SCET - Recent Developments

Iain Stewart MIT

Chamonix, 2005

Soft - Collinear Effective Theory

Bauer, Pirjol, Stewart
Fleming, Luke, ...

An effective field theory for energetic hadrons \& jets

$$
E \gg \Lambda_{\mathrm{QCD}}
$$

Effective Field Theory

- Separate physics at different momentum scales
- Model independent, systematically improvable
- Power expansion, can estimate uncertainty
- Exploit symmetries
- Resum Sudakov logarithms

Soft Collinear Effective Theory

eg.

Pion has: $\quad p_{\pi}^{\mu}=(2.3 \mathrm{GeV}) n^{\mu}=Q n^{\mu} \quad n^{2}=\bar{n}^{2}=0,\left(\bar{n} \cdot p=p^{-}\right)$
Soft constituents:

$$
p_{s}^{\mu}=\left(p^{+}, p^{-}, p^{\perp}\right) \sim(\Lambda, \Lambda, \Lambda)
$$

Collinear constituents:

$$
\begin{aligned}
& \text { near constituents: } \\
& p_{c}^{\mu}=\left(p^{+}, p^{-}, p^{\perp}\right) \sim\left(\frac{\Lambda^{2}}{Q}, Q, \Lambda\right) \sim Q\left(\lambda^{2}, 1, \lambda\right) \quad \lambda=\frac{\Lambda}{Q}
\end{aligned}
$$

Degrees of freedom in SCET

Introduce fields for infrared degrees of freedom (in operators)

$$
\begin{array}{cccc}
\text { modes } & p^{\mu}=(+,-, \perp) & p^{2} & \text { fields } \\
\hline \text { collinear } & Q\left(\lambda^{2}, 1, \lambda\right) & Q^{2} \lambda^{2} & \xi_{n}, A_{n}^{\mu} \\
\text { soft } & Q(\lambda, \lambda, \lambda) & Q^{2} \lambda^{2} & q_{s}, A_{s}^{\mu} \\
\text { usoft } & Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) & Q^{2} \lambda^{4} & q_{u s}, A_{u s}^{\mu}
\end{array}
$$

$\mathrm{SCET}_{\mathrm{I}} \quad$ Energetic jets $\quad \Lambda^{2} \ll Q \Lambda \ll Q^{2}$

usoft	$p^{\mu} \sim \Lambda$
collinear	$p_{c}^{2} \sim Q \Lambda, \quad \lambda=\sqrt{\Lambda / Q}$

$\mathrm{SCET}_{\text {II }}$
Energetic hadrons
$\begin{array}{ll}\text { soft } & p^{\mu} \sim \Lambda \\ \text { collinear } & p_{c}^{2} \sim \Lambda^{2}, \quad \lambda=\Lambda / Q\end{array}$

Processes

$$
\begin{array}{ccc}
\text { Processes } & B \rightarrow D \pi & \\
B \rightarrow X_{u} \ell \bar{\nu} & B \rightarrow X_{s} \gamma & B \rightarrow K^{*} \gamma \\
B \rightarrow \pi \ell \bar{\nu} & B \rightarrow \rho \rho \quad B \rightarrow \pi \pi \\
B \rightarrow D^{*} \eta^{\prime} & B \rightarrow K \pi & B \rightarrow \gamma \ell \bar{\nu}
\end{array}
$$

m_{W}

$$
\begin{gathered}
B \rightarrow K \pi \gamma \quad \underset{B \rightarrow \pi \gamma \ell \bar{\nu}}{B \rightarrow} K \pi \ell^{+} \ell^{-} \\
B
\end{gathered}
$$

$$
e^{+} e^{-} \rightarrow J / \psi X \quad \Upsilon \rightarrow V \gamma \quad \Upsilon \rightarrow X \gamma
$$

Λ_{QCD}
m_{s}

$$
\begin{gathered}
e^{-} p \rightarrow e^{-} X \quad p \bar{p} \rightarrow \ell \bar{\ell} X \quad e^{+} e^{-} \rightarrow \text { jets } \\
\gamma^{*} M_{1} \rightarrow M_{2} \quad \gamma^{*} \gamma \rightarrow \pi^{0}
\end{gathered}
$$

Factorization

Factorization

- Separation of scales and Decoupling
eg. $\bar{u} \Gamma b$

$\longrightarrow \bar{\xi}_{n} W \Gamma h_{v}$ integrate out offshell quarks
$\longrightarrow\left(\bar{\xi}_{n} W\right) \Gamma\left(Y^{\dagger} h_{v}\right)$ usoft-collinear factorization (field redefn.)
$\longrightarrow \int d \omega C(\omega)\left(\bar{\xi}_{n} W\right)_{\omega} \Gamma\left(Y^{\dagger} h_{v}\right)$ hard-collinear factorization

$$
\begin{gathered}
\omega \sim p_{c}^{-} \sim Q \\
W=P \exp \left(i g \int_{-\infty}^{y} d s \bar{n} \cdot A_{n}\left(s \bar{n}^{\mu}\right)\right) \\
S=P \exp \left(i g \int_{-\infty}^{y} d s n \cdot A_{s}\left(s n^{\mu}\right)\right) \\
Y=P \exp \left(i g \int_{-\infty}^{y} d s n \cdot A_{u s}\left(s n^{\mu}\right)\right)
\end{gathered}
$$

- operators are gauge invariant, so factorization is too

Factorization Theorems

$$
\begin{aligned}
& \text { eg. } \quad E_{\pi} \gg \Lambda_{\mathrm{QCD}} \\
& A=\int d z d x_{i} d \underbrace{\underbrace{J\left(z, x_{i}, k^{+}\right)}_{>\mathrm{E} \Lambda} \phi_{1} \underbrace{\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{B}\left(k^{+}\right)}_{\Lambda^{2}}+\ldots}_{Q^{2}>k^{+} T(z)}
\end{aligned}
$$

