
SCET - Recent Developments

Iain Stewart
MIT

Chamonix,  2005



Soft - Collinear Effective Theory
Bauer, Pirjol, Stewart

Fleming, Luke, ...       

E ! ΛQCD

Separate physics at different momentum scales 
Model independent, systematically improvable
Power expansion, can estimate uncertainty
Exploit symmetries 
Resum Sudakov logarithms

Effective Field Theory
•
•
•
•
•

An effective field theory for energetic hadrons & jets



Soft Collinear Effective Theory

B D!eg.

Pion has: pµ
π = (2.3 GeV)nµ = Q nµ n2 = n̄2 = 0, (n·p = p−)

B

n
µ

!

pµ
s = (p+, p−, p⊥) ∼ (Λ,Λ,Λ)

Collinear constituents:

pµ
c = (p+, p−, p⊥) ∼

(Λ2

Q
,Q,Λ

)
∼ Q(λ2, 1, λ) λ =

Λ
Q

Soft constituents:



Introduce fields for infrared degrees of freedom (in operators)

modes pµ = (+,−,⊥) p2 fields
collinear Q(λ2, 1, λ) Q2λ2 ξn, Aµ

n

soft Q(λ, λ, λ) Q2λ2 qs, Aµ
s

usoft Q(λ2, λ2, λ2) Q2λ4 qus, Aµ
us

Degrees of freedom in SCET

SCETI

SCETII

usoft pµ ∼ Λ
collinear p2

c ∼ QΛ, λ =
√

Λ/Q

soft pµ ∼ Λ
collinear p2

c ∼ Λ2, λ = Λ/Q

Energetic jets

n
µ

X

Energetic hadrons
n
µ

!

Λ2 ! QΛ! Q2

ξn,Aµ
n

ξn,Aµ
n

B



B → Xsγ

B → Dπ

B → π"ν̄ B → ππB → ρρ

B → Kπ

B → K∗γ
B → ργ

B → Xu!ν̄
mW

?

mb

ΛQCD

mc

ms

mu,d

√
ΛE

E

}
Q

Processes

B → Kπγ
B → πγ#ν̄

B → Kπ"+"−

e+e− → J/ψ X Υ→ XγΥ→ V γ

B → D∗η′

e−p→ e−X pp̄→ !!̄X

γ∗M1 →M2 γ∗γ → π0

e+e− → jets

B → γ"ν̄



Factorization



Factorization

b

u

integrate out offshell quarks

eg. ū Γ b

Separation of scales
 and Decoupling

•

ξ̄nW Γ hv

W = P exp
(
ig

∫ y
−∞ ds n̄·An(sn̄µ)

)

usoft-collinear factorization (field redefn.)

hard-collinear factorization
ω ∼ p−c ∼ Q

• operators are gauge invariant, 
so factorization is too

S = P exp
(
ig

∫ y
−∞ ds n·As(snµ)

)

Y = P exp
(
ig

∫ y
−∞ ds n·Aus(snµ)

)

(ξ̄nW ) Γ (Y †hv)
∫

dω C(ω)(ξ̄nW )ω Γ (Y †hv)



mW

?

mb

ΛQCD

mc

ms

mu,d

√
ΛE

E

}
Q

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

ξn,Aµ
n

ξn̄, Aµ
n̄

hv,qs,Aµ
s

Eπ ! ΛQCDeg.

A =
∫

dzdxidk+T (z) J(z, xi, k
+) φ1(x1)φ2(x2)φB(k+) + . . .

!!

} } }

Λ2EΛQ2

Factorization Theorems



SCET   Lagrangians
Expansion:    

L(0)
us,s = q̄ iD/ q

L(1)
ξq = ξ̄nW

1
P̄

W †(igB/⊥c )WY †qus + h.c. B.C.D.F.

L(2) known

I

L(0)
c = ξ̄n

{
n·iD + iD/⊥c W

1
P̄

W †iD/⊥c

} n̄/

2
ξn B.F.P.S.

• Same (subleading!) Lagrangians for all processes

• Many processes require subleading Lagrangians or they vanish



Factorization 

B D

!

〈Dπ|(c̄b)(ūd)|B〉 = N ξ(v · v′)
∫ 1

0
dxT (x, µ) φπ(x, µ) Calculate T  

B,D are soft, π collinear

LSCET = L(0)
s + L(0)

c

Factorization if O = Oc ×Os

B̄0 → D+π− , B− → D0π−

+AD(∗)π
long

AD(∗)π
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

•

• B̄0 → D(∗)0π0
Mantry, Pirjol, I.S.

1
Nc

Λ
EM

& suppressed

B.P.S.



Color Suppressed Decays
Factorization with SCET 

+AD(∗)π
long

AD(∗)π
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

Single class of power suppressed SCETI operators T{O(0),L(1)
ξq ,L(1)

ξq }

Order λ2 =
(√

Λ/E
)2 = Λ/E

b

d

c

u

d

d

(a)

b
c

u

u

ud

(b)

with HQET for 〈D(∗)0π|(c̄ b)(d̄ u)|B̄0〉 pµ
π

mc
→ Eπ

mc
= 1.5get

not a convergent expansion

•

•

same for D, D* up to αs(mb)



Expt Average (Cleo, Belle, Babar):
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Extension to isosinglets:
Blechman, Mantry, I.S.

Not yet tested:

• Br(D∗ρ0
‖)! Br(D∗ρ0

⊥) ,
• equal ratios D(∗)K∗, D(∗)

s K, D(∗)
s K∗;  triangles for D(∗)ρ, D(∗)K

Br(D∗0K∗0
‖ ) ∼ Br(D∗0K∗0

⊥ )



Heavy to Light Currents What’s new?

v = 0
O1

O2

O3

O4

O5

FIG. 2: Transformation of operators on and off the v⊥ = 0 surface. Here O1,2 exist for v⊥ = 0,
while O3,4,5 vanish on the v⊥ = 0 surface.

an equivalent complete grouping related by linear combinations. To address this question,
consider splitting all possible operators into two sets, a set {Oi} which do not vanish on the
v⊥ = 0 surface and a set {Oi} which do. An example is pictured in Fig. 2.

Constraints are derived by requiring cancellations among the resulting post-
transformation set of operators. If we consider an operator Oi then under one of the
projected RPI transformations, RPI-$ or RPI-!, it transforms into the set {Oj, Ok}. On
the other hand an operator Oi only transforms back into the set {Oj}. This is a special
feature of the projected transformations and ensures that relations derived on the v⊥ = 0
surface can not be spoiled by operators which appear away from the surface. It appears that
we can neglect the Oi operators since they vanish when we project on the v⊥ = 0 plane.
However it is still possible that we will miss an additional relation between operators on the
surface, so that the surface analysis will not be complete.

