorizat ion theorem in E q. (100) we give a
brief discussion of the renormalizat ion group evolut ion. A more detailed discussion is given
in Ref. [59]. E quat ion (100) depends on two renormalizat ion scales, µm and µ. T he matching
scale µm ∼ m was the endpoint of the evolut ion of the hard funct ion HQ(Q, µm). From the
matching at m we get the dependence on µm in Hm, and from running below m we get an
addit ional dependence on µ as well as Q/m. T he µ-dependence in Hm cancels against the
µ-dependence in the bH Q E T jet funct ions and the soft funct ion.

To sum the remaining large logarithms we have in principle two choices. We can either
run the W ilson coefficient Hm, or we can run the individual funct ions B̃± and S . T he
first opt ion essent ially corresponds to running the bH Q E T top pair product ion current of
E q. (35), and we will call this method “top-down”. T he relat ion
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defines the corresponding evolut ion factor UHm that is shown in F ig. 5. T he second opt ion
means running the jet funct ions B̃± and the soft funct ion Shemi independent ly with the
evolut ion factors UB± (µ, µm) and US (µ, µm) respect ively, and is also illustrated in F ig. 5.
T his running involves convolut ions, such as
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B̃+(ŝ, µ) =

∫
dŝ′ γB+ (ŝ− ŝ′) B̃+(ŝ′, µ) ,

B̃+(ŝ, µm) =
∫

dŝ′ UB+ (ŝ− ŝ′, µm, µ) B̃+(ŝ′, µ) , (102)

and analogously for B̃− and Shemi . Since this method for the running usually involves taking
the funct ions B± and Shemi as an input at the low scale (to avoid the appearance of large
logs) we will call this opt ion “bottom-up”. B ecause the running of Hm is local (i.e. has no
convolut ion), this R G evolut ion only affects the normalizat ion of the cross sect ion and does

not change the dependence on st and st̄ in a non-trivial way. T his is more difficult to discern
from the bot tom-up running, but when the convolut ions for B± and S are combined they
must become local. T hese cancellat ions are discussed in detail in Ref. [59] where also the
full leading log evolut ion is derived.
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ŝt −

Q"+

mJ
, Γ, µ

)
B̃−

(
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means running the jet funct ions B̃± and the soft funct ion Shemi independent ly with the
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evolution factors UB±(µ, µm) and US(µ, µm) respectively, and is also illustrated in Fig. 5.

This running involves convolutions, such as

µ
d

dµ
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Q

m

)
(101)

defines the corresponding evolut ion factor UHm that is shown in F ig. 5. T he second opt ion
means running the jet funct ions B̃± and the soft funct ion Shemi independent ly with the
evolut ion factors UB± (µ, µm) and US (µ, µm) respect ively, and is also illustrated in F ig. 5.
T his running involves convolut ions, such as

µ
d

dµ
B̃+(ŝ, µ) =

∫
dŝ′ γB+ (ŝ− ŝ′) B̃+(ŝ′, µ) ,

B̃+(ŝ, µm) =
∫

dŝ′ UB+ (ŝ− ŝ′, µm, µ) B̃+(ŝ′, µ) , (102)

and analogously for B̃− and Shemi . Since this method for the running usually involves taking
the funct ions B± and Shemi as an input at the low scale (to avoid the appearance of large
logs) we will call this opt ion “bottom-up”. B ecause the running of Hm is local (i.e. has no
convolut ion), this R G evolut ion only affects the normalizat ion of the cross sect ion and does

not change the dependence on st and st̄ in a non-trivial way. T his is more difficult to discern
from the bot tom-up running, but when the convolut ions for B± and S are combined they
must become local. T hese cancellat ions are discussed in detail in Ref. [59] where also the
full leading log evolut ion is derived.
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IV. ANALYSIS OF THE INVARIANT MASS DISTRIBUTION
{section4}

A. A Simple Analysis

The main result of this paper is the formula in Eq. (??) for the double invariant mass

distribution with a short distance top-quark mass suitable for measurements using jets.

In this section we discuss the implications of Eq. (??) for top-mass measurements. For

convenience we rewrite the cross-section in terms of dimension-one invariant mass variables

d2σ

dMt dMt̄
= 4MtMt̄ σH

0 F (Mt, Mt̄, µ) , (96) {sigmaMM}

where σH
0 = σ0HQ(Q, µm)H̃m(mJ , Q/mJ , µm, µ) is the normalization factor with radiative

corrections, Q is the c.m. energy, and

F (Mt, Mt̄, µ) =

∫ ∞

−∞

d"+ d"−B̃+

(

ŝt −
Q"+

mJ
, Γ, µ

)

B̃−

(

ŝt̄ −
Q"−

mJ
, Γ, µ

)

Shemi("
+, "−, µ). (97) {F}

In terms of Mt and Mt̄ the variables

ŝt = 2Mt − 2mJ , ŝt̄ = 2Mt̄ − 2mJ , (98) {ssM}

up to small Γ/m power corrections. In Eqs. (96-98) the jet hemisphere invariant masses

are Mt and Mt̄ and the short-distance top-quark mass that we wish to measure is mJ .

In d2σ/dMtdMt̄ the function F dominates the spectrum, while 4MtMt̄ σH
0 acts as a nor-

malization constant (since MtMt̄ is essentially constant in the peak region of interest). A

measurement of the normalization is not optimal for determining mJ ; it only has logarith-

mic dependence on the short-distance mass, and has larger theoretical uncertainties. On the

other hand, the spectrum is very sensitive to mJ , so henceforth we focus on F (Mt, Mt̄, µ).

From Eq. (97) F is given by the convolution of the computable B̃± functions, with a

non-perturbative hemisphere soft-function, Shemi, that describes soft final-state radiation.

The majority of the important features of Eq. (97) can be explained without discussing

perturbative corrections, so we focus here on the leading order result. From Eq. (95), B̃±

are simply Breit-Wigner’s at leading order,

B̃+(ŝt) =
2

(mJΓ)

1

(ŝt/Γ)2 + 1
, B̃−(ŝt̄) =

2

(mJΓ)

1

(ŝt̄/Γ)2 + 1
. (99) {Bpmtree2}

For our numerical analysis we use the two-loop standard model prediction for the top-width

Γ = 1.43 GeV [62]. As demonstrated in sections II and III, Shemi is the same function that

controls the soft radiation for massless dijets, which was studied in Refs. [26, 27, 48]. Hence,

it is convenient for our analysis to adopt the model used to fit the massless dijet data [48],

SM1
hemi("

+, "−) = θ("+)θ("−)
N (a, b)

Λ2

("+"−

Λ2

)a−1

exp
(−("+)2 − ("−)2 − 2b"+"−

Λ2

)

. (100) {SM1}
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Figure 2: Comparison of the QCD predictions for the heavy jet mass (a) and
C−parameter (b) distributions with the data at different center-of-mass energies (from
bottom to top): Q/GeV = 35 , 44 , 91 , 133 , 161 , 172 , 183 , 189, based on the shape func-
tion.

corrections whose form deviates from IR renormalon models describing the nonpertur-
bative corrections to the distributions as the shift of perturbative spectrum.

Let us apply the obtained expressions for differential distributions to calculate the
first two moments of the t−, C− and ρ−distributions defined as

〈en〉 =

∫ emax

0

de en 1

σtot

dσ

de
, (n = 1 , 2) . (5.1)

Here, integration goes only over the part of the available phase space, 0 < e < emax,
corresponding to the three-particle final states, and it does not take into account the
contribution of multi-jet final states, e > emax. Quantitative description of hadronization
corrections to such final states is not available yet. Putting an upper limit on the value
of the shape variable in (5.1) allows us to avoid the latter contribution and to replace
the differential distribution dσ/de in (5.1) by the obtained expressions (4.1), (4.2) and
(4.3) which are valid for 0 < e < emax.

Using general expression (2.10) one calculates the mean value of the event shape as

〈e〉 = 〈e〉
PT

+
〈ε〉
Q

[

1 − emax

dσ
PT

(emax)

de

]

+ O
(

1

Q2

)

, (5.2)

where 〈...〉
PT

=
∫ emax

0
de (...) dσ

PT
/de denotes averaging with respect to perturbative

distribution and the scale 〈ε〉 is defined as the first moment of the shape function,
〈ε〉 =

∫

dε εf(ε). It is important to remember that the factorized expressions for the
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Using these values we compare the Q C D predict ions for the C−parameter distribut ion
a t Q = MZ with and without nonperturba t ive correct ions included as shown in F ig. 1b.
Similar plot for the thrust distribut ion can be found in [10]. We observe tha t the dif-
ferent ial distribut ions (4.3) and (4.2) combined with the shape funct ion, E qs. (4.6) and
(4.7), correct ly describe the da ta throughout the interval 0 < e < emax including the
end-point region e = O(ΛQCD/Q). In addit ion, the ρ−parameter distribut ion turns out
to be very sensit ive to the choice of the b−parameter. T he fact tha t its value, (4.7), is
rela t ively large indica tes tha t non-inclusive correct ions to the shape funct ion (4.5) are
important indeed.
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F igure 1: Heavy jet mass (a) and C−parameter (b) distribut ions a t Q = MZ with and
without power correct ions included.

H aving determined the parameters of the shape funct ion, E q. (4.7), a t the reference
energy scale Q = MZ , we can now apply the factorized expressions for the different ial
distribut ions, (4.1), (4.2) and (4.3) with the same ansa tz for the shape funct ion (4.6) to
obtain the Q C D predict ions a t different energy and compare them with the da ta. T he
combined plot for the ρ− and C−parameter distribut ions over the center-of-mass energy
interval 35 G e V ≤ Q ≤ 189 G e V is shown in F ig. 2 a and b, respect ively. Similar plot
for the thrust distribut ion can be found in [10]. We observe tha t the theoret ical curves
reproduce the da ta over the whole interval of the shape variables including the end-point
region.

5. Moments of the event shapes

Recent ly, the experimental da ta for the first few moments of various event shape distri-
but ions became available [1]. T heir analysis indica tes a presence of large hadroniza t ion
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H
0 . The observed peak position (intersection of the magenta lines) is not given by the

true top-quark mass, mJ = 172GeV (red lines). This shift depends on the energy Q, the width
Γ, and the soft-radiation function. The result is shown for Q/mJ = 4.33 and the parameters in
Eq. (101). {fig:plot3D}

Here the normalization constant N (a, b) is defined so
∫

d!+d!−S(!+, !−) = 1, the parameter

Λ ∼ ΛQCD sets the scale for !± and hence the soft radiation, and the parameter a controls

how fast the soft-function vanishes at the origin. The dimensionless parameter b > −1

controls the correlation of energy flow into the two hemispheres. Any b #= 0 implies cross-

talk between the two hemispheres. A fit to the heavy jet mass distribution using e+e− dijet

data from LEP and SLD with Q = mZ gives [48]

a = 2 , b = −0.4 , Λ = 0.55 GeV , (101) {abL}

and these values were shown to yield accurate predictions for the heavy jet-mass and C-

parameter event shapes for a wide range of energies, Q = 35–189 GeV. We adopt Eq. (101)

as the central values for our analysis, but will discuss how our predictions vary with changes

to these model parameters.

In Fig. 6 we plot F (Mt, Mt̄) using Eqs. (99-101) and taking Q = 5mJ $ 745 GeV and

mJ = 172 GeV. The key feature to note is that the observed peak position is not given

by the short-distance top-quark mass mJ , but is instead shifted upward by $ 1 GeV. The

positive sign of this shift is a prediction of Eq. (97) irrespective of the choice of parameters.

The precise value depends on Q/mJ , Γ, as well as ΛQCD through the soft function. A less

obvious feature of Fig. 6 is that the width of the observed peak has also increased beyond

the width Γ of Eq. (99). Physically, the reason for this behavior is that soft radiation

contributes to the invariant masses, while the Breit-Wigner approximation only describes the

spectrum of the top-quark and accompanying collinear gluons, and so the arguments of B̃±

in Eq. (97) subtract the dominant soft momentum component from ŝt,t̄. If we approximate
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data from LEP and SLD with Q = mZ gives [48]

a = 2 , b = −0.4 , Λ = 0.55 GeV , (101) {abL}

and these values were shown to yield accurate predictions for the heavy jet-mass and C-

parameter event shapes for a wide range of energies, Q = 35–189 GeV. We adopt Eq. (101)

as the central values for our analysis, but will discuss how our predictions vary with changes

to these model parameters.

In Fig. 6 we plot F (Mt, Mt̄) using Eqs. (99-101) and taking Q = 5mJ $ 745 GeV and

mJ = 172 GeV. The key feature to note is that the observed peak position is not given

by the short-distance top-quark mass mJ , but is instead shifted upward by $ 1 GeV. The

positive sign of this shift is a prediction of Eq. (97) irrespective of the choice of parameters.

The precise value depends on Q/mJ , Γ, as well as ΛQCD through the soft function. A less

obvious feature of Fig. 6 is that the width of the observed peak has also increased beyond

the width Γ of Eq. (99). Physically, the reason for this behavior is that soft radiation

contributes to the invariant masses, while the Breit-Wigner approximation only describes the

spectrum of the top-quark and accompanying collinear gluons, and so the arguments of B̃±

in Eq. (97) subtract the dominant soft momentum component from ŝt,t̄. If we approximate
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0 < t < 1/3 as shown in F ig. 1 [10, 23]. Further analysis of event shape energy dependence
should make it possible to est ima te the underlying energy flow funct ions G(!ni).
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F igure 1: T he comparison of the da ta with the Q C D predict ion for the thrust distribut ion a t
different energies (from bot tom to top): Q/G e V = 14, 22, 35, 44, 55, 91, 133, 161, based on the
shape funct ion. T he detailed descript ion of the plot can be found in [10].

5 Summary

In this paper we have studied the power correct ions to the different ial thrust , t = 1 − T , and
heavy mass, ρ, distribut ions in e+e− annihila t ion close to the two-jet limit . In addressing this
problem, we did not aim to just ify a part icular Q C D-inspired phenomenological model, but ra ther
to formula te a framework with which to study the rela t ionship between perturba t ive and nonper-
turba t ive effects in high-energy final sta tes. We have seen tha t , despite the fact tha t the thrust
and heavy jet mass are not inclusive quant it ies, the leading nonperturba t ive correct ions to their
different ial distribut ions can be factorized into the perturba t ive and nonperturba t ive funct ions,
in much the same way as for inclusive cross sect ions. We ident ified nonperturba t ive infrared
shape funct ions tha t organize all leading power correct ions, 1/(tQ)n and 1/(ρQ)n . A lthough not
universal themselves, these shape funct ions can be derived from universal ma trix elements tha t
describe energy flow. We ant icipa te tha t it will be possible to ex tend these considera t ions to a
wide class of infrared safe event shapes and hard-sca t tering processes.
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We can further simplify the form of the factorized cross-section. First we use the identities

〈Xn|χn,ω′|0〉 = 〈Xn|χnδω′,n̄·P†|0〉 = δω′,p−Xn
〈Xn|χn|0〉 ,

〈Xn̄|χn̄,ω̄′|0〉 = 〈Xn̄|χn̄δω̄′,n·P†|0〉 = δ−ω̄′,p+
Xn̄

〈Xn̄|χn̄|0〉 , (54)

with similar relations for the other two collinear matrix elements in Eq.(52). Combining this

with the relation δω′,p−Xn
δω,p−Xn

= δω′,ωδω,p−Xn
, and analog for p+

Xn̄
, we can write the product of

collinear matrix elements in Eq.(52) as

〈0|/̂̄nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉
= δω̄′,ω̄ δω′,ω 〈0|/̂̄nχn|Xn〉〈Xn|χn,ω|0〉〈0|χn̄|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 . (55)

Next we do the sums over ω′, ω̄′ to arrive at the form

σ = K0

∑

"n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉

×
∫

dω dω̄ |C(ω, ω̄)|2
〈
0
∣∣/̂̄nχn

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉〈

0
∣∣χn̄

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉
. (56)

Before proceeding, we pause to define the thrust axis which is needed to properly define

the invariant mass of jets and state its relation to the direction of the energetic collinear

degrees of freedom. Then in order to make the power counting manifest we decompose the

final state momenta into label and residual parts and perform some general manipulations of

the phase space integrals to setup a formula for the cross-section to be used for the remaining

calculation.