SCET $_{\text {I }}$ Lagrangians

Expansion:

$$
\begin{align*}
& \mathcal{L}_{c}^{(0)}=\bar{\xi}_{n}\left\{n \cdot i D+i D_{c}^{\perp} W \frac{1}{\overline{\mathcal{P}}} W^{\dagger} i \not D_{c}^{\perp}\right\} \frac{\not{n}}{2} \xi_{n} \\
& \mathcal{L}_{u s, s}^{(0)}=\bar{q} i \not D q \\
& \mathcal{L}_{\xi q}^{(1)}=\bar{\xi}_{n} W \frac{1}{\overline{\mathcal{P}}} W^{\dagger}\left(i g \not \nabla_{c}^{\perp}\right) W Y^{\dagger} q_{u s}+\text { h.c. } \\
& \mathcal{L}^{(2)} \quad \text { known }
\end{align*}
$$

- Same (subleading!) Lagrangians for all processes
- Many processes require subleading Lagrangians or they vanish

Factorization

- $\bar{B}^{0} \rightarrow D^{+} \pi^{-}, B^{-} \rightarrow D^{0} \pi^{-}$
B, D are soft, π collinear

$$
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{s}^{(0)}+\mathcal{L}_{c}^{(0)}
$$

Factorization if $\mathcal{O}=O_{c} \times O_{s}$

$$
\langle D \pi|(\bar{c} b)(\bar{u} d)|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)
$$

- $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$

Mantry, Pirjol, I.S.

$$
\begin{aligned}
A_{00}^{D^{(*)} \pi}= & N_{0}^{(*)} \int d x d z d k_{1}^{+} d k_{2}^{+} T^{(i)}(z) J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right) S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right) \phi_{\pi}(x) \\
& +A_{\text {long }}^{D^{(*)} \pi}
\end{aligned}
$$

$$
\frac{\Lambda}{E_{M}} \& \frac{1}{N_{c}} \text { suppressed }
$$

Color Suppressed Decays

- Factorization with SCET

 Single class of power suppressed $\operatorname{SCET}_{\text {I }}$ operators $T\left\{\mathcal{O}^{(0)}, \mathcal{L}_{\xi q}^{(1)}, \mathcal{L}_{\xi q}^{(1)}\right\}$

- with HQET for $\left\langle D^{(*) 0} \pi\right|(\bar{c} b)(\bar{d} u)\left|\bar{B}^{0}\right\rangle \quad$ get $\quad \frac{p_{\pi}^{\mu}}{m_{c}} \rightarrow \frac{E_{\pi}}{m_{c}}=1.5$
not a convergent expansion

Expt Average (Cleo, Belle, Babar):

Extension to isosinglets:

Blechman, Mantry, I.S.
isospin triangle

Not yet tested:

- $\operatorname{Br}\left(D^{*} \rho_{\|}^{0}\right) \gg \operatorname{Br}\left(D^{*} \rho_{\perp}^{0}\right), \quad \operatorname{Br}\left(D^{* 0} K_{\|}^{* 0}\right) \sim \operatorname{Br}\left(D^{* 0} K_{\perp}^{* 0}\right)$
- equal ratios $D^{(*)} K^{*}, D_{s}^{(*)} K, D_{s}^{(*)} K^{*}$; triangles for $D^{(*)} \rho, D^{(*)} K$

Heavy to Light Currents

What's new?

one-loop matching \& running for $J^{(1 b)}$

Beneke, Kiyo, Yang
Becher, Hill, Neubert
complete basis of $J^{(2)}$ operators is known

Beneke, Campanario, Mannel, Pecjak
incl. Dirac structures and RPI constraints

Arnesen, Kundu, I.S.

$$
J^{(0)}(\omega)=\bar{\chi}_{n, \omega} \Gamma \mathcal{H}_{v}
$$

$$
J^{(1 a)}(\omega)=\frac{1}{\omega} \bar{\chi}_{n, \omega} \mathcal{P}_{\alpha}^{\perp \dagger} \Theta_{(a)}^{\alpha} \mathcal{H}_{v}
$$

$$
J^{(1 b)}\left(\omega_{1,2}\right)=\frac{1}{m} \bar{\chi}_{n, \omega_{1}}\left(i g \mathcal{B}_{\alpha}^{\perp}\right)_{\omega_{2}} \Theta_{(b)}^{\alpha} \mathcal{H}_{v}
$$

$$
J^{(2 a)}(\omega)=\frac{1}{2 m} \bar{\chi}_{n, \omega} \Upsilon_{(a)}^{\sigma} i \mathcal{D}_{u s \sigma}^{T} \mathcal{H}_{v}
$$

$J^{(2 g)}\left(\omega_{1,2}\right)=\frac{1}{m n \cdot v} \bar{\chi}_{n, \omega_{1}}\left\{(i g n \cdot \mathcal{B})_{\omega_{2}}+2\left(i g \mathcal{B}_{\perp}\right)_{\omega_{2}} \cdot \mathcal{P}_{\perp}^{\dagger} \frac{1}{\overline{\mathcal{P}}^{\dagger}}\right\} \Upsilon_{(g)} \mathcal{H}_{v}$,
$J^{(2 h)}\left(\omega_{1,2,3}\right)=\frac{1}{m\left(\omega_{2}+\omega_{3}\right)} \bar{\chi}_{n, \omega_{1}}\left(i g \mathcal{B}_{\beta}^{\perp}\right)_{\omega_{2}}\left(i g \mathcal{B}_{\alpha}^{\perp}\right)_{\omega_{3}} \Upsilon_{(h)}^{\alpha \beta} \mathcal{H}_{v}$,
$\begin{aligned} J^{(2 i)}\left(\omega_{1,2,3}\right) & =\frac{1}{m\left(\omega_{2}+\omega_{3}\right)} \operatorname{Tr}\left[\left(i g \mathcal{B}_{\beta}^{\perp}\right)_{\omega_{2}}\left(i g \mathcal{B}_{\alpha}^{\perp}\right)_{\omega_{3}}\right] \bar{\chi}_{n, \omega_{1}} \Upsilon_{(i)}^{\alpha \beta} \mathcal{H}_{v} .\end{aligned}$
$\&$ four quark operators
Wilson