There are two possible sources that could lead to additional relations beyond those derived
from projected RPI on the surface. First, under the SCET RPI-II transformation ε⊥ ∼ λ0 is
allowed, while in the RPI-! and RPI-$ transformations we only have smaller transformations
of n̄ of O(λ1) and O(λ2). Thus we could miss relations from the more restrictive ε⊥ ∼
λ0 allowed by SCET RPI-II. Note that an SCET RPI-II transformation takes us off the
projected surface. Second if we project onto v⊥ = 0 then constraints are derived only
by enforcing cancellations within the set {Oj}. It is possible that an operator O4 exists
that is obtained from the transformation of two operators O1 and O2 that are not related
by transformations on the surface. Enforcing the cancellation of O4 then relates O1 and
O2. This is pictured by the star in Fig. 2. A related alternative is an operator like O5

pictured with the box which is obtained from transformations of O1,2 and O3. If O3 is
otherwise constrained then this would also constrain O1,2. In cases with multiple operators
appearing and multiple transformations we must of course consider the linear independence
of combinations of operators like O4 and O5. If an Oi contributes and it is not otherwise
constrained then this is not of concern, since in the end we discard Oi by projecting onto the
v⊥ = 0 surface anyway. We will call an operator that vanishes for v⊥ = 0 but that generates

13

and NLO the currents are

J (0)(ω) = χ̄n,ωΓHv , (39)

J (1a)(ω) =
1

ω
χ̄n,ωP⊥†α Θα

(a)Hv

J (1b)(ω1,2) =
1

m
χ̄n,ω1(igB⊥α )ω2Θ

α
(b)Hv .

At NNLO we find that a convenient basis for the set of field structures for the bilinear quark
operators is

J (2a)(ω) =
1

2m
χ̄n,ωΥσ

(a)iDT
us σHv , (40)

J (2b)(ω) = −n·v
ω

χ̄n,ω in̄ ·←−DusΥ(b)Hv ,

J (2c)(ω) = − 1

ω
χ̄n,ωi

←−D⊥
us α Υα

(c)Hv ,

J (2d)(ω) =
1

ω2
χ̄n,ωP⊥†α P⊥†β Υαβ

(d)Hv ,

J (2e)(ω1,2) =
1

m(ω1 + ω2)
χ̄n,ω1(igB⊥α )ω2P

⊥†
β Υαβ

(e)Hv ,

J (2f)(ω1,2) =
ω2

m(ω1 + ω2)
χ̄n,ω1

(P⊥β
ω2

+
P⊥†β

ω1

)
(igB⊥α )ω2Υ

αβ
(f)Hv ,

J (2g)(ω1,2) =
1

m n·v χ̄n,ω1

{
(ign · B)ω2 + 2(igB⊥)ω2 · P

†
⊥

1

P̄†

}
Υ(g)Hv ,

J (2h)(ω1,2,3) =
1

m(ω2 + ω3)
χ̄n,ω1(igB⊥β )ω2(igB⊥α )ω3Υ

αβ
(h)Hv ,

J (2i)(ω1,2,3) =
1

m(ω2 + ω3)
Tr[(igB⊥β )ω2(igB⊥α )ω3 ] χ̄n,ω1Υ

αβ
(i)Hv .

For a basis of four quark operators we take

J (2j)(ω1, ω2, ω3) =
∑

f=u,d,s

[
χ̄f

n,ω2
Υ(jχ)χ

f
n,ω3

][
χ̄n,ω1Υ(jH)Hv

]
,

J (2k)(ω1, ω2, ω3) =
∑

f=u,d,s

[
χ̄f

n,ω2
TAΥ(kχ)χ

f
n,ω3

][
χ̄n,ω1T

AΥ(kH)Hv

]
(41)

where the matrices T A are generators of SU(3) with an implied sum on A and χf
n has a

collinear quark with flavor f , whereas χn carries the flavor of quark from the full theory
current. We impose the RPI type-III invariance in Eq. (31) on all operators by multiplying
by an appropriate power of n·v. The basis in Eqs. (39,40,41) is valid whether or not we take
v⊥ = 0. The v⊥ = 0 choice only effects the basis of Dirac structures.

The 11 operators in Eqs. (40,41) can be compared with the 15 field structures in the

basis of Ref. [12]. We have no analog of their J (2)
1,2,3,7 currents which have an explicit xµ

because with momentum labels the multipole expansion is performed directly in momentum
space [38]. Correspondingly, our J (2b) and J (2c) currents have no analogs in their basis.
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one-loop matching 
& running for  J (1b)

Beneke, Kiyo,Yang 
Becher, Hill, Neubert

and NLO the currents are

J (0)(ω) = χ̄n,ωΓHv , (39)

J (1a)(ω) =
1

ω
χ̄n,ωP⊥†α Θα

(a)Hv

J (1b)(ω1,2) =
1

m
χ̄n,ω1(igB⊥α )ω2Θ

α
(b)Hv .

At NNLO we find that a convenient basis for the set of field structures for the bilinear quark
operators is

J (2a)(ω) =
1

2m
χ̄n,ωΥσ

(a)iDT
us σHv , (40)

J (2b)(ω) = −n·v
ω

χ̄n,ω in̄ ·←−DusΥ(b)Hv ,

J (2c)(ω) = − 1

ω
χ̄n,ωi

←−D⊥
us α Υα

(c)Hv ,

J (2d)(ω) =
1

ω2
χ̄n,ωP⊥†α P⊥†β Υαβ

(d)Hv ,

J (2e)(ω1,2) =
1

m(ω1 + ω2)
χ̄n,ω1(igB⊥α )ω2P

⊥†
β Υαβ

(e)Hv ,

J (2f)(ω1,2) =
ω2

m(ω1 + ω2)
χ̄n,ω1

(P⊥β
ω2

+
P⊥†β

ω1

)
(igB⊥α )ω2Υ

αβ
(f)Hv ,

J (2g)(ω1,2) =
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{
(ign · B)ω2 + 2(igB⊥)ω2 · P

†
⊥

1

P̄†
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J (2h)(ω1,2,3) =
1
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χ̄n,ω1(igB⊥β )ω2(igB⊥α )ω3Υ

αβ
(h)Hv ,

J (2i)(ω1,2,3) =
1

m(ω2 + ω3)
Tr[(igB⊥β )ω2(igB⊥α )ω3 ] χ̄n,ω1Υ

αβ
(i)Hv .

For a basis of four quark operators we take

J (2j)(ω1, ω2, ω3) =
∑

f=u,d,s

[
χ̄f

n,ω2
Υ(jχ)χ

f
n,ω3

][
χ̄n,ω1Υ(jH)Hv

]
,

J (2k)(ω1, ω2, ω3) =
∑

f=u,d,s

[
χ̄f

n,ω2
TAΥ(kχ)χ

f
n,ω3

][
χ̄n,ω1T

AΥ(kH)Hv

]
(41)

where the matrices T A are generators of SU(3) with an implied sum on A and χf
n has a

collinear quark with flavor f , whereas χn carries the flavor of quark from the full theory
current. We impose the RPI type-III invariance in Eq. (31) on all operators by multiplying
by an appropriate power of n·v. The basis in Eqs. (39,40,41) is valid whether or not we take
v⊥ = 0. The v⊥ = 0 choice only effects the basis of Dirac structures.

The 11 operators in Eqs. (40,41) can be compared with the 15 field structures in the

basis of Ref. [12]. We have no analog of their J (2)
1,2,3,7 currents which have an explicit xµ

because with momentum labels the multipole expansion is performed directly in momentum
space [38]. Correspondingly, our J (2b) and J (2c) currents have no analogs in their basis.
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complete basis of 
operators is known

Beneke, Campanario, 
Mannel, Pecjak

Arnesen, Kundu, I.S.

