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BOTTOM MESONSBOTTOM MESONSBOTTOM MESONSBOTTOM MESONS
(B = ±1)(B = ±1)(B = ±1)(B = ±1)

B+ = ub, B0 = db, B0 = d b, B− = ub, similarly for B∗’s

B-particle organizationB-particle organizationB-particle organizationB-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily
included such admixtures in the B± section, but because of their importance we have created
two new sections: “B±/B0 Admixture” for Υ(4S) results and “B±/B0/B0

s /b-baryon Admix-
ture” for results at higher energies. Most inclusive decay branching fractions and χb at high
energy are found in the Admixture sections. B0-B0 mixing data are found in the B0 section,
while B0

s -B
0
s mixing data and B-B mixing data for a B0/B0

s admixture are found in the B0
s

section. CP-violation data are found in the B±, B0, and B± B0 Admixture sections. b-baryons
are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle
sections and brackets indicate reviews.

•B±
mass, mean life, branching fractions CP violation

•B0

mass, mean life, branching fractions
polarization in B0 decay, B0-B0 mixing, CP violation

•B± B0 Admixtures
branching fractions, CP violation

•B±/B0/B0
s /b-baryon Admixtures

mean life, production fractions, branching fractions
χb at high energy,Vcb measurements

• B∗

mass

• B0
s

mass, mean life, branching fractions

polarization in B0
s decay, B0

s -B
0
s mixing

• B±
c

mass, mean life, branching fractions

At end of Baryon Listings:

• Λb

mass, mean life, branching fractions

• b-baryon Admixture

mean life, branching fractions
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B±B±B±B± I (JP ) = 1
2 (0−)

I , J, P need confirmation. Quantum numbers shown are quark-model
predictions.

Mass mB± = 5279.0 ± 0.5 MeV
Mean life τ B± = (1.671 ± 0.018) × 10−12 s

cτ = 501 µm

CP violationCP violationCP violationCP violation

ACP (B+ → J/ψ(1S)K+) = −0.007 ± 0.019
ACP (B+ → J/ψ(1S)π+) = −0.01 ± 0.13
ACP (B+ → ψ(2S)K+) = −0.037 ± 0.025
ACP (B+ → D0K+) = 0.04 ± 0.07
ACP (B+ → DCP(+1)K

+) = 0.06 ± 0.19

ACP (B+ → DCP(−1)K
+) = −0.19 ± 0.18

ACP (B+ → π+π0) = 0.05 ± 0.15
ACP (B+ → K+π0) = −0.10 ± 0.08
ACP (B+ → K0

S π+) = 0.03 ± 0.08 (S = 1.1)
ACP (B+ → π+π−π+) = −0.39 ± 0.35
ACP (B+ → ρ+ρ0) = −0.09 ± 0.16
ACP (B+ → K+π−π+) = 0.01 ± 0.08
ACP (B+ → K+K−K+) = 0.02 ± 0.08
ACP (B+ → K+η′) = 0.009 ± 0.035
ACP (B+ → ωπ+) = −0.21 ± 0.19
ACP (B+ → ωK+) = −0.21 ± 0.28
ACP (B+ → φK+) = 0.03 ± 0.07
ACP (B+ → φK∗(892)+) = 0.09 ± 0.15
ACP (B+ → ρ0K∗(892)+) = 0.20 ± 0.31

B− modes are charge conjugates of the modes below. Modes which do not
identify the charge state of the B are listed in the B±/B0 ADMIXTURE
section.

The branching fractions listed below assume 50% B0B0 and 50% B+ B−
production at the Υ(4S). We have attempted to bring older measurements
up to date by rescaling their assumed Υ(4S) production ratio to 50:50

and their assumed D, Ds , D∗, and ψ branching ratios to current values
whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All
resonant subchannels have been corrected for resonance branching frac-
tions to the final state so the sum of the subchannel branching fractions
can exceed that of the final state.

HTTP://PDG.LBL.GOV Page 2 Created: 12/9/2004 16:47



Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (URL: http://pdg.lbl.gov)

For inclusive branching fractions, e.g., B → D± anything, the values
usually are multiplicities, not branching fractions. They can be greater
than one.

Scale factor/ p

B+ DECAY MODESB+ DECAY MODESB+ DECAY MODESB+ DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Semileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modes
!+ν! anything [a] (10.2 ±0.9 ) % –

D0 !+ν! [a] ( 2.15±0.22) % 2310

D∗(2007)0 !+ν! [a] ( 6.5 ±0.5 ) % 2258

D1(2420)0 !+ν! ( 5.6 ±1.6 ) × 10−3 2084

D∗
2(2460)0 !+ν! < 8 × 10−3 CL=90% 2067

π0 e+ νe ( 9.0 ±2.8 ) × 10−5 2638

η!+ν! ( 8 ±4 ) × 10−5 2611

ω!+ν! [a] < 2.1 × 10−4 CL=90% 2582

ρ0 !+ν! [a] ( 1.34+0.32
−0.35) × 10−4 2583

ppe+ νe < 5.2 × 10−3 CL=90% 2467

e+ νe < 1.5 × 10−5 CL=90% 2640

µ+ νµ < 2.1 × 10−5 CL=90% 2638

τ+ντ < 5.7 × 10−4 CL=90% 2340

e+ νe γ < 2.0 × 10−4 CL=90% 2640

µ+ νµ γ < 5.2 × 10−5 CL=90% 2638

D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modes
D0 π+ ( 4.98±0.29) × 10−3 2308

D0 ρ+ ( 1.34±0.18) % 2236

D0 K+ ( 3.7 ±0.6 ) × 10−4 S=1.1 2280

D0 K∗(892)+ ( 6.1 ±2.3 ) × 10−4 2213

D0 K+K0 ( 5.5 ±1.6 ) × 10−4 2189

D0 K+K∗(892)0 ( 7.5 ±1.7 ) × 10−4 2071

D0 π+π+π− ( 1.1 ±0.4 ) % 2289

D0 π+π+π−nonresonant ( 5 ±4 ) × 10−3 2289

D0 π+ρ0 ( 4.2 ±3.0 ) × 10−3 2207

D0 a1(1260)+ ( 5 ±4 ) × 10−3 2123

D0 ωπ+ ( 4.1 ±0.9 ) × 10−3 2206

D∗(2010)−π+π+ ( 2.1 ±0.6 ) × 10−3 2247

D−π+π+ < 1.4 × 10−3 CL=90% 2299

D∗(2007)0π+ ( 4.6 ±0.4 ) × 10−3 2256

D∗(2007)0ωπ+ ( 4.5 ±1.2 ) × 10−3 2149

D∗(2007)0ρ+ ( 9.8 ±1.7 ) × 10−3 2181

D∗(2007)0K+ ( 3.6 ±1.0 ) × 10−4 2227

D∗(2007)0K∗(892)+ ( 7.2 ±3.4 ) × 10−4 2156

D∗(2007)0K+K0 < 1.06 × 10−3 CL=90% 2132

D∗(2007)0K+K∗(892)0 ( 1.5 ±0.4 ) × 10−3 2008
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D∗(2007)0π+π+π− ( 9.4 ±2.6 ) × 10−3 2236

