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BOTTOM MESONSBOTTOM MESONSBOTTOM MESONSBOTTOM MESONS
(B = ±1)(B = ±1)(B = ±1)(B = ±1)

B+ = ub, B0 = db, B0 = d b, B− = ub, similarly for B∗’s

B-particle organizationB-particle organizationB-particle organizationB-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily
included such admixtures in the B± section, but because of their importance we have created
two new sections: “B±/B0 Admixture” for Υ(4S) results and “B±/B0/B0

s /b-baryon Admix-
ture” for results at higher energies. Most inclusive decay branching fractions and χb at high
energy are found in the Admixture sections. B0-B0 mixing data are found in the B0 section,
while B0

s -B
0
s mixing data and B-B mixing data for a B0/B0

s admixture are found in the B0
s

section. CP-violation data are found in the B±, B0, and B± B0 Admixture sections. b-baryons
are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle
sections and brackets indicate reviews.

•B±
mass, mean life, branching fractions CP violation

•B0

mass, mean life, branching fractions
polarization in B0 decay, B0-B0 mixing, CP violation

•B± B0 Admixtures
branching fractions, CP violation

•B±/B0/B0
s /b-baryon Admixtures

mean life, production fractions, branching fractions
χb at high energy,Vcb measurements

• B∗

mass

• B0
s

mass, mean life, branching fractions

polarization in B0
s decay, B0

s -B
0
s mixing

• B±
c

mass, mean life, branching fractions

At end of Baryon Listings:

• Λb

mass, mean life, branching fractions

• b-baryon Admixture

mean life, branching fractions
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B±B±B±B± I (JP ) = 1
2 (0−)

I , J, P need confirmation. Quantum numbers shown are quark-model
predictions.

Mass mB± = 5279.0 ± 0.5 MeV
Mean life τ B± = (1.671 ± 0.018) × 10−12 s

cτ = 501 µm

CP violationCP violationCP violationCP violation

ACP (B+ → J/ψ(1S)K+) = −0.007 ± 0.019
ACP (B+ → J/ψ(1S)π+) = −0.01 ± 0.13
ACP (B+ → ψ(2S)K+) = −0.037 ± 0.025
ACP (B+ → D0K+) = 0.04 ± 0.07
ACP (B+ → DCP(+1)K

+) = 0.06 ± 0.19

ACP (B+ → DCP(−1)K
+) = −0.19 ± 0.18

ACP (B+ → π+π0) = 0.05 ± 0.15
ACP (B+ → K+π0) = −0.10 ± 0.08
ACP (B+ → K0

S π+) = 0.03 ± 0.08 (S = 1.1)
ACP (B+ → π+π−π+) = −0.39 ± 0.35
ACP (B+ → ρ+ρ0) = −0.09 ± 0.16
ACP (B+ → K+π−π+) = 0.01 ± 0.08
ACP (B+ → K+K−K+) = 0.02 ± 0.08
ACP (B+ → K+η′) = 0.009 ± 0.035
ACP (B+ → ωπ+) = −0.21 ± 0.19
ACP (B+ → ωK+) = −0.21 ± 0.28
ACP (B+ → φK+) = 0.03 ± 0.07
ACP (B+ → φK∗(892)+) = 0.09 ± 0.15
ACP (B+ → ρ0K∗(892)+) = 0.20 ± 0.31

B− modes are charge conjugates of the modes below. Modes which do not
identify the charge state of the B are listed in the B±/B0 ADMIXTURE
section.

The branching fractions listed below assume 50% B0B0 and 50% B+ B−
production at the Υ(4S). We have attempted to bring older measurements
up to date by rescaling their assumed Υ(4S) production ratio to 50:50

and their assumed D, Ds , D∗, and ψ branching ratios to current values
whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All
resonant subchannels have been corrected for resonance branching frac-
tions to the final state so the sum of the subchannel branching fractions
can exceed that of the final state.
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For inclusive branching fractions, e.g., B → D± anything, the values
usually are multiplicities, not branching fractions. They can be greater
than one.

Scale factor/ p

B+ DECAY MODESB+ DECAY MODESB+ DECAY MODESB+ DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Semileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modes
!+ν! anything [a] (10.2 ±0.9 ) % –

D0 !+ν! [a] ( 2.15±0.22) % 2310

D∗(2007)0 !+ν! [a] ( 6.5 ±0.5 ) % 2258

D1(2420)0 !+ν! ( 5.6 ±1.6 ) × 10−3 2084

D∗
2(2460)0 !+ν! < 8 × 10−3 CL=90% 2067

π0 e+ νe ( 9.0 ±2.8 ) × 10−5 2638

η!+ν! ( 8 ±4 ) × 10−5 2611

ω!+ν! [a] < 2.1 × 10−4 CL=90% 2582

ρ0 !+ν! [a] ( 1.34+0.32
−0.35) × 10−4 2583

ppe+ νe < 5.2 × 10−3 CL=90% 2467

e+ νe < 1.5 × 10−5 CL=90% 2640

µ+ νµ < 2.1 × 10−5 CL=90% 2638

τ+ντ < 5.7 × 10−4 CL=90% 2340

e+ νe γ < 2.0 × 10−4 CL=90% 2640

µ+ νµ γ < 5.2 × 10−5 CL=90% 2638

D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modes
D0 π+ ( 4.98±0.29) × 10−3 2308