J (2)

incl. Dirac structures 
and RPI constraints

Wilson
coefficients
and Dirac
structures
completely
determined

by RPI

&  four quark operators

b→ u
b→ s



Inclusive B-Decays



Inclusive
 Decays 

What’s new?  eg. :
• Event generator Neubert, Lange, Paz

• Subleading shape functions

n
µ

X

m2
X ∼ mbΛ

P−X ! P+
X

B
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Figure 4: Efficiency-corrected photon energy spectrum for the extracted signal, shown only for the
originally-blinded range of reconstructed energy (note the range 2.7-2.9GeV is not used to measure
the branching fractions or moments). The small error bar is statistical only. The larger error bar
also includes BB and other systematic uncertainties and a model-dependence uncertainty, all in
quadrature. There are significant correlations amongst the non-statistical uncertainties for different
bins.

correction factor αcut for the KN and BBU models and find that it has minimal model-dependence.
Table 4 shows PBFs with corrections applied, along with the statistical, systematic and model-
dependent errors. For the corrected PBFs the latter includes two correlated contributions: the
model-dependent efficiency uncertainty noted above, already applied to the measured PBFs, and
the uncertainty on αcut.

We studied many sources of systematic uncertainty, and here note the more significant. The
uncertainty on the BB background subtraction is shown in Table 3, and amounts to 5.5% for 2.0 to
2.7GeV. It comes mostly from the statistical uncertainties on the correction factors derived from
the π0(η) control sample. Other systematic effects total 6.4% in quadrature. Of this, 3.3% is the
uncertainty on photon selection, dominated by a 2.5% uncertainty on photon efficiency (determined
from π0s in τ decays) and 2% for the photon isolation cut. It also includes allowance for uncertainties
in photon energy scale and resolution, and in the photon lateral shape cut efficiency, derived mainly
from data from the BABAR B → K∗γ analysis and photons from virtual Compton scattering. The
efficiency of the event shape cuts was studied using a π0 control sample to compare distributions
of the Fisher discriminant between data and simulation, resulting in an uncertainty of 3.0%. A
small sensitivity to details of Xs fragmentation implies, for the adjustments determined in the
semi-inclusive analysis [10], an additional uncertainty of only 1.4%. A 2.2% uncertainty is assigned
for lepton identification, and 3.0% for the uncertainties on the semileptonic corrections.
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B → Xueν̄

B → Xsγ

 Keith Lee, I.S.; Bosch et al.; Beneke et al.

dΓ = H(mb, p
−
X)

∫
dk+ J(p−Xk+) f(k+ + Λ− p+

X)
endpt.
region
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2

, qeBABAR (E
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HFAG
EPS-2005 moments! s " and b# c l "HQ input from b
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Factorization at NLO

• complete categorization of all terms at

• all orders in αs

Λ
mb

• derive factorization theorems at subleading order

J = J (0) + J (1) + J (2) + . . .

L = L(0)
c + L(0)

us + L(1)
ξq + L(1)

j + L(2)
j + . . .

LO: T{J (0) , J (0)†}

T{J (0) , J (1)†}+ h.c. + T{J (0),L(1), J (0)}zero:

NLO: T{J (0) , J (2)†}+ h.c. + T{J (1) , J (1)†}
+T{J (0),L(1),L(1), J (0)†}+ . . .



T-product Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

T (0) ( )0
J

( )0
J

0 x

h[0] J (0) f (0) h̄v(x)hv(0)

TABLE III: Lowest-order insertion of SCET currents. The double lines are heavy quarks and the
dashed line is a collinear light quark.

where n̄·pX is the large momentum in the jet X. Then the remaining momentum rµ ∼ Λ
since n̄ · r = n̄·q + P̄ −mb = 0 and

n · r = n·q −mb = mB −mb − n·pX . (76)

At lowest order

n̄·p = n̄ · pX , n · r = Λ− n·pX , (77)

where both Λ, n · pX ∼ Λ (and higher-order terms in mB −mb will be needed only when we
go beyond LO). For the time being we stick to the partonic variables n̄·p and n·r; later, we
shall perform the expansion involved in switching to hadronic variables. Using the states
defined with HQET, we get

W (0)
µν =

(−1)

π
Im

1

2
〈B̄v|T̂ (0)

µν |B̄v〉 , (78)

T̂ (0)
µν = −i

∫
d4x e−ir·x T J (0)†

j′ µ (x) J (0)
j ν (0) .

Separating out the hard Wilson coefficients, we have

T̂ (0)
µν =

∑

j,j′

∫
dωdω′ Cj′(ω′)Cj(ω)δ(ω′−n̄·p)(−i)

∫
d4x e−ir·x T J (0)†

j′ µ (ω′, x) J (0)
j ν (ω, 0). (79)

The effective-theory currents in the remaining time-ordered product depend only on collinear
and usoft fields describing momenta p2 % m2

b , i.e.

T J (0)†
j′ µ (ω′, x) J (0)

j ν (ω, 0) =
[
H̄vΓ

(0)
j′µχn,ω′

]
(x)

[
χ̄n,ωΓ(0)

jν Hv

]
(0) , (80)

where Γ̄ ≡ γ0Γ†γ0. It is useful to group the collinear and usoft fields into common brackets
by using a Fierz rearrangement. For spin and color we can use

1⊗ 1 =
1

2

6∑

k=1

F n̄
k ⊗ F n

k (81)

=
1

2

[( n̄/

2Nc

)
⊗

(n/

2

)
+

(−n̄/γ5

2Nc

)
⊗

(n/γ5

2

)
+

(−n̄/γα
⊥

2Nc

)
⊗

(n/γ⊥α
2

)

+
(
n̄/T a

)
⊗

(n/T a

2

)
+

(
−n̄/γ5T

a
)
⊗

(n/γ5T a

2

)
+

(
−n̄/γα

⊥T a
)
⊗

(n/γ⊥α T a

2

)]
.

22

Leading Order



T-product Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

T̂ (2H)

h

(2 )

( )0
J ( )0

J

0 x

y

L
h0J (0) f (2)

0 h̄v(x)hv(0)iL(2)
h (y)

T̂ (2a)
( )0

J ( )2
J

( )2
J

( )
J

0

0 x

h1,2J (0) f (2)
1,2

h̄v(x)(DT,⊥hv)(0)
(h̄vDT,⊥)(x)hv(0)

T̂ (2L)
!!

(2   )( )0
J

( )0
J

0 x

y

L
a h3,4 J (−2)

1,2 f (4)
3,4

h3,4 J (−2)
3,4 g(4)

3,4

h̄v(x)(D⊥D⊥)(y)hv(0)

T̂ (2q)

bb
qq

( )0
J

( )0
J

!q
(1 )

!q
(1 )

L L

0 xyz h5,6 J (−4)
1 f (6)

5,6

h5−8 J (−4)
2−4 g(6)

5−10

h̄v(x)q(y)q̄(z)hv(0)

TABLE IV: Time-ordered products that are of order λ2 = Λ/mb overall, and that are non-zero
at tree level. The power of λ2 is obtained by multiplying the powers from the jet functions J
by those from the shape functions f or g. We suppress color and Dirac structure in the usoft
operators listed, which can be found in the text. The time-ordered product in the last row has not
been considered in the literature and is enhanced relative to the others entries by a prefactor of
4παs(EXΛ) ∼ 5.

for example, the product J (1b)†J (1b) has a jet function that starts at one-loop order since
we must contract both the collinear quark and gluon lines. A second example consists of
time-ordered products that involve a L(1)

ξξ insertion, which involves a Dc
⊥ since neither its

P⊥ or A⊥n parts can contribute at tree level.
The category that appears already at tree level will be most important phenomenologi-
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T-product Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

T̂ (2b)
( )1

J
( )1

J

0 x
h[2b] J (2)

1,2 f (0) h̄v(x)hv(0)

T̂ (2c) ( )2
J

( )0
J

0 x

h[2c] J (2)
3−10 f (0) h̄v(x)hv(0)

T̂ (2La) ( )1
J

( )0
J

0 x

!