D∗(2007)0 a1(1260)+ ( 1.9 ±0.5 ) % 2062

D∗(2007)0π−π+π+π0 ( 1.8 ±0.4 ) % 2219

D∗(2010)+π0 < 1.7 × 10−4 CL=90% 2255

D∗(2010)+K0 < 9.5 × 10−5 CL=90% 2225

D∗(2010)−π+π+π0 ( 1.5 ±0.7 ) % 2235

D∗(2010)−π+π+π+π− < 1 % CL=90% 2217

D∗
1(2420)0π+ ( 1.5 ±0.6 ) × 10−3 S=1.3 2081

D∗
1(2420)0ρ+ < 1.4 × 10−3 CL=90% 1995

D∗
2(2460)0π+ < 1.3 × 10−3 CL=90% 2064

D∗
2(2460)0ρ+ < 4.7 × 10−3 CL=90% 1977

D0 D+
s ( 1.3 ±0.4 ) % 1815

D0 DsJ (2317)+ seen 1605

D0 DsJ (2457)+ seen –
D0 DsJ (2536)+ not seen 1447

D∗(2007)0DsJ (2536)+ not seen 1338

D0 DsJ (2573)+ not seen 1417

D∗(2007)0DsJ (2573)+ not seen 1306

D0 D∗+
s ( 9 ±4 ) × 10−3 1734

D∗(2007)0D+
s ( 1.2 ±0.5 ) % 1737

D∗(2007)0D∗+
s ( 2.7 ±1.0 ) % 1651

D
(∗)+
s D∗∗0 ( 2.7 ±1.2 ) % –

D∗(2007)0D∗(2010)+ < 1.1 % CL=90% 1713

D0 D∗(2010)+ +
D∗(2007)0D+

< 1.3 % CL=90% 1792

D0 D+ < 6.7 × 10−3 CL=90% 1866

D0 D+K0 < 2.8 × 10−3 CL=90% 1571

D∗(2007)0D+K0 < 6.1 × 10−3 CL=90% 1475

D0 D∗(2010)+K0 ( 5.2 ±1.2 ) × 10−3 1476

D∗(2007)0D∗(2010)+K0 ( 7.8 ±2.6 ) × 10−3 1362

D0 D0K+ ( 1.9 ±0.4 ) × 10−3 1577

D∗(2010)0D0K+ < 3.8 × 10−3 CL=90% –
D0 D∗(2007)0 K+ ( 4.7 ±1.0 ) × 10−3 1481

D∗(2007)0D∗(2007)0 K+ ( 5.3 ±1.6 ) × 10−3 1368

D−D+K+ < 4 × 10−4 CL=90% 1571

D−D∗(2010)+K+ < 7 × 10−4 CL=90% 1475

D∗(2010)−D+K+ ( 1.5 ±0.4 ) × 10−3 1475

D∗(2010)−D∗(2010)+K+ < 1.8 × 10−3 CL=90% 1363

(D +D∗ )(D +D∗ )K ( 3.5 ±0.6 ) % –
D+

s π0 < 2.0 × 10−4 CL=90% 2270

D∗+
s π0 < 3.3 × 10−4 CL=90% 2215

D+
s η < 5 × 10−4 CL=90% 2235

D∗+
s η < 8 × 10−4 CL=90% 2178
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D+
s ρ0 < 4 × 10−4 CL=90% 2197

D∗+
s ρ0 < 5 × 10−4 CL=90% 2138

D+
s ω < 5 × 10−4 CL=90% 2195

D∗+
s ω < 7 × 10−4 CL=90% 2136

D+
s a1(1260)0 < 2.2 × 10−3 CL=90% 2079

D∗+
s a1(1260)0 < 1.6 × 10−3 CL=90% 2014

D+
s φ < 3.2 × 10−4 CL=90% 2141

D∗+
s φ < 4 × 10−4 CL=90% 2079

D+
s K0 < 1.1 × 10−3 CL=90% 2241

D∗+
s K0 < 1.1 × 10−3 CL=90% 2184

D+
s K∗(892)0 < 5 × 10−4 CL=90% 2172

D∗+
s K∗(892)0 < 4 × 10−4 CL=90% 2112

D−
s π+K+ < 8 × 10−4 CL=90% 2222

D∗−
s π+K+ < 1.2 × 10−3 CL=90% 2164

D−
s π+K∗(892)+ < 6 × 10−3 CL=90% 2138

D∗−
s π+K∗(892)+ < 8 × 10−3 CL=90% 2076

Charmonium modesCharmonium modesCharmonium modesCharmonium modes
ηc K+ ( 9.0 ±2.7 ) × 10−4 1754

J/ψ(1S)K+ ( 1.00±0.04) × 10−3 1683

J/ψ(1S)K+π+π− ( 7.7 ±2.0 ) × 10−4 1612

X (3872)K+ seen –
J/ψ(1S)K∗(892)+ ( 1.35±0.10) × 10−3 1571

J/ψ(1S)K (1270)+ ( 1.8 ±0.5 ) × 10−3 1390

J/ψ(1S)K (1400)+ < 5 × 10−4 CL=90% 1308

J/ψ(1S)φK+ ( 5.2 ±1.7 ) × 10−5 S=1.2 1227

J/ψ(1S)π+ ( 4.0 ±0.5 ) × 10−5 1727

J/ψ(1S)ρ+ < 7.7 × 10−4 CL=90% 1611

J/ψ(1S)a1(1260)+ < 1.2 × 10−3 CL=90% 1414

J/ψ(1S)pΛ ( 1.2 +0.9
−0.6 ) × 10−5 567

ψ(2S)K+ ( 6.8 ±0.4 ) × 10−4 1284

ψ(2S)K∗(892)+ ( 9.2 ±2.2 ) × 10−4 1115

ψ(2S)K+π+π− ( 1.9 ±1.2 ) × 10−3 1178

χc0(1P)K+ ( 6.0 +2.4
−2.1 ) × 10−4 1478

χc1(1P)K+ ( 6.8 ±1.2 ) × 10−4 1411

χc1(1P)K∗(892)+ < 2.1 × 10−3 CL=90% 1265

K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modes
K0π+ ( 1.88±0.21) × 10−5 2614

K+π0 ( 1.29±0.12) × 10−5 2615

η′K+ ( 7.8 ±0.5 ) × 10−5 2528

η′K∗(892)+ < 3.5 × 10−5 CL=90% 2472
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ηK+ < 6.9 × 10−6 CL=90% 2588