D0 ρ+ ( 1.34±0.18) % 2236

D0 K+ ( 3.7 ±0.6 ) × 10−4 S=1.1 2280

D0 K∗(892)+ ( 6.1 ±2.3 ) × 10−4 2213

D0 K+K0 ( 5.5 ±1.6 ) × 10−4 2189

D0 K+K∗(892)0 ( 7.5 ±1.7 ) × 10−4 2071

D0 π+π+π− ( 1.1 ±0.4 ) % 2289

D0 π+π+π−nonresonant ( 5 ±4 ) × 10−3 2289

D0 π+ρ0 ( 4.2 ±3.0 ) × 10−3 2207

D0 a1(1260)+ ( 5 ±4 ) × 10−3 2123

D0 ωπ+ ( 4.1 ±0.9 ) × 10−3 2206

D∗(2010)−π+π+ ( 2.1 ±0.6 ) × 10−3 2247

D−π+π+ < 1.4 × 10−3 CL=90% 2299

D∗(2007)0π+ ( 4.6 ±0.4 ) × 10−3 2256

D∗(2007)0ωπ+ ( 4.5 ±1.2 ) × 10−3 2149

D∗(2007)0ρ+ ( 9.8 ±1.7 ) × 10−3 2181

D∗(2007)0K+ ( 3.6 ±1.0 ) × 10−4 2227

D∗(2007)0K∗(892)+ ( 7.2 ±3.4 ) × 10−4 2156

D∗(2007)0K+K0 < 1.06 × 10−3 CL=90% 2132

D∗(2007)0K+K∗(892)0 ( 1.5 ±0.4 ) × 10−3 2008
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D∗(2007)0π+π+π− ( 9.4 ±2.6 ) × 10−3 2236

D∗(2007)0 a1(1260)+ ( 1.9 ±0.5 ) % 2062

D∗(2007)0π−π+π+π0 ( 1.8 ±0.4 ) % 2219

D∗(2010)+π0 < 1.7 × 10−4 CL=90% 2255

D∗(2010)+K0 < 9.5 × 10−5 CL=90% 2225

D∗(2010)−π+π+π0 ( 1.5 ±0.7 ) % 2235

D∗(2010)−π+π+π+π− < 1 % CL=90% 2217

D∗
1(2420)0π+ ( 1.5 ±0.6 ) × 10−3 S=1.3 2081

D∗
1(2420)0ρ+ < 1.4 × 10−3 CL=90% 1995

D∗
2(2460)0π+ < 1.3 × 10−3 CL=90% 2064

D∗
2(2460)0ρ+ < 4.7 × 10−3 CL=90% 1977

D0 D+
s ( 1.3 ±0.4 ) % 1815

D0 DsJ (2317)+ seen 1605

D0 DsJ (2457)+ seen –
D0 DsJ (2536)+ not seen 1447

D∗(2007)0DsJ (2536)+ not seen 1338

D0 DsJ (2573)+ not seen 1417

D∗(2007)0DsJ (2573)+ not seen 1306

D0 D∗+
s ( 9 ±4 ) × 10−3 1734

D∗(2007)0D+
s ( 1.2 ±0.5 ) % 1737

D∗(2007)0D∗+
s ( 2.7 ±1.0 ) % 1651

D
(∗)+
s D∗∗0 ( 2.7 ±1.2 ) % –

D∗(2007)0D∗(2010)+ < 1.1 % CL=90% 1713

D0 D∗(2010)+ +
D∗(2007)0D+

< 1.3 % CL=90% 1792

D0 D+ < 6.7 × 10−3 CL=90% 1866

D0 D+K0 < 2.8 × 10−3 CL=90% 1571

D∗(2007)0D+K0 < 6.1 × 10−3 CL=90% 1475

D0 D∗(2010)+K0 ( 5.2 ±1.2 ) × 10−3 1476

D∗(2007)0D∗(2010)+K0 ( 7.8 ±2.6 ) × 10−3 1362

D0 D0K+ ( 1.9 ±0.4 ) × 10−3 1577

D∗(2010)0D0K+ < 3.8 × 10−3 CL=90% –
D0 D∗(2007)0 K+ ( 4.7 ±1.0 ) × 10−3 1481

D∗(2007)0D∗(2007)0 K+ ( 5.3 ±1.6 ) × 10−3 1368

D−D+K+ < 4 × 10−4 CL=90% 1571

D−D∗(2010)+K+ < 7 × 10−4 CL=90% 1475

D∗(2010)−D+K+ ( 1.5 ±0.4 ) × 10−3 1475

D∗(2010)−D∗(2010)+K+ < 1.8 × 10−3 CL=90% 1363

(D +D∗ )(D +D∗ )K ( 3.5 ±0.6 ) % –
D+

s π0 < 2.0 × 10−4 CL=90% 2270

D∗+
s π0 < 3.3 × 10−4 CL=90% 2215

D+
s η < 5 × 10−4 CL=90% 2235

D∗+
s η < 8 × 10−4 CL=90% 2178
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D+
s ρ0 < 4 × 10−4 CL=90% 2197