C. Thrust or Jet Axis

The thrust of any event is defined to be

T = max
t̂

∑
i |t̂ · pi|
Q

, (57)

where the sum is over the momenta pi of all the final state particles produced. The thrust

axis t̂ is chosen so that is maximizes the sum of particle momenta projected along t̂. In-

tuitively, for a dijet-like event the thrust axis corresponds to the axis along which most of

the momentum is deposited. Conversely, the thrust is close to its maximum for a dijet-like

event. We choose &n to point along t̂. For an event with exactly two massive stable particles

T =
√

Q2 − 4m2/Q = 1 − 2m2/Q2 + O(m4/Q4), is the maximum allowed thrust. Since we

are interested in thrusts in the dijet region for the top and antitop jets it is convenient to

define a shifted thrust parameter,

τ =

√

1− 4m2

Q2
− T = 1− 2m2

Q2
− T + O

(m4

Q4

)
. (58)
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IV. ANALYSIS OF THE INVARIANT MASS DISTRIBUTION
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A. A Simple Analysis

The main result of this paper is the formula in Eq. (??) for the double invariant mass

distribution with a short distance top-quark mass suitable for measurements using jets.

In this section we discuss the implications of Eq. (??) for top-mass measurements. For

convenience we rewrite the cross-section in terms of dimension-one invariant mass variables

d2σ

dMt dMt̄
= 4MtMt̄ σH

0 F (Mt, Mt̄, µ) , (96) {sigmaMM}

where σH
0 = σ0HQ(Q, µm)H̃m(mJ , Q/mJ , µm, µ) is the normalization factor with radiative

corrections, Q is the c.m. energy, and

F (Mt, Mt̄, µ) =

∫ ∞

−∞

d"+ d"−B̃+

(

ŝt −
Q"+

mJ
, Γ, µ

)

B̃−

(

ŝt̄ −
Q"−

mJ
, Γ, µ

)

Shemi("
+, "−, µ). (97) {F}

In terms of Mt and Mt̄ the variables

ŝt = 2Mt − 2mJ , ŝt̄ = 2Mt̄ − 2mJ , (98) {ssM}

up to small Γ/m power corrections. In Eqs. (96-98) the jet hemisphere invariant masses

are Mt and Mt̄ and the short-distance top-quark mass that we wish to measure is mJ .

In d2σ/dMtdMt̄ the function F dominates the spectrum, while 4MtMt̄ σH
0 acts as a nor-

malization constant (since MtMt̄ is essentially constant in the peak region of interest). A

measurement of the normalization is not optimal for determining mJ ; it only has logarith-

mic dependence on the short-distance mass, and has larger theoretical uncertainties. On the

other hand, the spectrum is very sensitive to mJ , so henceforth we focus on F (Mt, Mt̄, µ).

From Eq. (97) F is given by the convolution of the computable B̃± functions, with a

non-perturbative hemisphere soft-function, Shemi, that describes soft final-state radiation.

The majority of the important features of Eq. (97) can be explained without discussing

perturbative corrections, so we focus here on the leading order result. From Eq. (95), B̃±

are simply Breit-Wigner’s at leading order,

B̃+(ŝt) =
2

(mJΓ)

1

(ŝt/Γ)2 + 1
, B̃−(ŝt̄) =

2

(mJΓ)

1

(ŝt̄/Γ)2 + 1
. (99) {Bpmtree2}

For our numerical analysis we use the two-loop standard model prediction for the top-width

Γ = 1.43 GeV [62]. As demonstrated in sections II and III, Shemi is the same function that

controls the soft radiation for massless dijets, which was studied in Refs. [26, 27, 48]. Hence,

it is convenient for our analysis to adopt the model used to fit the massless dijet data [48],

SM1
hemi("

+, "−) = θ("+)θ("−)
N (a, b)

Λ2

("+"−

Λ2

)a−1

exp
(−("+)2 − ("−)2 − 2b"+"−

Λ2

)

. (100) {SM1}
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ŝt −
Q"+

mJ
, Γ, µ

)

B̃−

(
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(ŝt/Γ)2 + 1
, B̃−(ŝt̄) =
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FIG. 7: Plot of F (Mt,Mt̄), which is the double differential hemisphere invariant mass cross-section
d2σ/dMtdMt̄ in units of 4σH

0 /Γ2. The observed peak position (intersection of the magenta lines) is
not given by the true top-quark mass, m = mJ = 172GeV (red lines). This peak shift depends on
the energy Q, the width Γ, and the soft-radiation function. The result is shown for Q/mJ = 4.33
and the parameters in Eq. (115).

spectrum of the top-quark and accompanying collinear gluons. Thus the arguments of B̃±
in Eq. (111) subtract the dominant soft momentum component from ŝt,t̄. If we approximate

Shemi(!+, !−) as a very narrow Gaussian centered at !± = !±0 , then the observed peak simply

occurs at Mt,t̄ ∼ mJ + Q!±0 /(2mJ). Although this model is too naive, we demonstrate in

the next section that the linear dependence of the peak shift on Q/mJ is in fact generic and

independent of the soft-function parameters. The peak width also increases linearly with

Q/mJ .

The presence of the shift is due to the inclusion of soft radiation in the definition of

the invariant masses Mt and Mt̄. Although we adopted a hemisphere mass definition, the

same type of shift will be present for any jet algorithm that groups all the soft radiation

into the jets identified for the top and anti-decay products, as we discuss in Sec. V. The

numerical analysis performed in this section applies equally well to these situations, though

the appropriate definition and model for the soft functions S for such analyses will in general

be different than that in Eq. (114) with Eq. (115). We are not aware of studies where models

for such soft functions were discussed.

It is important to emphasize that the shift of the observed peak position away from

mJ is not an artifact of the mass-scheme. At the order used to make Fig. 7 we could set

mJ = mpole since as explained in Section IIIG they differ by O(αsΓ).6 In a generic short

distance top-quark jet-mass scheme there is a small shift ∼ αsΓ in the peak position due

6 In general use of mpole is not a good idea, since in fits it would induce an unphysical change in the required
parameters a, b, Λ order-by-order in perturbation theory
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same type of shift will be present for any jet algorithm that groups all the soft radiation
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the appropriate definition and model for the soft functions S for such analyses will in general

be different than that in Eq. (114) with Eq. (115). We are not aware of studies where models

for such soft functions were discussed.

It is important to emphasize that the shift of the observed peak position away from
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Nonperturbative Peak & Width Shifts with Q
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FIG. 9: Effect of a change in Q on the invariant mass distribution. Results on the left are generated

from the two-dimensional distribution, a) shows the peak position versus Q/mJ , and b) gives the
full width at half-max versus Q/mJ . In c) we show dσ/dMt in units of 2σH

0 /Γ for different values
of Q/mJ . The curves use mJ = 172GeV, Γ = 1.4GeV, and the parameters in Eq. (115).

test the dependence of the invariant mass distribution on these parameters.

In Fig. 9a we plot the peak location, Mpeak
t , for nine values of Q. Mpeak

t is obtained from

the two-dimensional distribution, and corresponds to the intersection of the magenta lines

in Fig. 7. Since d2σ/dMtdMt̄ is symmetric the value of Mpeak
t̄ is the same. Note that for

Q ! 2mJ where the tops are near threshold, our effective theory expansions do not apply.

The straight blue line in Fig. 9a is a linear fit to the points with Q/mJ ≥ 4, and clearly shows

that the peak location grows linearly with Q. In Fig. 9b we plot the “Peak Width”, defined

as the full-width at half-max of d2σ/dMtdMt̄ in the top-variable Mt, while fixing the antitop

Mt̄ = Mpeak
t̄ . The red solid line is a linear fit for Q/mJ ≥ 4. This figure demonstrates that

we also have linear growth with Q for the width of the measured invariant mass distribution.

To get a better picture of how the distribution changes with Q we plot the single invariant

mass distribution dσ/dMt in Fig. 9c. In particular we plot

F1(Mt) =
2

Γ

∫ Mupper

Mlower

dMt̄ F (Mt, Mt̄), (116)

which gives dσ/dMt in units of 2σH
0 /Γ. In the numerical analysis we centered the integration

interval [Mlower, Mupper] on Mpeak
t̄ with a size that is twice the measured peak width. Hence

the size of the interval depends on Q, but keeps the number of events collected at each Q

constant for the comparison. For different choices of Q we find that the peak position and

width of F1(Mt) behave in an identical manner to Figs. 9a,b, including having essentially
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This can be understood analytically:

the same slopes. In order to keep the area under the curves constant the peak height drops
as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak locat ion may be as
much as 2.0–2.5 G e V above the value of the Lagrangian mass mJ one wants to measure. In
our analysis mJ is held fixed as shown by the dashed line in F ig. 9c.

To gain an analyt ic understanding of this linear behavior we consider the effect of Q on
the mean of the cross-sect ion, which is a good approximat ion to the peak locat ion. Taking
the first moment with respect to ŝt/2 = (Mt −mJ ) over an interval of size 2L # QΛ and
the zeroth moment in ŝt̄/2 = (Mt̄ −mJ ) gives

F (1) ≡ 1
m2

JΓ2

∫ L

−L

dst
ŝt

2
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)
B̃+(ŝt)

∫ ∞

−∞
d!−Shemi(!+, !−)

=
Q

2mJ
S(1,0)

hemi . (117)

T hus the mean grows linearly with Q/mJ with a slope determined by the first-moment of
the soft funct ion, S(1,0)

hemi =
∫

d!+d!− !+Shemi(!+, !−). In the first equality of E q. (117) the
B̃− funct ion drops out because we integrate over all ŝt̄ . T he approximat ion in E q. (117) is
that terms of ∼ 1/L are dropped. We can also direct ly consider the locat ion of the peak in
Mt , again integrat ing over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is
symmetric, and solve for Mpeak

t = mJ + ŝpeak
t /2 by set t ing

0 =
1

m2
JΓ2

∫ ∞

−∞
dŝt̄

dF (Mt, Mt̄)
dŝt

=
∫ ∞

−∞
d!+B̃′

+

(
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mJ
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(ŝt−
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mJ
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+(0) +
1
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(
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mJ

)3
B̃(4)

+ (0) + . . .

] ∫ ∞

−∞
d!−Shemi(!+, !−) . (118)

For QΛ # mΓ we can keep only the first term which yields Mpeak
t ! mJ + Q/(2mJ ) S(1,0)

hemi .
T hus we find the same shift as for the moment in E q. (117). O ur default model in E q. (115)
gives S(1,0)

hemi/2 = 0.21 G e V for the slope in Q/mJ . T his can be compared with the fit to the
two-dimensional peak posit ion, F ig. 9a, which gives a slope of 0.263 G e V . T he fit to the
peak posit ion of F1(Mt) in 9c has a similar slope, 0.266 G e V . F inally, the first moments of
F1(Mt) also display linear behavior in Q/mJ with a slope of 0.23 G e V . We see that S(1,0)

hemi/2
accounts for the largest port ion of these slopes, with the remainder being accounted for by
other moments. Note that the linear behavior in Q/mJ observed in F ig. 9 is much more
accurate than the statement that S(1,0)

hemi/2 determines the proper slope at lowest order.
F inally we consider the effect on the invariant mass shift from a scan over model param-

eters. F (Mt, Mt̄) depends on the parameters

mJ , Γ, β =
QΛ

mJΓ
, a, b . (119)
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the zeroth moment in ŝt̄/2 = (Mt̄ −mJ) gives

F (1) ≡ 1

m2
JΓ2

∫ L

−L

dst
ŝt
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that terms of ∼ 1/L are dropped. We can also directly consider the location of the peak in

Mt, again integrating over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is
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Thus we find the same shift as for the moment in Eq. (117). Our default model in Eq. (115)
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Mean of distribution:

the same slopes. In order to keep the area under the curves constant the peak height drops
as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak locat ion may be as
much as 2.0–2.5 G e V above the value of the Lagrangian mass mJ one wants to measure. In
our analysis mJ is held fixed as shown by the dashed line in F ig. 9c.

To gain an analyt ic understanding of this linear behavior we consider the effect of Q on
the mean of the cross-sect ion, which is a good approximat ion to the peak locat ion. Taking
the first moment with respect to ŝt/2 = (Mt −mJ ) over an interval of size 2L # QΛ and
the zeroth moment in ŝt̄/2 = (Mt̄ −mJ ) gives
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T hus the mean grows linearly with Q/mJ with a slope determined by the first-moment of
the soft funct ion, S(1,0)

hemi =
∫

d!+d!− !+Shemi(!+, !−). In the first equality of E q. (117) the
B̃− funct ion drops out because we integrate over all ŝt̄ . T he approximat ion in E q. (117) is
that terms of ∼ 1/L are dropped. We can also direct ly consider the locat ion of the peak in
Mt , again integrat ing over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is
symmetric, and solve for Mpeak

t = mJ + ŝpeak
t /2 by set t ing
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For QΛ # mΓ we can keep only the first term which yields Mpeak
t ! mJ + Q/(2mJ ) S(1,0)

hemi .
T hus we find the same shift as for the moment in E q. (117). O ur default model in E q. (115)
gives S(1,0)

hemi/2 = 0.21 G e V for the slope in Q/mJ . T his can be compared with the fit to the
two-dimensional peak posit ion, F ig. 9a, which gives a slope of 0.263 G e V . T he fit to the
peak posit ion of F1(Mt) in 9c has a similar slope, 0.266 G e V . F inally, the first moments of
F1(Mt) also display linear behavior in Q/mJ with a slope of 0.23 G e V . We see that S(1,0)

hemi/2
accounts for the largest port ion of these slopes, with the remainder being accounted for by
other moments. Note that the linear behavior in Q/mJ observed in F ig. 9 is much more
accurate than the statement that S(1,0)

hemi/2 determines the proper slope at lowest order.
F inally we consider the effect on the invariant mass shift from a scan over model param-

eters. F (Mt, Mt̄) depends on the parameters

mJ , Γ, β =
QΛ

mJΓ
, a, b . (119)
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the same slopes. In order to keep the area under the curves constant the peak height drops

as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak location may be as

much as 2.0–2.5 GeV above the value of the Lagrangian mass mJ one wants to measure. In

our analysis mJ is held fixed as shown by the dashed line in Fig. 9c.

To gain an analytic understanding of this linear behavior we consider the effect of Q on

the mean of the cross-section, which is a good approximation to the peak location. Taking

the first moment with respect to ŝt/2 = (Mt −mJ) over an interval of size 2L # QΛ and

the zeroth moment in ŝt̄/2 = (Mt̄ −mJ) gives

F (1) ≡ 1

m2
JΓ2

∫ L

−L

dst
ŝt
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Thus the mean grows linearly with Q/mJ with a slope determined by the first-moment of

the soft function, S(1,0)
hemi =

∫
d!+d!− !+Shemi(!+, !−). In the first equality of Eq. (117) the

B̃− function drops out because we integrate over all ŝt̄. The approximation in Eq. (117) is

that terms of ∼ 1/L are dropped. We can also directly consider the location of the peak in

Mt, again integrating over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is

symmetric, and solve for Mpeak
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t /2 by setting
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For QΛ # mΓ we can keep only the first term which yields Mpeak
t ! mJ + Q/(2mJ) S(1,0)

hemi.

Thus we find the same shift as for the moment in Eq. (117). Our default model in Eq. (115)

gives S(1,0)
hemi/2 = 0.21 GeV for the slope in Q/mJ . This can be compared with the fit to the

two-dimensional peak position, Fig. 9a, which gives a slope of 0.263 GeV. The fit to the

peak position of F1(Mt) in 9c has a similar slope, 0.266 GeV. Finally, the first moments of

F1(Mt) also display linear behavior in Q/mJ with a slope of 0.23 GeV. We see that S(1,0)
hemi/2

accounts for the largest portion of these slopes, with the remainder being accounted for by

other moments. Note that the linear behavior in Q/mJ observed in Fig. 9 is much more

accurate than the statement that S(1,0)
hemi/2 determines the proper slope at lowest order.

