Status of Factorization in $B \rightarrow D^{(*)}M$ Decays

lain Stewart MIT

INT/SLAC workshop, May 2005

CD Expansion Parameters for B decays

Test the expansions

" $B \rightarrow D\pi$ " Decays

(Cleo, Belle, Babar)

Decay	Br (10^{-3})	$ A (10^{-7} \text{ GeV})$	Decay	Br (10^{-3})	$ A (10^{-7} \text{ GeV})$
$\bar{B}^0 \to D^+ \pi^-$	2.76 ± 0.25	5.99 ± 0.27	$\bar{B}^0 \to D^{*+} \pi^-$	2.76 ± 0.21	6.06 ± 0.23
$B^- \to D^0 \pi^-$	4.98 ± 0.29	7.72 ± 0.22	$B^- \to D^{*0} \pi^-$	4.6 ± 0.4	7.50 ± 0.33
$\bar{B}^0 \to D^0 \pi^0$	0.25 ± 0.02	1.81 ± 0.08	$\bar{B}^0 \to D^{*0} \pi^0$	0.28 ± 0.05	1.95 ± 0.18
$\bar{B}^0 \to D^+ \rho^-$	7.7 ± 1.3	10.2 ± 0.9	$\bar{B}^0 \to D^{*+} \rho^-$	6.8 ± 0.9	9.10 ± 0.61
$B^- \to D^0 \rho^-$	13.4 ± 1.8	12.9 ± 0.9	$B^- \to D^{*0} \rho^-$	9.8 ± 1.7	10.5 ± 0.92
$\bar{B}^0 \to D^0 \rho^0$	0.29 ± 0.11	1.97 ± 0.37	$\bar{B}^0 \to D^{*0} \rho^0$	< 0.51	< 2.78

- size of $Br(D^+M^-)$ agrees with factorization
- $Br(D^0M^0)$ small as expected (power suppressed)
- $\bullet\,$ color allowed Br are same for D and D^*

•
$$\frac{|A(B^- \to D^0 \rho^-)|}{|A(B^- \to D^0 \pi^-)|} = 1.67 \pm 0.12 \simeq \frac{f_{\rho}}{f_{\pi}}$$
, $\frac{|V_{ud}||A(B^- \to D^0 K^-)|}{|V_{us}||A(B^- \to D^0 \pi^-)|} = 1.20 \pm 0.10 \simeq \frac{f_K}{f_{\pi}}$

(Cleo, Belle, Babar)

Decay	Br (10^{-3})	$ A (10^{-7} \text{ GeV})$	Decay	$Br(10^{-3})$	$ A (10^{-7} \text{ GeV})$
$\bar{B}^0 \to D^+ \pi^-$	2.76 ± 0.25	5.99 ± 0.27	$\bar{B}^0 \to D^{*+} \pi^-$	2.76 ± 0.21	6.06 ± 0.23
$B^- \rightarrow D^0 \pi^-$	4.98 ± 0.29	7.72 ± 0.22	$B^- \to D^{*0} \pi^-$	4.6 ± 0.4	7.50 ± 0.33
$\bar{B}^0 \to D^0 \pi^0$	0.25 ± 0.02	1.81 ± 0.08	$\bar{B}^0 \to D^{*0} \pi^0$	0.28 ± 0.05	1.95 ± 0.18
$\bar{B}^0 \to D^+ \rho^-$	7.7 ± 1.3	10.2 ± 0.9	$\bar{B}^0 \to D^{*+} \rho^-$	6.8 ± 0.9	9.10 ± 0.61
$B^- \to D^0 \rho^-$	13.4 ± 1.8	12.9 ± 0.9	$B^- \to D^{*0} \rho^-$	9.8 ± 1.7	10.5 ± 0.92
$\bar{B}^0 \to D^0 \rho^0$	0.29 ± 0.11	1.97 ± 0.37	$\bar{B}^0 \to D^{*0} \rho^0$	< 0.51	< 2.78

• but significant power corrections for $\operatorname{Br}(D^0M^-)/\operatorname{Br}(D^+M^-)$

$$\frac{|A_{0-}|}{|A_{+-}|} = \begin{cases} 0.77 \pm 0.05 & \text{for } D\pi\\ 0.81 \pm 0.05 & \text{for } D^*\pi \end{cases}$$

20-30% level

• significant strong phases $\delta\sim 30^\circ$

1) Test Λ/E expansion (no expansion for jet,])

$$\langle D^{(*)0}|O_s^{(0,8)}|\bar{B}^0\rangle \to S^{(0,8)}(k_1^+,k_2^+)$$

complex (universal nonperturbative phases) same for D and D^*

Predict

equal strong phases $\delta^D = \delta^{D^*}$ equal amplitudes $A_{00}^D = A_{00}^{D^*}$ for color suppressed decays

corrections to this are $\alpha_s(m_b)$, Λ/Q

with HQET
$$\langle D^{(*)0}\pi | (\bar{c} b)(\bar{d} u) | \bar{B}^0 \rangle$$
 gives $\frac{p_{\pi}^{\mu}}{m_c} \rightarrow \frac{E_{\pi}}{m_c} = 1.5$
not a convergent expansion

Expt Average (Cleo, Belle, Babar):

strong phases $\delta(D\pi) = 27.3 \pm 3.9^{\circ}$ $\delta(D^*\pi) = 33.0 \pm 4.6^{\circ}$

> Extension to isosinglets: Blechman, Mantry, I.S.

