Status of Factorization in $B \rightarrow D^{(*)} M$ Decays

lain Stewart MIT

INT/SLAC workshop, May 2005

QCD Expansion Parameters for B decays

1) Isospin
2) Heavy b-quark

$$
\begin{aligned}
& \frac{m_{u, d}}{\Lambda} \simeq 0.02 \\
& \frac{\Lambda}{m_{b}} \simeq 0.1, \quad \alpha_{s}\left(m_{b}\right) \simeq 0.2
\end{aligned}
$$

3) Energetic Hadron
4) Jet Scale expansion $\frac{\Lambda}{E_{M}} \simeq 0.2$

$$
\alpha_{s}(\sqrt{E \Lambda}) \simeq 0.3
$$

5) Heavy c-quark

$$
\begin{aligned}
& \frac{\Lambda}{m_{c}} \simeq 0.3 \\
& \frac{m_{s}}{\Lambda} \simeq 0.3
\end{aligned}
$$

Terms in the series expansion are unique

$$
\mathrm{Obs}=\sum_{i} f_{i}^{(0)}+\epsilon \sum_{i} f_{i}^{(1)}+\epsilon^{2} \sum_{i} f_{i}^{(2)}+\ldots
$$

More expansions (more uncertainty)

More universality (less parameters)

Test the expansions

" $B \rightarrow D \pi$ " Decays

$$
\begin{aligned}
& \bar{B}^{0} \rightarrow D^{+} \pi^{-} \\
& B^{-} \rightarrow D^{0} \pi^{-}
\end{aligned}
$$

$\mathcal{O}(1)$
"Color suppressed"

$B^{-} \rightarrow D^{0} \pi^{-}$
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$
$\mathcal{O}\left(\frac{\Lambda}{E}\right)$
"Exchange"

$$
\begin{gathered}
\bar{B}^{0} \rightarrow D^{+} \pi^{-} \\
\bar{B}^{0} \rightarrow D^{0} \pi^{0}
\end{gathered}
$$

$$
\mathcal{O}\left(\frac{\Lambda}{E}\right)
$$

Naive Factorization - too small \& disagrees with SCET/QCD(!)

$$
A\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right) \sim a_{2}\left\langle\pi^{0}\right|(\bar{d} b)\left|\bar{B}^{0}\right\rangle\left\langle D^{0}\right|(\bar{c} u)|0\rangle
$$

Factorization

- $\bar{B}^{0} \rightarrow D^{+} \pi^{-}, B^{-} \rightarrow D^{0} \pi^{-}$

$$
\langle D \pi|(\bar{c} b)(\bar{u} d)|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)
$$

Calculate T

- $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0} \quad$ (power suppressed)

Mantry, Pirjol, I.S.

$$
A_{00}^{D^{(*)} \pi}=N_{0}^{N_{0}^{(*)}} \int d x d z d k_{\text {long }}^{D_{1}^{(*)} \pi} d k_{2}^{+} \underbrace{T^{(i)}(z)}_{Q^{2}} \underbrace{J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right)}_{>E_{\pi} \Lambda} \underbrace{S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right) \phi_{\pi}(x)}_{\gg \Lambda^{2}}
$$

(b)

color supp. ~ exchange

(Cleo, Belle, Babar)