Finally we consider the effect on the invariant mass shift from a scan over model param-

eters. F (Mt, Mt̄) depends on the parameters

mJ , Γ, β =
QΛ

mJΓ
, a, b . (119)
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slope is



This can be understood analytically:

the same slopes. In order to keep the area under the curves constant the peak height drops
as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak locat ion may be as
much as 2.0–2.5 G e V above the value of the Lagrangian mass mJ one wants to measure. In
our analysis mJ is held fixed as shown by the dashed line in F ig. 9c.

To gain an analyt ic understanding of this linear behavior we consider the effect of Q on
the mean of the cross-sect ion, which is a good approximat ion to the peak locat ion. Taking
the first moment with respect to ŝt/2 = (Mt −mJ ) over an interval of size 2L # QΛ and
the zeroth moment in ŝt̄/2 = (Mt̄ −mJ ) gives
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ŝt

2

∫ ∞

−∞
dst̄ F (Mt, Mt̄) =

∫ ∞

−∞
d!+

∫ L

−L

dst
ŝt
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T hus the mean grows linearly with Q/mJ with a slope determined by the first-moment of
the soft funct ion, S(1,0)

hemi =
∫

d!+d!− !+Shemi(!+, !−). In the first equality of E q. (117) the
B̃− funct ion drops out because we integrate over all ŝt̄ . T he approximat ion in E q. (117) is
that terms of ∼ 1/L are dropped. We can also direct ly consider the locat ion of the peak in
Mt , again integrat ing over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is
symmetric, and solve for Mpeak

t = mJ + ŝpeak
t /2 by set t ing
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For QΛ # mΓ we can keep only the first term which yields Mpeak
t ! mJ + Q/(2mJ ) S(1,0)

hemi .
T hus we find the same shift as for the moment in E q. (117). O ur default model in E q. (115)
gives S(1,0)

hemi/2 = 0.21 G e V for the slope in Q/mJ . T his can be compared with the fit to the
two-dimensional peak posit ion, F ig. 9a, which gives a slope of 0.263 G e V . T he fit to the
peak posit ion of F1(Mt) in 9c has a similar slope, 0.266 G e V . F inally, the first moments of
F1(Mt) also display linear behavior in Q/mJ with a slope of 0.23 G e V . We see that S(1,0)

hemi/2
accounts for the largest port ion of these slopes, with the remainder being accounted for by
other moments. Note that the linear behavior in Q/mJ observed in F ig. 9 is much more
accurate than the statement that S(1,0)

hemi/2 determines the proper slope at lowest order.
F inally we consider the effect on the invariant mass shift from a scan over model param-

eters. F (Mt, Mt̄) depends on the parameters

mJ , Γ, β =
QΛ

mJΓ
, a, b . (119)
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the same slopes. In order to keep the area under the curves constant the peak height drops

as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak location may be as

much as 2.0–2.5 GeV above the value of the Lagrangian mass mJ one wants to measure. In

our analysis mJ is held fixed as shown by the dashed line in Fig. 9c.

To gain an analytic understanding of this linear behavior we consider the effect of Q on

the mean of the cross-section, which is a good approximation to the peak location. Taking

the first moment with respect to ŝt/2 = (Mt −mJ) over an interval of size 2L # QΛ and

the zeroth moment in ŝt̄/2 = (Mt̄ −mJ) gives
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Thus the mean grows linearly with Q/mJ with a slope determined by the first-moment of

the soft function, S(1,0)
hemi =

∫
d!+d!− !+Shemi(!+, !−). In the first equality of Eq. (117) the

B̃− function drops out because we integrate over all ŝt̄. The approximation in Eq. (117) is

that terms of ∼ 1/L are dropped. We can also directly consider the location of the peak in

Mt, again integrating over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is

symmetric, and solve for Mpeak
t = mJ + ŝpeak

t /2 by setting
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For QΛ # mΓ we can keep only the first term which yields Mpeak
t ! mJ + Q/(2mJ) S(1,0)

hemi.

Thus we find the same shift as for the moment in Eq. (117). Our default model in Eq. (115)

gives S(1,0)
hemi/2 = 0.21 GeV for the slope in Q/mJ . This can be compared with the fit to the

two-dimensional peak position, Fig. 9a, which gives a slope of 0.263 GeV. The fit to the

peak position of F1(Mt) in 9c has a similar slope, 0.266 GeV. Finally, the first moments of

F1(Mt) also display linear behavior in Q/mJ with a slope of 0.23 GeV. We see that S(1,0)
hemi/2

accounts for the largest portion of these slopes, with the remainder being accounted for by

other moments. Note that the linear behavior in Q/mJ observed in Fig. 9 is much more

accurate than the statement that S(1,0)
hemi/2 determines the proper slope at lowest order.

Finally we consider the effect on the invariant mass shift from a scan over model param-

eters. F (Mt, Mt̄) depends on the parameters

mJ , Γ, β =
QΛ

mJΓ
, a, b . (119)
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Mean of distribution:

the same slopes. In order to keep the area under the curves constant the peak height drops
as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak locat ion may be as
much as 2.0–2.5 G e V above the value of the Lagrangian mass mJ one wants to measure. In
our analysis mJ is held fixed as shown by the dashed line in F ig. 9c.

To gain an analyt ic understanding of this linear behavior we consider the effect of Q on
the mean of the cross-sect ion, which is a good approximat ion to the peak locat ion. Taking
the first moment with respect to ŝt/2 = (Mt −mJ ) over an interval of size 2L # QΛ and
the zeroth moment in ŝt̄/2 = (Mt̄ −mJ ) gives
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ŝt

2

∫ ∞

−∞
dst̄ F (Mt, Mt̄) =

∫ ∞

−∞
d!+

∫ L

−L

dst
ŝt
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ŝt +

Q!+

mJ

)
B̃+(ŝt)
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T hus the mean grows linearly with Q/mJ with a slope determined by the first-moment of
the soft funct ion, S(1,0)

hemi =
∫

d!+d!− !+Shemi(!+, !−). In the first equality of E q. (117) the
B̃− funct ion drops out because we integrate over all ŝt̄ . T he approximat ion in E q. (117) is
that terms of ∼ 1/L are dropped. We can also direct ly consider the locat ion of the peak in
Mt , again integrat ing over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is
symmetric, and solve for Mpeak

t = mJ + ŝpeak
t /2 by set t ing
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For QΛ # mΓ we can keep only the first term which yields Mpeak
t ! mJ + Q/(2mJ ) S(1,0)

hemi .
T hus we find the same shift as for the moment in E q. (117). O ur default model in E q. (115)
gives S(1,0)

hemi/2 = 0.21 G e V for the slope in Q/mJ . T his can be compared with the fit to the
two-dimensional peak posit ion, F ig. 9a, which gives a slope of 0.263 G e V . T he fit to the
peak posit ion of F1(Mt) in 9c has a similar slope, 0.266 G e V . F inally, the first moments of
F1(Mt) also display linear behavior in Q/mJ with a slope of 0.23 G e V . We see that S(1,0)

hemi/2
accounts for the largest port ion of these slopes, with the remainder being accounted for by
other moments. Note that the linear behavior in Q/mJ observed in F ig. 9 is much more
accurate than the statement that S(1,0)

hemi/2 determines the proper slope at lowest order.
F inally we consider the effect on the invariant mass shift from a scan over model param-

eters. F (Mt, Mt̄) depends on the parameters

mJ , Γ, β =
QΛ

mJΓ
, a, b . (119)
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Peak of distribution:

the same slopes. In order to keep the area under the curves constant the peak height drops

as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak location may be as

much as 2.0–2.5 GeV above the value of the Lagrangian mass mJ one wants to measure. In

our analysis mJ is held fixed as shown by the dashed line in Fig. 9c.

To gain an analytic understanding of this linear behavior we consider the effect of Q on

the mean of the cross-section, which is a good approximation to the peak location. Taking

the first moment with respect to ŝt/2 = (Mt −mJ) over an interval of size 2L # QΛ and

the zeroth moment in ŝt̄/2 = (Mt̄ −mJ) gives
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Thus the mean grows linearly with Q/mJ with a slope determined by the first-moment of

the soft function, S(1,0)
hemi =

∫
d!+d!− !+Shemi(!+, !−). In the first equality of Eq. (117) the

B̃− function drops out because we integrate over all ŝt̄. The approximation in Eq. (117) is

that terms of ∼ 1/L are dropped. We can also directly consider the location of the peak in

Mt, again integrating over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is

symmetric, and solve for Mpeak
t = mJ + ŝpeak
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For QΛ # mΓ we can keep only the first term which yields Mpeak
t ! mJ + Q/(2mJ) S(1,0)

hemi.

Thus we find the same shift as for the moment in Eq. (117). Our default model in Eq. (115)

gives S(1,0)
hemi/2 = 0.21 GeV for the slope in Q/mJ . This can be compared with the fit to the

two-dimensional peak position, Fig. 9a, which gives a slope of 0.263 GeV. The fit to the

peak position of F1(Mt) in 9c has a similar slope, 0.266 GeV. Finally, the first moments of

F1(Mt) also display linear behavior in Q/mJ with a slope of 0.23 GeV. We see that S(1,0)
hemi/2

accounts for the largest portion of these slopes, with the remainder being accounted for by

other moments. Note that the linear behavior in Q/mJ observed in Fig. 9 is much more

accurate than the statement that S(1,0)
hemi/2 determines the proper slope at lowest order.

Finally we consider the effect on the invariant mass shift from a scan over model param-

eters. F (Mt, Mt̄) depends on the parameters

mJ , Γ, β =
QΛ

mJΓ
, a, b . (119)
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the same slopes. In order to keep the area under the curves constant the peak height drops

as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak location may be as

much as 2.0–2.5 GeV above the value of the Lagrangian mass mJ one wants to measure. In

our analysis mJ is held fixed as shown by the dashed line in Fig. 9c.

To gain an analytic understanding of this linear behavior we consider the effect of Q on

the mean of the cross-section, which is a good approximation to the peak location. Taking

the first moment with respect to ŝt/2 = (Mt −mJ) over an interval of size 2L # QΛ and

the zeroth moment in ŝt̄/2 = (Mt̄ −mJ) gives
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Thus the mean grows linearly with Q/mJ with a slope determined by the first-moment of

the soft function, S(1,0)
hemi =

∫
d!+d!− !+Shemi(!+, !−). In the first equality of Eq. (117) the

B̃− function drops out because we integrate over all ŝt̄. The approximation in Eq. (117) is

that terms of ∼ 1/L are dropped. We can also directly consider the location of the peak in

Mt, again integrating over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is

symmetric, and solve for Mpeak
t = mJ + ŝpeak

t /2 by setting

0 =
1

m2
JΓ2

∫ ∞

−∞
dŝt̄

dF (Mt, Mt̄)

dŝt
=

∫ ∞
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+
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ŝt −

Q!+

mJ

)∫ ∞

−∞
d!−Shemi(!

+, !−)
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∫ ∞
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d!+
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(ŝt−

Q!+

mJ
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(
ŝt−

Q!+

mJ
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d!−Shemi(!

+, !−) . (118)

For QΛ # mΓ we can keep only the first term which yields Mpeak
t ! mJ + Q/(2mJ) S(1,0)

hemi.

Thus we find the same shift as for the moment in Eq. (117). Our default model in Eq. (115)

gives S(1,0)
hemi/2 = 0.21 GeV for the slope in Q/mJ . This can be compared with the fit to the

two-dimensional peak position, Fig. 9a, which gives a slope of 0.263 GeV. The fit to the

peak position of F1(Mt) in 9c has a similar slope, 0.266 GeV. Finally, the first moments of

F1(Mt) also display linear behavior in Q/mJ with a slope of 0.23 GeV. We see that S(1,0)
hemi/2

accounts for the largest portion of these slopes, with the remainder being accounted for by

other moments. Note that the linear behavior in Q/mJ observed in Fig. 9 is much more

accurate than the statement that S(1,0)
hemi/2 determines the proper slope at lowest order.

Finally we consider the effect on the invariant mass shift from a scan over model param-

eters. F (Mt, Mt̄) depends on the parameters

mJ , Γ, β =
QΛ

mJΓ
, a, b . (119)
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the same slopes. In order to keep the area under the curves constant the peak height drops

as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak location may be as

much as 2.0–2.5 GeV above the value of the Lagrangian mass mJ one wants to measure. In

our analysis mJ is held fixed as shown by the dashed line in Fig. 9c.

To gain an analytic understanding of this linear behavior we consider the effect of Q on

the mean of the cross-section, which is a good approximation to the peak location. Taking

the first moment with respect to ŝt/2 = (Mt −mJ) over an interval of size 2L # QΛ and

the zeroth moment in ŝt̄/2 = (Mt̄ −mJ) gives

F (1) ≡ 1
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2
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) ∫ ∞

−∞
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−L
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(
ŝt +

Q!+

mJ

)
B̃+(ŝt)
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−∞
d!−Shemi(!

+, !−)

=
Q

2mJ
S(1,0)

hemi . (117)

Thus the mean grows linearly with Q/mJ with a slope determined by the first-moment of
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Mt, again integrating over Mt̄ for convenience. We use the fact that the tree-level B̃+(ŝt) is
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t /2 by setting

0 =
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)∫ ∞

−∞
d!−Shemi(!

+, !−)

=

∫ ∞

−∞
d!+
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(ŝt−

Q!+
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)
B̃′′

+(0)+
1

3!

(
ŝt−

Q!+
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)3
B̃(4)
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−∞
d!−Shemi(!
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For QΛ # mΓ we can keep only the first term which yields Mpeak
t ! mJ + Q/(2mJ) S(1,0)

hemi.

Thus we find the same shift as for the moment in Eq. (117). Our default model in Eq. (115)

gives S(1,0)
hemi/2 = 0.21 GeV for the slope in Q/mJ . This can be compared with the fit to the

two-dimensional peak position, Fig. 9a, which gives a slope of 0.263 GeV. The fit to the

peak position of F1(Mt) in 9c has a similar slope, 0.266 GeV. Finally, the first moments of

F1(Mt) also display linear behavior in Q/mJ with a slope of 0.23 GeV. We see that S(1,0)
hemi/2

accounts for the largest portion of these slopes, with the remainder being accounted for by

other moments. Note that the linear behavior in Q/mJ observed in Fig. 9 is much more

accurate than the statement that S(1,0)
hemi/2 determines the proper slope at lowest order.

Finally we consider the effect on the invariant mass shift from a scan over model param-

eters. F (Mt, Mt̄) depends on the parameters

mJ , Γ, β =
QΛ

mJΓ
, a, b . (119)
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slope is



If for some (eg. experimental) reason the universality of 
the soft function was not applicable then we
would need to fit the soft function as well:

Here the scale Λ for the soft-function only shows up along with Q/mJ in the effective boost

parameter β. To demonstrate that it is β that appears in F (Mt, Mt̄), switch integration

variables to x = "+/Λ and y = "−/Λ, and let ŝt,t̄ = zt,t̄Γ. This yields a soft function

Λ2Shemi(Λx, Λy) that is independent of Λ, and B̃+(ŝt − Q"+/mJ) = B̃+(Γ(zt − βx)) which

is only a function of (zt − βx) times (ΓmJ)−1. Hence F (Mt, Mt̄) is only a function of β,

zt,t̄ = (Mt,t̄ − mJ )/Γ, (mJΓ), and the model parameters a and b. Hence changing Λ has

the same effect as changing Q/mJ . Below we will only consider variations of the model

parameters a and b.