$$
J^{(2 b)}(\omega)=-\frac{n \cdot v}{\omega} \bar{\chi}_{n, \omega} i \bar{n} \cdot \overleftarrow{\mathcal{D}}_{u s} \Upsilon_{(b)} \mathcal{H}_{v}
$$ coefficients and Dirac

$$
J^{(2 c)}(\omega)=-\frac{1}{\omega} \bar{\chi}_{n, \omega} \overleftarrow{\mathcal{D}}_{u s \alpha}^{\perp} \Upsilon_{(c)}^{\alpha} \mathcal{H}_{v}
$$ structures

$$
J^{(2 d)}(\omega)=\frac{1}{\omega^{2}} \bar{\chi}_{n, \omega} \mathcal{P}_{\alpha}^{\perp \dagger} \mathcal{P}_{\beta}^{\perp \dagger} \Upsilon_{(d)}^{\alpha \beta} \mathcal{H}_{v}
$$ completely determined

$$
\left.J^{(2 e)}\left(\omega_{1,2}\right)=\frac{1}{m\left(\omega_{1}+\omega_{2}\right)} \bar{\chi}_{n, \omega_{1}}\left(i g \mathcal{B}_{\alpha}^{\perp}\right)_{\omega_{2}} \mathcal{P}_{\beta}^{\perp \dagger} \Upsilon_{(e)}^{\alpha \beta} \mathcal{H}_{v},\right] \quad \text { by RPI }
$$

$$
J^{(2 f)}\left(\omega_{1,2}\right)=\frac{\omega_{2}}{m\left(\omega_{1}+\omega_{2}\right)} \bar{\chi}_{n, \omega_{1}}\left(\frac{\mathcal{P}_{\beta}^{\perp}}{\omega_{2}}+\frac{\mathcal{P}_{\beta}^{\perp \dagger}}{\omega_{1}}\right)\left(i g \mathcal{B}_{\alpha}^{\perp}\right)_{\omega_{2}} \Upsilon_{(f)}^{\alpha \beta} \mathcal{H}_{v},
$$

lic^{2}

Inclusive B-Decays

Inclusive Decays

endpt. region

What's new? eg. :

- Event generator Neubert, Lange, Paz
- Subleading shape functions

$$
B \rightarrow X_{u} e \bar{\nu}
$$

Keith Lee, I.S.; Bosch et al.; Beneke et al.

$$
\left|V_{u b}\right|^{\text {incl }}=(4.38 \pm 0.33) \times 10^{-3}
$$

Factorization at NLO

- derive factorization theorems at subleading order
- complete categorization of all terms at $\frac{\Lambda}{m_{b}}$
- all orders in α_{s}
$J=J^{(0)}+J^{(1)}+J^{(2)}+\ldots$
$\mathcal{L}=\mathcal{L}_{c}^{(0)}+\mathcal{L}_{u s}^{(0)}+\mathcal{L}_{\xi q}^{(1)}+\mathcal{L}_{j}^{(1)}+\mathcal{L}_{j}^{(2)}+\ldots$

LO: $\quad T\left\{J^{(0)}, J^{(0) \dagger}\right\}$

$$
\text { zero: } T\left\{J^{(0)}, J^{(1) \dagger}\right\}+\text { h.c. }+T\left\{J^{(0)}, \mathcal{L}^{(1)}, J^{(0)}\right\}
$$

NLO: $\quad T\left\{J^{(0)}, J^{(2) \dagger}\right\}+$ h.c. $+T\left\{J^{(1)}, J^{(1) \dagger}\right\}$

$$
+T\left\{J^{(0)}, \mathcal{L}^{(1)}, \mathcal{L}^{(1)}, J^{(0) \dagger}\right\}+\ldots
$$

Leading Order

T-product \begin{tabular}{ccc}

Example Diagram \& | Hard, Jet, and |
| :---: |
| Shape Functions |

\hline
\end{tabular}

Next to Leading Order

T-product
Example Diagram

Hard, Jet, and Shape Functions

$$
+\sum_{r=3}^{4} \frac{h_{i}^{r f}(\bar{n} \cdot p)}{m_{b}} \int d k_{1}^{+} d k_{2}^{+} \mathcal{J}_{3 \pm 4}^{(-2)}\left(\bar{n} \cdot p k_{j}^{+}, \mu\right) g_{r}^{(4)}\left(k_{j}^{+}+r^{+}, \mu\right)
$$

$$
+\sum_{r=5}^{6} \frac{h_{i}^{r f}(\bar{n} \cdot p)}{\bar{n} \cdot p} \int d k_{1}^{+} d k_{2}^{+} d k_{3}^{+} \mathcal{J}_{2}^{(-4)}\left(\bar{n} \cdot p k_{j^{\prime}}^{+}, \mu\right) g_{r}^{(6)}\left(k_{j^{\prime}}^{+}+r^{+}, \mu\right)
$$

$$
+\sum_{r=7}^{8} \frac{h_{i}^{r f}(\bar{n} \cdot p)}{\bar{n} \cdot p} \int d k_{1}^{+} d k_{2}^{+} d k_{3}^{+}\left[\mathcal{J}_{3}^{(-4)}\left(\bar{n} \cdot p k_{j^{\prime}}^{+}, \mu\right) g_{r}^{(6)}\left(k_{j^{\prime}}^{+}+r^{+}, \mu\right)\right.
$$

$$
\left.+\mathcal{J}_{4}^{(-4)}\left(\bar{n} \cdot p k_{j^{\prime}}^{+}, \mu\right) g_{r+2}^{(6)}\left(k_{j^{\prime}}^{+}+r^{+}, \mu\right)\right]
$$