Decay	$\operatorname{Br}\left(10^{-3}\right)$	$\|A\|\left(10^{-7} \mathrm{GeV}\right)$	Decay	$\operatorname{Br}\left(10^{-3}\right)$	$\|A\|\left(10^{-7} \mathrm{GeV}\right)$
$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$	2.76 ± 0.25	5.99 ± 0.27	$\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$	2.76 ± 0.21	6.06 ± 0.23
$B^{-} \rightarrow D^{0} \pi^{-}$	4.98 ± 0.29	7.72 ± 0.22	$B^{-} \rightarrow D^{* 0} \pi^{-}$	4.6 ± 0.4	7.50 ± 0.33
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$	0.25 ± 0.02	1.81 ± 0.08	$\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}$	0.28 ± 0.05	1.95 ± 0.18
$\bar{B}^{0} \rightarrow D^{+} \rho^{-}$	7.7 ± 1.3	10.2 ± 0.9	$\bar{B}^{0} \rightarrow D^{*+} \rho^{-}$	6.8 ± 0.9	9.10 ± 0.61
$B^{-} \rightarrow D^{0} \rho^{-}$	13.4 ± 1.8	12.9 ± 0.9	$B^{-} \rightarrow D^{* 0} \rho^{-}$	9.8 ± 1.7	10.5 ± 0.92
$\bar{B}^{0} \rightarrow D^{0} \rho^{0}$	0.29 ± 0.11	1.97 ± 0.37	$\bar{B}^{0} \rightarrow D^{* 0} \rho^{0}$	<0.51	<2.78

- size of $\operatorname{Br}\left(D^{+} M^{-}\right)$agrees with factorization
- $\operatorname{Br}\left(D^{0} M^{0}\right)$ small as expected (power suppressed)
- color allowed Br are same for D and D^{*}
- $\frac{\left|A\left(B^{-} \rightarrow D^{0} \rho^{-}\right)\right|}{\left|A\left(B^{-} \rightarrow D^{0} \pi^{-}\right)\right|}=1.67 \pm 0.12 \simeq \frac{f_{\rho}}{f_{\pi}} \quad, \quad \frac{\left|V_{u} d\right| A\left(B^{-} \rightarrow D^{0} K^{-}\right) \mid}{\left|V_{u s}\right|\left|A\left(B^{-} \rightarrow D^{0} \pi^{-}\right)\right|}=1.20 \pm 0.10 \simeq \frac{f_{K}}{f_{\pi}}$

(Cleo, Belle, Babar)

Decay	$\operatorname{Br}\left(10^{-3}\right)$	$\|A\|\left(10^{-7} \mathrm{GeV}\right)$	Decay	$\operatorname{Br}\left(10^{-3}\right)$	$\|A\|\left(10^{-7} \mathrm{GeV}\right)$
$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$	2.76 ± 0.25	5.99 ± 0.27	$\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$	2.76 ± 0.21	6.06 ± 0.23
$B^{-} \rightarrow D^{0} \pi^{-}$	4.98 ± 0.29	7.72 ± 0.22	$B^{-} \rightarrow D^{* 0} \pi^{-}$	4.6 ± 0.4	7.50 ± 0.33
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$	0.25 ± 0.02	1.81 ± 0.08	$\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}$	0.28 ± 0.05	1.95 ± 0.18
$\bar{B}^{0} \rightarrow D^{+} \rho^{-}$	7.7 ± 1.3	10.2 ± 0.9	$\bar{B}^{0} \rightarrow D^{*+} \rho^{-}$	6.8 ± 0.9	9.10 ± 0.61
$B^{-} \rightarrow D^{0} \rho^{-}$	13.4 ± 1.8	12.9 ± 0.9	$B^{-} \rightarrow D^{* 0} \rho^{-}$	9.8 ± 1.7	10.5 ± 0.92
$\bar{B}^{0} \rightarrow D^{0} \rho^{0}$	0.29 ± 0.11	1.97 ± 0.37	$\bar{B}^{0} \rightarrow D^{* 0} \rho^{0}$	<0.51	<2.78

- but significant power corrections for $\operatorname{Br}\left(D^{0} M^{-}\right) / \operatorname{Br}\left(D^{+} M^{-}\right)$

$$
\frac{\left|A_{0-}\right|}{\left|A_{+-}\right|}= \begin{cases}0.77 \pm 0.05 & \text { for } D \pi \\ 0.81 \pm 0.05 & \text { for } D^{*} \pi\end{cases}
$$