D∗+
s ρ0 < 5 × 10−4 CL=90% 2138

D+
s ω < 5 × 10−4 CL=90% 2195

D∗+
s ω < 7 × 10−4 CL=90% 2136

D+
s a1(1260)0 < 2.2 × 10−3 CL=90% 2079

D∗+
s a1(1260)0 < 1.6 × 10−3 CL=90% 2014

D+
s φ < 3.2 × 10−4 CL=90% 2141

D∗+
s φ < 4 × 10−4 CL=90% 2079

D+
s K0 < 1.1 × 10−3 CL=90% 2241

D∗+
s K0 < 1.1 × 10−3 CL=90% 2184

D+
s K∗(892)0 < 5 × 10−4 CL=90% 2172

D∗+
s K∗(892)0 < 4 × 10−4 CL=90% 2112

D−
s π+K+ < 8 × 10−4 CL=90% 2222

D∗−
s π+K+ < 1.2 × 10−3 CL=90% 2164

D−
s π+K∗(892)+ < 6 × 10−3 CL=90% 2138

D∗−
s π+K∗(892)+ < 8 × 10−3 CL=90% 2076

Charmonium modesCharmonium modesCharmonium modesCharmonium modes
ηc K+ ( 9.0 ±2.7 ) × 10−4 1754

J/ψ(1S)K+ ( 1.00±0.04) × 10−3 1683

J/ψ(1S)K+π+π− ( 7.7 ±2.0 ) × 10−4 1612

X (3872)K+ seen –
J/ψ(1S)K∗(892)+ ( 1.35±0.10) × 10−3 1571

J/ψ(1S)K (1270)+ ( 1.8 ±0.5 ) × 10−3 1390

J/ψ(1S)K (1400)+ < 5 × 10−4 CL=90% 1308

J/ψ(1S)φK+ ( 5.2 ±1.7 ) × 10−5 S=1.2 1227

J/ψ(1S)π+ ( 4.0 ±0.5 ) × 10−5 1727

J/ψ(1S)ρ+ < 7.7 × 10−4 CL=90% 1611

J/ψ(1S)a1(1260)+ < 1.2 × 10−3 CL=90% 1414

J/ψ(1S)pΛ ( 1.2 +0.9
−0.6 ) × 10−5 567

ψ(2S)K+ ( 6.8 ±0.4 ) × 10−4 1284

ψ(2S)K∗(892)+ ( 9.2 ±2.2 ) × 10−4 1115

ψ(2S)K+π+π− ( 1.9 ±1.2 ) × 10−3 1178

χc0(1P)K+ ( 6.0 +2.4
−2.1 ) × 10−4 1478

χc1(1P)K+ ( 6.8 ±1.2 ) × 10−4 1411

χc1(1P)K∗(892)+ < 2.1 × 10−3 CL=90% 1265

K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modes
K0π+ ( 1.88±0.21) × 10−5 2614

K+π0 ( 1.29±0.12) × 10−5 2615

η′K+ ( 7.8 ±0.5 ) × 10−5 2528

η′K∗(892)+ < 3.5 × 10−5 CL=90% 2472
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ηK+ < 6.9 × 10−6 CL=90% 2588

ηK∗(892)+ ( 2.6 +1.0
−0.9 ) × 10−5 2534

ωK+ ( 9.2 +2.8
−2.5 ) × 10−6 2557

ωK∗(892)+ < 8.7 × 10−5 CL=90% 2503

K∗(892)0 π+ ( 1.9 +0.6
−0.8 ) × 10−5 2562

K∗(892)+π0 < 3.1 × 10−5 CL=90% 2562

K+π−π+ ( 5.7 ±0.4 ) × 10−5 2609

K+π−π+nonresonant < 2.8 × 10−5 CL=90% 2609

K+ρ0 < 1.2 × 10−5 CL=90% 2558

K∗
2(1430)0π+ < 6.8 × 10−4 CL=90% 2445

K−π+π+ < 1.8 × 10−6 CL=90% 2609

K−π+π+nonresonant < 5.6 × 10−5 CL=90% 2609

K1(1400)0 π+ < 2.6 × 10−3 CL=90% 2451

K0π+π0 < 6.6 × 10−5 CL=90% 2609

K0ρ+ < 4.8 × 10−5 CL=90% 2558

K∗(892)+π+π− < 1.1 × 10−3 CL=90% 2556

K∗(892)+ρ0 ( 1.1 ±0.4 ) × 10−5 2504

K∗(892)+K∗(892)0 < 7.1 × 10−5 CL=90% 2484

K1(1400)+ρ0 < 7.8 × 10−4 CL=90% 2387

K∗
2(1430)+ρ0 < 1.5 × 10−3 CL=90% 2381

K+K0 < 2.0 × 10−6 CL=90% 2593

K0K+π0 < 2.4 × 10−5 CL=90% 2578

K+K0
S K0

S ( 1.34±0.24) × 10−5 2521

K0
S K0

S π+ < 3.2 × 10−6 CL=90% 2577

K+K−π+ < 6.3 × 10−6 CL=90% 2578

K+K−π+nonresonant < 7.5 × 10−5 CL=90% 2578

K+K+π− < 1.3 × 10−6 CL=90% 2578

K+K+π−nonresonant < 8.79 × 10−5 CL=90% 2578

K+K∗(892)0 < 5.3 × 10−6 CL=90% 2540

K+K−K+ ( 3.08±0.21) × 10−5 2522

K+φ ( 9.3 ±1.0 ) × 10−6 S=1.3 2516

K+K−K+nonresonant < 3.8 × 10−5 CL=90% 2522

K∗(892)+K+K− < 1.6 × 10−3 CL=90% 2466

K∗(892)+φ ( 9.6 ±3.0 ) × 10−6 S=1.9 2460

K1(1400)+φ < 1.1 × 10−3 CL=90% 2339

K∗
2(1430)+φ < 3.4 × 10−3 CL=90% 2332

K+φφ ( 2.6 +1.1
−0.9 ) × 10−6 2306

K∗(892)+γ ( 3.8 ±0.5 ) × 10−5 2564

K1(1270)+γ < 9.9 × 10−5 CL=90% 2486

φK+γ ( 3.4 ±1.0 ) × 10−6 2516

K+π−π+γ ( 2.4 +0.6
−0.5 ) × 10−5 2609
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K∗(892)0π+γ ( 2.0 +0.7
−0.6 ) × 10−5 2562