(1 )
L !

y

h[2La] J (0)
j′ g(2)

11,12 h̄v(x)D⊥(y)hv(0)

T̂ (2Lb)

( )0
J

( )0
J

0 x

!

(2   )
L !

y

b h[2Lb] J (0)
j′ g(2)

13,14 h̄v(x)n̄·D(y)hv(0)

T̂ (2LL)

( )0
J

( )0
J

0 x

!

(1 )
L !

y z

h[2LL] J (−2)
j′ g(4)

15−26 h̄v(x)D⊥(y)D⊥(z)hv(0)

TABLE V: Time-ordered products that are of order Λ/mb, but have jet functions that start at
one-loop order. The last three rows introduce new shape functions that were not present at tree
level. Vertices that are not labeled are from L(0)

ξξ .
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h0f
i (n̄·p)
2mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) f (2)

0

(
k+ + r+, µ

)

+
2∑

r=1

hrf
i (n̄·p)
mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) f (2)

r

(
k+ + r+, µ

)

+
4∑

r=3

hrf
i (n̄·p)
mb

∫
dk+

1 dk+
2 J (−2)

1±2 (n̄·p k+
j , µ) f (4)

r

(
k+

j + r+, µ
)

+
6∑

r=5

hrf
i (n̄·p)
n̄·p

∫
dk+

1 dk+
2 dk+

3 J (−4)
1 (n̄·p k+

j′ , µ) f (6)
r

(
k+

j′ + r+, µ
)

+
h00f

i (n̄·p)
mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) g(2)

0

(
k+ + r+, µ

)

+
4∑

r=3

hrf
i (n̄·p)
mb

∫
dk+

1 dk+
2 J (−2)

3±4 (n̄·p k+
j , µ) g(4)

r

(
k+

j + r+, µ
)

+
6∑

r=5

hrf
i (n̄·p)
n̄·p

∫
dk+

1 dk+
2 dk+

3 J (−4)
2 (n̄·p k+

j′ , µ) g(6)
r

(
k+

j′ + r+, µ
)

+
8∑

r=7

hrf
i (n̄·p)
n̄·p

∫
dk+

1 dk+
2 dk+

3

[
J (−4)

3 (n̄·p k+
j′ , µ) g(6)

r

(
k+

j′ + r+, µ
)

+J (−4)
4 (n̄·p k+

j′ , µ) g(6)
r+2

(
k+

j′ + r+, µ
)]

+
∑

m=1,2

∫
dz1dz2

h[2b]m+8
i (z1, z2, n̄·p)

mb

∫ p+
X

0
dk+ J (2)

m (z1, z2, p
−
X k+) f (0)(k++Λ−p+

X)

+
∑

m=3,4

h[2c]m+8
i (n̄·p)

mb

∫ p+
X

0
dk+ J (2)

m (p−X k+) f (0)(k++Λ−p+
X)

+
10∑

m=5

∫
dz1

h[2c]m+8
i (z1, n̄·p)

mb

∫ p+
X

0
dk+ J (2)

m (z1, p
−
X k+) f (0)(k++Λ−p+

X)

+ W [2La]f
i [ g(2)

11,12 ] + W [2Lb]f
i [ g(2)

13,14 ] + W [2LL]f
i [ g(4)

15−26 ] + W [2Ga]f
i [ f (4)

3,4 ]

+ phase space & kinematic corrections

αs(m2
b)

αs(m2
X) ∼ αs(mbΛ)

hi(n̄·p) :

J (n̄·pk+
j ) :

• keep Λ
mb

and 4παs
Λ
mb

αs
Λ
mb

A brick wall:

bb
qq

( )0
J

( )0
J

!q
(1 )

!q
(1 )

L L

0 xyz

model these subleading
 shape functions to 
get uncertainties 

•

(& interpolate to local OPE)

(triple differential spectra)W (2)
i =



|Vub|
B → ππ B → π"ν̄,

&



pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

B →
B →

} “hard spectator”,
“factorizable”
“soft form factor”,
“non-factorizable”

Form Factors

Nonleptonic

Factorization at

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}

B →M1M2

mb

}
f(E) =

∫
dz T (z,E) ζBM

J (z,E)

+ C(E) ζBM (E)

ζBM
J (z) = fMfB

∫ 1

0
dx

∫ ∞

0
dk+J(z, x, k+, E)φM (x)φB(k+)

Factorization at √EΛ

ζBM = ?

Beneke, Feldmann
Bauer, Pirjol, I.S.

Becher, Hill, Lange, Neubert

expansion in αs(
√

EΛ)

(left as a form factor)

universality at 
EΛ

Bauer, Pirjol, 
Rothstein, I.S. 

 Factorization (with SCET)

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'



NOT  a contradiction with factorization.

Br(B → π0π0)

ζBπ
J ∼ ζBπ if                    , then a term 

theorem ruins color suppression and explains the rate
• C1

Nc
〈ū−1〉π ζBπ

J

! 3

in the factorization 

   if                        this Br is sensitive to power corrections
 (small wilson coeffs. at LO could compete with  larger ones at   
   subleading order) .

= 1.45± 0.29

ζBπ ! ζBπ
J

is large

• In the future: determine parameters using improved data on the

expected ∼ 0.3

q2B → π"ν̄

Why?

form factor at low       to provide a check. 
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FIG. 5: Model independent results for ζBπ , ζBπ
J , and the

B → π form factor f+(q2 = 0) as a function of γ. The shaded
bands show the 1-σ errors propagated from the B → ππ data.

non-perturbative parameters ζBπ , ζBπ
J ,

T = Nπ
1
3
(C1 + C2)

[
4ζBπ + (4 + 〈ū−1〉π)ζBπ

J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
C2 + C3

3

)
ζBπ
J

]
,

where 〈ū−1〉π =
∫ 1
0 φπ(u)/(1−u), and ζBπ

J =
∫

dz ζBπ
J (z).

The penguin amplitude also gets a contribution from the
complex Aππ

cc̄ amplitude, so

P ≡ −
∣∣∣
λ(d)

u

λ(d)
c

∣∣∣ Tc rc eiδc = Nπ

[(
C4 +

C3

3

)
ζBπ

+
(

C4+(1+〈ū−1〉π)
C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=64◦

=
(
0.05± 0.05

)(3.9× 10−3

|Vub|

)
, (40)

ζBπ
J

∣∣
γ=64◦

=
(
0.11± 0.03

)(3.9× 10−3

|Vub|

)
,

where the quoted errors are propagated from the exper-
imental errors from |T | and |t| in Eq. (35). Using the
results for rc and δc in Eq. (34) and |Vcb| = 0.041 the
penguin amplitude is

P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦

=
(
0.17± 0.02

)(3.9× 10−3

|Vub|

)
. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).

Use nonleptonic data: B → ππ determines the parameters

80

3.9

Factorization &                determines |Vub|f+(0)B → ππ

|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 + O

(
αs(mb),

ΛQCD

mb

)]
,

Bauer, Pirjol, Rothstein, I.S. 