$$
+\sum_{m=1,2} \int d z_{1} d z_{2} \frac{h_{i}^{[2 b] m+8}\left(z_{1}, z_{2}, \bar{n} \cdot p\right)}{m_{b}} \int_{0}^{p_{X}^{+}} d k^{+} \mathcal{J}_{m}^{(2)}\left(z_{1}, z_{2}, p_{X}^{-} k^{+}\right) f^{(0)}\left(k^{+}+\bar{\Lambda}-p_{X}^{+}\right)
$$

$$
+\sum_{m=3,4} \frac{h_{i}^{[2 d] m+8}(\bar{n} \cdot p)}{m_{b}} \int_{0}^{p_{X}^{+}} d k^{+} \mathcal{J}_{m}^{(2)}\left(p_{X}^{-} k^{+}\right) f^{(0)}\left(k^{+}+\bar{\Lambda}-p_{X}^{+}\right)
$$

$$
+\sum_{m=5}^{10} \int d z_{1} \frac{h_{i}^{[2] m+8}\left(z_{1}, \bar{n} \cdot p\right)}{m_{b}} \int_{0}^{p_{X}^{+}} d k^{+} \mathcal{J}_{m}^{(2)}\left(z_{1}, p_{X}^{-} k^{+}\right) f^{(0)}\left(k^{+}+\bar{\Lambda}-p_{X}^{+}\right)
$$

$$
+W_{i}^{[2 L a] f}\left[g_{11,12}^{(2)}\right]+W_{i}^{[2 L b] f}\left[g_{13,14}^{(2)}\right]+W_{i}^{[2 L L] f}\left[g_{15-26}^{(4)}\right]+W_{i}^{[2 G a] f f}\left[f_{3,4}^{(4)}\right]
$$

+ phase space \& kinematic corrections

$$
\begin{aligned}
& \frac{h_{i}^{0 f}(\bar{n} \cdot p)}{2 m_{b}} \int_{0}^{p_{X}^{+}} d k^{+} \mathcal{J}^{(0)}\left(\bar{n} \cdot p k^{+}, \mu\right) f_{0}^{(2)}\left(k^{+}+r^{+}, \mu\right) \\
& +\sum_{r=1}^{2} \frac{h_{i}^{r f}(\bar{n} \cdot p)}{m_{b}} \int_{0}^{p \frac{p}{x}} d k^{+} \mathcal{J}^{(0)}\left(\bar{n} \cdot p k^{+}, \mu\right) f_{r}^{(2)}\left(k^{+}+r^{+}, \mu\right) \\
& +\sum_{r=3}^{4} \frac{h_{1}^{r f}(\bar{n} \cdot p)}{m_{b}} \int d k_{1}^{+} d k_{2}^{+} \mathcal{J}_{122}^{(-2)}\left(\bar{n} \cdot p k_{j}^{+}, \mu\right) f_{r}^{(4)}\left(k_{j}^{+}+r^{+}, \mu\right) \\
& +\sum_{r=5}^{6} \frac{h_{1}^{r f}(\bar{n} \cdot p)}{\bar{n} \cdot p} \int d k_{1}^{+} d k_{2}^{+} d k_{3}^{+} \mathcal{J}_{1}^{(-4)}\left(\bar{n} \cdot p k_{j}^{+}, \mu\right) f_{r}^{f(6)}\left(k_{j^{+}}^{+}+r^{+}, \mu\right)
\end{aligned}
$$

- keep $\frac{\Lambda}{m_{b}}$ and $4 \pi \alpha_{s} \frac{\Lambda}{m_{b}}$

- model these subleading shape functions to get uncertainties
(\& interpolate to local OPE)

$$
\begin{gathered}
B \rightarrow \pi \pi, \quad B \rightarrow \pi \ell \bar{\nu} \\
\& \quad\left|V_{u b}\right|
\end{gathered}
$$

Factorization (with SCET)

Factorization at m_{b}

Bauer, Pirjol,
Rothstein, I.S.
Nonleptonic $\quad B \rightarrow M_{1} M_{2}$

$$
A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2}} \zeta^{B M_{1}} \int d u T_{2 \zeta}(u) \phi^{M_{2}}(u)+f_{M_{2}} \int d u d z T_{2 J}(u, z) \zeta_{J}^{B M_{1}}(z) \phi^{M_{2}}(u)+(1 \leftrightarrow 2)\right\}
$$

Form Factors

$$
\begin{aligned}
& B \rightarrow \text { pseudoscalar: } f_{+}, f_{0}, f_{T} \\
& B \rightarrow \text { vector: } V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}
\end{aligned}
$$

$$
\begin{aligned}
f(E)= & \int d z T(z, E) \zeta_{J}^{B M}(z, E) & \} & \begin{array}{l}
\text { "hard spectator", } \\
\text { "factorizable" }
\end{array} \rightarrow \text { universality at } \\
& +C(E) \zeta^{B M}(E) & \} \begin{array}{l}
\text { "soft form factor", }
\end{array} & \text { "non-factorizable" }
\end{aligned}
$$

Factorization at $\sqrt{E \Lambda}$

$$
\begin{aligned}
\zeta_{J}^{B M}(z) & =f_{M} f_{B} \int_{0}^{1} d x \int_{0}^{\infty} d k^{+} J\left(z, x, k^{+}, E\right) \phi_{M}(x) \phi_{B}\left(k^{+}\right) \\
\zeta^{B M} & =? \quad \text { (left as a form factor) }
\end{aligned}
$$

$\operatorname{Br}\left(B \rightarrow \pi^{0} \pi^{0}\right)=1.45 \pm 0.29 \quad$ is large
NOT a contradiction with factorization.

Why?