ηK∗(892)+ ( 2.6 +1.0
−0.9 ) × 10−5 2534

ωK+ ( 9.2 +2.8
−2.5 ) × 10−6 2557

ωK∗(892)+ < 8.7 × 10−5 CL=90% 2503

K∗(892)0 π+ ( 1.9 +0.6
−0.8 ) × 10−5 2562

K∗(892)+π0 < 3.1 × 10−5 CL=90% 2562

K+π−π+ ( 5.7 ±0.4 ) × 10−5 2609

K+π−π+nonresonant < 2.8 × 10−5 CL=90% 2609

K+ρ0 < 1.2 × 10−5 CL=90% 2558

K∗
2(1430)0π+ < 6.8 × 10−4 CL=90% 2445

K−π+π+ < 1.8 × 10−6 CL=90% 2609

K−π+π+nonresonant < 5.6 × 10−5 CL=90% 2609

K1(1400)0 π+ < 2.6 × 10−3 CL=90% 2451

K0π+π0 < 6.6 × 10−5 CL=90% 2609

K0ρ+ < 4.8 × 10−5 CL=90% 2558

K∗(892)+π+π− < 1.1 × 10−3 CL=90% 2556

K∗(892)+ρ0 ( 1.1 ±0.4 ) × 10−5 2504

K∗(892)+K∗(892)0 < 7.1 × 10−5 CL=90% 2484

K1(1400)+ρ0 < 7.8 × 10−4 CL=90% 2387

K∗
2(1430)+ρ0 < 1.5 × 10−3 CL=90% 2381

K+K0 < 2.0 × 10−6 CL=90% 2593

K0K+π0 < 2.4 × 10−5 CL=90% 2578

K+K0
S K0

S ( 1.34±0.24) × 10−5 2521

K0
S K0

S π+ < 3.2 × 10−6 CL=90% 2577

K+K−π+ < 6.3 × 10−6 CL=90% 2578

K+K−π+nonresonant < 7.5 × 10−5 CL=90% 2578

K+K+π− < 1.3 × 10−6 CL=90% 2578

K+K+π−nonresonant < 8.79 × 10−5 CL=90% 2578

K+K∗(892)0 < 5.3 × 10−6 CL=90% 2540

K+K−K+ ( 3.08±0.21) × 10−5 2522

K+φ ( 9.3 ±1.0 ) × 10−6 S=1.3 2516

K+K−K+nonresonant < 3.8 × 10−5 CL=90% 2522

K∗(892)+K+K− < 1.6 × 10−3 CL=90% 2466

K∗(892)+φ ( 9.6 ±3.0 ) × 10−6 S=1.9 2460

K1(1400)+φ < 1.1 × 10−3 CL=90% 2339

K∗
2(1430)+φ < 3.4 × 10−3 CL=90% 2332

K+φφ ( 2.6 +1.1
−0.9 ) × 10−6 2306

K∗(892)+γ ( 3.8 ±0.5 ) × 10−5 2564

K1(1270)+γ < 9.9 × 10−5 CL=90% 2486

φK+γ ( 3.4 ±1.0 ) × 10−6 2516

K+π−π+γ ( 2.4 +0.6
−0.5 ) × 10−5 2609
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K∗(892)0π+γ ( 2.0 +0.7
−0.6 ) × 10−5 2562

K+ρ0γ < 2.0 × 10−5 CL=90% 2558

K+π−π+γ nonresonant < 9.2 × 10−6 CL=90% 2609

K1(1400)+γ < 5.0 × 10−5 CL=90% 2453

K∗
2(1430)+γ < 1.4 × 10−3 CL=90% 2447

K∗(1680)+γ < 1.9 × 10−3 CL=90% 2360

K∗
3(1780)+γ < 5.5 × 10−3 CL=90% 2341

K∗
4(2045)+γ < 9.9 × 10−3 CL=90% 2243

Light unflavored meson modesLight unflavored meson modesLight unflavored meson modesLight unflavored meson modes
ρ+γ < 2.1 × 10−6 CL=90% 2583

π+π0 ( 5.6 +0.9
−1.1 ) × 10−6 2636

π+π+π− ( 1.1 ±0.4 ) × 10−5 2630

ρ0π+ ( 8.6 ±2.0 ) × 10−6 2581

π+ f0(980) < 1.4 × 10−4 CL=90% 2547

π+ f2(1270) < 2.4 × 10−4 CL=90% 2483

π+π−π+nonresonant < 4.1 × 10−5 CL=90% 2630

π+π0π0 < 8.9 × 10−4 CL=90% 2631

ρ+π0 < 4.3 × 10−5 CL=90% 2581

π+π−π+π0 < 4.0 × 10−3 CL=90% 2621

ρ+ρ0 ( 2.6 ±0.6 ) × 10−5 2523

a1(1260)+π0 < 1.7 × 10−3 CL=90% 2494

a1(1260)0π+ < 9.0 × 10−4 CL=90% 2494

ωπ+ ( 6.4 +1.8
−1.6 ) × 10−6 S=1.3 2580

ωρ+ < 6.1 × 10−5 CL=90% 2522

ηπ+ < 5.7 × 10−6 CL=90% 2609

η′π+ < 7.0 × 10−6 CL=90% 2551

η′ρ+ < 3.3 × 10−5 CL=90% 2492

ηρ+ < 1.5 × 10−5 CL=90% 2553

φπ+ < 4.1 × 10−7 CL=90% 2539

φρ+ < 1.6 × 10−5 2480

π+π+π+π−π− < 8.6 × 10−4 CL=90% 2608

ρ0 a1(1260)+ < 6.2 × 10−4 CL=90% 2433

ρ0 a2(1320)+ < 7.2 × 10−4 CL=90% 2410

π+π+π+π−π−π0 < 6.3 × 10−3 CL=90% 2592

a1(1260)+ a1(1260)0 < 1.3 % CL=90% 2335

Charged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modes

h± = K± or π±

h+π0 ( 1.6 +0.7
−0.6 ) × 10−5 2636

ωh+ ( 1.38+0.27
−0.24) × 10−5 2580

h+X0 (Familon) < 4.9 × 10−5 CL=90% –
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Baryon modesBaryon modesBaryon modesBaryon modes
ppπ+ < 3.7 × 10−6 CL=90% 2439

ppπ+nonresonant < 5.3 × 10−5 CL=90% 2439

ppπ+π+π− < 5.2 × 10−4 CL=90% 2369

ppK+ ( 4.3 +1.2
−1.0 ) × 10−6 2348

ppK+nonresonant < 8.9 × 10−5 CL=90% 2348

pΛ < 1.5 × 10−6 CL=90% 2430

pΛπ+π− < 2.0 × 10−4 CL=90% 2367

∆0p < 3.8 × 10−4 CL=90% 2402

∆++p < 1.5 × 10−4 CL=90% 2402

D+pp < 1.5 × 10−5 CL=90% 1860

D∗(2010)+pp < 1.5 × 10−5 CL=90% 1786

Λ−
c pπ+ ( 2.1 ±0.7 ) × 10−4 1981

Λ−
c pπ+π0 ( 1.8 ±0.6 ) × 10−3 1936

Λ−
c pπ+π+π− ( 2.3 ±0.7 ) × 10−3 1881

Λ−
c pπ+π+π−π0 < 1.34 % CL=90% 1823

Σ c(2455)0p < 8 × 10−5 CL=90% 1939

Σ c(2520)0p < 4.6 × 10−5 CL=90% 1905

Σ c(2455)0pπ0 ( 4.4 ±1.8 ) × 10−4 1897

Σ c(2455)0pπ−π+ ( 4.4 ±1.7 ) × 10−4 1845

Σ c(2455)−−pπ+π+ ( 2.8 ±1.2 ) × 10−4 1845

Λc(2593)− /Λc (2625)−pπ+ < 1.9 × 10−4 CL=90% –

Lepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, or
∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes

π+ e+ e− B1 < 3.9 × 10−3 CL=90% 2638

π+µ+µ− B1 < 9.1 × 10−3 CL=90% 2633

K+ e+ e− B1 ( 6.3 +1.9
−1.7 ) × 10−7 2616

K+µ+µ− B1 ( 4.5 +1.4
−1.2 ) × 10−7 2612

K+ "+ "− B1 [a] ( 5.3 ±1.1 ) × 10−7 2616

K+ ν ν B1 < 2.4 × 10−4 CL=90% 2616

K∗(892)+ e+ e− B1 < 4.6 × 10−6 CL=90% 2564

K∗(892)+µ+µ− B1 < 2.2 × 10−6 CL=90% 2560

K∗(892)+ "+ " B1 [a] < 2.2 × 10−6 CL=90% 2564

π+ e+µ− LF < 6.4 × 10−3 CL=90% 2637

π+ e−µ+ LF < 6.4 × 10−3 CL=90% 2637

K+ e+µ− LF < 8 × 10−7 CL=90% 2615

K+ e−µ+ LF < 6.4 × 10−3 CL=90% 2615

K∗(892)+ e±µ∓ LF < 7.9 × 10−6 CL=90% 2563

π− e+ e+ L < 1.6 × 10−6 CL=90% 2638

π−µ+µ+ L < 1.4 × 10−6 CL=90% 2633
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mW

?

mb

ΛQCD

√
ΛE

E

Energetic Hadrons
B → ππ , ...

Separate physics at different momentum scales 
Model independent, systematically improvable
Power expansion, can estimate uncertainty
Exploit symmetries,  sum Sudakov logarithms

•
•
•
•

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

Soft-Collinear  
Effective Theory

ξn,Aµ
n

ξn̄, Aµ
n̄

hv,qs,Aµ
s}

Q



A short History of SCET
LEET,  NRQCD QCDFC.S.S.

Brodsky/Lepage

hep-ph/0005275,  Bauer, Fleming, Luke
hep-ph/0011336, Bauer, Fleming, Pirjol, I.S.

Formalism:

hep-ph/0107001, Bauer, I.S.
hep-ph/0109045, Bauer, Pirjol, I.S.

More work:

hep-ph/0202088, Bauer, Fleming, Pirjol, Rothstein, I.S.
hep-ph/0204229, Pirjol, Manohar, Mehen, I.S.
hep-ph/0206152, Beneke, Chapovsky, Diehl, Feldmann
hep-ph/0211018, Hill, Neubert 

hep-ph/0201197, Chay, Kim 

...

}



QCD  Expansion Parameters
1) Isospin
2)
3)
4)

SU(3)
5)

Heavy b-quark
Energetic Hadron Λ

EM
! 0.2

mu,d

Λ ! 0.02

ms
Λ ! 0.3

Heavy c-quark Λ
mc
! 0.3

Jet Scale expansion αs(
√

EΛ) " 0.3

6)

Test the expansions, then exploit them!

More expansions More universality

αs(mb) ! 0.2Λ
mb
! 0.1,

Terms in the series expansion are unique

(less parameters)(more uncertainty)

}
SCET

nonperturbative
    parameters

Obs =
∑

i

f (0)
i + ε

∑
i

f (1)
i + ε2

∑
i

f (2)
i + . . .

Predictions are model independent only if         are fit to dataf (n)
i



"Tree" "Color suppressed" "Exchange"

B D

b c

u , d

du DB

b c

u

d , u d B

D

b

d

c

u

u ,d

u, d

!!

!

B̄0 → D+π− B− → D0π− B̄0 → D+π−
B− → D0π− B̄0 → D0π0 B̄0 → D0π0

Naive Factorization - too small & disagrees with SCET/QCD(!)

A(B̄0 → D0π0) ∼ a2〈π0|(d̄b)|B̄0〉〈D0|(c̄u)|0〉

“               ’’ Decays in SCETB → Dπ Bauer, Pirjol, I.S. 
Mantry, Pirjol, I.S.

O(1) O
( Λ

E

)
O

( Λ
E

)



Factorization 

B D

!

〈Dπ|(c̄b)(ūd)|B〉 = N ξ(v · v′)
∫ 1

0
dxT (x, µ) φπ(x, µ) Calculate T  

B,D are soft, π collinear

LSCET = L(0)
s + L(0)

c

Factorization if O = Oc ×Os

B̄0 → D+π− , B− → D0π−

Q2 QΛ Λ2!!
+AD(∗)π

long

AD(∗)π
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

•

• B̄0 → D(∗)0π0 (power suppressed)



with HQET 〈D(∗)0π|(c̄ b)(d̄ u)|B̄0〉 pµ
π

mc
→ Eπ

mc
= 1.5gives

not a convergent expansion

1)

Predict
equal strong phases δD = δD∗

equal amplitudes AD
00 = AD∗

00

corrections to this are αs(mb), Λ/Q

Test  Λ/E expansion (no expansion for  jet, J)

 complex (universal nonperturbative phases)

〈D(∗)0|O(0,8)
s |B̄0〉 → S(0,8)(k+

1 , k+
2 )

same for D and D∗



Expt Average (Cleo, Belle, Babar):

D
0!0 0"

0 0
K

0"'

0#

D

D D

D

D
0$0

D
+!-

D
0!-

D
+
$-

D
0
$-D

+
%-

D
0 -
%

A(D*M)

A(D M)

0.0

0.5

1.0

1.5

2.0
color allowed

color suppressed

LO  SCET  prediction

*

* # + #

δ(Dπ) = 30.4± 4.8◦

δ(D∗π) = 31.0± 5.0◦

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

! "

= D
*= D
#
#

RI
2

A003

A0_

isospin triangle

Extension to isosinglets:
Blechman, Mantry, I.S.

Not yet tested:

• Br(D∗ρ0
‖)! Br(D∗ρ0

⊥) ,
• equal ratios D(∗)K∗, D(∗)

s K, D(∗)
s K∗;  triangles for D(∗)ρ, D(∗)K

Br(D∗0K∗0
‖ ) ∼ Br(D∗0K∗0

⊥ )



Not yet tested:

• Baryons
topologies:

b

d

c

u

q

q

!

d

"b

"c

#c

,

!

b c

u
d , u

d

,u d

"c

#c

,
"b

!

b c

qd

d
"c

#c

,
"b u

q

"b

b c

u
d

du

!c!b d
u

"

! ∼ !