2

the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for t in
the B → π range. In Eq. (3) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
√

nI

Kχ(0)
J

(√
t+−t+

√
t+−t0

) (t+−t)(a+1)/4

(t+−t0)1/4

×
(√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (5)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),
while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here
χ(0)

J is obtained from derivatives of Π(q2) computed with
an OPE. At two loops in terms of the pole mass and
condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[
1+1.140 αs(mb)

]

32π2m2
b

−mb 〈ūu〉
m6

b

− 〈αsG2〉
12πm6

b

,

χ(0)
f0

=
[
1+0.751 αs(mb)

]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (6)

with mb〈ūu〉 ' −0.076 GeV4, 〈αsG2〉 ' 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (3)
the dispersive bound gives a constraint on the coefficients

∑nmax
k=0 a2

k ≤ 1 , (7)

for any choice of nmax.
Eqs. (3) and (7) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 ) 1. The main power of analyt-
icity is that if we fix f+(q2) at nmax input points then
it constrains the q2 shape between these points. With
nmax = 5 the error from the bounds is negligibly small
relative to other uncertainties, as we see below (our anal-
ysis is also insensitive to the exact values of χ(0)

J or mb).
The bounds can be strengthened using heavy quark sym-
metry or higher moments [12], but since this uncertainty
is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.
Manipulating formulas in [7] the result is

|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

(8)

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 +O

(
αs(mb),

ΛQCD

mb

)]
,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny

C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (9)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− =(1−C2

π+π−−S2
π+π−)1/2. Eqs. (8,9) improve

on relations between B → ππ and B → π(ν̄ derived
earlier, such as in Ref. [14], because they do not rely on
expanding in αs(

√
mbΛ) or require the use of QCD sum

rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (8) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (10)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (8) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. The
staggered fermion (det M)1/4 trick might add model de-
pendence, but we take the agreement with data in [17]
to indicate that this is small. Refs [2, 3] find consistent
results with different heavy quark actions. As our default
we use [2] since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (11)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (11) are statistical, ±σi, and the sec-
ond are 11% systematic errors, ±yf i

in, with y = 0.11. For
the lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in,

which takes σi uncorrelated and includes 100% correla-
tion in the systematic error. Of the eleven reported lat-
tice points we use only three at separated q2. This maxi-
mizes the shape information while minimizing additional
correlations that may occur in neighboring points.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ +mB∗−mB)

[
1+O

(Eπ

∆

)]
, (12)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular

|Vub|f+(0) = F (Sπ+π− , Cπ+π− , Br(π+π−), Br(π0π−), β, γ, Vud)
[
1 +O

(
αs(mb) ,

ΛQCD

E

)]

• Uses data to remove arbitrary complex penguin amplitude, and color 
suppressed amplitude.  ie. to eliminate the hadronic parameters

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0

Bπ+π− =
√

1− C 2
π+π− − S 2

π+π−

flat with γ
tc =

|Tππ|
|Tππ + Cππ|



expt.

dominated by theory estimate:

f+(0) = (0.18 ± 0.01 ± 0.04)
(3.9× 10−3

|Vub|

)

∼ 25% perturbativefrom

2

the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for t in
the B → π range. In Eq. (3) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
√

nI

Kχ(0)
J

(√
t+−t+

√
t+−t0

) (t+−t)(a+1)/4

(t+−t0)1/4

×
(√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (5)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),
while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here
χ(0)

J is obtained from derivatives of Π(q2) computed with
an OPE. At two loops in terms of the pole mass and
condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[
1+1.140 αs(mb)

]

32π2m2
b

−mb 〈ūu〉
m6

b

− 〈αsG2〉
12πm6

b

,

χ(0)
f0

=
[
1+0.751 αs(mb)

]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (6)

with mb〈ūu〉 ' −0.076 GeV4, 〈αsG2〉 ' 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (3)
the dispersive bound gives a constraint on the coefficients

∑nmax
k=0 a2

k ≤ 1 , (7)

for any choice of nmax.
Eqs. (3) and (7) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 ) 1. The main power of analyt-
icity is that if we fix f+(q2) at nmax input points then
it constrains the q2 shape between these points. With
nmax = 5 the error from the bounds is negligibly small
relative to other uncertainties, as we see below (our anal-
ysis is also insensitive to the exact values of χ(0)

J or mb).
The bounds can be strengthened using heavy quark sym-
metry or higher moments [12], but since this uncertainty
is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.
Manipulating formulas in [7] the result is

|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

(8)

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 +O

(
αs(mb),

ΛQCD

mb

)]
,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny

C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (9)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− =(1−C2

π+π−−S2
π+π−)1/2. Eqs. (8,9) improve

on relations between B → ππ and B → π(ν̄ derived
earlier, such as in Ref. [14], because they do not rely on
expanding in αs(

√
mbΛ) or require the use of QCD sum

rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (8) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (10)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (8) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. The
staggered fermion (det M)1/4 trick might add model de-
pendence, but we take the agreement with data in [17]
to indicate that this is small. Refs [2, 3] find consistent
results with different heavy quark actions. As our default
we use [2] since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (11)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (11) are statistical, ±σi, and the sec-
ond are 11% systematic errors, ±yf i

in, with y = 0.11. For
the lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in,

which takes σi uncorrelated and includes 100% correla-
tion in the systematic error. Of the eleven reported lat-
tice points we use only three at separated q2. This maxi-
mizes the shape information while minimizing additional
correlations that may occur in neighboring points.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ +mB∗−mB)

[
1+O

(Eπ

∆

)]
, (12)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular

theory

and power corrections
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Lattice & QCD  Dispersion Relations

i)  Lattice qcd results at large 

iii) 

q2

iv)  QCD dispersion relations to constrain the
      form factors shape

   expt. spectra for information at low 

Arnesen, Grinstein, Rothstein, I.S. 

(model independent)
Figure 5 presents the obtained q2 distributions for the two decay modes, overlaid with the

best fits of FF shapes to the data. To be self-consistent, the shape of a particular FF model
is fit to the q2 distribution extracted with that FF model. The quality of the fit in terms of
χ2 and the probability of χ2, shown in Table I and II, may provide one way to discriminate
among the models. At the present accuracy, we are unable to draw any conclusion on this
point.
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FIG. 5: Extracted q2 distrubution for the B0 → π−"+ν(left) and B0 → ρ−"+ν(right) decays. Data

points are shown for different FF models used to estimate the detection efficiency. Lines are for
the best fit of the FF shapes to the obtained q2 distribution.

We extract |Vub| using the relation,

|Vub| =

√

√

√

√

B(B0 → π−(ρ−)$+ν)

Γ̃thy τB0

, (4)

where Γ̃thy is the form-factor normalization, predicted from theories. In this paper, our
major focus is on the |Vub| determination based on the π−$+ν data and the form factor
predicted by LQCD calculations. Since the current LQCD calculations are available only in
the region q2 ≥ 16 GeV2/c2, we use the branching fraction in the high q2 bin extracted with
UKQCD; B≥16 = (0.45 ± 0.16) × 10−4. We use τB0 = 1.536 ± 0.014 ps for the B0 lifetime
[20].