K+ρ0γ < 2.0 × 10−5 CL=90% 2558

K+π−π+γ nonresonant < 9.2 × 10−6 CL=90% 2609

K1(1400)+γ < 5.0 × 10−5 CL=90% 2453

K∗
2(1430)+γ < 1.4 × 10−3 CL=90% 2447

K∗(1680)+γ < 1.9 × 10−3 CL=90% 2360

K∗
3(1780)+γ < 5.5 × 10−3 CL=90% 2341

K∗
4(2045)+γ < 9.9 × 10−3 CL=90% 2243

Light unflavored meson modesLight unflavored meson modesLight unflavored meson modesLight unflavored meson modes
ρ+γ < 2.1 × 10−6 CL=90% 2583

π+π0 ( 5.6 +0.9
−1.1 ) × 10−6 2636

π+π+π− ( 1.1 ±0.4 ) × 10−5 2630

ρ0π+ ( 8.6 ±2.0 ) × 10−6 2581

π+ f0(980) < 1.4 × 10−4 CL=90% 2547

π+ f2(1270) < 2.4 × 10−4 CL=90% 2483

π+π−π+nonresonant < 4.1 × 10−5 CL=90% 2630

π+π0π0 < 8.9 × 10−4 CL=90% 2631

ρ+π0 < 4.3 × 10−5 CL=90% 2581

π+π−π+π0 < 4.0 × 10−3 CL=90% 2621

ρ+ρ0 ( 2.6 ±0.6 ) × 10−5 2523

a1(1260)+π0 < 1.7 × 10−3 CL=90% 2494

a1(1260)0π+ < 9.0 × 10−4 CL=90% 2494

ωπ+ ( 6.4 +1.8
−1.6 ) × 10−6 S=1.3 2580

ωρ+ < 6.1 × 10−5 CL=90% 2522

ηπ+ < 5.7 × 10−6 CL=90% 2609

η′π+ < 7.0 × 10−6 CL=90% 2551

η′ρ+ < 3.3 × 10−5 CL=90% 2492

ηρ+ < 1.5 × 10−5 CL=90% 2553

φπ+ < 4.1 × 10−7 CL=90% 2539

φρ+ < 1.6 × 10−5 2480

π+π+π+π−π− < 8.6 × 10−4 CL=90% 2608

ρ0 a1(1260)+ < 6.2 × 10−4 CL=90% 2433

ρ0 a2(1320)+ < 7.2 × 10−4 CL=90% 2410

π+π+π+π−π−π0 < 6.3 × 10−3 CL=90% 2592

a1(1260)+ a1(1260)0 < 1.3 % CL=90% 2335

Charged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modes

h± = K± or π±

h+π0 ( 1.6 +0.7
−0.6 ) × 10−5 2636

ωh+ ( 1.38+0.27
−0.24) × 10−5 2580

h+X0 (Familon) < 4.9 × 10−5 CL=90% –
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Baryon modesBaryon modesBaryon modesBaryon modes
ppπ+ < 3.7 × 10−6 CL=90% 2439

ppπ+nonresonant < 5.3 × 10−5 CL=90% 2439

ppπ+π+π− < 5.2 × 10−4 CL=90% 2369

ppK+ ( 4.3 +1.2
−1.0 ) × 10−6 2348

ppK+nonresonant < 8.9 × 10−5 CL=90% 2348

pΛ < 1.5 × 10−6 CL=90% 2430

pΛπ+π− < 2.0 × 10−4 CL=90% 2367

∆0p < 3.8 × 10−4 CL=90% 2402

∆++p < 1.5 × 10−4 CL=90% 2402

D+pp < 1.5 × 10−5 CL=90% 1860

D∗(2010)+pp < 1.5 × 10−5 CL=90% 1786

Λ−
c pπ+ ( 2.1 ±0.7 ) × 10−4 1981

Λ−
c pπ+π0 ( 1.8 ±0.6 ) × 10−3 1936

Λ−
c pπ+π+π− ( 2.3 ±0.7 ) × 10−3 1881

Λ−
c pπ+π+π−π0 < 1.34 % CL=90% 1823

Σ c(2455)0p < 8 × 10−5 CL=90% 1939

Σ c(2520)0p < 4.6 × 10−5 CL=90% 1905

Σ c(2455)0pπ0 ( 4.4 ±1.8 ) × 10−4 1897

Σ c(2455)0pπ−π+ ( 4.4 ±1.7 ) × 10−4 1845

Σ c(2455)−−pπ+π+ ( 2.8 ±1.2 ) × 10−4 1845

Λc(2593)− /Λc (2625)−pπ+ < 1.9 × 10−4 CL=90% –

Lepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, or
∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes

π+ e+ e− B1 < 3.9 × 10−3 CL=90% 2638

π+µ+µ− B1 < 9.1 × 10−3 CL=90% 2633

K+ e+ e− B1 ( 6.3 +1.9
−1.7 ) × 10−7 2616

K+µ+µ− B1 ( 4.5 +1.4
−1.2 ) × 10−7 2612

K+ "+ "− B1 [a] ( 5.3 ±1.1 ) × 10−7 2616

K+ ν ν B1 < 2.4 × 10−4 CL=90% 2616

K∗(892)+ e+ e− B1 < 4.6 × 10−6 CL=90% 2564

K∗(892)+µ+µ− B1 < 2.2 × 10−6 CL=90% 2560

K∗(892)+ "+ " B1 [a] < 2.2 × 10−6 CL=90% 2564

π+ e+µ− LF < 6.4 × 10−3 CL=90% 2637

π+ e−µ+ LF < 6.4 × 10−3 CL=90% 2637

K+ e+µ− LF < 8 × 10−7 CL=90% 2615

K+ e−µ+ LF < 6.4 × 10−3 CL=90% 2615

K∗(892)+ e±µ∓ LF < 7.9 × 10−6 CL=90% 2563

π− e+ e+ L < 1.6 × 10−6 CL=90% 2638

π−µ+µ+ L < 1.4 × 10−6 CL=90% 2633
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Motivation

• Probe the flavor sector of the SM

• Heavy Stable Hadrons lots of decays

V =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


W

b cVcb

:CP

CKM
 matrix



Motivation

• Probe the flavor sector of the SM; CKM matrix

• Look for new physics:

• Measure fundamental hadronic parameters & 
improve our understanding of QCD

• Heavy Stable Hadrons lots of decays

redundant measurements,

rare decays
(forbidden decays)

CP

precision measurements,
γ

b

W

s

d-

d

b

W

s B → Kπ

B → Xsγ
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uu
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u,c

mW ,mt ! mb

trees
O1 = (ūb)V−A(d̄u)V−A

O2 = (ūibj)V−A(d̄jui)V−A

penguins

O3 = (d̄b)V−A

∑
q

(q̄q)V−A

O4,5,6 = . . .

O7γ,8G = . . .

Oew
7,...,10 = . . .

= CKM  factorsλi

λ1 = VubV
∗
ud λ3 = VtbV

∗
tdHweak =

GF√
2

∑
i

λiCi(µ)Oi(µ)

Electroweak Hamiltonian
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B-meson

b
ΛQCD ! mb

Heavy Quark 
Effective Theory

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

Energetic Hadrons Soft-Collinear  
Effective Theory

Separate physics at different momentum scales 
Model independent, systematically improvable
Power expansion, can estimate uncertainty
Exploit symmetries 
Resum Sudakov logarithms

Effective Field Theory 
•
•
•
•

HW ,egs.           HQET,  ChPT
•



Need expansion parameters to make model 
independent predictions 

αs(mb) ! 0.2 Λ
mb
! 0.1 ms

Λ ! 0.3Λ
EM

! 0.2

•

•

For a given systematic expansion the terms in the series are 
unique and model independent

QCD is a predictive theory 
SCET

gives a systematic expansion in QCD

model independent description of power corrections

can estimate uncertainties

make symmetries explicit, understand factorization in a universal way

Determine quantities that are short and long distance,

calculate short distance coefficients

Proof of Factorization means Known to be Model Independent once
hadronic parameters are determined

has hard coefficients with , Wilson

lines W,

has jet coefficients with , Wilson lines ,

Iain Stewart – p.9

Model dependence arises from assumptions about 
nonperturbative parameters 



Factorization  Example

B D

!

〈Dπ|(c̄b)(ūd)|B〉 = N ξ(v · v′)
∫ 1

0
dxT (x, µ) φπ(x, µ)

Calculate T  

B,D are soft, π collinear

LSCET = L(0)
s + L(0)

c

Factorization if O = Oc ×Os

Bauer, Pirjol, I.S. 

B̄0 → D+π− , B− → D0π−

Q2 QΛ Λ2!!
+AD(∗)π

long

AD(∗)π
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

•

• B̄0 → D(∗)0π0 (power suppressed) Mantry, Pirjol, I.S.



Expt Average (Cleo, Belle, Babar):
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color allowed

color suppressed

LO  SCET  prediction

*

* # + #

δ(Dπ) = 30.4± 4.8◦

δ(D∗π) = 31.0± 5.0◦

Extension to isosinglets:
Blechman, Mantry, I.S.

can relate different 
channels 

•
eg. π to ρ

• can predict other ratios 
of amplitudes, some not 
yet tested by data

Br(B̄ → D(∗)η′)
Br(B̄ → D(∗)η)

= tan2(θ) = 0.67

FKS mixing angle

data = 0.61± 0.12(D), 0.51± 0.18(D∗)

+O(
αs

(√
EΛ

))



Precision Measurements
Some decays are clean

b→ cc̄s (                                                           )B0, B̄0 → J/ΨKs,Ψ′Ks, J/ΨKL, . . .