20-30\% level

- significant strong phases $\delta \sim 30^{\circ}$

1) Test Λ / E expansion (no expansion for jet, J)

$$
\left\langle D^{(*) 0}\right| O_{s}^{(0,8)}\left|\bar{B}^{0}\right\rangle \rightarrow S^{(0,8)}\left(k_{1}^{+}, k_{2}^{+}\right)
$$

complex (universal nonperturbative phases)
same for D and D^{*}

Predict

equal strong phases $\delta^{D}=\delta^{D^{*}}$
equal amplitudes $A_{00}^{D}=A_{00}^{D *} \quad$ for color suppressed decays
corrections to this are $\alpha_{s}\left(m_{b}\right), \Lambda / Q$
with HQET $\left\langle D^{(*) 0} \pi\right|(\bar{c} b)(\bar{d} u)\left|\bar{B}^{0}\right\rangle \quad$ gives $\quad \frac{p_{\pi}^{\mu}}{m_{c}} \rightarrow \frac{E_{\pi}}{m_{c}}=1.5$ not a convergent expansion

```
Expt Average (Cleo, Belle, Babar):
```


strong phases

$$
\begin{aligned}
\delta(D \pi) & =27.3 \pm 3.9^{\circ} \\
\delta\left(D^{*} \pi\right) & =33.0 \pm 4.6^{\circ}
\end{aligned}
$$

Extension to isosinglets:
Blechman, Mantry, I.S.

Not yet tested:

- $\operatorname{Br}\left(D^{*} \rho_{\|}^{0}\right) \gg \operatorname{Br}\left(D^{*} \rho_{\perp}^{0}\right), \quad \operatorname{Br}\left(D^{* 0} K_{\|}^{* 0}\right) \sim \operatorname{Br}\left(D^{* 0} K_{\perp}^{* 0}\right)$
- equal ratios $D^{(*)} K^{*}, D_{s}^{(*)} K, D_{s}^{(*)} K^{*}$; phases for $D^{(*)} \rho, D^{(*)} K$

Not yet tested:

- Excited D's

Mantry
Belle:

$$
\frac{\operatorname{Br}\left(B^{-} \rightarrow D_{2}^{* 0} \pi^{-}\right)}{\operatorname{Br}\left(B^{-} \rightarrow D_{1}^{0} \pi^{-}\right)}=0.77 \pm 0.15
$$

$$
\frac{\operatorname{Br}\left(B \rightarrow D_{2}^{*} \pi\right)}{\operatorname{Br}\left(B \rightarrow D_{1} \pi\right)}=1 \quad \phi_{D_{2}^{*} \pi}=\phi_{D_{1} \pi}
$$

Babar:

$$
\frac{\operatorname{Br}\left(B^{-} \rightarrow D_{2}^{* 0} \pi^{-}\right)}{\operatorname{Br}\left(B^{-} \rightarrow D_{1}^{0} \pi^{-}\right)}=0.80 \pm 0.17
$$

- Baryons

Leibovich, Ligeti, I.S., Wise topologies:

$$
\frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c}^{*} \pi\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c} \pi\right)}=2, \quad \frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c}^{*} \rho\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c} \rho\right)}=2 \quad \frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{*} K\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{\prime} K\right)}=2, \quad \frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{*} K_{\|}^{*}\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{\prime} K_{\|}^{*}\right)}=2
$$

$$
\frac{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)}=\frac{8 m_{\Lambda_{b}}^{3}\left(1-r_{\Lambda}^{2}\right)^{3} r_{D}}{m_{B}^{3}\left(1-r_{D}^{2}\right)^{3}\left(1+r_{D}\right)^{2}}\left(\frac{\zeta\left(w_{\max }^{\Lambda}\right)}{\xi\left(w_{\max }^{D}\right)}\right)^{2}
$$

2) Test $\alpha_{s}(E \Lambda)$ expansion (expansion for J)
$\underline{\text { Relate } \pi \text { and } \rho}$
Better data would pin down the ratio of these hadronic parameters