We apply Γ̃thy predicted by the FNAL [23], JLQCD [24], APE [6] as well as UKQCD
calculations, as quoted by the CLEO analysis in 2003 [6]. For the average of these results,
the combined Γ̃thy = 1.92+0.32

−0.12 ± 0.47 ps−1 calculated by CLEO work is used. Here the
errors are the statistical and the systematic in LQCD calculations, the latter including the
quenching error of 15%. We obtain

|Vub|
π"ν
(q2≥16) = (3.90 ± 0.71 ± 0.23+0.62

−0.48) × 10−3, (5)
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χ(0) =
1
2

∂2ΠT
J

∂(q2)2

∣∣∣∣
q2=0

=
1
π

∫ ∞

0
dt

Im ΠT
J (t)

t3

∫ ∞

t+

dt
W (t)|f(t)|2

t3
≤ 1

ImΠT,L
J =

1
2

∑

X

(2π)4δ4(q − pX)|〈0|J |X〉|2 ≥ π(2π)3δ4(q − pB − pπ)|〈0|J |Bπ〉|2

t+ = (mB + mπ)2

Πµν
J (q) =

1
q2

(qµqν−q2gµν)ΠT
J (q2)+

qµqν

q2
ΠL

J (q2) ≡ i

∫
d4x eiqx〈0|TJµ(x)J†ν(0)|0〉



2

functional forms. The variable

z(t, t0) =
√

t+ − t−
√

t+ − t0√
t+ − t +

√
t+ − t0

, (6)

maps t+ < t <∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
√

nI

Kχ(0)
J

(√
t+−t+

√
t+−t0

) (t+−t)(a+1)/4

(t+−t0)1/4

×
(√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),
while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)

J
corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[
1+1.140 αs(mb)

]

32π2m2
b

−mb 〈ūu〉
m6

b

− 〈αsG2〉
12πm6

b

,

χ(0)
f0

=
[
1+0.751 αs(mb)

]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis
is also insensitive to the exact values of χ(0)

J or mb). The
bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

(10)

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 +O

(
αs(mb),

ΛQCD

mb

)]
,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−−S2
π+π−)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

A Precision Model Independent Determination of |Vub| from B → πlν
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =
{3.87± 0.70± 0.22+0.85

−0.51 (FNAL)

4.73± 0.85± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫
d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an

OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

Im Πµν=
∫
[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉+ . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞∑

k=0

ak(t0) z(t, t0)k , (5)

with coefficients ak that parameterize different allowed
t0 = 0.65 t−

−0.34 ≤ z ≤ 0.22

Pick

P (t)φ(t)f(t) =
∞∑

n=0

an zn

Blaschke Factor: remove pole at t = m2
B∗

Outer function:  phase space, Jacobian,
χ(0) in QCD

f+(t) =
1

P (t)φ(t)

∞∑

n=0

an zn

Strategy:  use input points to fix first few a’s
vary all higher a’s to determine uncertainty

t = q2

then

Complex 
Magic
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t z
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vac→ B̄π("ν)

B∗ pole

t− t+

Form factor for

∑

n

a2
n ≤ 1

from dispersion



Input Points
i) 

2

functional forms. The variable

z(t, t0) =
√

t+ − t−
√

t+ − t0√
t+ − t +

√
t+ − t0

, (6)

maps t+ < t <∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
√

nI

Kχ(0)
J

(√
t+−t+

√
t+−t0

) (t+−t)(a+1)/4

(t+−t0)1/4

×
(√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),
while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)

J
corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
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[
1+1.140 αs(mb)

]

32π2m2
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, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis
is also insensitive to the exact values of χ(0)

J or mb). The
bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =
[

64π

m3
Bf2
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×
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,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−−S2
π+π−)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

SCET

ii) Lattice 
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the tightest possible bounds, and it defines z(t0, t0) = 0.
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B → π range. In Eq. (5) the “Blaschke” factor P (t)
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B∗) for f+ due to the B∗ pole. Finally, the
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corresponds to the lowest moment of Π(q2) computed
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with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA∑

k=0
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k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis
is also insensitive to the exact values of χ(0)

J or mb). The
bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables
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where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,
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(1+Bπ+π− cos 2β + Sπ+π− sin 2β)
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with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−−S2
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prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
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takes σi uncorrelated and includes 100% correlation in
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the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
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with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA∑

k=0
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k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis
is also insensitive to the exact values of χ(0)

J or mb). The
bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.
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where C1 = 1.08 and C2 = −0.177 are parameters in the
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derived earlier, such as in Ref. [14], because they do not
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QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf
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in, which

takes σi uncorrelated and includes 100% correlation in

iii)  Chiral Pert. Theory 

3

the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
1+O

(Eπ

∆

)]
, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)
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FIG. 1: Upper and lower bounds on the form factors from
dispersion relations, where q̂2 = q2/m2

B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.

Type of Error Variation From δ|Vub|Br δ|Vub|q
2

Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop→ 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit
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To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)
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B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.

Type of Error Variation From δ|Vub|Br δ|Vub|q
2

Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop→ 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit
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the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely
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(
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where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve
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In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)
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(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.
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TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit
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the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely
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(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
1+O

(Eπ
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)]
, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,
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In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)
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B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.
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b 4.88 ± 0.40 ±0.1% ±0.2%
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TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit
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the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
1+O

(Eπ

∆

)]
, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2
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3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)
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bounds F± derived with the SCET point, 3 lattice points,
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lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.
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TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit
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the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely
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(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
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where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,
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In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)
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and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.
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sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit
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the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
1+O

(Eπ

∆

)]
, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)
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Type of Error Variation From δ|Vub|Br δ|Vub|q
2

Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop→ 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit

•

• integrate

3

the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
1+O

(Eπ

∆

)]
, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,
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0 + a2

1 + a2
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3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)

0.8

0.6

0.4

0.2

0.0
2520151050

q2

1- q2( ) f (q2)

f = f0

f = f+

FIG. 1: Upper and lower bounds on the form factors from
dispersion relations, where q̂2 = q2/m2

B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.

Type of Error Variation From δ|Vub|Br δ|Vub|q
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Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop→ 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit

dΓ
dq2
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use only the total Branching ratio

|Vub| = (3.96 ± 0.20 ± 0.56)× 10−3

• use Lellouch method to account for theory uncertainty

{

expt
{
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(with f i = f i
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|Vub| = 4.13× 10−3 )
5%

without SCET bound error is ±12%
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the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
1+O

(Eπ

∆

)]
, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)
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Bounds F+ versus F− ±0.6% ±0.04%
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b 4.88 ± 0.40 ±0.1% ±0.2%
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TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit

χ2 =
17∑

i=1

[Brexp
i − Bri(Vub, F±)]2

(δBri)2
+

[f0
in − f0]2

(δf0)2
+

[f4
in − f4]2

(δf4)2
+

3∑

i,j=1

[
f i
in − f i

][
f j
in − f j

]
(E−1)ij ,

• use Minuit to minimize χ2 w.r.t.  |Vub|, f0−4
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Figure 5 presents the obtained q2 distributions for the two decay modes, overlaid with the
best fits of FF shapes to the data. To be self-consistent, the shape of a particular FF model
is fit to the q2 distribution extracted with that FF model. The quality of the fit in terms of
χ2 and the probability of χ2, shown in Table I and II, may provide one way to discriminate
among the models. At the present accuracy, we are unable to draw any conclusion on this
point.
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FIG. 5: Extracted q2 distrubution for the B0 → π−"+ν(left) and B0 → ρ−"+ν(right) decays. Data

points are shown for different FF models used to estimate the detection efficiency. Lines are for
the best fit of the FF shapes to the obtained q2 distribution.