A dominant weak phase      

aCP (t) ∝ sin(2β)
Strong effects cancel in  

VcbV
∗
cs ∼ λ2 VubV

∗
us ∼ λ4,( )

ACP/A

[ we now know      at ~5% level ]β
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sin 2!
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excluded area has CL < 0.05

C K M
f i t t e r

ICHEP 2004

Note:  do not need to 
   untangle scales ≤ mb



B → Xc!ν̄!Inclusive:   

[ gives |Vcb| at ~3%  level ]

QCD effects: precision measurements are still possible

•                  is free quark decay,               computable

• No           corrections              uses HQET 

• At            two hadronic parameters  

 Operator Product Expansion in  ΛQCD

mb
! 0.1

mb →∞ αs(mb)

Λ2
QCD

m2
b

ΛQCD

mb

λ1,λ2
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Inclusive Decays
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FIG. 1: Photon energy spectra in the Υ(4S) frame.

in OFF-subtracted ON data and MC using appropriate
control samples. We then scale the MC background sam-
ple according to the ratio of these efficiencies. The effi-
ciencies of the π0 and η vetoes for non-π0, non-η photons
are measured in data using one photon from a well re-
constructed π0 applying the veto without using the other
photon of the pair. The π0 veto efficiency is measured
using a sample of photons coming from measured π0

decays. We use partially reconstructed D∗+ → D0π+,
D0 → K−π+π0 decays where the π0 is replaced by the
candidate photon in the reconstruction. The η veto ef-
ficiency for photons from π0’s and event-shape criteria
efficiencies are measured using a π0 anti-veto sample. It
is made of photons passing all selection criteria except
the π0 veto, which are combined with another photon in
the event to give a π0-likelihood larger than 0.75. Other
efficiencies are measured using the signal sample.

The ratios of data and MC efficiencies versus E∗
γ are

fitted using first or second order polynomials, which are
used to scale the background MC. Most are found to be
statistically compatible with unity. An exception is the
efficiency of the requirement that 95% of the energy has
to be deposited in the central nine cells of the 5× 5 clus-
ter, which is found to be poorly modelled by our MC
for non-photon backgrounds. We estimate the efficiency
for data using a sample of candidate photons in OFF-
subtracted ON data by subtracting the known contri-
bution from real photons. This effectively increases the
yield of background (iv) by 50%.

The yield from the five background categories, after
having been properly scaled by the above described pro-
cedures, are subtracted from the OFF-subtracted spec-
trum. The result is shown in Fig. 1.

The spectrum contains 24350± 2140 ± 1260 events in

the 1.8–2.8 GeV energy range, where the two errors are
the statistical error of the OFF-subtracted ON data and
of the BB̄ background subtractions, and the systematic
error related to the data/MC efficiency ratio fits used in
the BB̄ background scaling. We correct this spectrum
for the signal selection efficiency function obtained from
signal MC, applying the same data/MC correction fac-
tors as for the generic photon background category (iii).
The average signal selection efficiency is 23%.

The efficiency-corrected spectrum is shown in Figure 2.
The two error bars for each point show the statistical
and the total error, including the systematic error which
is correlated among the points. As expected, the spec-
trum above the endpoint for decays of B mesons from
the Υ(4S) at about 3 GeV, is consistent with zero. Inte-
grating this spectrum from 1.8 to 2.8 GeV, we obtain a
partial branching fraction of

(
3.55 ± 0.32 + 0.29

− 0.30

)
× 10−4.

The systematic error contains the contribution from
the fits to data/MC efficiency ratios (±5.9%) to which we
add the following contributions in quadrature. The un-
certainty on the number of BB̄ events, which also affects
the weight applied to OFF events, contributes (+3.9

−4.5)%.
We estimate the error on the OFF data subtraction using
the result of the fit to the spectrum above the endpoint.
We integrate the resulting function in the 1.8–2.8 GeV
range and obtain a yield of +40 ± 160. We add ±200
to the systematic error (±0.8%). For the choice of the
polynomial functions in the data/MC efficiency ratio fits,
we perform the same fit increasing the polynomial or-
der by one. The contribution is ±1.3%. As we do not
measure the yields of photons from sources other than
π0’s and η’s in BB̄ events, we vary the expected yields
by ±20% to estimate the systematic error and obtain a
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FIG. 2: Efficiency-corrected photon energy spectrum. The
two error bars show the statistical and total errors.

n
µ

X

With enough phase space can use local OPE,  known to           1
m3

b

But some cuts put us in endpoint region:

B → Xu!ν̄ B → Xsγ

m2
X ∼ mbΛ

SCET gives systematic 
expansion in this region

B → Xsγ

shape function for

P−X ! P+
X

dΓ = H(mb, p
−
X)

∫
dk+ J(p−Xk+) f(k+ + Λ− p+

X)

•

•

B

, f

λ2 = Λ
mb



LO endpoint factorization

• full        now known αs

• triple differential known 
• summation of double logs known

Bauer, Manohar
Bosch, Lange, Neubert, Paz

0

annihilation

charm
contamination

SCET
region
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.

.

.

0

PX
+

mB

PX
-

mB

NLO endpoint 
• some 1/mb terms known 

• annihilation effects
Bauer, Luke, Mannel

Leibovich, Ligeti, Wise
Bigi, Uraltsev;  Voloshin

P+
X

P−X
≤ 0.2

bb

a)

bb qq

b)

bb
qq

c)

FIG. 1: Comparison of the ratio of annihilation contributions to the lowest-order result. In the
total decay rate, b) is ∼ 16π2(Λ3/m3

b)∆B " 0.02, while c) is ∼ 4παs(mb)(Λ3/m3
b) " 0.003 when

compared to a). In the endpoint region, b) is ∼ 16π2(Λ2/m2
b)∆B " 0.16, a large correction, while

c) becomes ∼ 4παs(µJ)(Λ/mb) " 0.6, a huge correction.