We generate 9 soft-function models from the intersection of a = {1, 2, 3} and b =

{−0.9, 0.0, 0.9}, and in Fig. 10a give the profile of these models by plotting S("+) =

S ( )+l
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FIG. 10: Dependence of the invariant mass distribution on the shape-function model parameters.
In a) we show 9 models with different a and b parameters, and in b) we show the resulting dσ/dMt

in units of 2σH
0 /Γ. In c) we plot the first moment of the invariant mass distribution, F (1), versus

the first moment of the soft-function "+, S(1,0). In d) we plot the peak position of dσ/dMt versus
S(1,0). These plots are made with Q/mJ = 5 and mJ = 172GeV. Note that these scans are
only relevant experimentally if the universality of Shemi with massless dijet events is not used to
determine the parameters.
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Finally, other observables can be projected out from ours.

Thrust

Generically, we may wish to run the soft function and jet function to slightly different

low energy scales. Lets examine the case shown in Fig. 5 where we run the soft function to

µ∆, but run the bHQET jet functions to a slightly lower scale µΓ. (The opposite case could

of course also be realized.) In this case the running is local up to the scale µ∆, and below

this scale we have convolution running for B±. Using Eq. (102) the factorization formula

for split low energy renormalization scales is

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ∆

)
(103)

×
∫ ∞

−∞
dŝ′t dŝ′t̄ UB+(ŝt−ŝ′t, µ∆, µΓ) UB−(ŝt̄−ŝ′t̄, µ∆, µΓ)

×
∫ ∞

−∞
d"+d"−Shemi("

+, "−, µ∆) B̃+

(
ŝ′t −

Q"+

mJ
, Γ, µΓ

)
B̃−

(
ŝ′t̄ −

Q"−

mJ
, Γ, µΓ

)
,

where parametrically µ∆ ∼ µΓ and here we take mJ = mJ (µΓ). In this paper we will use

common low energy scales for our numerical analysis, Eq. (100), and leave the discussion of

the more general case in Eq. (103) to Ref. [59].

I. Thrust and Other Event Shape Variables

Starting from the two-dimensional distribution, d2σ/dM2
t dM2

t̄ in Eq. (100) it is straight-

forward to derive results for other event shape variables. For example, for the thrust T

defined in Eq. (57), we have 1 − T = (M 2
t + M2

t̄ )/Q2 which follows using Eq. (78) with

Eqs. (1) and (58). Inserting the identity

1 =

∫
dT δ

(
1− T −

M2
t + M2

t̄

Q2

)
(104)

into Eq. (100) and integrating over M 2
t and M2

t̄ . We find

dσ

dT
= σH

0 (µ)

∫ ∞

−∞
dst dst̄ B̃+

( st

mJ
, Γ, µ

)
B̃−

( st̄

mJ
, Γ, µ

)
Sthrust

(
1− T − (2m2

J + st + st̄)

Q2
, µ

)
,

(105)

where σH
0 (µ) = σ0HQ(Q, µm)Hm(mJ , Q/mJ , µm, µ). Here the thrust soft-function is simply

a projection of the hemisphere soft function,

Sthrust(τ, µ) =

∫ ∞

0

d"+ d"−δ
(
τ − ("+ + "−)

Q

)
Shemi("

+, "−, µ) (106)

=
1

Nc

∑

Xs

δ
(
τ − k+a

s + k−b
s

Q

)
〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †

n Y
†
n̄(0)|0〉 .

Another well known distribution, which is also frequently analyzed for massless jets, is

the heavy jet mass. It can be defined by the dimensionless variable

ρ =
1

Q2
Max

{
M2

t , M2
t̄

}
. (107)
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We can further simplify the form of the factorized cross-section. First we use the identities

〈Xn|χn,ω′|0〉 = 〈Xn|χnδω′,n̄·P†|0〉 = δω′,p−Xn
〈Xn|χn|0〉 ,

〈Xn̄|χn̄,ω̄′|0〉 = 〈Xn̄|χn̄δω̄′,n·P†|0〉 = δ−ω̄′,p+
Xn̄

〈Xn̄|χn̄|0〉 , (54)

with similar relations for the other two collinear matrix elements in Eq.(52). Combining this

with the relation δω′,p−Xn
δω,p−Xn

= δω′,ωδω,p−Xn
, and analog for p+

Xn̄
, we can write the product of

collinear matrix elements in Eq.(52) as

〈0|/̂̄nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉
= δω̄′,ω̄ δω′,ω 〈0|/̂̄nχn|Xn〉〈Xn|χn,ω|0〉〈0|χn̄|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 . (55)

Next we do the sums over ω′, ω̄′ to arrive at the form

σ = K0

∑

"n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉

×
∫

dω dω̄ |C(ω, ω̄)|2
〈
0
∣∣/̂̄nχn

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉〈

0
∣∣χn̄

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉
. (56)

Before proceeding, we pause to define the thrust axis which is needed to properly define

the invariant mass of jets and state its relation to the direction of the energetic collinear

degrees of freedom. Then in order to make the power counting manifest we decompose the

final state momenta into label and residual parts and perform some general manipulations of

the phase space integrals to setup a formula for the cross-section to be used for the remaining

calculation.

C. Thrust or Jet Axis

The thrust of any event is defined to be

T = max
t̂

∑
i |t̂ · pi|
Q

, (57)

where the sum is over the momenta pi of all the final state particles produced. The thrust

axis t̂ is chosen so that is maximizes the sum of particle momenta projected along t̂. In-

tuitively, for a dijet-like event the thrust axis corresponds to the axis along which most of

the momentum is deposited. Conversely, the thrust is close to its maximum for a dijet-like

event. We choose &n to point along t̂. For an event with exactly two massive stable particles

T =
√

Q2 − 4m2/Q = 1 − 2m2/Q2 + O(m4/Q4), is the maximum allowed thrust. Since we

are interested in thrusts in the dijet region for the top and antitop jets it is convenient to

define a shifted thrust parameter,

τ =

√

1− 4m2

Q2
− T = 1− 2m2

Q2
− T + O

(m4

Q4

)
. (58)
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2 massive particles:

We can further simplify the form of the factorized cross-sect ion. F irst we use the ident it ies

〈Xn|χn,ω′|0〉 = 〈Xn|χnδω′,n̄·P†|0〉 = δω′,p−Xn
〈Xn|χn|0〉 ,

〈Xn̄|χn̄,ω̄′|0〉 = 〈Xn̄|χn̄δω̄′,n·P†|0〉 = δ−ω̄′,p+
Xn̄

〈Xn̄|χn̄|0〉 , (54)

with similar relat ions for the other two collinear matrix elements in E q.(52). Combining this
with the relat ion δω′,p−Xn

δω,p−Xn
= δω′,ωδω,p−Xn

, and analog for p+
Xn̄

, we can write the product of
collinear matrix elements in E q.(52) as

〈0|/̄̂nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉
= δω̄′,ω̄ δω′,ω 〈0|/̄̂nχn|Xn〉〈Xn|χn,ω|0〉〈0|χn̄|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 . (55)

Next we do the sums over ω′, ω̄′ to arrive at the form

σ = K0

∑

"n

res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs )〈0|Y n̄ Yn|Xs〉〈Xs|Y †
n Y

†
n̄|0〉

×
∫

dω dω̄ |C(ω, ω̄)|2
〈

0
∣∣/̄̂nχn

∣∣Xn

〉〈
Xn

∣∣χn,ω

∣∣0
〉〈

0
∣∣χn̄

∣∣Xn̄

〉〈
Xn̄

∣∣/̂nχn̄,ω̄

∣∣0
〉
. (56)

B efore proceeding, we pause to define the thrust axis which is needed to properly define
the invariant mass of jets and state its relat ion to the direct ion of the energet ic collinear
degrees of freedom. T hen in order to make the power count ing manifest we decompose the
final state momenta into label and residual parts and perform some general manipulat ions of
the phase space integrals to setup a formula for the cross-sect ion to be used for the remaining
calculat ion.

C. Thrust or Jet Axis

T he thrust of any event is defined to be

T = max
t̂

∑
i |t̂ · pi|
Q

, (57)

where the sum is over the momenta pi of all the final state part icles produced. T he thrust
axis t̂ is chosen so that is maximizes the sum of part icle momenta pro jected along t̂. In-
tuit ively, for a dijet-like event the thrust axis corresponds to the axis along which most of
the momentum is deposited. Conversely, the thrust is close to its maximum for a dijet-like
event . We choose &n to point along t̂. For an event with exact ly two massive stable part icles
T =

√
Q2 − 4m2/Q = 1 − 2m2/Q2 + O(m4/Q4), is the maximum allowed thrust . Since we

are interested in thrusts in the dijet region for the top and ant itop jets it is convenient to
define a shifted thrust parameter,

τ =

√

1 − 4m2

Q2
− T = 1 − 2m2

Q2
− T + O

(m4

Q4

)
. (58)
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Insert:

Generically, we may wish to run the soft function and jet function to slightly different

low energy scales. Lets examine the case shown in Fig. 5 where we run the soft function to

µ∆, but run the bHQET jet functions to a slightly lower scale µΓ. (The opposite case could

of course also be realized.) In this case the running is local up to the scale µ∆, and below

this scale we have convolution running for B±. Using Eq. (102) the factorization formula

for split low energy renormalization scales is

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ∆

)
(103)

×
∫ ∞

−∞
dŝ′t dŝ′t̄ UB+(ŝt−ŝ′t, µ∆, µΓ) UB−(ŝt̄−ŝ′t̄, µ∆, µΓ)

×
∫ ∞

−∞
d"+d"−Shemi("

+, "−, µ∆) B̃+

(
ŝ′t −

Q"+

mJ
, Γ, µΓ

)
B̃−

(
ŝ′t̄ −

Q"−

mJ
, Γ, µΓ

)
,

where parametrically µ∆ ∼ µΓ and here we take mJ = mJ (µΓ). In this paper we will use

common low energy scales for our numerical analysis, Eq. (100), and leave the discussion of

the more general case in Eq. (103) to Ref. [59].

I. Thrust and Other Event Shape Variables

Starting from the two-dimensional distribution, d2σ/dM2
t dM2

t̄ in Eq. (100) it is straight-

forward to derive results for other event shape variables. For example, for the thrust T

defined in Eq. (57), we have 1 − T = (M 2
t + M2

t̄ )/Q2 which follows using Eq. (78) with

Eqs. (1) and (58). Inserting the identity

1 =

∫
dT δ

(
1− T −

M2
t + M2

t̄

Q2

)
(104)

into Eq. (100) and integrating over M 2
t and M2

t̄ . We find

dσ

dT
= σH

0 (µ)

∫ ∞

−∞
dst dst̄ B̃+

( st

mJ
, Γ, µ

)
B̃−

( st̄

mJ
, Γ, µ

)
Sthrust

(
1− T − (2m2

J + st + st̄)

Q2
, µ

)
,

(105)

where σH
0 (µ) = σ0HQ(Q, µm)Hm(mJ , Q/mJ , µm, µ). Here the thrust soft-function is simply

a projection of the hemisphere soft function,

Sthrust(τ, µ) =

∫ ∞

0

d"+ d"−δ
(
τ − ("+ + "−)

Q

)
Shemi("

+, "−, µ) (106)

=
1

Nc

∑

Xs

δ
(
τ − k+a

s + k−b
s

Q

)
〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †

n Y
†
n̄(0)|0〉 .

Another well known distribution, which is also frequently analyzed for massless jets, is

the heavy jet mass. It can be defined by the dimensionless variable

ρ =
1

Q2
Max

{
M2

t , M2
t̄

}
. (107)
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G enerically, we may wish to run the soft funct ion and jet funct ion to slight ly different
low energy scales. Lets examine the case shown in F ig. 5 where we run the soft funct ion to
µ∆ , but run the bH Q E T jet funct ions to a slight ly lower scale µΓ. ( T he opposite case could
of course also be realized.) In this case the running is local up to the scale µ∆ , and below
this scale we have convolut ion running for B± . Using E q. (102) the factorizat ion formula
for split low energy renormalizat ion scales is

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ∆

)
(103)

×
∫ ∞

−∞
dŝ′t dŝ′t̄ UB+ (ŝt−ŝ′t, µ∆, µΓ) UB− (ŝt̄−ŝ′t̄, µ∆, µΓ)

×
∫ ∞

−∞
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(
ŝ′t −
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mJ
, Γ, µΓ

)
B̃−

(
ŝ′t̄ −

Q"−

mJ
, Γ, µΓ

)
,

where parametrically µ∆ ∼ µΓ and here we take mJ = mJ (µΓ). In this paper we will use
common low energy scales for our numerical analysis, E q. (100), and leave the discussion of
the more general case in E q. (103) to Ref. [59].

I. Thrust and Other Event Shape Variables

Start ing from the two-dimensional distribut ion, d2σ/dM2
t dM2

t̄ in E q. (100) it is straight-
forward to derive results for other event shape variables. For example, for the thrust T

defined in E q. (57), we have 1 − T = (M 2
t + M2

t̄ )/Q2 which follows using E q. (78) with
E qs. (1) and (58). Insert ing the ident ity

1 =
∫

dT δ
(

1 − T −
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t + M2
t̄

Q2

)
(104)

into E q. (100) and integrat ing over M 2
t and M2

t̄ . We find

dσ

dT
= σH

0 (µ)
∫ ∞

−∞
dst dst̄ B̃+

( st

mJ
, Γ, µ

)
B̃−

( st̄

mJ
, Γ, µ

)
Sthrust
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J + st + st̄)
Q2

, µ
)

,

(105)

where σH
0 (µ) = σ0HQ(Q, µm)Hm(mJ , Q/mJ , µm, µ). Here the thrust soft-funct ion is simply

a pro ject ion of the hemisphere soft funct ion,

Sthrust(τ, µ) =
∫ ∞

0

d"+ d"−δ
(
τ − ("+ + "−)

Q

)
Shemi("+, "−, µ) (106)

=
1
Nc

∑

Xs

δ
(
τ − k+a

s + k−b
s

Q

)
〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †

n Y
†
n̄(0)|0〉 .

A nother well known distribut ion, which is also frequent ly analyzed for massless jets, is
the heavy jet mass. I t can be defined by the dimensionless variable

ρ =
1

Q2
Max

{
M2

t , M2
t̄

}
. (107)
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FIG. 8: Plot of the thrust distribution, dσ/dT in units of σH
0 , for top-initiated events in the peak

region. We use Q/mJ = 5, mJ = 172GeV and the soft function parameters in Eq. (115).

to perturbative corrections in the matrix element defining B̃± (as discussed in detail in

Ref. [59]). In section IIIG we defined mJ using a jet-mass scheme which keeps the peak of

B̃± fixed order-by-order in perturbation theory. In this scheme the shift in the peak location

relative to the short-distance mass is entirely due to the non-perturbative soft radiation.

Although mJ is not determined by the peak-position, the shape of the cross-section is

very sensitive to mJ , and hence for precision δmt
<∼ 1 GeV the top-quark mass should be

determined by a fit to F in Eq. (110). In section III I factorization theorems for related

event shape variables were derived, including thrust dσ/dT , and the heavy-jet mass dσ/dρ.

These event shapes also exhibit a peak. They are sensitive to the top-quark mass parameter

mJ , and can be used for top-mass measurements. As an example, in Fig. 8 we plot dσ/dT

using Q/mJ = 5, mJ = 172 GeV, and the parameters in Eq. (115). The expected peak

in the thrust distribution is at 1 − T # 2m2/Q2 = 0.08, and is shifted to the right by

∆(1−T ) = 3.8× 10−4 by the soft-radiation. Again the direction of the shift is a prediction,

but the precise amount of the shift depends on the soft-model parameters in Eq. (115)

as well as Q/mJ . An analysis of any other event shape distributions that are related to

d2σ/dM2
t dM2

t̄ can be made in a similar fashion.

In section IVB we explore the functional dependence of the peak shift for d2σ/dMtdMt̄ in

greater detail. In section IVC we discuss the implications of our results for fits to determine

the short-distance mass.

B. Analysis of the Peak Shift and Broadening

In this section we analyze the parameter dependence of the peak shift and broadening of

the width, and demonstrate that they have a linear dependence on Q. The main analysis is

carried out assuming that the soft-function model parameters have been determined from

massless jet observables. Near the end of this section we are relaxing this assumption and
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What about using a Jet Algorithm?