Leibovich, Ligeti, I.S., Wise 

Br(Λb → Ξ∗
cK)

Br(Λb → Ξ′
cK)

= 2 ,
Br(Λb → Ξ∗

cK
∗
‖ )

Br(Λb → Ξ′
cK

∗
‖ )

= 2
Br(Λb → Σ∗

cπ)
Br(Λb → Σcπ)

= 2 ,
Br(Λb → Σ∗

cρ)
Br(Λb → Σcρ)

= 2

• Excited D’s Mantry
Belle:

Br(B → D∗
2π)

Br(B → D1π)
= 1 φD∗

2π = φD1π
Br(B− → D∗0

2 π−)
Br(B− → D0

1π
−)

= 0.77± 0.15



Relate π and ρ

• Recall data gives

|rDπ| =
|A(B̄0 → D+π−)|
|A(B− → D0π−)| = 0.77 ± 0.05 , |rDρ| = 0.80 ± 0.09

SCET predicts weak dependence on M through 〈x−1〉π # 〈x−1〉ρ :

rDM = 1 − 16παsmD

9(mB + mD)
〈x−1〉M
ξ(wmax)

seff

EM

no fρ = 1.6 fπ

natural parameters fit data, seff ! (430 MeV)ei 44◦

Test  expansion (expansion for J)αs(EΛ)2)



Relate π and ρ

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

= D
*= D

! "

RI
2

A003

A0_

#
#

• predict that φDρ = φDπ, not yet tested

if 〈x−1〉π # 〈x−1〉ρ then this implies δDπ # δDρ

Br(B̄ → D(∗)η′)
Br(B̄ → D(∗)η)

= tan2(θ) = 0.67

FKS mixing angle

data = 0.61± 0.12(D), 0.51± 0.18(D∗)

+O(
αs

(√
EΛ

))•

Test  expansion (expansion for J)αs(EΛ)

Relate η and η′

2)



B →M1M2 Factorization in SCET
Λ2 ! EΛ! E2,m2

b

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

!s(q )2

c

c

b
d,s

q

q

....
q µ

!s (mv)

• hard spectator & form factor terms  same,  universality at 

• long distance charm penguin

Bauer, Pirjol, Rothstein, I.S. 
Chay, Kim

Ciuchini et al,
Colangelo et al

(earlier work by B.B.N.S.)

Same Jet function as B →M form factors
= Acc̄ ∼ αs(2mc)v

EΛ

treat        Penguin as a complex parameter (use isospin)cc̄

not Λ
mb



pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

B →
B →

} “hard spectator”,
“factorizable”
“soft form factor”,
“non-factorizable”

ζBM
J (z) = fMfB

∫ 1

0
dx

∫ ∞
0
dk+J(z, x, k+, E)φM (x)φB(k+)

Form Factors

Nonleptonic

Factorization at

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}B →M1M2

mb

}
Factorization at √EΛ

ζBM = ?

Beneke, Feldmann
Bauer, Pirjol, I.S.
Becher, Hill, Lange, 

Neubert

expansion in Λ
Q , αs(mb)

corrections ∼ 20%
,

expansion in αs(
√

EΛ)

f(E) =
∫

dz T (z,E) ζBM
J (z,E)

+ C(E) ζBM (E)



One Loop Matching: Ck(E,mb) Bauer, Fleming, Pirjol, I.S.
Beneke, Kiyo, Yang

J(z, x, r+, E) Becher, Hill, Lee, Lange, Neubert

Log Resummation:

Sudakov suppression of “soft” relative to “hard” form factors
small for physical  b-quark mass

Tf (z,E)
T2ζ(u) BBNS

T2J(u) MISSING!

Model Independent Predictions:

• power suppressed annihilation

• small phases between non-penguin amplitudes
• relations between semi & non - leptonics

γ
Vub

I will not use model dependent input parameters (pQCD,QCDF)
see parallel talks



Phenomenology for                   B → ππ

Averages (’05) (BABAR, BELLE)

Test
CP violation

A New Method for Determining γ from B → ππ Decays

Christian W. Bauer,1 Ira Z. Rothstein,2 and Iain W. Stewart3

1California Institute of Technology, Pasadena, CA 91125
2Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
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Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number
of hadronic parameters in an isospin analysis of B → ππ decays by one. This gives a theoretically
precise method for determining the CP violating phase γ by fitting to the B → ππ data without
Cπ0π0 . SCET predicts that γ lies close to the isospin bounds. With the current world averages we
find γ = 75◦ ± 2◦+9◦

−13◦ , where the uncertainties are theoretical, then experimental.

Measurements of CP violation are an important tool
to look for physics beyond the standard model (SM) [?
]. Standard model measurements of CP violation in B-
decays are usually expressed in terms of the angles α,
β, γ. To test the SM picture of CP violation one looks
for inconsistencies by making measurements in as many
decay channels as possible.

Important observables for measuring γ (or α) are
the CP asymmetries and branching fractions in B →
ππ decays. Unfortunately, hadronic uncertainties and
“penguin-pollution” make the data difficult to interpret.
Gronau and London (GL) [? ] have shown that us-
ing isospin, Br(B̄ → π+π−), Br(B+ → π+π0), Br(B̄ →
π0π0), and the CP asymmetries Cπ+π−, Sπ+π−, Cπ0π0 ,
one can eliminate the hadronic uncertainty and deter-
mine γ. Thus data is used to determine the 5 hadronic
isospin parameters. This year Babar and Belle [? ] re-
ported a first observation of Cπ0π0 . Unfortunately, the
uncertainties in Cπ0π0 and Br(B → π0π0) are still too
large to give strong constraints, leaving a four-fold dis-
crete ambiguity and a ±29◦ window of uncertainty in γ
(at 1-σ) near the SM preferred value.

In this letter we observe that the soft-collinear effec-
tive theory (SCET) [? ] predicts that one hadronic
parameter vanishes at leading order in a power expan-
sion in ΛQCD/Eπ, and that this provides a robust new
method for determining γ using the experimental value
of β. The parameter is ε = Im(C/T ), where T and
C are defined below and are predominantly ”tree” and
”color suppressed tree” amplitudes. From [? ] we know
that ε vanishes to all orders in αs(

√
EπΛQCD) since the

“jet-function” does not involve a strong phase, and so ε
receives corrections suppressed by ΛQCD/Eπ or αs(mb).
Our method does not rely on a power expansion for any of
the other isospin parameters. Thus, issues like the size of
charm penguins and whether “hard-scattering” or “soft”
contributions dominate the B → π form factors [? ? ? ?
? ? ? ] are irrelevant here. Our analysis remains robust
if so-called “chirally enhanced” power corrections [? ] are
included. It differs from the QCDF [? ] and pQCD [? ]
analyses; for example we work to all orders in ΛQCD/mb

for most quantities and do not use QCD sum rule inputs.
The world averages for the CP averaged branching ra-

tios (Br) and the CP asymmetries are [? ? ]

Br× 106 Cππ Sππ

π+π− 4.6 ± 0.4 −0.37± 0.10 −0.50± 0.12
π0π0 1.51± 0.28 −0.28± 0.39
π+π0 5.61± 0.63

(1)

For later convenience we define the ratios

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0
= 0.446± 0.064 ,

Rn =
Br(B0 → π0π0)τB−

Br(B− → π0π−)τB0
= 0.293± 0.064 , (2)

and quote the product Rn Cπ0π0 = 0.082± 0.116.
To obtain general expressions for these observables, we

use isospin and unitarity of the CKM matrix to write

A(B̄0 → π+π−) = e−iγ |λu|T − |λc|P
+

(
e−iγ |λu|−|λc|

)
P 1

ew ,

A(B̄0 → π0π0) = e−iγ |λu|C + |λc|P
+

(
e−iγ |λu|−|λc|

)
(P 2

ew−P 1
ew) ,√

2A(B− → π0π−) = e−iγ |λu| (T + C)
+

(
e−iγ |λu|−|λc|

)
P 2

ew . (3)

Here λu = VubV
∗
ud, λc = VcbV

∗
cd. The CP conjugate am-

plitudes are obtained from (??) with γ → −γ. T , C, P
and the electroweak penguin amplitudes P 1,2

ew are com-
plex.