- if $\zeta_{J}^{B \pi} \sim \zeta^{B \pi}$, then a term $\frac{C_{1}}{N_{c}}\left\langle\bar{u}^{-1}\right\rangle_{\pi} \zeta_{J}^{B \pi}$ in the factorization theorem ruins color suppression and explains the rate
if $\zeta^{B \pi} \gg \zeta_{J}^{B \pi}$ this Br is sensitive to power corrections (small wilson coeffs. at LO could compete with larger ones at subleading order).
- In the future: determine parameters using improved data on the $B \rightarrow \pi \ell \bar{\nu}$ form factor at low q^{2} to provide a check.

Use nonleptonic data: $\quad B \rightarrow \pi \pi \quad$ determines the parameters

$$
\left|V_{u b}\right| f_{+}(0)=F\left(S_{\pi^{+} \pi^{-}}, C_{\pi^{+} \pi^{-}}, B r\left(\pi^{+} \pi^{-}\right), B r\left(\pi^{0} \pi^{-}\right), \beta, \gamma, V_{u d}\right) \quad\left[1+\mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda_{\mathrm{QCD}}}{E}\right)\right]
$$

- Uses data to remove arbitrary complex penguin amplitude, and color suppressed amplitude. ie. to eliminate the hadronic parameters

$$
\begin{aligned}
& \left|V_{u b}\right| f_{+}(0)=\left[\frac{64 \pi}{m_{B}^{3} f_{\pi}^{2}} \frac{\bar{B} r\left(B^{-} \rightarrow \pi^{0} \pi^{-}\right)}{\tau_{B}-\left|V_{u d}\right|^{2} G_{F}^{2}}\right]^{1 / 2} \\
& \quad \times\left[\frac{\left(C_{1}+C_{2}\right) t_{c}-C_{2}}{C_{1}^{2}-C_{2}^{2}}\right]\left[1+\mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)\right], \\
& t_{c}=\frac{\left|T_{\pi \pi}\right|}{\left|T_{\pi \pi}+C_{\pi \pi}\right|}
\end{aligned}
$$

Bauer, Pirjol, Rothstein, I.S.

$$
f_{+}(0)=\zeta^{B \pi}+\zeta_{J}^{B \pi}
$$

$$
t_{c}=\sqrt{\bar{R}_{c} \frac{\left(1+B_{\pi^{+} \pi^{-}} \cos 2 \beta+S_{\pi^{+} \pi^{-}} \sin 2 \beta\right)}{2 \sin ^{2} \gamma}}
$$

$$
\bar{R}_{c}=\frac{\operatorname{Br}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) \tau_{B^{-}}}{2 B r\left(B^{-} \rightarrow \pi^{0} \pi^{-}\right) \tau_{B^{0}}}
$$

$$
B_{\pi^{+} \pi^{-}}=\sqrt{1-C_{\pi^{+} \pi^{-}}^{2}-S_{\pi^{+} \pi^{-}}^{2}}
$$

Factorization \& $B \rightarrow \pi \pi$ determines $\quad\left|V_{u b}\right| f_{+}(0)$

Current
 Data

$$
f_{+}(0)=(0.18 \pm \underset{\text { expt. }}{0.01} \pm 0.04)\left(\frac{3.9 \times 10^{-3}}{\left|V_{u b}\right|}\right)
$$

$$
\left|V_{u b}\right| f_{+}(0)=(7.2 \pm 1.8) \times 10^{-4}
$$

dominated by theory estimate:
$\sim 25 \%$ from perturbative and power corrections
nonleptonic

Which Vub?

$\longrightarrow\left|V_{u b}\right|$ to $4 \%!?!$
Uncertainty from theory dominates.

$$
\frac{d \Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \ell \bar{\nu}\right)}{d q^{2}}=\frac{G_{F}^{2}\left|\vec{p}_{\pi}\right|^{3}}{24 \pi^{3}}\left|V_{u b}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

Lattice \& QCD Dispersion Relations Bourrelectal,

Focus on Vub determination, use:
i) Lattice qcd results at large q^{2}
ii) chiral perturbation theory at $q_{\max }^{2}$
iii) expt. spectra for information at low q^{2} \& SCET constraint from $B \rightarrow \pi \pi$ at $q^{2}=0$
iv) QCD dispersion relations to constrain the

$$
f_{+}\left(q^{2}\right)
$$ form factors shape (model independent)

Belle

Babar

More recently, Becher \& Hill have studied whether the spectrum data constrains the SCET parameters

$q^{2} \geq 16 \mathrm{GeV}^{2}$
HFAG
$10^{3} \times\left|V_{u b}\right|=3.75 \pm \overline{0.27}+\overline{-0.42}+$
$10^{3} \times\left|V_{u b}\right|=4.45 \pm 0.32_{-0.47}^{+0.69}$
My LP'05 Average for this method:

$$
10^{3} \times\left|V_{u b}\right|=4.1 \pm 0.32_{-0.47}^{+0.69}
$$

FNAL HPQCD
16% total error
statistics 4-6\%

Systematics	HPQCD errors
perturbative matching	9%
chiral extrapolation	4%
action discretization	2%
matching $a, 1 / m_{Q}$	5%
Total	$\mathrm{II} \%$

statistics $\sim 8 \%$

Systematics	Fermilab/ MILC errors
matching	$\mathrm{I} \%$
chiral extrapolation	4%
q^{2} interp.	4%
finite a	9%
Total	II\%

Dispersion Relations

Define

$\Pi_{J}^{\mu \nu}(q)=\frac{1}{q^{2}}\left(q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}\right) \Pi_{J}^{T}\left(q^{2}\right)+\frac{q^{\mu} q^{\nu}}{q^{2}} \Pi_{J}^{L}\left(q^{2}\right) \equiv i \int d^{4} x e^{i q x}\langle 0| \mathrm{T} J^{\mu}(x) J^{\dagger \nu}(0)|0\rangle$