If all soft radiation is grouped into the jets
 (inclusive mode) then the factorization theorem 

is the same, but has a different soft function.



What about using a Jet Algorithm?

Top Quark DecayTop Quark Decay

Within the SM:

mt > mW + mb dominant 2-body decay t Wb 

(t Ws, Wd CKM suppressed)

Assuming unitarity of 3-generation CKM matrix:

|Vtb| = 0.9990-0.9992 @ 90% CL B(t Wb) ~ 100%

t
SM 1.4 GeV at mt = 175 GeV

Top decays before top-flavored hadrons or tt-quarkonium bound 

states can form.

Top quark spin efficiently transferred to the final state. 

Typical final state signatures in top quark pair production:

require multipurpose detectors

QCDt

B(W qq) ~ 67%

B(W l )  ~ 11%, l=e, ,

jet

b-jet
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If all soft radiation is grouped into the jets
 (inclusive mode) then the factorization theorem 

is the same, but has a different soft function.



Log resummation

from renormalization of UV divergences in 
the effective field theories, which induce

anomalous dimensions.
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FIG. 3: Scales and functions appearing in the formula for the invariant mass distribution. The
result is determined by matching at the physical scales and running to sum large logs as shown.
We show both the top-down and bottom-up approach to the running, and notes that the evolution
functions obey UH = UJ−UJ+US and UC = UB−UB+US . The evolution for UH and UC is local,
while all other evolution functions involve convolutions. {fig:theory}

Eq.(108) we can expand the shape function Hs as

Hs(Qτ +
st + st̄

Q
) ∼ Hs(Qτ) +O(

m

Q
) (109)

Thus, choosing a smearing region of size ∆ ∼ Γ makes the soft shape function independent

of st, st̄ at leading order as desired. Integrating over this smearing region we arrive at the

differential cross-section

dσ̂

dst dst̄
=

1

Q2

∑

ij

L(ij)
µν Tr

[n/

2
Γ̂µ

i

n̄/

2
Γ̂ν

j

] ∣∣C(Q; m)
∣∣2Jn(δ, st; m)Jn̄(δ, st̄; m)Hs(∆; m) , (110)

where we have defined

Hs(∆; µ) =

∫ ∆

−∆

d(Qτ) Hs(Qτ ; µ), (111)

and it is understood that ∆ ∼ Γ. We now explicitly see from Eq.(110) that the soft shape

function does not affect the shape of the invariant mass spectrum and only affects the overall

normalization. In Eq.(110) we have set µ2 = m2 which is the scale characterizing the typical

virtuality in SCET.

Choosing the Appropriate size for the smearing region

The argument of the shape function Hs defined in the previous section is:

Qτ +
st + st̄

Q
, (112)
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Product Running

Product Running

Convolution
Running

Convolution
Running

Here the anomalous dimensions are γCm = Z−1
Cm

µ d/dµ ZCm and γHm = γCm + γ∗
Cm

. We write
the solut ion

Hm(µ) = UHm (µ, µm)Hm(µm) , (36) {UHm}

which runs Hm to µ < µm . T he local evolut ion contained in UHm is shown in F ig. 2.
Bottom-Up Running. Nex t consider the equivalent approach of opera tor renormaliza t ion

in bH Q E T . In this case we introduce Z-factors for B± and Shemi in the factoriza t ion theorem
ra ther than ZCm . T he equa t ions for the soft-funct ion S are exact ly the same as those in
SC E T , and will not be repea ted. To switch from bare to renormalized H Q E T jet ma trix
elements we write

Bbare
± (ŝ) =

∫

dŝ′ ZB±
(ŝ−ŝ′) B±(ŝ′, µ) , (37) {ZB}

where
∫

dŝ Z−1
B±

(ŝ′′ − ŝ)ZB±
(ŝ − ŝ′) = δ(ŝ′′ − ŝ′). T he renormaliza t ion group equa t ions are

µ
d

dµ
B±(ŝ, µ) =

∫

dŝ′ γB±
(ŝ−ŝ′) B±(ŝ′, µ), (38) {rgeB}

with anomalous dimension

γB±
(s−s′) = −

∫

dŝ′′ Z−1
B±

(ŝ−ŝ′′) µ
d

dµ
ZB±

(ŝ′′−ŝ′) . (39)

For the solut ions to the R G E we write

B±(ŝ, µ) =
∫

dŝ′ UB±
(ŝ−ŝ′, µ, µΓ) B±(ŝ′, µΓ) . (40) {UB}

T he evolut ion kernels UB±
take us from the low-scale µΓ to a large scale µ as shown in F ig. 2.

Consistency Conditions. Just like in SC E T , the use of ZB±
and ZS correspond to includ-

ing counterterms for the individual bH Q E T Feynman diagrams for each of B+ , B− , and S .
If we instead use ZCm then a finite result is only obtained when the current counterterm
graphs are added to the sum of all graphs for the factoriza t ion theorem a t some order in
αs . A gain there are consistency condit ions which are derived in the same was as in SC E T .
To derive it we start with E q. (12) and switch to Jbare

n , Jbare
n̄ , and Sbare using first top-down

renormaliza t ion, and then bot tom-up renormaliza t ion. E qua t ing the results we find the
bH Q E T consistency condit ion

|ZCm|
2 δ

(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

=
∫

d$+d$− Z−1
B+

(

ŝ−
Q$+

m

)

Z−1
B−

(

ˆ̄s−
Q$−

m

)

× Z−1
S ($+−$ ′+, $−−$ ′−) . (41) {cons3}

In terms of evolut ion kernels the condit ion is

UHm (µ, µ∆) δ
(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

(42) {cons4}

=
∫

d$+d$− UB+

(

ŝ−
Q$+

m
, µ, µ∆

)

UB−

(

s̄−
Q$−

m
, µ, µ∆

)

US ($+−$ ′+, $−−$ ′−, µ, µ∆) .
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Eq.(108) we can expand the shape function Hs as

Hs(Qτ +
st + st̄

Q
) ∼ Hs(Qτ) +O(

m

Q
) (109)

Thus, choosing a smearing region of size ∆ ∼ Γ makes the soft shape function independent

of st, st̄ at leading order as desired. Integrating over this smearing region we arrive at the

differential cross-section

dσ̂

dst dst̄
=

1

Q2

∑

ij

L(ij)
µν Tr

[n/

2
Γ̂µ

i

n̄/

2
Γ̂ν

j

] ∣∣C(Q; m)
∣∣2Jn(δ, st; m)Jn̄(δ, st̄; m)Hs(∆; m) , (110)

where we have defined

Hs(∆; µ) =

∫ ∆

−∆

d(Qτ) Hs(Qτ ; µ), (111)

and it is understood that ∆ ∼ Γ. We now explicitly see from Eq.(110) that the soft shape

function does not affect the shape of the invariant mass spectrum and only affects the overall

normalization. In Eq.(110) we have set µ2 = m2 which is the scale characterizing the typical

virtuality in SCET.

Choosing the Appropriate size for the smearing region

The argument of the shape function Hs defined in the previous section is:

Qτ +
st + st̄

Q
, (112)

36

the invariant masses in the process, and the evolut ion falls into case 1) ra ther than case 2).
T his freezing out of the ex tra ln(µ/Q) tha t appears in the anomalous dimension in case 2)
happens a t µ = m. T hus there is a remnant in the local running in H Q E T in the form of a
fixed ln(Q/m) factor in the anomalous dimension.

1. SCET renormalization

Top-down running. In SC E T we can renormalize the current Jµ
i by switching from a

bare to renormalized W ilson coefficient ,

Cbare = Zc C = C + (Zc − 1)C , (24) {CZc}

where insert ions of (Zc − 1)C are trea ted as counterterms. F ield, coupling, and mass renor-
maliza t ion are given by

ξbare
n = Z1/2

ψ ξn , Abare
n = Z1/2

A An , mbare = m + δm , gbare = Zgµ
εg , (25) {Zscet}

and are all ident ical to those in Q C D [3, 26, 27].2 E qs. (24) and (25) suffice to cancel all U V
divergences involving Jµ

i . T he SC E T factoriza t ion theorem in E q. (12) is genera ted by a
t ime-ordered product of two Jµ

i currents. T he ob jects in E q. (12) are all finite; it only involves
renormalized ob jects. T he individual ob jects depend on the choice of renormaliza t ion scheme
in SC E T , but this dependence cancels out between HQ, Jn , Jn̄ , and S . T he renormaliza t ion
group equa t ion for C and HQ are

µ
d

dµ
C(Q, µ) = γc(Q, µ) C(Q, µ) , µ

d

dµ
HQ(Q, µ) = γHQ

(Q, µ) HQ(Q, µ) , (26) {gammacgammaH

where from E q. (24) γc = −Z−1
c µd/dµ Zc, and since HQ = |C|2 we have γHQ

= γc + γ∗
c . For

the solut ion to the R G E equa t ion for HQ we write

HQ(Q, µ) = UHQ
(µ, µh) HQ(Q, µh) , (27) {UH}

where µ < µh. T he evolut ion contained in UH is shown in F ig. 2.
Bottom-Up Running. I t is well known tha t there is an alterna t ive but equivalent way to

renormalize composite opera tors like Jµ
i , which is often referred to as opera tor renormaliza-

t ion (see Ref. [29] for a review). R a ther than introducing a Z-factor for the C , we introduce
one for the current , (Jµ

i )bare = ZJJµ
i . T he equivalence of the two approaches implies tha t

ZJ = Z−1
c . We consider a variant of this tha t instead introduces Z-factors for the ob jects Jn ,

Jn̄ , and S in the SC E T factoriza t ion theorem, E q. (12). In sect ion I I A these ob jects were

2 This is true to all orders in αs because there are no zero-bin subtractions [28] for the collinear two-point

functions. To see this note that all soft loop corrections to these functions vanish in Feynman gauge since

n2 = 0. Thus there is no region that is double counted and would require a subtraction.
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top-down:

SCET

a) b) c) d)

e)

FIG. 4: Nonzero one-loop vertex and self-energy corrections in massive SCET. Gluons with a line

through them are collinear, while those without are soft. {scetloops}

the SCET computation was scaleless. To see more explicitly how the massless computation

gives the same matching coefficient we repeat the steps with an offshellness p2 = p̄2 ! m2.

For this case the renormalized one loop QCD amplitude is:

〈p, p̄|J µ
i |0〉

∣

∣

∣

QCD
= Γµ

i ZJ

[

1+CF
αs

4π

{

−ln
(−Q2

µ2

)

−2 ln2
( p2

Q2

)

−4 ln
( p2

Q2

)

−
2π2

3

}]

, (50) {Jmatrixqcd

and from Eqs. (A4) and (A5) the renormalized amplitude in SCET is

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[

1+
αsCF

4π

{

2 ln2
( µ2

−p2

)

−ln2
(µ2Q2

−p4

)

+4 ln
( µ2

−p2

)

+8 −
5π2

6

}]

. (51) {masslessscetvertex

To obtain Eq. (51) the same ZC counterterm in Eq. (47) was used. Taking the difference,

Eq. (50) minus (51), gives exactly Eq. (49) as expected.

The presence of the imaginary part in C(Q, µ) indicates that short distance contributions

of the full QCD current contains a discontinuity. To see why this occurs, note that the

QCD current describes the production of on-shell n and n̄ particles, which are contained in

the SCET result, but also includes the production of particles in other collinear directions

which we integrate out into C(Q, µ).The full theory amplitude in Eq. (50) does not contain

an imaginary part in the double logarithmic term for p2 > 0. This is reproduced in SCET

only once we add imaginary parts from the short distance coefficient and from the SCET

loop graphs. In the SCET cross section only the amplitude-squared appears, and here the

unphysial imaginary parts cancel both in HQ = |C(Q, µ)|2, and in the square of the loop

graphs. This ensures that the coefficient HQ in the factorization theorem has a proper short

distance interpretation. The relevant matching coefficient is therefore

HQ(Q, µQ) = 1 +
αsCF

4π

[

−2 ln2
(Q2

µ2
Q

)

+ 6 ln
(Q2

µ2
Q

)

− 16 +
5π2

3

]

. (52)

To evolve the Wilson coefficient to lower scales we need to solve the RG equation in

Eq. (26). The anomalous dimensions are obtained from Zc in Eq. (47) and using µd/dµαs =

18

−2εαs + β(αs), which gives

γc(µ) = −Z−1
c (µ)µ

d

dµ
Zc(µ) = −

αsCF

π

[

ln
µ2

−Q2 − iε
+

3

2

]

,

γH(µ) = γc(µ) + γ∗
c (µ) = −

αsCF

π

[

2 ln
µ2

Q2
+ 3

]

. (53)

The coefficient of the ln(µ/Q) term in γc is the well known cusp anomalous dimension [33,

34, 35, 36, 37, 38]. The solution of the RG equation (26) is straightforward and we find

UHQ
(µ, µQ) =

[

αs(µ)

αs(µQ)

]

−16πCF
β2
0 αs(µQ)

+
6CF
β0

(

µ

µQ

)−8CF /β0(µQ

Q

)

8CF
β0

ln
(

αs(µ)
αs(µQ)

)

, (54) {runcoeff}

where β0 = 11CA/3 − 2nf/3. Recall that HQ(Q, µ) = UHQ
(µ, µQ)HQ(Q, µQ) and H(Q, µQ)

is given in Eq. (49). Note that if we had solved the equation for C(Q, µ) that there would

be an extra phase

C(Q, µ) =
√

HQ(Q, µ)

[

αs(µ)

αs(µQ)

]−2πi
CF
β0

, (55)

which cancels out in HQ = |C(Q, µ)|2.

B. SCET Jet Functions and their Running

{sect:scetjet

Next we compute the SCET jet functions Jn and Jn̄, defined in Eq. (16), perturbatively

in αs. By the symmetry n ↔ n̄, the results for Jn and Jn̄ are identical, so for convenience

we focus on the former. The purpose of this calculation is two-fold. First we determine ZJn

by renormalizing the jet function, and hence determine the anomalous dimension γJn and

evolution kernel UJn. Second the value of the renormalized jet function is needed for the

matching onto bHQET at a scale µ # m, which we perform in section IVB below. Since

both this running and matching are independent of infrared physics below m we are free

to carry it out for free stable top quark states. Thus in this section we set the electroweak

coupling g2 = 0.

From Eq. (16), the tree-level jet funtions are simply given by the discontinuity of the

collinear propagator:

J tree
n,Q (s, m, Γ = 0, µ) = δ(s). (56)

At one loop, the jet functions are given by the discontiniuities of the diagrams shown in

Fig. 5. Results for these graphs are summarized in Eq. (A9) of Appendix (A), and give

J5a+J5b+J5c+J5d+J5e (57) {Jabcdesum}

=
iαsCF

8π2 s

{

4

ε2
+

4

ε
ln

( µ2

−s

)

+
3

ε
+2 ln2

( µ2

−s

)

+2 ln2
(m2

−s

)

+3 ln
( µ2

m2

)

−4 ln
(−s

m2

)

+8+π2

}

,
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• Product of soft and collinear jet functions run locally all the way                  
down to the low scale. 
•This local running only affects the normalization of the distribution. 
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Eq.(108) we can expand the shape function Hs as

Hs(Qτ +
st + st̄

Q
) ∼ Hs(Qτ) +O(

m

Q
) (109)

Thus, choosing a smearing region of size ∆ ∼ Γ makes the soft shape function independent

of st, st̄ at leading order as desired. Integrating over this smearing region we arrive at the

differential cross-section

dσ̂

dst dst̄
=

1

Q2

∑

ij

L(ij)
µν Tr

[n/

2
Γ̂µ

i

n̄/

2
Γ̂ν

j

] ∣∣C(Q; m)
∣∣2Jn(δ, st; m)Jn̄(δ, st̄; m)Hs(∆; m) , (110)

where we have defined

Hs(∆; µ) =

∫ ∆

−∆

d(Qτ) Hs(Qτ ; µ), (111)

and it is understood that ∆ ∼ Γ. We now explicitly see from Eq.(110) that the soft shape

function does not affect the shape of the invariant mass spectrum and only affects the overall

normalization. In Eq.(110) we have set µ2 = m2 which is the scale characterizing the typical

virtuality in SCET.