〈Bv| · · · |Bv〉. For example, the set of local operators up to dimension 6 is

O3 = hv hv , O5a = hv(iDT )2hv , O5b = g hvσαβGαβhv , (4)

O6a = hv(iD
T
α )(iv ·D)(iDα

T )hv , O6b = iεαβγδvδ hv(iDα)(iv ·D)(iDβ)γγγ5 hv ,

O6c = (hvγ
αqL) (qLγαhv) , O6d = (hv qL) (qL hv) ,

O6e = (hvT
aγαqL) (qLT aγαhv) , O6f = (hvT

aqL) (qL T a hv) ,

where dimensions are shown as superscripts, a superscript/subscript T means transverse
to the HQET velocity parameter vµ, and an L means left-handed.4 Dimension-4 oper-
ators are absent so there are no 1/mb corrections, except the trivial ones that may be
induced by switching to hadronic variables. For dimension-5 and 6 operators there are two
naming conventions in common use. For 〈B̄v|{O5a, O5b, O6a, O6b}|B̄v〉, the parameters are
{λ1, λ2, ρ1, ρ2} or {µπ, µG, ρ3

D, ρ3
LS}. These operators are generated by connected graphs from

the time-ordered product of two currents, as in Fig. 1a. On the other hand, the four-quark
operators O6c,6d give parameters f 2

BB1,2 and are disconnected (or rather connected by leptons
or photons only), as shown in Fig. 1b, and thus exhibit a phase-space enhancement relative
to Fig. 1a. The simplest way to see this is to note that for the total rate to B → Xsγ,
we would cut a one-loop graph for Fig. 1a, while Fig. 1b would be at tree level. For later
convenience, we also consider the perturbative correction to the four-quark operators shown
in Fig. 1c, which is suppressed by αs/(4π) relative to Fig. 1b, and gives the operators O6e,6f .
In the total decay rate, if we normalize so that Fig. 1a ∼ 1 then

Fig. 1b ∼ 16π2 Λ3

m3
b

∆B ∼ 0.02 , Fig. 1c ∼ 4παs(mb)
Λ3

m3
b

∼ 0.003 . (5)

Here ∆B = B2 − B1 ∼ 0.1 accounts for the fact that the matrix elements of the operators
generated by Fig. 1b vanish in the factorization approximation. The definitions of B1,2 are〈

Bv

∣∣[h̄vγσqL

][
q̄Lγτhv

]∣∣Bv

〉
=

f 2
BmB

12

[
(B1 − B2)gστ + (4B2 −B1)vσvτ

]
. (6)

Without the ∆B suppression factor, Fig. 1b would dominate over other 1/m2
b operators

rather than just competing with them. The O(αs) corrections to annihilation are still

4 We write O3 in terms of HQET fields, although strictly speaking at lowest order this is not necessary.
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Factorization at NLO K. Lee,  I.S.   hep-ph/0409045 

• complete categorization of all terms at (all orders in       )       αs
Λ
mb

• derive factorization theorems at subleading order

Bosch et al.   hep-ph/0409115 
Beneke et al.   hep-ph/0411395 

• many new shape functions , keep 

+ phase space & kinematic corrections

h0f
i (n̄·p)
2mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) f (2)

0

(
k+ + r+, µ

)
+

2∑
r=1

hrf
i (n̄·p)
mb

∫ p+
X

0
dk+ J (0)(n̄·p k+, µ) f (2)

r

(
k+ + r+, µ

)
+

4∑
r=3

hrf
i (n̄·p)
mb

∫
dk+

1 dk+
2 J (−2)

1±2 (n̄·p k+
j , µ) f (4)

r

(
k+

j + r+, µ
)

+
6∑

r=5

hrf
i (n̄·p)
n̄·p

∫
dk+

1 dk+
2 dk+

3 J (−4)
1 (n̄·p k+

j′ , µ) f (6)
r

(
k+

j′ + r+, µ
)

4-quark operators
enhanced by   

bb
qq

( )0
J

( )0
J

!q
(1 )

!q
(1 )

L L

0 xyz

4παs
Λ
mb

at

m2
b

Λ2

(dim 6  = Λ3

m3
b

)

αs

π

Λ
mb



]-3 10×|  [ub|V
2 4 6

]-3 10×|  [ub|V
2 4 6

ALEPH 
 0.71± 0.67 ±4.12 

L3
 1.40± 1.00 ±5.70 

DELPHI 
 0.61± 0.65 ±4.07 

OPAL 
 0.71± 0.71 ±4.00 

CLEO (endpoint) 
 0.63± 0.23 ±4.69 

) 2, QXBELLE  sim. ann. (m
 0.46± 0.46 ±4.75 

BELLE (endpoint) 
 0.61± 0.23 ±4.46 

BABAR (endpoint) 
 0.44± 0.15 ±4.40 
 XBABAR m
 0.43± 0.30 ±5.22 

) 2, QXBABAR (m
 0.42± 0.52 ±5.18 

) 2, QlBABAR (E
 0.51± 0.34 ±4.99 

) 2, QX (mrecoBELLE  B
 0.54± 0.65 ±5.54 

Average  
 0.44±4.70 

HFAG
2004

/dof = 6.7/ 7 (CL = 46.5%)2!

Inclusive



B → Xsγ

• Ongoing NNLO calculations in local OPE  will reduce pert. 
uncertainty to ~ 5%

Bobeth, Misiak, Urban, Steinhauser, Haisch, Gorban, Gambino, 
Schroeder, Czakon, Bieri, Greub, Hurth, Asatrian, ... 