The amplitude P ew
2 is related to T and C by isospin [?

]. An additional relation for P ew
1 can be obtained using

SCET at lowest order in Λ/Eπ and αs(mb) [? ]. For the
dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,
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Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number
of hadronic parameters in an isospin analysis of B → ππ decays by one. This gives a theoretically
precise method for determining the CP violating phase γ by fitting to the B → ππ data without
Cπ0π0 . SCET predicts that γ lies close to the isospin bounds. With the current world averages we
find γ = 75◦ ± 2◦+9◦

−13◦ , where the uncertainties are theoretical, then experimental.

Measurements of CP violation are an important tool
to look for physics beyond the standard model (SM) [1].
Standard model measurements of CP violation in B-
decays are usually expressed in terms of the angles α,
β, γ. To test the SM picture of CP violation one looks
for inconsistencies by making measurements in as many
decay channels as possible.

Important observables for measuring γ (or α) are
the CP asymmetries and branching fractions in B →
ππ decays. Unfortunately, hadronic uncertainties and
“penguin-pollution” make the data difficult to interpret.
Gronau and London (GL) [2] have shown that using
isospin, Br(B̄ → π+π−), Br(B+ → π+π0), Br(B̄ →
π0π0), and the CP asymmetries Cπ+π−, Sπ+π−, Cπ0π0 ,
one can eliminate the hadronic uncertainty and deter-
mine γ. Thus data is used to determine the 5 hadronic
isospin parameters. This year Babar and Belle [3] re-
ported a first observation of Cπ0π0 . Unfortunately, the
uncertainties in Cπ0π0 and Br(B → π0π0) are still too
large to give strong constraints, leaving a four-fold dis-
crete ambiguity and a ±29◦ window of uncertainty in γ
(at 1-σ) near the SM preferred value.

In this letter we observe that the soft-collinear effec-
tive theory (SCET) [4] predicts that one hadronic pa-
rameter vanishes at leading order in a power expan-
sion in ΛQCD/Eπ, and that this provides a robust new
method for determining γ using the experimental value
of β. The parameter is ε = Im(C/T ), where T and
C are defined below and are predominantly ”tree” and
”color suppressed tree” amplitudes. From [5] we know
that ε vanishes to all orders in αs(

√
EπΛQCD) since the

“jet-function” does not involve a strong phase, and so ε
receives corrections suppressed by ΛQCD/Eπ or αs(mb).
Our method does not rely on a power expansion for any of
the other isospin parameters. Thus, issues like the size of
charm penguins and whether “hard-scattering” or “soft”
contributions dominate the B → π form factors [5–11] are
irrelevant here. Our analysis remains robust if so-called
“chirally enhanced” power corrections [7] are included.
It differs from the QCDF [7] and pQCD [11] analyses;
for example we work to all orders in ΛQCD/mb for most
quantities and do not use QCD sum rule inputs.

The world averages for the CP averaged branching ra-

tios (Br) and the CP asymmetries are [3, 12]

Br× 106 Cππ Sππ

π+π− 4.6 ± 0.4 −0.37± 0.10 −0.50± 0.12
π0π0 1.51± 0.28 −0.28± 0.39
π+π0 5.61± 0.63

(1)

Cππ Sππ

Babar −0.09± 0.15 −0.30± 0.17
Belle −0.56± 0.13 −0.67± 0.17

(2)

For later convenience we define the ratios

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0
= 0.446± 0.064 ,

Rn =
Br(B0 → π0π0)τB−

Br(B− → π0π−)τB0
= 0.293± 0.064 , (3)

and quote the product Rn Cπ0π0 = 0.082± 0.116.
To obtain general expressions for these observables, we

use isospin and unitarity of the CKM matrix to write

A(B̄0 → π+π−) = e−iγ |λu|T − |λc|P
+

(
e−iγ |λu|−|λc|

)
P 1

ew ,

A(B̄0 → π0π0) = e−iγ |λu|C + |λc|P
+

(
e−iγ |λu|−|λc|

)
(P 2

ew−P 1
ew) ,√

2A(B− → π0π−) = e−iγ |λu| (T + C)
+

(
e−iγ |λu|−|λc|

)
P 2

ew . (4)

Here λu = VubV
∗
ud, λc = VcbV

∗
cd. The CP conjugate am-

plitudes are obtained from (3) with γ → −γ. T , C, P and
the electroweak penguin amplitudes P 1,2

ew are complex.
The amplitude P ew

2 is related to T and C by
isospin [13]. An additional relation for P ew

1 can be
obtained using SCET at lowest order in Λ/Eπ and

Pure Isospin Analysis ala Gronau, London

A New Method for Determining γ from B → ππ Decays

Christian W. Bauer,1 Ira Z. Rothstein,2 and Iain W. Stewart3

1California Institute of Technology, Pasadena, CA 91125
2Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213

3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number
of hadronic parameters in an isospin analysis of B → ππ decays by one. This gives a theoretically
precise method for determining the CP violating phase γ by fitting to the B → ππ data without
Cπ0π0 . SCET predicts that γ lies close to the isospin bounds. With the current world averages we
find γ = 75◦ ± 2◦+9◦

−13◦ , where the uncertainties are theoretical, then experimental. The estimated
theory error shown here is obtained from assuming ΛQCD/Eπ ∼ 0.2 power corrections to our analysis.

I. INTRODUCTION

The standard model (SM) successfully explains all of
the CP violation observed to date in laboratory decays.
Possible hints for physics beyond the SM include the
amount of CP violation required for (non-lepto) baryo-
genesis, and observations in b → sqq̄ channels like B →
η′KS [1]. Standard model measurements of CP violation
in B-decays are usually expressed in terms of the angles
α, β, γ. It is important to remember that the goal is
not just to have a single accurate measurement of these
angles, but rather to test the SM picture of CP violation
and look for inconsistencies by making measurements of
the parameters in as many decay channels as possible.

Important observables for measuring γ (or α) are
the CP asymmetries and branching fractions in B →
ππ decays. Unfortunately, hadronic uncertainties and
“penguin-pollution” make the data difficult to interpret.
Gronau and London (GL) [2] have shown that using
isospin, Br(B̄ → π+π−), Br(B+ → π+π0), Br(B̄ →
π0π0), and the CP asymmetries Cπ+π−, Sπ+π−, Cπ0π0 ,
one can eliminate the hadronic uncertainty and deter-
mine γ. Thus data is used to determine the 5 hadronic
isospin parameters. This year Babar and Belle [3] re-
ported a first observation of Cπ0π0 bringing the GL anal-
ysis from the drawing board to reality. Unfortunately,
the uncertainties in Cπ0π0 and Br(B → π0π0) are still
too large to give strong constraints, leaving a four-fold
discrete ambiguity and a ±29◦ window of uncertainty in
γ (at 1-σ) near the SM preferred value.