Dispersion relations

$$
\chi^{(0)}=\left.\frac{1}{2} \frac{\partial^{2} \Pi_{J}^{T}}{\partial\left(q^{2}\right)^{2}}\right|_{q^{2}=0}=\frac{1}{\pi} \int_{0}^{\infty} d t \frac{\operatorname{Im} \Pi_{J}^{T}(t)}{t^{3}}
$$

$\left.\left.\operatorname{In} \Pi_{J}^{T, L}=\frac{1}{2} \sum_{X}(2 \pi)^{4} \delta^{4}\left(q-p_{X}\right)|\langle 0| J| X\right\rangle\left.\right|^{2} \geq \pi(2 \pi)^{3} \delta^{4}\left(q-p_{B}-p_{\pi}\right)|\langle 0| J| B \pi\right\rangle\left.\right|^{2}$
Related by crossing to decay form factor (OPE)
Bound on Form factor $\quad \int_{t_{+}}^{\infty} d t \frac{W(t)|f(t)|^{2}}{t^{3}} \leq 1$

$$
t_{+}=\left(m_{B}+m_{\pi}\right)^{2}
$$

Complex
Magic

$$
z\left(t, t_{0}\right)=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}} \quad t_{ \pm}=\left(m_{B} \pm m_{\pi}\right)^{2}
$$

$$
P(t) \phi(t) f(t)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

Form factor for
$B \rightarrow \pi \ell \bar{\nu}$

$$
t=q^{2} f_{+}(t)=\frac{1}{P(t) \phi(t)} \sum_{n=0}^{\infty} a_{n} z^{n}
$$

Blaschke Factor: remove pole at $t=m_{B^{*}}^{2}$

Outer function: phase space, Jacobian, $\chi^{(0)}$ in QCD

$$
\sum_{n} a_{n}^{2} \leq 1
$$

Pick $t_{0}=0.65 t_{-}$then

$$
-0.34 \leq z \leq 0.22
$$

from dispersion
Strategy: use input points to fix first few a's vary all higher a's to determine uncertainty

Input Points

i) SCET

$$
f_{\mathrm{in}}^{0}=\left|V_{u b}\right| f_{+}(0)=(7.2 \pm 1.8) \times 10^{-4}
$$

ii) Lattice

$$
\begin{aligned}
f_{\mathrm{in}}^{1} & =f_{+}(15.87) \\
f_{\mathrm{in}}^{2} & =f_{+}(18.58) \\
f_{\mathrm{in}}^{3} & =f_{+}(24.09)
\end{aligned}
$$

FNAL /MILC or HPQCD
take systematic error to be 100% correlated

$$
E_{i j}=\sigma_{i}^{2} \delta_{i j}+y^{2} f_{\mathrm{in}}^{i} f_{\mathrm{in}}^{j} \quad \text { (increases uncertainty) }
$$

iii) Chiral Pert. Theory

$$
f_{+}\left(q^{2}\left(E_{\pi}\right)\right)=\frac{g f_{B} m_{B}}{2 f_{\pi}\left(E_{\pi}+m_{B^{*}}-m_{B}\right)}\left[1+\mathcal{O}\left(\frac{E_{\pi}}{\Delta}\right)\right] \quad \Delta \sim 600 \mathrm{MeV}
$$

$$
f_{\mathrm{in}}^{4}=f_{+}(26.42)=10.38 \pm 3.63
$$

- solve with $\sum_{n=0}^{5} a_{n} z^{n}$, for $a_{0}-a_{4}$

$$
\hat{q}^{2}=q^{2} / m_{B^{*}}^{2}
$$

- vary a_{5} to get bounds $\sum_{n} a_{n}^{2} \leq 1$ including truncation error from all higher order terms:
$a_{5} \rightarrow \frac{a_{5}}{\sqrt{1-z^{2}}}$

$$
f_{+}(t)=F_{ \pm}\left(t,\left\{f_{0} /\left|V_{u b}\right|, f_{1}, f_{2}, f_{3}, f_{4}\right\}\right)
$$

Uncertainties

Bound uncertainty:

- fix $f^{i}=f_{\text {in }}^{i},\left|V_{u b}\right|=3.6 \times 10^{-3}$
\rightarrow bound uncertainty very small
- compare with 4 lattice points, and constraint $f_{0}(0)=f_{+}(0)$

Perturbative uncertainty:

$$
\hat{q}^{2}=q^{2} / m_{B^{*}}^{2}
$$

Dispersion relations show there is a lot of freedom for a pure extrapolation of lattice data

- OPE $\chi^{(0)}$ depends on m_{b}, order in $\alpha_{s}\left(m_{b}\right)$, condensates
\rightarrow only effects norm., so enters through a_{5}, very small

Uncertainty from INPUT POINTS dominates

Method I

- use only the total Branching ratio
- integrate $\frac{d \Gamma}{d q^{2}}$ with $f_{+}(t)=F_{ \pm}\left(t,\left\{f_{0} /\left|V_{u b}\right|, f_{1}, f_{2}, f_{3}, f_{4}\right\}\right)$
- use Lellouch method to account for theory uncertainty

$$
\left|V_{u b}\right|=(3.96 \pm \underbrace{0.20}_{\begin{array}{c}
5 \% \\
\text { expt }
\end{array}} \pm \underbrace{0.56}_{\text {theory }}) \times 10^{-3}
$$

$$
\begin{aligned}
& \left(\text { with } f^{i}=f_{\text {in }}^{i}\right. \\
& \left.\left|V_{u b}\right|=4.13 \times 10^{-3}\right)
\end{aligned}
$$