Not yet tested:

- $Br(D^*\rho_{\parallel}^0) \gg Br(D^*\rho_{\perp}^0)$, $Br(D^{*0}K_{\parallel}^{*0}) \sim Br(D^{*0}K_{\perp}^{*0})$
- equal ratios $D^{(*)}K^*$, $D^{(*)}_sK$, $D^{(*)}_sK^*$; phases for $D^{(*)}\rho$, $D^{(*)}K$

Not yet tested:

Excited D's

Mantry

$$\frac{Br(B \to D_2^* \pi)}{Br(B \to D_1 \pi)} = 1 \qquad \phi_{D_2^* \pi} = \phi_{D_1 \pi}$$

Belle:

$$\frac{Br(B^- \to D_2^{*0} \pi^-)}{Br(B^- \to D_1^0 \pi^-)} = 0.77 \pm 0.15$$

Babar:

$$\frac{Br(B^- \to D_2^{*0}\pi^-)}{Br(B^- \to D_1^0\pi^-)} = 0.80 \pm 0.17$$

Baryons
topologies:

Leibovich, Ligeti, I.S., Wise

$$\frac{Br(\Lambda_b \to \Sigma_c^* \pi)}{Br(\Lambda_b \to \Sigma_c \pi)} = 2, \quad \frac{Br(\Lambda_b \to \Sigma_c^* \rho)}{Br(\Lambda_b \to \Sigma_c \rho)} = 2 \qquad \frac{Br(\Lambda_b \to \Xi_c^* K)}{Br(\Lambda_b \to \Xi_c' K)} = 2, \quad \frac{Br(\Lambda_b \to \Xi_c^* K_{\parallel}^*)}{Br(\Lambda_b \to \Xi_c' K_{\parallel}^*)} = 2$$

2) Test $\alpha_s(E\Lambda)$ expansion (expansion for])

Relate π and ρ

Better data would pin down the ratio of these hadronic parameters

• Recall data gives

$$\begin{aligned} |r^{D\pi}| &= \frac{|A(\bar{B}^0 \to D^+ \pi^-)|}{|A(B^- \to D^0 \pi^-)|} = 0.77 \pm 0.05 \,, \qquad |r^{D\rho}| = 0.80 \pm 0.09 \\ \end{aligned}$$
SCET predicts weak dependence on M if $\langle x^{-1} \rangle_{\pi} \simeq \langle x^{-1} \rangle_{\rho}$

$$r^{DM} = 1 - \frac{16\pi\alpha_s m_D}{9(m_B + m_D)} \frac{\langle x^{-1} \rangle_M}{\xi(w_{max})} \frac{s_{\text{eff}}}{E_M}$$
$$no \ f_{\rho} = 1.6 \ f_{\pi}$$
$$\sim 2.5$$

• natural parameters fit data, $s_{\text{eff}} \simeq (430 \,\text{MeV}) e^{i \, 44^{\circ}}$

2) Test $\alpha_s(E\Lambda)$ expansion (expansion for]) Relate π and ρ

• predict that
$$\phi^{D\rho} = \phi^{D\pi}$$
, not yet tested

if $\langle x^{-1} \rangle_{\pi} \simeq \langle x^{-1} \rangle_{\rho}$ then this implies $\delta^{D\pi} \simeq \delta^{D\rho}$

 $\frac{\text{Relate } \eta \text{ and } \eta'}{Br(\bar{B} \to D^{(*)}\eta')} = \tan^2(\theta) = 0.67 + \mathcal{O}(\alpha_s(\sqrt{E\Lambda}))$ $\text{data} = 0.61 \pm 0.12(D), \quad 0.51 \pm 0.18(D^*)$

Test SU(3) ?

$$R_{\rm SU(3)} = \frac{Br(\bar{B}^0 \to D_s^+ K^-)}{Br(\bar{B} \to D^0 \pi^0)} + \left| \frac{V_{ud}}{V_{us}} \right|^2 \frac{Br(\bar{B}^0 \to D^0 \bar{K}^0)}{Br(\bar{B} \to D^0 \pi^0)} - \frac{3Br(\bar{B}^0 \to D^0 \eta_8)}{Br(\bar{B} \to D^0 \pi^0)} = 1$$
$$R_{\rm SU(3)}^* = \frac{Br(\bar{B}^0 \to D_s^{*+} K^-)}{Br(\bar{B} \to D^{*0} \pi^0)} + \left| \frac{V_{ud}}{V_{us}} \right|^2 \frac{Br(\bar{B}^0 \to D^{*0} \bar{K}^0)}{Br(\bar{B} \to D^{*0} \pi^0)} - \frac{3Br(\bar{B}^0 \to D^{*0} \eta_8)}{Br(\bar{B} \to D^{*0} \pi^0)} = 1$$

$$R_{SU(3)} = 1.0 \pm 0.6$$

 $R_{SU(3)}^* = -0.22 \pm 0.97$