We extract |Vub| using the relation,

|Vub| =

√

√

√

√

B(B0 → π−(ρ−)$+ν)

Γ̃thy τB0

, (4)

where Γ̃thy is the form-factor normalization, predicted from theories. In this paper, our
major focus is on the |Vub| determination based on the π−$+ν data and the form factor
predicted by LQCD calculations. Since the current LQCD calculations are available only in
the region q2 ≥ 16 GeV2/c2, we use the branching fraction in the high q2 bin extracted with
UKQCD; B≥16 = (0.45 ± 0.16) × 10−4. We use τB0 = 1.536 ± 0.014 ps for the B0 lifetime
[20].

We apply Γ̃thy predicted by the FNAL [23], JLQCD [24], APE [6] as well as UKQCD
calculations, as quoted by the CLEO analysis in 2003 [6]. For the average of these results,
the combined Γ̃thy = 1.92+0.32

−0.12 ± 0.47 ps−1 calculated by CLEO work is used. Here the
errors are the statistical and the systematic in LQCD calculations, the latter including the
quenching error of 15%. We obtain

|Vub|
π"ν
(q2≥16) = (3.90 ± 0.71 ± 0.23+0.62

−0.48) × 10−3, (5)
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either the F+ or F− solutions from Eq. (17). The two dashed
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FIG. 3: The curves are as in Fig.2, but for the decay rate.

we exploit the q2 shape information. To do this we define

χ2 =
17∑

i=1

[Brexp
i − Bri(Vub, F±)]2

(δBri)2
+

[f0
in − f0]2

(δf0)2
(19)

+
[f4

in − f4]2

(δf4)2
+

3∑

i,j=1

[
f i
in − f i

][
f j
in − f j

]
(E−1)ij ,

and minimize χ2 as a function of |Vub| and f0−4. χ2

contains both experimental and theoretical errors, with
E−1 the inverse error matrix. By allowing f 0−4 in F± to
move away from f 0−4

in the theoretical rate is allowed to
adjust itself based on the experimental q2 shape.

Minimizing (19) gives χ2/(dof) = 1.04 and

|Vub| = (3.54 ± 0.47)× 10−3 . (20)

Results for f+(q2) and dΓ/dq2 are shown by the black
solid curves in Figs. 2 and 3. Eq.(20) has a total error of
13%. If we fix f0−4 = f0−4

in then the experimental error is
4.9%, ie. δ|Vub| = ±0.17. The remainder, δ|Vub| = ±0.44
is from the input points, so the q2 spectra brought this
theory error down to 12%. Other uncertainties are small
as shown in Table I. The experimental spectra favor a
larger form factor between the lattice and SCET points.
This decreases the value of |Vub| from that in (18). Using
Eqs. (12,15) this fit yields

f+(0) = 0.227± 0.047 , g fB = 96 ± 29 MeV , (21)

consistent with our inputs. This f+(0) has 21% error.

If we entirely remove the SCET point f 0 from Eq.(19)
then we obtain a fit that uses only semileptonic data,
shown by the dashed red lines in Figs. 2 and 3. The
spectrum is now determined less precisely at small q2,
since this data only bounds the area in the smallest q2-
bin. The result is |Vub| = (3.56 ± 0.48) × 10−3. It has
the same input point error as Eq.(20) and a somewhat
larger bound error, δ|Vub| = 1.8%. Turning the use of
Eq.(12) around, we can combine it with f+(0) to get an
independent method of fixing |Vub| from the nonleptonic
data. The semileptonic fit gives f+(0) = 0.25 ± 0.06, so
Eq.(12) yields |Vub|nonlep = (2.9 ± 1.0)× 10−3.

Our final result for |Vub| is given in (20). The final the-
ory error is dominated by the lattice points, and is very
close to their error. It will decrease with this error in
the future. See also [22]. To go beyond the analysis here
it will be interesting to study the additional error cor-
relation implied by the dispersion relations when lattice
input points are included that are closer together.
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FIG. 2: Results from the χ2 fit of |Vub| and f0−4 to the q2

spectra (q̂2 = q2/m2
B∗). The two solid lines are obtained using

either the F+ or F− solutions from Eq. (17). The two dashed
lines repeat this analysis without using the SCET point.
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FIG. 3: The curves are as in Fig.2, but for the decay rate.

we exploit the q2 shape information. To do this we define

χ2 =
17∑

i=1

[Brexp
i − Bri(Vub, F±)]2

(δBri)2
+

[f0
in − f0]2

(δf0)2
(19)

+
[f4

in − f4]2

(δf4)2
+

3∑

i,j=1

[
f i
in − f i

][
f j
in − f j

]
(E−1)ij ,

and minimize χ2 as a function of |Vub| and f0−4. χ2

contains both experimental and theoretical errors, with
E−1 the inverse error matrix. By allowing f 0−4 in F± to
move away from f 0−4

in the theoretical rate is allowed to
adjust itself based on the experimental q2 shape.

Minimizing (19) gives χ2/(dof) = 1.04 and

|Vub| = (3.54 ± 0.47)× 10−3 . (20)

Results for f+(q2) and dΓ/dq2 are shown by the black
solid curves in Figs. 2 and 3. Eq.(20) has a total error of
13%. If we fix f0−4 = f0−4

in then the experimental error is
4.9%, ie. δ|Vub| = ±0.17. The remainder, δ|Vub| = ±0.44
is from the input points, so the q2 spectra brought this
theory error down to 12%. Other uncertainties are small
as shown in Table I. The experimental spectra favor a
larger form factor between the lattice and SCET points.
This decreases the value of |Vub| from that in (18). Using
Eqs. (12,15) this fit yields

f+(0) = 0.227± 0.047 , g fB = 96 ± 29 MeV , (21)

consistent with our inputs. This f+(0) has 21% error.

If we entirely remove the SCET point f 0 from Eq.(19)
then we obtain a fit that uses only semileptonic data,
shown by the dashed red lines in Figs. 2 and 3. The
spectrum is now determined less precisely at small q2,
since this data only bounds the area in the smallest q2-
bin. The result is |Vub| = (3.56 ± 0.48) × 10−3. It has
the same input point error as Eq.(20) and a somewhat
larger bound error, δ|Vub| = 1.8%. Turning the use of
Eq.(12) around, we can combine it with f+(0) to get an
independent method of fixing |Vub| from the nonleptonic
data. The semileptonic fit gives f+(0) = 0.25 ± 0.06, so
Eq.(12) yields |Vub|nonlep = (2.9 ± 1.0)× 10−3.

Our final result for |Vub| is given in (20). The final the-
ory error is dominated by the lattice points, and is very
close to their error. It will decrease with this error in
the future. See also [22]. To go beyond the analysis here
it will be interesting to study the additional error cor-
relation implied by the dispersion relations when lattice
input points are included that are closer together.
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expt. spectrum prefers a 
larger form factor in 
                        region  

•

5–10 GeV2

• Here the SCET point constrains 
the spectrum, but does not 
change the determination of Vub

Fit to expt. spectra & input points

∼

f+(0) = 0.25± 0.06
Type of Error Variation From δ|Vub|q

2

Input Points 1-σ correlated errors ±13%
Bounds F+ versus F− < 1%
mpole

b 4.88 ± 0.40 < 1%
OPE order 2 loop → 1 loop < 1%

no SCET:
similar to sum-rules

Fit gives:

with SCET: f+(0) = 0.23± 0.05

Method II



χ2     fits to data & input pts. 
with dispersion relations

My Average for this method:

|Vub| = 3.92 ± 0.52 total error
(4% expt.)