Choosing the Appropriate size for the smearing region

The argument of the shape function Hs defined in the previous section is:

Qτ +
st + st̄

Q
, (112)
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defined by ma trix elements of t ime-ordered products of fields, but note tha t each involves
only a subset of the fields in the current Jµ

i . To switch from bare to renormalized ma trix
elements we write

Jbare
n (s) =

∫

ds′ ZJn (s−s′) Jn(s′, µ) , Jbare
n̄ (s̄) =

∫

ds′ ZJn̄ (s̄−s̄′) Jn̄(s̄′, µ) ,

Sbare
hemi(!+, !−) =
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and are finite as ε → 0. For the solut ions to the R G E ’s in E q. (29) we write
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∫
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FIG. 5: SCET graphs for the one-loop top-quark jet function. Dashed lines are n-collinear quarks
and springs are n-collinear gluons. {forwardI}

where s = s + i0. To take the discontinuity it is convenient to switch to dimensionless

variables which will appear in the +-functions, so we let x = s/κ2
1 where x is dimensionless

and κ1 > 0 is dummy scale with dimensions of mass. Using
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we find that up to one-loop order the bare SCET jet function is
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This implies that the Z-factor defined in Eq. (28) is
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which gives the anomalous dimension
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Despite appearances Jbare
n (s), ZJn(s − s′), and γJn(s − s′) are all independent of the choice

for κ1. In Appendix C we presented a general solution to anomalous dimension equations in-

volving a +-function and δ-function. Applying this to Eq. (61) to derive the renormalization

group evolution from a low-scale µm up to µ gives

UJn(s − s′, µ, µm) =
eL1

(

µ2
m eγE

)ω1

Γ(−ω1)

[

θ(s−s′)

(s−s′)1+ω1
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+

, (62) {UJ}

where

ω1(µ, µm) = −
4CF

β0
ln

[ αs(µ)

αs(µm)

]

, eL1(µ,µm) =
( µ

µm

)

8CF
β0

[

αs(µ)

αs(µm)

]

16πCF
β2
0αs(µm)

−
3CF
β0
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defined by matrix elements of time-ordered products of fields, but note that each involves

only a subset of the fields in the current Jµ
i . To switch from bare to renormalized matrix

elements we write

Jbare
n (s) =

∫

ds′ ZJn(s−s′) Jn(s′, µ) , Jbare
n̄ (s̄) =

∫

ds′ ZJn̄(s̄−s̄′) Jn̄(s̄′, µ) ,

Sbare
hemi(!

+, !−) =

∫

d! ′+d! ′− ZS(!+−! ′+, !−−! ′−) Shemi(!
′+, ! ′−, µ) , (28) {ZJJS}

where these equations can be inverted using
∫

ds Z−1
Jn

(s′′ − s)ZJn(s − s′) = δ(s′′ − s′) etc.

The renormalization group equations are

µ
d

dµ
Jn,n̄(s, µ) =

∫

ds′ γJn,n̄(s−s′) Jn,n̄(s′, µ), (29) {rgeJS}

µ
d

dµ
S(!+, !−, µ) =

∫

d! ′+d! ′− γS(!+−! ′+, !−−! ′−)S(! ′+, ! ′−, µ) ,

where the anomalous dimensions are defined as

γJn,n̄(s−s′) = −

∫

ds′′ Z−1
Jn,n̄

(s−s′′)µ
d

dµ
ZJn,n̄(s′′−s′) , (30)

γS(!+−! ′+, !−−! ′−) = −

∫

d!
′′+d!

′′−Z−1
S (!+−!

′′+, !−−!
′′−)µ

d

dµ
ZS(!

′′+−! ′+, !
′′−−! ′−) ,

and are finite as ε → 0. For the solutions to the RGE’s in Eq. (29) we write

Jn(s, µ) =

∫

ds′ UJn(s−s′, µ, µm) Jn(s′, µm) , (31) {UJS}

Jn̄(s, µ) =

∫

ds̄′ UJn̄(s̄−s̄′, µ, µm) Jn̄(s̄′, µm) ,

Shemi(!
+, !−, µ) =

∫

d! ′+d! ′− US(!+−! ′+, !−−! ′−, µ, µm) Shemi(!
′+, ! ′−, µm) .

The evolution kernels UJn , UJn̄, and US take us from the low-scale µm to a larger scale µ as

shown in Fig. 2.

Consistency Condition. Using Eq. (28) we obtain a finite result for the factorization

theorem by including counterterms for the individual SCET Feynman diagrams for each of

Jn, Jn̄, and S. If we instead use Zc then a finite result is only obtained when the current

counterterm graphs are added to the sum of all graphs for the factorization theorem at some

order in αs. Since the two results must give us the same answer, there is a consistency

condition. To derive it we start with Eq. (12) and switch to Jbare
n , Jbare

n̄ , and Sbare using

either counterterm renormalization or operator renormalization. Equating the results we

find that

|Zc|
2 δ(s−Q! ′+) δ(s̄−Q! ′−) =

∫

d!+d!− Z−1
Jn

(s−Q!+) Z−1
Jn̄

(s̄−Q!−) Z−1
S (!+−! ′+, !−−! ′−) .

(32) {cons1}
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and are finite as ε → 0. For the solut ions to the R G E ’s in E q. (29) we write
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∫

d! ′+d! ′− US (!+−! ′+, !−−! ′−, µ, µm) Shemi(! ′+, ! ′−, µm) .

T he evolut ion kernels UJn , UJn̄ , and US take us from the low-scale µm to a larger scale µ as
shown in F ig. 2.

Consistency Condition. Using E q. (28) we obtain a finite result for the factoriza t ion
theorem by including counterterms for the individual SC E T Feynman diagrams for each of
Jn , Jn̄ , and S . If we instead use Zc then a finite result is only obtained when the current
counterterm graphs are added to the sum of all graphs for the factoriza t ion theorem a t some
order in αs . Since the two results must give us the same answer, there is a consistency
condit ion. To derive it we start with E q. (12) and switch to Jbare

n , Jbare
n̄ , and Sbare using

either counterterm renormaliza t ion or opera tor renormaliza t ion. E qua t ing the results we
find tha t

|Zc|
2 δ(s−Q! ′+) δ(s̄−Q! ′−) =

∫

d!+d!− Z−1
Jn

(s−Q!+) Z−1
Jn̄
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S (!+−! ′+, !−−! ′−) .

(32) {cons1}
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which as indicated has a seperable structure in the !+ and !− variables. To solve the

evolution equation in Eq. (29) we note that the same equation must hold for the evolution

kernel US(!+, !−). We therefore make the ansatz

US(!+, !−, µ, µm) = Us(!
+, µ, µm)Us(!

−, µ, µm) , (73)

where the symmetry under !+ ↔ !− dictates that the two Us functions are the same.

Combining this with Eq. (72) yields

µ
d

dµ
Us(!

±, µ, µm) = ±KUs(!
±, µ, µm) +

∫

d! ′± γs(!
±−! ′±) Us(!

±, µ, µm), (74)

where K is a separation constant. This equation for Us(!±, µ, µm) has exactly the general

form solved in Appendix C with Γ0 = −CF/π and γ0 = 0, except for the ±K term. However

this term simply adds a multiplicative factor of (µ/µm)±K to the solution, and therefore

cancels in the product US = Us(!+)Us(!−). Thus, using Eq. (C9) the final solution is

US(!+, !−, µ, µ0) =
e2L2

(

µm eγE
)2ω2

Γ(−ω2)2

[

θ(!+)

(!+)1+ω2

]

+

[

θ(!−)

(!−)1+ω2

]

+

, (75) {US}

where

ω2(µ, µm) =
4CF

β0
ln

[ αs(µ)

αs(µm)

]

, eL2(µ,µ0) =
( µ

µ0

)

−4CF
β0

[

αs(µ)

αs(µ0)

]

−8πCF
β2
0αs(µ0)

. (76) {wLS}

Note that for the jet function ω1 > 0, while here ω2 < 0. This affects the convergence

properties near ∞, however the convolution between the jet functions and soft function

remains finite. It is interesting to note that the evolution of the soft-function factorizes at

one-loop order, even though the primordial Shemi(!+, !−) function does not need to.

D. SCET Consistency Conditions.

Using the results for the top-down running in section IIIA and the bottom-up running

in sections III B and IIIC we can verify the SCET consistency conditions in Eq. (32) and

(33). To verify the Z-factor condition in Eq. (32) we work up to O(αs). At tree-level

δ(s−Q! ′+)δ(s̄−Q! ′−) =

∫

d!+d!−δ(s−Q!+)δ(s̄−Q!−)δ(!+−! ′+)δ(!−−! ′−), (77)
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Using the results for the top-down running in section IIIA and the bottom-up running

in sections III B and IIIC we can verify the SCET consistency conditions in Eq. (32) and

(33). To verify the Z-factor condition in Eq. (32) we work up to O(αs). At tree-level

δ(s−Q! ′+)δ(s̄−Q! ′−) =

∫

d!+d!−δ(s−Q!+)δ(s̄−Q!−)δ(!+−! ′+)δ(!−−! ′−), (77)
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FIG. 3: Scales and functions appearing in the formula for the invariant mass distribution. The
result is determined by matching at the physical scales and running to sum large logs as shown.
We show both the top-down and bottom-up approach to the running, and notes that the evolution
functions obey UH = UJ−UJ+US and UC = UB−UB+US . The evolution for UH and UC is local,
while all other evolution functions involve convolutions. {fig:theory}

Eq.(108) we can expand the shape function Hs as

Hs(Qτ +
st + st̄

Q
) ∼ Hs(Qτ) +O(

m

Q
) (109)

Thus, choosing a smearing region of size ∆ ∼ Γ makes the soft shape function independent

of st, st̄ at leading order as desired. Integrating over this smearing region we arrive at the

differential cross-section

dσ̂

dst dst̄
=

1

Q2

∑

ij

L(ij)
µν Tr

[n/

2
Γ̂µ

i

n̄/

2
Γ̂ν

j

] ∣∣C(Q; m)
∣∣2Jn(δ, st; m)Jn̄(δ, st̄; m)Hs(∆; m) , (110)

where we have defined

Hs(∆; µ) =

∫ ∆

−∆

d(Qτ) Hs(Qτ ; µ), (111)

and it is understood that ∆ ∼ Γ. We now explicitly see from Eq.(110) that the soft shape

function does not affect the shape of the invariant mass spectrum and only affects the overall

normalization. In Eq.(110) we have set µ2 = m2 which is the scale characterizing the typical

virtuality in SCET.

Choosing the Appropriate size for the smearing region

The argument of the shape function Hs defined in the previous section is:

Qτ +
st + st̄

Q
, (112)

36

consistency:
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cancellation between soft & collinear factors

T he consistency condit ion can also be writ ten in terms of the evolut ion kernels. To derive
this write E q. (12) a t the scale µm and evolve H up to µ using E q. (27) and U−1

HQ
(µm, µ) =

UHQ
(µ, µm). T hen write E q. (12) a t the scale µ and rela te it to Jn, Jn̄ , and S evalua ted a t

µm using E q. (31). T his gives the consistency condit ion

UHQ
(µ, µm) δ(s−Q" ′+) δ(s̄−Q" ′−) (33) {cons2}

=
∫

d"+d"− UJn (s−Q"+, µ, µm)UJn̄ (s̄−Q"−, µ, µm)US ("+−" ′+, "−−" ′−, µ, µm) .

T his result expresses the equivalence of running the factoriza t ion theorem between µh and
µm from the top-down versus from the bot tom-up. T his is pictured in F ig. (2). E q, (33)
also sta tes tha t when the convolut ion R G E ’s for each of Jn , Jn̄ , and S are combined tha t
the result is local running for HQ without a convolut ion.

2. bHQET renormalization

Top-Down Running. Nex t we take up renormaliza t ion in bH Q E T . For fea tures tha t are
similar to SC E T we will be more brief, so we can focus on the differences. A renormaliza t ion
constant for the bH Q E T current is defined as

Cbare
m = ZCm Cm = Cm + (ZCm − 1)Cm , (34) {Zcm}

and while gluon field and coupling renormaliza t ion in H Q E T and Q C D are the same, the
quark field renormaliza t ion differs, with hbare

v = Z1/2
h hv . T he bH Q E T factoriza t ion theorem

in E q. (12) is genera ted by a t ime-ordered product of two Jµ
bHQET currents. T he soft graphs in

bH Q E T are ident ical to those in SC E T , and the infrared divergences of the collinear graphs
in SC E T exact ly ma tch those in bH Q E T [2]. T hus, if we regula te the I R in bH Q E T with an
offshellness then the same cancella t ion between collinear and soft graphs tha t yielded local
running in SC E T also occurs in bH Q E T . So the running of Cm is also local. Nex t recall
tha t the + and − bH Q E T sectors are decoupled, so we immedia tely see tha t the anomalous
dimension for Cm can depend on n̄ · v− = Q/m, n · v+ = Q/m, and n·n̄ = 2, but does not
have any other dependence on m or Q. T he angle of the kink between W ilson lines can be
made explict by transforming to sterile H Q E T fields, h̄v+W+

n = h̄(0)
v+ (W †

v+
Wn) and W †

n̄hv+

= (W †
n̄Wv− )h(0)

v− . Unlike SC E T , the angles are fixed n̄ · v+ = Q/m and n · v− = Q/m, and
independent of µ. T hus from the renormaliza t ion theorem for kinked W ilson lines [30, 31, 32]
the anomalous dimension will involve only a ln(Q/m). Since this log is independent of µ the
R G -evolut ion below m does not exhibit as strong of a scale dependence as in SC E T . T he
evolut ion equa t ions for Cm and Hm = |Cm|2 are

µ
d

dµ
Cm

(

m,
Q

m
, µ

)

= γCm

(Q

m
, µ

)

Cm

(

m,
Q

m
, µ

)

,

µ
d

dµ
Hm

(

m,
Q

m
, µ

)

= γHm

(Q

m
, µ

)

Hm

(

m,
Q

m
, µ

)

. (35) {hqetrunning
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The consistency condition can also be written in terms of the evolution kernels. To derive

this write Eq. (12) at the scale µm and evolve H up to µ using Eq. (27) and U−1
HQ

(µm, µ) =

UHQ
(µ, µm). Then write Eq. (12) at the scale µ and relate it to Jn, Jn̄, and S evaluated at

µm using Eq. (31). This gives the consistency condition

UHQ
(µ, µm) δ(s−Q" ′+) δ(s̄−Q" ′−) (33) {cons2}

=

∫

d"+d"− UJn(s−Q"+, µ, µm)UJn̄(s̄−Q"−, µ, µm)US("+−" ′+, "−−" ′−, µ, µm) .

This result expresses the equivalence of running the factorization theorem between µh and

µm from the top-down versus from the bottom-up. This is pictured in Fig. (2). Eq, (33)

also states that when the convolution RGE’s for each of Jn, Jn̄, and S are combined that

the result is local running for HQ without a convolution.