In this letter we observe that the soft-collinear effec-
tive theory (SCET) [5] predicts that one hadronic pa-
rameter vanishes at leading order in a power expansion
in ΛQCD/Eπ, and that this provides a robust new method
for determining γ. The parameter is ε = Im(C/T ), where
T and C are ”tree” and ”color suppressed” amplitudes
(defined below). From the SCET analysis of B → ππ [6]
we know that ε vanishes to all orders in αs(

√
EπΛQCD)

since the “jet-function” does not involve a strong phase,
and so ε receives corrections suppressed by ΛQCD/Eπ or
αs(mb). Our method does not rely on a power expan-
sion for any of the other isospin parameters. Thus, is-

sues like the size of charm penguins and whether “hard-
scattering” or “soft” contributions dominate the B → π
form factors [6–10, 12] are irrelevant here. Our analy-
sis also remains robust if so-called “chirally enhanced”
power corrections [8] are included. It differs from the
QCDF [8] and pQCD [12] analyses; for example we work
to all orders in ΛQCD/mb for most quantities and do not
use QCD sum rules to obtain hadronic parameters.

The world averages for the CP averaged branching ra-
tios and the CP asymmetries are currently [3, 4]

Br× 106 Cππ Sππ

π+π− 4.6 ± 0.4 −0.37± 0.11 −0.61± 0.13
π0π0 1.51± 0.28 −0.28± 0.39
π+π0 5.61± 0.63

(1)

For later convenience we define the ratios

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0
= 0.446± 0.064 ,

Rn =
Br(B0 → π0π0)τB−

Br(B− → π0π−)τB0
= 0.293± 0.064 , (2)

and quote the product Rn Cπ0π0 = 0.082± 0.116.
To obtain general expressions for these observables, we

use isospin and unitarity of the CKM matrix to write

A(B̄0 → π+π−) = e−iγ |λu|T − |λc|P
A(B̄0 → π0π0) = e−iγ |λu|C + |λc|P√

2A(B− → π0π−) = e−iγ |λu| (T + C)
(3)

Here λu = VubV
∗
ud, λc = VcbV

∗
cd. The CP conjugate am-

plitudes are obtained from (3) with γ → −γ. With our
convention for the π0π0 amplitude one includes a 1/2 for
identical particles in the rate. The amplitudes T , C, P
are complex, as are the electroweak penguin amplitudes
P 1

ew and P 2
ew.

The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and

β known|λc,u| = CKM factors
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The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and
αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s

,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓

√
1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from
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FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and
Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and

Parameters:   
γ  +5 hadronic
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The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and
αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s

,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓

√
1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from
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FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and
Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and
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The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and
αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s

,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓

√
1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from
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FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and
Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and
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The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and
αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s

,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓

√
1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from
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FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and
Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and
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2

The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and
αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s

,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓

√
1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from

T+C
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T

C(0,0)

apex
1 tc

!

!
b)
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tc
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FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and
Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and
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αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s
,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓√

1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from
parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and
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FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and
ΛQCD/mb we have ε = 0 [6], which corresponds to flat
isospin triangles in Fig. 1. Equivalently

ε ∼ O
(ΛQCD

mb
, αs(mb)

)
. (9)Factorization from SCET:

Bauer, Rothstein, I.S.

This gives
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curves. Experimental uncertainties are not shown, and are
especially large for ε3,4. This plots shows only one of two al-
lowed (pc, ps) solutions and one of the two allowed γ-regions.

Neglecting EW-penguins, ε is an RGE invariant quantity
since Eq. (6) fixes it in terms of observables. Eq. (9)
makes an extraction of γ from B → ππ possible without
needing precision data on Cπ0π0 . In this method the
central values for γ are determined by finding the places
where the ε1 and/or ε2 curves cross the x-axis, meaning
we solve ε1,2(γ) = 0. The other hadronic parameters,
pc, ps, and tc are determined in the same way as in the
isospin analysis. This proposal for determining γ using
Eq. (9) is the main result of this letter.

Using the central values for all the data besides Cπ0π0

and solving ε1,2(γ) = 0 gives the solutions

γ = −159◦ , −105◦ , 21.5◦ , 74.9◦ . (10)

We have four solutions rather than the eight of the isospin
analysis (which occur within the first and third isospin
bounds in (8)), because factorization for the B → ππ
amplitudes resolves the discrete ambiguity in ps and pc

in favor of |P/T | < 1 solutions (this follows from the
factorization for light-quark penguins, the size of Wilson
coefficients, charm velocity power counting, and factors
of αs(mc) [6, 8]). Next we analyze the theoretical and
experimental uncertainties in our method for γ, and con-
trast these with the isospin analysis, focusing on the two
solutions which can occur in the 17.1◦ ≤ γ ≤ 75.2◦ region
preferred by global fits for the unitarity triangle [16].

To estimate the theoretical uncertainty we take

−0.2 ≤ ε ≤ 0.2 , (11)

which corresponds to roughly a 20% effect from pertur-
bative or power corrections. We also consider a much
more pessimistic scenario where this range is doubled to
ε = ±0.4. Note that |ε| < 0.2 can accommodate the
so-called “chirally enhanced” power corrections, which
have been argued to dominate [8]. Using the results
from Ref. [8], including the known αs(mb) corrections
and their power corrections which involve randomly scan-
ning two complex parameters XA and XH , gives ε =
arg

(
C/T

)|QCDF $ −0.08, with rare points out to −0.17.

FIG. 3: Regions of γ preferred by the SCET analysis. The
shaded bands show our best estimate of the theoretical un-
certainty from power corrections, −0.2 ≤ ε ≤ 0.2 as well as
the pessimistic estimate −0.4 ≤ ε ≤ 0.4. Experimental un-
certainties are not shown.

This is below the uncertainty assigned to our analysis,
and so is consistent with our error estimate.

In Fig. 3 we show ε1,2 for the region 65◦ < γ < 78◦.
Here the solution is γ = 74.9◦, and the different shading
corresponds to the theory uncertainty with |ε| < 0.2(0.4).
The solution for γ is very close to the isospin bound,
so the upward uncertainty on γ is very small. For the
downward uncertainty we consider the overlap with the
shaded region. For |ε| < 0.2 we find ∆γ theo =+0.3◦

−1.5◦ , while
for |ε| < 0.4 we find ∆γ theo =+0.3◦

−5.2◦ . On top of that there
are uncertainties from isospin violation, which we take to
be ±2◦. Thus, with perfect data at the current central
values we arrive at a theory uncertainty with |ε| < 0.2
as ∆γ theo = ±2◦. Repeating for the smaller solution at
γ = 21.5◦, we find a larger theory uncertainty, ∆γ theo =
+8.7◦
−4.4◦ , since the ε1,2 curves are flatter near this solution.