- Recall data gives

$$
\left|r^{D \pi}\right|=\frac{\left|A\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)\right|}{\left|A\left(B^{-} \rightarrow D^{0} \pi^{-}\right)\right|}=0.77 \pm 0.05, \quad\left|r^{D \rho}\right|=0.80 \pm 0.09
$$

SCET predicts weak dependence on M if $\left\langle x^{-1}\right\rangle_{\pi} \simeq\left\langle x^{-1}\right\rangle_{\rho}$

$$
r^{D M}=1-\frac{16 \pi \alpha_{s} m_{D}}{9(m_{B}+\underbrace{\left.m_{D}\right)}_{\sim 2.5} \frac{\left\langle x^{-1}\right\rangle_{M}}{\xi\left(w_{\max }\right)} \frac{s_{\mathrm{eff}}}{E_{M}}} \text { no } f_{\rho}=1.6 f_{\pi}
$$

- natural parameters fit data, $s_{\text {eff }} \simeq(430 \mathrm{MeV}) e^{i 44^{\circ}}$

2) Test $\alpha_{s}(E \Lambda)$ expansion (expansion for J)

Relate π and ρ

- predict that $\phi^{D \rho}=\phi^{D \pi}$, not yet tested
if $\left\langle x^{-1}\right\rangle_{\pi} \simeq\left\langle x^{-1}\right\rangle_{\rho}$ then this implies $\delta^{D \pi} \simeq \delta^{D \rho}$

$\underline{\text { Relate } \eta \text { and } \eta^{\prime}}$
FKS mixing angle

$$
\begin{aligned}
& \frac{\operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \eta^{\prime}\right)}{\operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \eta\right)}=\tan ^{2}(\theta)=0.67 \quad+\mathcal{O}\left(\alpha_{s}(\sqrt{E \Lambda})\right) \\
& \quad \text { data }=0.61 \pm 0.12(D), \quad 0.51 \pm 0.18\left(D^{*}\right)
\end{aligned}
$$

Test SU(3) ?

$$
\begin{gathered}
R_{\mathrm{SU}(3)}=\frac{\operatorname{Br}\left(\bar{B}^{0} \rightarrow D_{s}^{+} K^{-}\right)}{\operatorname{Br}\left(\bar{B} \rightarrow D^{0} \pi^{0}\right)}+\left|\frac{V_{u d}}{V_{u s}}\right|^{2} \frac{\operatorname{Br}\left(\bar{B}^{0} \rightarrow D^{0} \bar{K}^{0}\right)}{\operatorname{Br}\left(\bar{B} \rightarrow D^{0} \pi^{0}\right)}-\frac{3 B r\left(\bar{B}^{0} \rightarrow D^{0} \eta_{8}\right)}{\operatorname{Br}\left(\bar{B} \rightarrow D^{0} \pi^{0}\right)}=1 \\
R_{\mathrm{SU}(3)}^{*}=\frac{\operatorname{Br(\overline {(}^{0}\rightarrow D_{s}^{*+}K^{-})}}{\operatorname{Br}\left(\bar{B} \rightarrow D^{* 0} \pi^{0}\right)}+\left|\frac{V_{u d}}{V_{u s}}\right|^{2} \frac{\operatorname{Br}\left(\overline{(\overline{0}}^{0} \rightarrow D^{* 0} \bar{K}^{0}\right.}{\operatorname{Br}\left(\bar{B} \rightarrow D^{* 0} \pi^{0}\right)}-\frac{3 B r\left(\overline{(}^{0} \rightarrow D^{* 0} \eta_{8}\right.}{B r\left(\bar{B} \rightarrow D^{* 0} \pi^{0}\right)}=1 \\
R_{\mathrm{SU}(3)}=1.0 \pm 0.6 \\
\quad R_{\mathrm{SU}(3)}^{*}=-0.22 \pm 0.97
\end{gathered}
$$