2. bHQET renormalization

Top-Down Running. Next we take up renormalization in bHQET. For features that are

similar to SCET we will be more brief, so we can focus on the differences. A renormalization

constant for the bHQET current is defined as

Cbare
m = ZCm Cm = Cm + (ZCm − 1)Cm , (34) {Zcm}

and while gluon field and coupling renormalization in HQET and QCD are the same, the

quark field renormalization differs, with hbare
v = Z1/2

h hv. The bHQET factorization theorem

in Eq. (12) is generated by a time-ordered product of two Jµ
bHQET currents. The soft graphs in

bHQET are identical to those in SCET, and the infrared divergences of the collinear graphs

in SCET exactly match those in bHQET [2]. Thus, if we regulate the IR in bHQET with an

offshellness then the same cancellation between collinear and soft graphs that yielded local

running in SCET also occurs in bHQET. So the running of Cm is also local. Next recall

that the + and − bHQET sectors are decoupled, so we immediately see that the anomalous

dimension for Cm can depend on n̄ · v− = Q/m, n · v+ = Q/m, and n·n̄ = 2, but does not

have any other dependence on m or Q. The angle of the kink between Wilson lines can be

made explict by transforming to sterile HQET fields, h̄v+W+
n = h̄(0)

v+ (W †
v+

Wn) and W †
n̄hv+

= (W †
n̄Wv−)h(0)

v− . Unlike SCET, the angles are fixed n̄ · v+ = Q/m and n · v− = Q/m, and

independent of µ. Thus from the renormalization theorem for kinked Wilson lines [30, 31, 32]

the anomalous dimension will involve only a ln(Q/m). Since this log is independent of µ the

RG-evolution below m does not exhibit as strong of a scale dependence as in SCET. The

evolution equations for Cm and Hm = |Cm|2 are

µ
d

dµ
Cm

(

m,
Q

m
, µ

)

= γCm

(Q

m
, µ

)

Cm

(

m,
Q

m
, µ

)

,

µ
d

dµ
Hm

(

m,
Q

m
, µ

)

= γHm

(Q

m
, µ

)

Hm

(

m,
Q

m
, µ

)

. (35) {hqetrunning
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FIG. 3: Scales and functions appearing in the formula for the invariant mass distribution. The
result is determined by matching at the physical scales and running to sum large logs as shown.
We show both the top-down and bottom-up approach to the running, and notes that the evolution
functions obey UH = UJ−UJ+US and UC = UB−UB+US . The evolution for UH and UC is local,
while all other evolution functions involve convolutions. {fig:theory}

Eq.(108) we can expand the shape function Hs as

Hs(Qτ +
st + st̄

Q
) ∼ Hs(Qτ) +O(

m

Q
) (109)

Thus, choosing a smearing region of size ∆ ∼ Γ makes the soft shape function independent

of st, st̄ at leading order as desired. Integrating over this smearing region we arrive at the

differential cross-section

dσ̂

dst dst̄
=

1

Q2

∑

ij

L(ij)
µν Tr

[n/

2
Γ̂µ

i

n̄/

2
Γ̂ν

j

] ∣∣C(Q; m)
∣∣2Jn(δ, st; m)Jn̄(δ, st̄; m)Hs(∆; m) , (110)

where we have defined

Hs(∆; µ) =

∫ ∆

−∆

d(Qτ) Hs(Qτ ; µ), (111)

and it is understood that ∆ ∼ Γ. We now explicitly see from Eq.(110) that the soft shape

function does not affect the shape of the invariant mass spectrum and only affects the overall

normalization. In Eq.(110) we have set µ2 = m2 which is the scale characterizing the typical

virtuality in SCET.

Choosing the Appropriate size for the smearing region

The argument of the shape function Hs defined in the previous section is:

Qτ +
st + st̄

Q
, (112)
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top-down:

The consistency condition can also be written in terms of the evolution kernels. To derive

this write Eq. (12) at the scale µm and evolve H up to µ using Eq. (27) and U−1
HQ

(µm, µ) =

UHQ
(µ, µm). Then write Eq. (12) at the scale µ and relate it to Jn, Jn̄, and S evaluated at

µm using Eq. (31). This gives the consistency condition

UHQ
(µ, µm) δ(s−Q" ′+) δ(s̄−Q" ′−) (33) {cons2}

=

∫

d"+d"− UJn(s−Q"+, µ, µm)UJn̄(s̄−Q"−, µ, µm)US("+−" ′+, "−−" ′−, µ, µm) .

This result expresses the equivalence of running the factorization theorem between µh and

µm from the top-down versus from the bottom-up. This is pictured in Fig. (2). Eq, (33)

also states that when the convolution RGE’s for each of Jn, Jn̄, and S are combined that

the result is local running for HQ without a convolution.

2. bHQET renormalization

Top-Down Running. Next we take up renormalization in bHQET. For features that are

similar to SCET we will be more brief, so we can focus on the differences. A renormalization

constant for the bHQET current is defined as

Cbare
m = ZCm Cm = Cm + (ZCm − 1)Cm , (34) {Zcm}

and while gluon field and coupling renormalization in HQET and QCD are the same, the

quark field renormalization differs, with hbare
v = Z1/2

h hv. The bHQET factorization theorem

in Eq. (12) is generated by a time-ordered product of two Jµ
bHQET currents. The soft graphs in

bHQET are identical to those in SCET, and the infrared divergences of the collinear graphs

in SCET exactly match those in bHQET [2]. Thus, if we regulate the IR in bHQET with an

offshellness then the same cancellation between collinear and soft graphs that yielded local

running in SCET also occurs in bHQET. So the running of Cm is also local. Next recall

that the + and − bHQET sectors are decoupled, so we immediately see that the anomalous

dimension for Cm can depend on n̄ · v− = Q/m, n · v+ = Q/m, and n·n̄ = 2, but does not

have any other dependence on m or Q. The angle of the kink between Wilson lines can be

made explict by transforming to sterile HQET fields, h̄v+W+
n = h̄(0)

v+ (W †
v+

Wn) and W †
n̄hv+

= (W †
n̄Wv−)h(0)

v− . Unlike SCET, the angles are fixed n̄ · v+ = Q/m and n · v− = Q/m, and

independent of µ. Thus from the renormalization theorem for kinked Wilson lines [30, 31, 32]

the anomalous dimension will involve only a ln(Q/m). Since this log is independent of µ the

RG-evolution below m does not exhibit as strong of a scale dependence as in SCET. The

evolution equations for Cm and Hm = |Cm|2 are

µ
d

dµ
Cm

(

m,
Q

m
, µ

)

= γCm

(Q

m
, µ

)

Cm

(

m,
Q

m
, µ

)

,

µ
d

dµ
Hm

(

m,
Q

m
, µ

)

= γHm

(Q

m
, µ

)

Hm

(

m,
Q

m
, µ

)

. (35) {hqetrunning
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Here the anomalous dimensions are γCm = Z−1
Cm

µ d/dµ ZCm and γHm = γCm +γ∗
Cm

. We write

the solution

Hm(µ) = UHm(µ, µm)Hm(µm) , (36) {UHm}

which runs Hm to µ < µm. The local evolution contained in UHm is shown in Fig. 2.

Bottom-Up Running. Next consider the equivalent approach of operator renormalization

in bHQET. In this case we introduce Z-factors for B± and Shemi in the factorization theorem

rather than ZCm . The equations for the soft-function S are exactly the same as those in

SCET, and will not be repeated. To switch from bare to renormalized HQET jet matrix

elements we write

Bbare
± (ŝ) =

∫

dŝ′ ZB±
(ŝ−ŝ′) B±(ŝ′, µ) , (37) {ZB}

where
∫

dŝ Z−1
B±

(ŝ′′ − ŝ)ZB±
(ŝ − ŝ′) = δ(ŝ′′ − ŝ′). The renormalization group equations are

µ
d

dµ
B±(ŝ, µ) =

∫

dŝ′ γB±
(ŝ−ŝ′) B±(ŝ′, µ), (38) {rgeB}

with anomalous dimension

γB±
(s−s′) = −

∫

dŝ′′ Z−1
B±

(ŝ−ŝ′′) µ
d

dµ
ZB±

(ŝ′′−ŝ′) . (39)

For the solutions to the RGE we write

B±(ŝ, µ) =

∫

dŝ′ UB±
(ŝ−ŝ′, µ, µΓ) B±(ŝ′, µΓ) . (40) {UB}

The evolution kernels UB±
take us from the low-scale µΓ to a large scale µ as shown in Fig. 2.

Consistency Conditions. Just like in SCET, the use of ZB±
and ZS correspond to includ-

ing counterterms for the individual bHQET Feynman diagrams for each of B+, B−, and S.

If we instead use ZCm then a finite result is only obtained when the current counterterm

graphs are added to the sum of all graphs for the factorization theorem at some order in

αs. Again there are consistency conditions which are derived in the same was as in SCET.

To derive it we start with Eq. (12) and switch to Jbare
n , Jbare

n̄ , and Sbare using first top-down

renormalization, and then bottom-up renormalization. Equating the results we find the

bHQET consistency condition

|ZCm|
2 δ

(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

=

∫

d$+d$− Z−1
B+

(

ŝ−
Q$+

m

)

Z−1
B−

(

ˆ̄s−
Q$−

m

)

× Z−1
S ($+−$ ′+, $−−$ ′−) . (41) {cons3}

In terms of evolution kernels the condition is

UHm(µ, µ∆) δ
(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

(42) {cons4}

=

∫

d$+d$− UB+

(

ŝ−
Q$+

m
, µ, µ∆

)

UB−

(

s̄−
Q$−

m
, µ, µ∆

)

US($+−$ ′+, $−−$ ′−, µ, µ∆) .
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defined by matrix elements of time-ordered products of fields, but note that each involves

only a subset of the fields in the current Jµ
i . To switch from bare to renormalized matrix

elements we write

Jbare
n (s) =

∫

ds′ ZJn(s−s′) Jn(s′, µ) , Jbare
n̄ (s̄) =

∫

ds′ ZJn̄(s̄−s̄′) Jn̄(s̄′, µ) ,

Sbare
hemi(!

+, !−) =

∫

d! ′+d! ′− ZS(!+−! ′+, !−−! ′−) Shemi(!
′+, ! ′−, µ) , (28) {ZJJS}

where these equations can be inverted using
∫

ds Z−1
Jn

(s′′ − s)ZJn(s − s′) = δ(s′′ − s′) etc.

The renormalization group equations are

µ
d

dµ
Jn,n̄(s, µ) =

∫

ds′ γJn,n̄(s−s′) Jn,n̄(s′, µ), (29) {rgeJS}

µ
d

dµ
S(!+, !−, µ) =

∫

d! ′+d! ′− γS(!+−! ′+, !−−! ′−)S(! ′+, ! ′−, µ) ,

where the anomalous dimensions are defined as

γJn,n̄(s−s′) = −

∫

ds′′ Z−1
Jn,n̄

(s−s′′)µ
d

dµ
ZJn,n̄(s′′−s′) , (30)

γS(!+−! ′+, !−−! ′−) = −

∫

d!
′′+d!

′′−Z−1
S (!+−!

′′+, !−−!
′′−)µ

d

dµ
ZS(!

′′+−! ′+, !
′′−−! ′−) ,

and are finite as ε → 0. For the solutions to the RGE’s in Eq. (29) we write

Jn(s, µ) =

∫

ds′ UJn(s−s′, µ, µm) Jn(s′, µm) , (31) {UJS}

Jn̄(s, µ) =

∫

ds̄′ UJn̄(s̄−s̄′, µ, µm) Jn̄(s̄′, µm) ,

Shemi(!
+, !−, µ) =

∫

d! ′+d! ′− US(!+−! ′+, !−−! ′−, µ, µm) Shemi(!
′+, ! ′−, µm) .

The evolution kernels UJn , UJn̄, and US take us from the low-scale µm to a larger scale µ as

shown in Fig. 2.

Consistency Condition. Using Eq. (28) we obtain a finite result for the factorization

theorem by including counterterms for the individual SCET Feynman diagrams for each of

Jn, Jn̄, and S. If we instead use Zc then a finite result is only obtained when the current

counterterm graphs are added to the sum of all graphs for the factorization theorem at some

order in αs. Since the two results must give us the same answer, there is a consistency

condition. To derive it we start with Eq. (12) and switch to Jbare
n , Jbare

n̄ , and Sbare using

either counterterm renormalization or operator renormalization. Equating the results we

find that

|Zc|
2 δ(s−Q! ′+) δ(s̄−Q! ′−) =

∫

d!+d!− Z−1
Jn

(s−Q!+) Z−1
Jn̄

(s̄−Q!−) Z−1
S (!+−! ′+, !−−! ′−) .

(32) {cons1}
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bottom-up:
similar

to SCET

Here the anomalous dimensions are γCm = Z−1
Cm

µ d/dµ ZCm and γHm = γCm + γ∗
Cm

. We write
the solut ion

Hm(µ) = UHm (µ, µm)Hm(µm) , (36) {UHm}

which runs Hm to µ < µm . T he local evolut ion contained in UHm is shown in F ig. 2.
Bottom-Up Running. Nex t consider the equivalent approach of opera tor renormaliza t ion

in bH Q E T . In this case we introduce Z-factors for B± and Shemi in the factoriza t ion theorem
ra ther than ZCm . T he equa t ions for the soft-funct ion S are exact ly the same as those in
SC E T , and will not be repea ted. To switch from bare to renormalized H Q E T jet ma trix
elements we write

Bbare
± (ŝ) =

∫

dŝ′ ZB±
(ŝ−ŝ′) B±(ŝ′, µ) , (37) {ZB}

where
∫

dŝ Z−1
B±

(ŝ′′ − ŝ)ZB±
(ŝ − ŝ′) = δ(ŝ′′ − ŝ′). T he renormaliza t ion group equa t ions are

µ
d

dµ
B±(ŝ, µ) =

∫

dŝ′ γB±
(ŝ−ŝ′) B±(ŝ′, µ), (38) {rgeB}

with anomalous dimension

γB±
(s−s′) = −

∫

dŝ′′ Z−1
B±

(ŝ−ŝ′′) µ
d

dµ
ZB±

(ŝ′′−ŝ′) . (39)

For the solut ions to the R G E we write

B±(ŝ, µ) =
∫

dŝ′ UB±
(ŝ−ŝ′, µ, µΓ) B±(ŝ′, µΓ) . (40) {UB}

T he evolut ion kernels UB±
take us from the low-scale µΓ to a large scale µ as shown in F ig. 2.

Consistency Conditions. Just like in SC E T , the use of ZB±
and ZS correspond to includ-

ing counterterms for the individual bH Q E T Feynman diagrams for each of B+ , B− , and S .
If we instead use ZCm then a finite result is only obtained when the current counterterm
graphs are added to the sum of all graphs for the factoriza t ion theorem a t some order in
αs . A gain there are consistency condit ions which are derived in the same was as in SC E T .
To derive it we start with E q. (12) and switch to Jbare

n , Jbare
n̄ , and Sbare using first top-down

renormaliza t ion, and then bot tom-up renormaliza t ion. E qua t ing the results we find the
bH Q E T consistency condit ion

|ZCm|
2 δ

(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

=
∫

d$+d$− Z−1
B+

(

ŝ−
Q$+

m

)

Z−1
B−

(

ˆ̄s−
Q$−

m

)

× Z−1
S ($+−$ ′+, $−−$ ′−) . (41) {cons3}

In terms of evolut ion kernels the condit ion is

UHm (µ, µ∆) δ
(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

(42) {cons4}

=
∫

d$+d$− UB+

(

ŝ−
Q$+

m
, µ, µ∆

)

UB−

(

s̄−
Q$−

m
, µ, µ∆

)

US ($+−$ ′+, $−−$ ′−, µ, µ∆) .
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FIG. 3: Scales and functions appearing in the formula for the invariant mass distribution. The
result is determined by matching at the physical scales and running to sum large logs as shown.
We show both the top-down and bottom-up approach to the running, and notes that the evolution
functions obey UH = UJ−UJ+US and UC = UB−UB+US . The evolution for UH and UC is local,
while all other evolution functions involve convolutions. {fig:theory}

Eq.(108) we can expand the shape function Hs as

Hs(Qτ +
st + st̄

Q
) ∼ Hs(Qτ) +O(

m

Q
) (109)

Thus, choosing a smearing region of size ∆ ∼ Γ makes the soft shape function independent

of st, st̄ at leading order as desired. Integrating over this smearing region we arrive at the

differential cross-section

dσ̂

dst dst̄
=

1

Q2

∑

ij

L(ij)
µν Tr

[n/

2
Γ̂µ

i

n̄/

2
Γ̂ν

j

] ∣∣C(Q; m)
∣∣2Jn(δ, st; m)Jn̄(δ, st̄; m)Hs(∆; m) , (110)

where we have defined

Hs(∆; µ) =

∫ ∆

−∆

d(Qτ) Hs(Qτ ; µ), (111)

and it is understood that ∆ ∼ Γ. We now explicitly see from Eq.(110) that the soft shape

function does not affect the shape of the invariant mass spectrum and only affects the overall

normalization. In Eq.(110) we have set µ2 = m2 which is the scale characterizing the typical

virtuality in SCET.