Type of Error	Variation From	$\delta\left\|V_{u b}\right\|^{\mathrm{Br}}$	$\delta\left\|V_{u b}\right\|^{q^{2}}$
Input Points	$1-\sigma$ correlated errors	$\pm 14 \%$	$\pm 12 \%$
Bounds	F_{+}versus F_{-}	$\pm 0.6 \%$	$\pm 0.04 \%$
$m_{b}^{\text {pole }}$	4.88 ± 0.40	$\pm 0.1 \%$	$\pm 0.2 \%$
OPE order	2 loop $\rightarrow 1$ loop	-0.2%	$+0.3 \%$

without SCET bound error is $\pm 12 \%$

Method II

- use q^{2} spectra bins: $\left(\operatorname{Br}_{i}^{\text {exp }} \pm \delta \mathrm{Br}_{i}\right)$, calculate rate in bins
- use Minuit to minimize χ^{2} w.r.t. $\left|V_{u b}\right|, f^{0-4}$
$\chi^{2}=\sum_{i=1}^{17} \frac{\left[\mathrm{Br}_{i}^{\mathrm{exp}}-\mathrm{Br}_{i}\left(V_{u b}, F_{ \pm}\right)\right]^{2}}{\left(\delta \mathrm{Br}_{i}\right)^{2}}+\frac{\left[f_{\mathrm{in}}^{0}-f^{0}\right]^{2}}{\left(\delta f^{0}\right)^{2}}+\frac{\left[f_{\mathrm{in}}^{4}-f^{4}\right]^{2}}{\left(\delta f^{4}\right)^{2}}+\sum_{i, j=1}^{3}\left[f_{\mathrm{in}}^{i}-f^{i}\right]\left[f_{\mathrm{in}}^{j}-f^{j}\right]\left(E^{-1}\right)_{i j}$,
f^{0-4} input points are fit to data \& input points (here the spectra constrain the theory error)
can equivalently fit for a's (same answer both ways)

Belle

Babar

Method II

Fit to expt. spectra $\&$ input points

- expt. spectrum prefers a larger form factor in
$\sim 5-10 \mathrm{GeV}^{2}$ region

Type of Error	Variation From	$\delta\left\|V_{u b}\right\|^{q^{2}}$
Input Points	$1-\sigma$ correlated errors	$\pm 13 \%$
Bounds	F_{+}versus F_{-}	$<1 \%$
$m_{b}^{\text {pole }}$	4.88 ± 0.40	$<1 \%$
OPE order	2 loop $\rightarrow 1$ loop	$<1 \%$

- Here the SCET point constrains the spectrum, but does not change the determination of Vub

Fit gives:

no SCET: $\quad f_{+}(0)=0.25 \pm 0.06$ similar to sum-rules
with SCET: $\quad f_{+}(0)=0.23 \pm 0.05$
χ^{2} fits to data $\&$ input pts. with dispersion relations

Lepton Photon ' ${ }^{5} 5$

(without SCET point)

$$
\begin{aligned}
\chi^{2} /(d o f) & \sim 1.0 \quad \begin{array}{c}
\text { expt. \& } \\
\text { theory }
\end{array} \\
& \\
10^{3} \times\left|V_{u b}\right| & =3.72 \pm 0.52 \quad \text { FNAL } \\
10^{3} \times\left|V_{u b}\right| & =4.11 \pm 0.52 \quad \text { HPQCD }
\end{aligned}
$$

My Average for this method:

$$
10^{3} \times\left|V_{u b}\right|=3.92 \pm 0.52 \quad \begin{gathered}
13 \% \\
\text { total error } \\
(4 \% \text { expt. })
\end{gathered}
$$

This includes the information in the pure lattice method

Compare Vub's

- $\left|V_{u b}\right|^{\text {incl }}=(4.38 \pm 0.33) \times 10^{-3}$
(HFAG-EPS'O5)
- $\left|V_{u b}\right|_{\text {in global CKM }}^{\text {treated as output }}=\left(3.53_{-0.21}^{+0.22}\right) \times 10^{-3}$
(CKMfitter)
- $\left|V_{u b}\right|^{\text {excl }}=(3.92 \pm 0.52) \times 10^{-3}$

Light-cone sum rules

Babar (LP'05) $q^{2}<16 \mathrm{GeV}^{2}$

(Ball \& Zwicky)

$$
\left|V_{u b}\right|=\left(3.27 \pm 0.25_{-0.37}^{+0.54}\right) \times 10^{-3}
$$

(Lattice + Disp. Analysis

+ Expt. spectrum)
 expt. theory

Outlook

- There is an EFT for processes with energetic jets or hadrons
- We now have the tools to systematically study power corrections
\Rightarrow color suppressed decays, inclusive decays
- Exclusive Vub from dispersion + Lattice + spectra
- Nonleptonics \rightarrow predictions for the size of amplitudes
\Rightarrow universal hadronic parameters, strong phases
$\Rightarrow \gamma($ or $\alpha)$ from individual $B \rightarrow M_{1} M_{2}$ channels
- The SCET can be applied to:

Nonleptonic decays, Other B decays Jet physics, Exclusive form factors Charmonium, Upsilon physics ... others?

- A lot of theory and phenomenology left to study ...

Looking into the Future

at B-factories
\Rightarrow improved determination of α, β, γ
\Rightarrow clarify agreement / disagreement between $S_{\eta^{\prime} K_{S}}, S_{\phi K_{s}}$, and $\sin (2 \beta)$
precision determination of $\left|V_{u b}\right|$
match theoretical limits for sensitivity in $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{s} \ell^{+} \ell^{-}$
\Rightarrow observation of $B \rightarrow \rho \gamma$ and $B \rightarrow \tau \nu$
\Rightarrow Sort out puzzles in $B \rightarrow \pi \pi$ and $B \rightarrow K \pi$
$\Rightarrow \quad$.... and of course, the unexpected.

Plan for this talk:

- $B \rightarrow X_{s} \gamma \quad B \rightarrow X_{u} \ell \bar{\nu} \quad B \rightarrow K^{*} \gamma \quad B \rightarrow \rho \gamma$

$$
\begin{array}{rc}
B \rightarrow \pi \ell \bar{\nu} & B \rightarrow \rho \rho \quad B \rightarrow \pi \pi \\
B \rightarrow D \pi & B \rightarrow K \pi
\end{array}
$$

4?