To determine the experimental errors, we use the pro-
gram Minuit. Taking ε = 0 and fitting to γ and the four
hadronic parameters we find

γ = 21.5◦+9.4◦
−7.9◦ , γ = 74.9◦+8.1◦

−10.6◦ . (12)

These uncertainties are purely experimental and are
propagated with the assumption that the original input
data are uncorrelated. If we instead set ε = 0.2 then we
find γ = 73.3◦+8.8◦

−13.3◦ and γ = 30.7◦+11.1◦
−7.2◦ , whereas fix-

ing ε = −0.2 gives γ = 75.2◦+7.6◦
−9.5◦ and γ = 17.2◦+8.7◦

−6.9◦ .
Combining these numbers we obtain our final result for
γ including all sources of uncertainty

γ = 74.9◦ ± 2◦+9.4◦
−13.3◦ . (13)

Here the first error is theoretical, and the last errors are
experimental where we picked the largest range obtained
in varying ε = ±0.2. The theory error increases to ∆γ =
+2◦
−5.2◦ for the more pessimistic case. The analog for the
lower solution is γ = 21.5◦+8.7◦

−4.4◦
+11.1◦
−7.9◦ .

The analysis presented here relies on the fact that a
small value of |ε| is allowed only for a narrow range of
γ. While this is certainly true given the current central
values of the data, it is instructive to investigate how the

(or+2◦
−5.2◦)

older ICHEP’04:

(or+2◦
−4◦)

γ = 70◦+15◦
−19◦

γ = 180◦ − β − α

isospin
γ = 56◦+9◦

−16◦

(ππ)
(ππ, ρπ, ρρ)

(J.Smith, here)
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FIG. 5: Model independent results for ζBπ , ζBπ
J , and the

B → π form factor f+(q2 = 0) as a function of γ. The shaded
bands show the 1-σ errors propagated from the B → ππ data.

non-perturbative parameters ζBπ , ζBπ
J ,

T = Nπ
1
3
(C1 + C2)

[
4ζBπ + (4 + 〈ū−1〉π)ζBπ

J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
C2 + C3

3

)
ζBπ
J

]
,

where 〈ū−1〉π =
∫ 1
0 φπ(u)/(1−u), and ζBπ

J =
∫

dz ζBπ
J (z).

The penguin amplitude also gets a contribution from the
complex Aππ

cc̄ amplitude, so

P ≡ −
∣∣∣λ(d)

u

λ(d)
c

∣∣∣ Tc rc eiδc = Nπ

[(
C4 +

C3

3

)
ζBπ

+
(

C4+(1+〈ū−1〉π)
C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=64◦ =

(
0.05± 0.05

)(3.9× 10−3

|Vub|
)

, (40)

ζBπ
J

∣∣
γ=64◦ =

(
0.11± 0.03

)(3.9× 10−3

|Vub|
)

,

where the quoted errors are propagated from the exper-
imental errors from |T | and |t| in Eq. (35). Using the
results for rc and δc in Eq. (34) and |Vcb| = 0.041 the
penguin amplitude is

P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦ =

(
0.17± 0.02

)(3.9× 10−3

|Vub|
)

. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).

Use nonleptonic data: B → ππ

hard scattering      soft form factor

determines the parameters

theory
estimate

smaller than models 
f+(0) ∼ 0.25

80

3.9

ζBπ
∣∣
γ=80◦ = (0.076 ± 0.024)

(3.9× 10−3

|Vub|
)

ζBπ
J

∣∣
γ=80◦ = (0.106 ± 0.019)

(3.9× 10−3

|Vub|
)

f+(0) = (0.18 ± 0.01 ± 0.04)
(3.9× 10−3

|Vub|
)

independent of : 

∼ 25%
perturbative and

  power corrections

Factorization &                determines |Vub|f+(0)B → ππ

∼

∫
dx φπ(x)

x
Cπ+π−,from



A precision model independent Exclusive Vub: 

q2

2520151050

q2

f+( )q2

( )GeV2

SCET (Large Recoil) HQET (Small Recoil)  

ChPT

   Precision 

Lattice QCD

•

 relevant for 
nonleptonic 

B → π"ν̄ form factor

Arnesen, Grinstein,
 Rothstein, I.S. (to appear)

Dispersion relations bound the shape of the form factor
(Boyd, Grinstein, Lebed;  ...)

χ(n) ≥ 3
2π

∫ ∞

(mB+mπ)2
dt t−n−3k(t) |F (t)|2 (these bounds are also

used for excl. Vcb)

dΓ/dq2

unquenched Lattice (FNAL, HPQCD) + 
SCET

CLEO, Belle

5 20 2510 150 q2



|Vub| = 4.08 ± 0.22 ± 0.40B → π"ν̄
(Lattice + SCET+ dispersion)

5 20 2510 150 q2

f+(q2)

5 20 2510 150
q2

no SCET

SCET

(m2
B∗−q2) f+(q2)

3 lattice pts.

Data  (avg. Belle, Babar, Cleo):

Br(B → π"ν̄) = (1.39± 0.12)× 10−4

J.Dingfelder (WGII)

•

B → Xu!ν̄ |Vub| = 4.70 ± 0.44
(OPE,  shape function analysis, HFAG ‘04 avg.)

•

theory error
dominated by input
point uncertainty

Preliminary

|Vub|(q2≥16) = (3.87 ± 0.70 ± 0.22+0.62
−0.48)× 10−3(Belle, FNAL)



Highlights

(parallel talks)



B → Xsγ

• Photon cut dependence,  1.0 GeV ≤ E0 ≤ 1.9 GeV , is significant
α2

s(mb−2E0)unknown terms can be ~ 10%
Neubert

• Right-handed photon polarization may be larger than expected

Grinstein, Grossman, Ligeti, Pirjol
b s
c
O2

gγ

A(B̄ → XsγR)
A(B̄ → XsγL)

∼ 0.1



B → Xu!ν̄ in endpoint region

LO factorization: full        known ,αs triple differential known 
Bauer, Manohar
Bosch, Lange, Neubert, Paz

•
p+

X spectrum

• NLO factorization:
progress on subl. shape functions ,
triple differential known,  factorization thm. 

K. Lee,  I.S. 
Bosch et al. 
Beneke et al.  

B →M1M2

• start to examine subleading operators Feldmann, Hurth

• polarization in VV: A0
LO = {Acc̄, ζ

BV , ζBV
J }

AT
LO = Acc̄ or 0

see Kagan, WGIV

with apologies for things left out ....



Outlook

• The SCET can be applied to:

• A lot of theory and phenomenology left to study ...

Nonleptonic decays, Other B decays
Jet physics, Exclusive form factors
Charmonium, Upsilon physics
... others ?

• There is a theory for B-decays with energetic hadrons 

• We now have the tools to systematically study power corrections

universal hadronic parameters, strong phases
γ (or α) from individual B →M1M2 channels

predictions for the size of amplitudes

color suppressed decays,  inclusive decays

exclusive Vub