Choosing the Appropriate size for the smearing region

The argument of the shape function Hs defined in the previous section is:

Qτ +
st + st̄

Q
, (112)
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consistency:

HQET

ω1 + ω2 = 0

Here the anomalous dimensions are γCm = Z−1
Cm

µ d/dµ ZCm and γHm = γCm +γ∗
Cm

. We write

the solution

Hm(µ) = UHm(µ, µm)Hm(µm) , (36) {UHm}

which runs Hm to µ < µm. The local evolution contained in UHm is shown in Fig. 2.

Bottom-Up Running. Next consider the equivalent approach of operator renormalization

in bHQET. In this case we introduce Z-factors for B± and Shemi in the factorization theorem

rather than ZCm . The equations for the soft-function S are exactly the same as those in

SCET, and will not be repeated. To switch from bare to renormalized HQET jet matrix

elements we write

Bbare
± (ŝ) =

∫

dŝ′ ZB±
(ŝ−ŝ′) B±(ŝ′, µ) , (37) {ZB}

where
∫

dŝ Z−1
B±

(ŝ′′ − ŝ)ZB±
(ŝ − ŝ′) = δ(ŝ′′ − ŝ′). The renormalization group equations are

µ
d

dµ
B±(ŝ, µ) =

∫

dŝ′ γB±
(ŝ−ŝ′) B±(ŝ′, µ), (38) {rgeB}

with anomalous dimension

γB±
(s−s′) = −

∫

dŝ′′ Z−1
B±

(ŝ−ŝ′′) µ
d

dµ
ZB±

(ŝ′′−ŝ′) . (39)

For the solutions to the RGE we write

B±(ŝ, µ) =

∫

dŝ′ UB±
(ŝ−ŝ′, µ, µΓ) B±(ŝ′, µΓ) . (40) {UB}

The evolution kernels UB±
take us from the low-scale µΓ to a large scale µ as shown in Fig. 2.

Consistency Conditions. Just like in SCET, the use of ZB±
and ZS correspond to includ-

ing counterterms for the individual bHQET Feynman diagrams for each of B+, B−, and S.

If we instead use ZCm then a finite result is only obtained when the current counterterm

graphs are added to the sum of all graphs for the factorization theorem at some order in

αs. Again there are consistency conditions which are derived in the same was as in SCET.

To derive it we start with Eq. (12) and switch to Jbare
n , Jbare

n̄ , and Sbare using first top-down

renormalization, and then bottom-up renormalization. Equating the results we find the

bHQET consistency condition

|ZCm|
2 δ

(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

=

∫

d$+d$− Z−1
B+

(

ŝ−
Q$+

m

)

Z−1
B−

(

ˆ̄s−
Q$−

m

)

× Z−1
S ($+−$ ′+, $−−$ ′−) . (41) {cons3}

In terms of evolution kernels the condition is

UHm(µ, µ∆) δ
(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

(42) {cons4}

=

∫

d$+d$− UB+

(

ŝ−
Q$+

m
, µ, µ∆

)

UB−

(

s̄−
Q$−

m
, µ, µ∆

)

US($+−$ ′+, $−−$ ′−, µ, µ∆) .
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Here the anomalous dimensions are γCm = Z−1
Cm

µ d/dµ ZCm and γHm = γCm + γ∗
Cm

. We write
the solut ion

Hm(µ) = UHm (µ, µm)Hm(µm) , (36) {UHm}

which runs Hm to µ < µm . T he local evolut ion contained in UHm is shown in F ig. 2.
Bottom-Up Running. Nex t consider the equivalent approach of opera tor renormaliza t ion

in bH Q E T . In this case we introduce Z-factors for B± and Shemi in the factoriza t ion theorem
ra ther than ZCm . T he equa t ions for the soft-funct ion S are exact ly the same as those in
SC E T , and will not be repea ted. To switch from bare to renormalized H Q E T jet ma trix
elements we write

Bbare
± (ŝ) =

∫

dŝ′ ZB±
(ŝ−ŝ′) B±(ŝ′, µ) , (37) {ZB}

where
∫

dŝ Z−1
B±

(ŝ′′ − ŝ)ZB±
(ŝ − ŝ′) = δ(ŝ′′ − ŝ′). T he renormaliza t ion group equa t ions are

µ
d

dµ
B±(ŝ, µ) =

∫

dŝ′ γB±
(ŝ−ŝ′) B±(ŝ′, µ), (38) {rgeB}

with anomalous dimension

γB±
(s−s′) = −

∫

dŝ′′ Z−1
B±

(ŝ−ŝ′′) µ
d

dµ
ZB±

(ŝ′′−ŝ′) . (39)

For the solut ions to the R G E we write

B±(ŝ, µ) =
∫

dŝ′ UB±
(ŝ−ŝ′, µ, µΓ) B±(ŝ′, µΓ) . (40) {UB}

T he evolut ion kernels UB±
take us from the low-scale µΓ to a large scale µ as shown in F ig. 2.

Consistency Conditions. Just like in SC E T , the use of ZB±
and ZS correspond to includ-

ing counterterms for the individual bH Q E T Feynman diagrams for each of B+ , B− , and S .
If we instead use ZCm then a finite result is only obtained when the current counterterm
graphs are added to the sum of all graphs for the factoriza t ion theorem a t some order in
αs . A gain there are consistency condit ions which are derived in the same was as in SC E T .
To derive it we start with E q. (12) and switch to Jbare

n , Jbare
n̄ , and Sbare using first top-down

renormaliza t ion, and then bot tom-up renormaliza t ion. E qua t ing the results we find the
bH Q E T consistency condit ion

|ZCm|
2 δ

(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

=
∫

d$+d$− Z−1
B+

(

ŝ−
Q$+

m

)

Z−1
B−

(

ˆ̄s−
Q$−

m

)

× Z−1
S ($+−$ ′+, $−−$ ′−) . (41) {cons3}

In terms of evolut ion kernels the condit ion is

UHm (µ, µ∆) δ
(

ŝ−
Q$ ′+

m

)

δ
(

ˆ̄s−
Q$ ′−

m

)

(42) {cons4}

=
∫

d$+d$− UB+

(

ŝ−
Q$+

m
, µ, µ∆

)

UB−

(

s̄−
Q$−

m
, µ, µ∆

)

US ($+−$ ′+, $−−$ ′−, µ, µ∆) .

15cancellation between soft & collinear factors again
an observable that did not account for the soft radiation
  would not have this property.
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rather than ZCm . The equations for the soft-function S are exactly the same as those in

SCET, and will not be repeated. To switch from bare to renormalized HQET jet matrix

elements we write

Bbare
± (ŝ) =

∫
dŝ′ ZB±(ŝ−ŝ′) B±(ŝ′, µ) , (41)

where
∫

dŝ Z−1
B±

(ŝ′′ − ŝ)ZB±(ŝ− ŝ′) = δ(ŝ′′ − ŝ′). The renormalization group equations are

µ
d

dµ
B±(ŝ, µ) =

∫
dŝ′ γB±(ŝ−ŝ′) B±(ŝ′, µ), (42)

with anomalous dimension

γB±(s−s′) = −
∫

dŝ′′ Z−1
B±

(ŝ−ŝ′′) µ
d

dµ
ZB±(ŝ′′−ŝ′) . (43)

For the solutions to the RGE we write

B±(ŝ, µ) =

∫
dŝ′ UB±(ŝ−ŝ′, µ, µΓ) B±(ŝ′, µΓ) . (44)

The evolution kernels UB± take us from the low-scale µΓ to a large scale µ as shown in Fig. 2.

Consistency Conditions. Just like in SCET, the use of ZB± and ZS correspond to includ-

ing counterterms for the individual bHQET Feynman diagrams for each of B+, B−, and S.

If we instead use ZCm then a finite result is only obtained when the current counterterm

graphs are added to the sum of all graphs for the factorization theorem at some order in

αs. Again there are consistency conditions which are derived in the same was as in SCET.

To derive it we start with Eq. (20) and switch to Jbare
n , Jbare

n̄ , and Sbare using first top-down

renormalization, and then bottom-up renormalization. Equating the results we find the

bHQET consistency condition

|ZCm|2 δ
(
ŝ−Q$ ′+

m

)
δ
(
ˆ̄s−Q$ ′−

m

)
=

∫
d$+d$− Z−1

B+

(
ŝ−Q$+

m

)
Z−1

B−

(
ˆ̄s−Q$−

m

)

× Z−1
S ($+−$ ′+, $−−$ ′−) . (45)

In terms of evolution kernels the condition is

UHm(µ, µ∆) δ
(
ŝ−Q$ ′+

m

)
δ
(
ˆ̄s−Q$ ′−

m

)
(46)

=

∫
d$+d$− UB+

(
ŝ−Q$+

m
, µ, µ∆

)
UB−

(
s̄−Q$−

m
, µ, µ∆

)
US($+−$ ′+, $−−$ ′−, µ, µ∆) .

This result expresses the equivalence of running the factorization theorem between µm and

µ∆ from the top-down versus from the bottom-up, as pictured in Fig. (2). It also states that

when the convolution RGE’s for each of B+, B−, and S are combined that the result is local

running for Hm through UHm without a convolution.
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T he counterterm and bH Q E T matching coefficient can be obtained from either E q. (90) or
E q. (91). However the solut ion of the R G E is much simpler to obtain if we work with Bbare

± ,
which we will do from here on out . T he counterterm which subtracts off the divergences
from either E q. (90) or E q. (91) when convoluted with the renormalized bH Q E T jet funct ion
is

ZB± (s−s′) = δ(s−s′) +
αsCF

4π

{
δ(s−s′)

[
2
ε2

+
4
ε

ln
(

mµ

κ2
1

)
+

2
ε

]
− 4

κ2
1ε

[
κ2

1θ(s− s′)
s− s′

]

+

}
. (92)

Note care must be taken when comput ing the integral in E q. (41) when the plus funct ion
above is convoluted with the tree-level B reit- W igner. We have allowed for an arbitrary
rescaling of s → κ2

1x. To determine the bH Q E T jet funct ion W ilson coefficient at order αs

we need to match the one loop bH Q E T result to the one loop SC E T result . Since we are
working with B± we can match to the SC E T result before taking the discont inuity. A t tree
level this is given by the collinear propagator, and at one loop the result is given by E q. (61).
Since the top quark is stable in SC E T we take the Γ→ 0 limit of E q. (90) in the matching.
We obtain

CB± (µ) = 1 +
αsCF

4π

(
ln2m2

µ2
− ln

m2

µ2
+ 4 +

π2

6

)
. (93)

T he logarithms are minimized at the matching scale µ ≈ m.
Next we turn to the running of the bH Q E T jet funct ion. T he anomalous dimension

determined from E q. (92) is

γB± (s− s′, µ) =
αsCF

π

{
2
[
κ2

1θ(s′ − s)
s′ − s

]

+

−
[

2ln
(

mµ

κ2
1

)
+ 1

]
δ(s′ − s)

}
(94)

T he renormalizat ion group evolut ion of the bH Q E T jet funct ions is

UB± (s− s′, µ, µi) =
eL2(µ,µi)

(
m µieγE )ω1

Γ(−ω1)

[
θ(s− s′)

(s− s′)1+ω1

]

+

, (95)

where

ω1(µ, µi) = −4CF

β0
ln

[ αs(µ)
αs(µi)

]
, eL2(µ,µi) =

( µ

µi

)4CF
β0

[
αs(µ)
αs(µi)

] 8πCF
β2
0αs(µi)

− 2CF
β0

. (96)

T hese equat ions give the solut ion for the R G-evolut ion of the bH Q E T jet funct ion up to µ

via B±(s, µ) =
∫

ds′UB± (s − s′, µ, µm)B±(s′, µm). Using the tree level result for B± in this
integral gives the leading-log (L L) result

BLL
± (s, µ) = eL2(µ,µi)

(
m µie

γE )ω1
Γ(1 + ω1)

(−s− imΓ)1+ω1
. (97)

Taking the discont inuity of BLL
± (s, µ) gives the leading-log bH Q E T jet funct ion.

Consistency Conditions

28

The counterterm and bHQET matching coefficient can be obtained from either Eq. (90) or

Eq. (91). However the solution of the RGE is much simpler to obtain if we work with Bbare
± ,

which we will do from here on out. The counterterm which subtracts off the divergences

from either Eq. (90) or Eq. (91) when convoluted with the renormalized bHQET jet function

is

ZB±(s−s′) = δ(s−s′)+
αsCF

4π

{
δ(s−s′)

[
2

ε2
+

4

ε
ln

(
mµ

κ2
1

)
+

2

ε

]
− 4

κ2
1ε

[
κ2

1θ(s− s′)

s− s′

]

+

}
. (92)

Note care must be taken when computing the integral in Eq. (41) when the plus function

above is convoluted with the tree-level Breit-Wigner. We have allowed for an arbitrary

rescaling of s → κ2
1x. To determine the bHQET jet function Wilson coefficient at order αs

we need to match the one loop bHQET result to the one loop SCET result. Since we are

working with B± we can match to the SCET result before taking the discontinuity. At tree

level this is given by the collinear propagator, and at one loop the result is given by Eq. (61).

Since the top quark is stable in SCET we take the Γ→ 0 limit of Eq. (90) in the matching.

We obtain

CB±(µ) = 1 +
αsCF

4π

(
ln2m2

µ2
− ln

m2

µ2
+ 4 +

π2

6

)
. (93)

The logarithms are minimized at the matching scale µ ≈ m.

Next we turn to the running of the bHQET jet function. The anomalous dimension

determined from Eq. (92) is

γB±(s− s′, µ) =
αsCF

π

{
2

[
κ2

1θ(s
′ − s)

s′ − s

]

+

−
[
2ln

(
mµ

κ2
1

)
+ 1

]
δ(s′ − s)

}
(94)

The renormalization group evolution of the bHQET jet functions is

UB±(s− s′, µ, µi) =
eL2(µ,µi)

(
m µieγE )ω1

Γ(−ω1)

[
θ(s− s′)

(s− s′)1+ω1

]

+

, (95)

where

ω1(µ, µi) = −4CF

β0
ln

[ αs(µ)

αs(µi)

]
, eL2(µ,µi) =

( µ

µi

)4CF
β0

[
αs(µ)

αs(µi)

] 8πCF
β2
0αs(µi)

− 2CF
β0

. (96)

These equations give the solution for the RG-evolution of the bHQET jet function up to µ

via B±(s, µ) =
∫

ds′UB±(s − s′, µ, µm)B±(s′, µm). Using the tree level result for B± in this

integral gives the leading-log (LL) result

BLL
± (s, µ) = eL2(µ,µi)

(
m µie

γE )ω1
Γ(1 + ω1)

(−s− imΓ)1+ω1
. (97)

Taking the discontinuity of BLL
± (s, µ) gives the leading-log bHQET jet function.

Consistency Conditions

28

,

B±(ŝ, µ)

µ = Γ

M2
t −m2

m

LL  running

(GeV)

in our case large logs do not effect the normalization



Lessons, Implications, and Conclusion

In our analysis the inclusive nature of the hemisphere mass
definition reduces the uncertainty from hadronization. The jet 
functions sum over hadronic states up to         and are perturb.
The soft functions is universal. If we switch observables (eg. 
like thrust) we can in some cases relate the soft functions.

• Factorization allows us to keep track of how the 
 observable effects corrections from other categories 
 (hadronization, final state radiation, etc.)

• Summation of Large Logs, control of final state radiation

• Results are observable dependent and will be different for
 the LHC.  The corr. analysis may help reduce uncertainties. 

•

• Gluon radiation between the decay products 
 is power suppressed

• Definition of a short-distance mass scheme for jets

mΓ



The END