Operator Product Expansion (I)

m_{W}

- $m_{W}, m_{t} \gg m_{b}$

Decays like $B \rightarrow X_{s} \gamma \& B \rightarrow K \pi$ have contributions from ~ 12 operators
$m_{u, d}$

Operator Product Expansion (II)

B-meson

- $m_{b} \gg \Lambda_{\mathrm{QCD}}$

$$
\text { Heavy Quark Effective Theory } \quad h_{v}, q
$$

Operator Product Expansion for Inclusive Decays

- Justifies free quark decay as leading approximation

$$
\frac{\Lambda}{m_{b}} \simeq 0.1, \quad \alpha_{s}\left(m_{b}\right) \simeq 0.2
$$

subleading terms are crucial for precision phenomenology

Unquenched Lattice QCD

 $\operatorname{det}(D D+m) \neq 1$

m_{W} Now:

- Focus on "Gold Plated Observables" for high precision - matrix elements with at most one hadron in initial and final state - at least 100 MeV below threshold, or small widths
- Simulate "real QCD". Use nf=2+1 light flavors, quark masses m_{q} light enough for extrapolation with chiral perturbation theory (or PQChPT)
- Systematic/parametric estimates of uncertainties using effective field theory methods. eg. heavy quarks:
- $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ NRQCD, Fermilab action, RHQ action
- Results for a broad spectrum of observables are obtained using common inputs
tests, predictions, and impact

Factorization Theorems

Energetic Hadrons

eg. $\quad E_{\pi} \gg \Lambda_{\mathrm{QCD}}$
π

(B)

Bauer, Pirjol, I.S.
Fleming, Luke, many other authors

Introduce fields for infrared d.o.f. collinear:

ξ_{n}, A_{n}^{μ}
soft:
B
$h_{v}, q_{s}, A_{s}^{\mu}$

$$
\mathcal{L}=\mathcal{L}^{(0)}+\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\ldots
$$

- Separate physics at different momentum scales
- Model independent, systematically improvable

Nonleptonic Decays

$B \rightarrow K \pi \quad$ Is there a K-pi CP Puzzle ?

- Br sum rule: Expand in $\epsilon=\underbrace{\left\lvert\, \frac{V_{u s}^{*} V_{u b}}{V_{c s}^{*} V_{c b}}\right.}_{\mathrm{O} . \mathrm{O} 2}\left|\frac{T}{P},\left|\frac{V_{u s}^{*} V_{u b}}{V_{c s}^{*} V_{c b}}\right| \frac{C}{P}, \frac{P_{e w}^{(t, c)}}{P}\right.$

$$
\begin{gathered}
R\left(\pi^{0} K^{-}\right)-\frac{1}{2} R\left(\pi^{-} K^{+}\right)+R\left(\pi^{0} K^{0}\right)=\mathcal{O}\left(\epsilon^{2}\right) \\
0.094 \pm 0.073 \Rightarrow \mathcal{O}\left(\epsilon^{2}\right)<.03 \underbrace{\text { nom puzzle here yet }}_{\substack{\text { my estimate }}} \begin{array}{c}
\text { froctorization } \\
\text { in SCET }
\end{array}
\end{gathered} R(f)=\frac{\Gamma(B \rightarrow f)}{\Gamma\left(\bar{B}^{0} \rightarrow \pi^{-} \bar{K}^{0}\right)}
$$

- Direct-CP sum rule:
$\Delta\left(\bar{K}^{0} \pi^{0}\right)-\frac{1}{2} \Delta\left(K^{+} \pi^{-}\right)+\Delta\left(K^{+} \pi^{0}\right)=\mathcal{O}\left(\epsilon^{2}\right)$

$$
\Delta(f)=\frac{A_{C P}(f) \Gamma_{\text {avg }}^{\mathrm{CP}}(f)}{\Gamma_{\text {avg }}^{\mathrm{CP}}\left(\pi^{-} \bar{K}^{\mathrm{O}}\right)}
$$

$0.058 \pm 0.070 \neq \mathcal{O}\left(\epsilon^{2}\right)<0.007$
no puzzle here yet

- $\mathrm{SU}(3)$, global fits to data (Neglect E, A, PA amplitudes)

I2 parameters, i8 predictions $\pi \pi, K K, \pi \eta, \pi \eta^{\prime} K \pi, K \eta, K \eta^{\prime}$
$\Rightarrow \gamma=61^{\circ} \pm 11^{\circ} \underset{\text { global fit }}{\substack{\text { grees with }}}$
(Neglect E, A, PA amplitudes)
Chiang, Gronau, Luo, $\quad \chi^{2}$
Rosner, Suprun
$\begin{aligned} & \text { better agreement when } \\ & \text { one adds new Babar data }\end{aligned}$
give $\Delta \chi^{2}=(2.7,5.9,2.9)$
(Neglect E, A, PA amplitudes)
Chiang, Gronau, Luo, $\quad \chi^{2}$
Rosner, Suprun
$\begin{aligned} & \text { better agreement when } \\ & \text { one adds new Babar data }\end{aligned}$
give $\Delta \chi^{2}=(2.7,5.9,2.9)$
see also Buras et al.; Kim et al.

hints of a puzzle?

SCET based fit

Bauer, Rothstein, I.S. (to appear)
$\gamma=59^{\circ}$ fixed
6 parameters +2 fixed by $\mathrm{SU}(3)$

hints of a puzzle?

α, β, γ Constraints

All Constraints

$$
\begin{gathered}
\alpha: B \rightarrow \rho \rho \\
\gamma: B \rightarrow D K
\end{gathered}
$$

- constraints from angles dominate, will scale with statistics
- other measurements test the SM, constrain new flavor physics
- Think of $H_{w e a k}=\sum_{i=1}^{\sim 100} C_{i} O_{i}$ where SM relates the C_{i} and all these connections need to be tested