13% This includes the information
in the pure lattice method103×

HPQCD
FNAL

expt. &
theory

|Vub| = 3.72 ± 0.52
|Vub| = 4.11 ± 0.52

χ2/(dof) ∼ 1.0

103×
103×

(without SCET point)
Lepton Photon ‘05
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Compare Vub’s

|Vub|treated as output
in global CKM = (3.53+0.22

−0.21)× 10−3

|Vub|excl = (3.92 ± 0.52)× 10−3

•

•

|Vub|incl = (4.38 ± 0.33)× 10−3 (HFAG - EPS’05)

•

(CKMfitter)

(Lattice + Disp. Analysis
+ Expt. spectrum)

|Vub| = 3.27 ± 0.25+0.54
−0.37 ×10−3)(

Babar (LP’05)

expt. theory

q2 < 16 GeV2
Light-cone sum rules

(Ball & Zwicky)
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Outlook

• The SCET can be applied to:

• A lot of theory and phenomenology left to study ...

Nonleptonic decays, Other B decays
Jet physics, Exclusive form factors
Charmonium, Upsilon physics
... others ?

• There is an EFT for processes with energetic jets or hadrons 

• We now have the tools to systematically study power corrections

universal hadronic parameters, strong phases
γ (or α) from individual B →M1M2 channels

predictions for the size of amplitudes

color suppressed decays,  inclusive decays

Exclusive Vub from dispersion + Lattice + spectra•

• Nonleptonics



Looking into the Future 

Sort out puzzles in 

clarify agreement / disagreement between Sη′KS , SφKs , and sin(2β)

improved determination of α, β, γ

precision determination of |Vub|

match theoretical limits for sensitivity in B → Xsγ and B → Xs"+"−

observation of B → ργ and B → τν

B → ππ and B → Kπ

.... and of course,  the unexpected.

at B-factories





B → Xsγ

B → Dπ

B → π"ν̄

B → K∗γ
Plan for this talk:

B → ππB → ρρ

B → Kπ

B → ργ• B → Xu!ν̄



mW

?

mb

ΛQCD

λ1 = VubV
∗
ud

λi = CKM,Hweak =
GF√

2

∑

i

λiCi(µ)Oi(µ)

b u

d
u

W

b u

u

d

mc

ms

mu,d

Operator Product Expansion (I)

•

perturbative QCD

mW ,mt ! mb
u
u

b

W

d

g

db

uu

db

uu

u,c

Decays like B → Xsγ & B → Kπ

have contributions from         operators  ∼ 12



mW

?

mb

ΛQCD

mc

ms

mu,d

Operator Product Expansion (II)

•

 
b

B-meson

Γ = c(0)f (0) +
1

mb
c(1)f (1) + . . .

mb ! ΛQCD

Heavy Quark Effective Theory

Justifies free quark decay as leading 
approximation

Operator Product Expansion for Inclusive Decays
•

hv, q

αs(mb) ! 0.2Λ
mb
! 0.1,

•

subleading terms are crucial 
for precision phenomenology



mW

?

mb

ΛQCD

mc

ms

mu,d

mq

a−1

Unquenched Lattice QCD

Unquenched !

det(/D + m) != 1

Now:
• Focus on “Gold Plated Observables” for high precision 

- matrix elements with at most one hadron in initial and final state
- at least 100MeV  below threshold, or small widths

• Results for a broad spectrum of observables are 
obtained using common inputs

 tests, predictions, and impact

• Systematic/parametric estimates of uncertainties using 
effective field theory methods.  eg. heavy quarks:
-                             NRQCD,   Fermilab action, RHQ actionmQ ! ΛQCD

nonperturbative
QCD

• Simulate “real QCD”.  Use nf=2+1  light flavors, 
quark masses          light enough for extrapolation with 
chiral perturbation theory (or PQChPT)

mq

} ChPT ,
PQChPT



mW

?

mb

ΛQCD

mc

ms

mu,d

√
ΛE

E

}
Q

Factorization Theorems

Energetic Hadrons

Soft-Collinear Effective Theory (SCET)

Eπ ! ΛQCD
B! !

eg.

Bauer, Pirjol, I.S.
Fleming, Luke, 

many other authors

Introduce fields for infrared d.o.f.
collinear: ξn,Aµ

n
n
µ

!

soft: B hv,qs,Aµ
s

Separate physics at different momentum scales •
• Model independent, systematically improvable

L = L(0) + L(1) + L(2) + . . .
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mb

ΛQCD

mc

ms

mu,d

√
ΛE

E

}
Q

Factorization Theorems

Energetic Hadrons

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

ξn,Aµ
n

ξn̄, Aµ
n̄

hv,qs,Aµ
s

Eπ ! ΛQCD
B! !

eg.

A =
∫

dzdxidk+T (z) J(z, xi, k
+) φ1(x1)φ2(x2)φB(k+) + . . .

!!

} } }

Λ2EΛQ2



Nonleptonic Decays



B → Kπ Is there a  K-pi  CP Puzzle ?

• Direct-CP sum rule: Gronau, Rosner

Expand in
∣∣∣∣
V ∗

usVub

V ∗
csVcb

∣∣∣∣
T

P

∣∣∣∣
V ∗

usVub

V ∗
csVcb

∣∣∣∣
C

P
, ,

{0.02

∆(f) = ACP (f)ΓCP
avg(f)

ΓCP
avg(π

−K̄0)

∆(K̄0π0)− 1
2
∆(K+π−) + ∆(K+π0) = O(ε2)

no puzzle here yet

ε =• Br sum rule:

R(f) =
Γ(B → f)

Γ(B̄0 → π−K̄0)

R(π0K−)− 1
2
R(π−K+) + R(π0K0) = O(ε2)

Lipkin, many authors

0.094± 0.073 = O(ε2)< .03

P (t,c)
ew

P

my estimate 
from factorization

in SCET

0.058± 0.070 = O(ε2)< 0.007

no puzzle here yet
my estimate 

from factorization
in SCET



SU(3),  global fits to data •
Chiang, Gronau, Luo, 

Rosner, Suprun 

(Neglect E, A, PA amplitudes)

0 25 50 75 100 125 150 175

30

40

50

60

70

Global PP fit

!

"212 parameters, 18 predictions
ππ,KK, πη, πη′Kπ,Kη,Kη′

γ = 61◦ ± 11◦ agrees with
global fit

Br(K+π−), Br(K0π0), ACP(K0π0) give ∆χ2 = (2.7, 5.9, 2.9)

hints of a puzzle? see also Buras et al.;  Kim et al.

better agreement when 
one adds new Babar data 

• SCET  based fit
Bauer, Rothstein, I.S. (to appear)

pre-LP’05 
data
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hints of a puzzle?

6 parameters + 2 fixed by SU(3)

γ = 59◦ fixed



All  Constraints Constraintsα, β, γ

• constraints from angles dominate, will scale with statistics

β: B → ψKα: B → ρρ
γ: B → DK

• other measurements test the SM, constrain new flavor physics

• Think of Hweak =
∼100∑

i=1

CiOi where SM relates the Ci

and all these connections need to be tested
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