• Photon cut dependence,  1.0 GeV ≤ E0 ≤ 1.9 GeV , is significant
α2

s(mb−2E0)unknown terms can be ~ 10%
Neubert

• Right-handed photon polarization may be larger than expected

Grinstein, Grossman, Ligeti, Pirjol
b s
c
O2

gγ

A(B̄ → XsγR)
A(B̄ → XsγL)

∼ 0.1



B →M1M2 “The Landscape”

Aspen ‘05vacua



B → ππ

World Averages (BABAR, BELLE)

Test
CP violation

CP  Asymmetries
ACP(t) = −Sππ sin(∆mBt) + Cππcos(∆mBt)

A New Method for Determining γ from B → ππ Decays

Christian W. Bauer,1 Ira Z. Rothstein,2 and Iain W. Stewart3

1California Institute of Technology, Pasadena, CA 91125
2Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213

3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number
of hadronic parameters in an isospin analysis of B → ππ decays by one. This gives a theoretically
precise method for determining the CP violating phase γ by fitting to the B → ππ data without
Cπ0π0 . SCET predicts that γ lies close to the isospin bounds. With the current world averages we
find γ = 75◦ ± 2◦+9◦

−13◦ , where the uncertainties are theoretical, then experimental. The estimated
theory error shown here is obtained from assuming ΛQCD/Eπ ∼ 0.2 power corrections to our analysis.

I. INTRODUCTION

The standard model (SM) successfully explains all of
the CP violation observed to date in laboratory decays.
Possible hints for physics beyond the SM include the
amount of CP violation required for (non-lepto) baryo-
genesis, and observations in b → sqq̄ channels like B →
η′KS [1]. Standard model measurements of CP violation
in B-decays are usually expressed in terms of the angles
α, β, γ. It is important to remember that the goal is
not just to have a single accurate measurement of these
angles, but rather to test the SM picture of CP violation
and look for inconsistencies by making measurements of
the parameters in as many decay channels as possible.

Important observables for measuring γ (or α) are
the CP asymmetries and branching fractions in B →
ππ decays. Unfortunately, hadronic uncertainties and
“penguin-pollution” make the data difficult to interpret.
Gronau and London (GL) [2] have shown that using
isospin, Br(B̄ → π+π−), Br(B+ → π+π0), Br(B̄ →
π0π0), and the CP asymmetries Cπ+π−, Sπ+π−, Cπ0π0 ,
one can eliminate the hadronic uncertainty and deter-
mine γ. Thus data is used to determine the 5 hadronic
isospin parameters. This year Babar and Belle [3] re-
ported a first observation of Cπ0π0 bringing the GL anal-
ysis from the drawing board to reality. Unfortunately,
the uncertainties in Cπ0π0 and Br(B → π0π0) are still
too large to give strong constraints, leaving a four-fold
discrete ambiguity and a ±29◦ window of uncertainty in
γ (at 1-σ) near the SM preferred value.

In this letter we observe that the soft-collinear effec-
tive theory (SCET) [5] predicts that one hadronic pa-
rameter vanishes at leading order in a power expansion
in ΛQCD/Eπ, and that this provides a robust new method
for determining γ. The parameter is ε = Im(C/T ), where
T and C are ”tree” and ”color suppressed” amplitudes
(defined below). From the SCET analysis of B → ππ [6]
we know that ε vanishes to all orders in αs(

√
EπΛQCD)

since the “jet-function” does not involve a strong phase,
and so ε receives corrections suppressed by ΛQCD/Eπ or
αs(mb). Our method does not rely on a power expan-
sion for any of the other isospin parameters. Thus, is-

sues like the size of charm penguins and whether “hard-
scattering” or “soft” contributions dominate the B → π
form factors [6–10, 12] are irrelevant here. Our analy-
sis also remains robust if so-called “chirally enhanced”
power corrections [8] are included. It differs from the
QCDF [8] and pQCD [12] analyses; for example we work
to all orders in ΛQCD/mb for most quantities and do not
use QCD sum rules to obtain hadronic parameters.

The world averages for the CP averaged branching ra-
tios and the CP asymmetries are currently [3, 4]

Br× 106 Cππ Sππ

π+π− 4.6 ± 0.4 −0.37± 0.11 −0.61± 0.13
π0π0 1.51± 0.28 −0.28± 0.39
π+π0 5.61± 0.63

(1)

For later convenience we define the ratios

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0
= 0.446± 0.064 ,

Rn =
Br(B0 → π0π0)τB−

Br(B− → π0π−)τB0
= 0.293± 0.064 , (2)

and quote the product Rn Cπ0π0 = 0.082± 0.116.
To obtain general expressions for these observables, we

use isospin and unitarity of the CKM matrix to write

A(B̄0 → π+π−) = e−iγ |λu|T − |λc|P
+

(
e−iγ |λu|−|λc|

)
P 1

ew ,

A(B̄0 → π0π0) = e−iγ |λu|C + |λc|P
+

(
e−iγ |λu|−|λc|

)
(P 2

ew−P 1
ew) ,√

2A(B− → π0π−) = e−iγ |λu| (T + C)
+

(
e−iγ |λu|−|λc|

)
P 2

ew . (3)

Here λu = VubV
∗
ud, λc = VcbV

∗
cd. The CP conjugate am-

plitudes are obtained from (3) with γ → −γ. With our
convention for the π0π0 amplitude one includes a 1/2 for
identical particles in the rate. The amplitudes T , C, P
are complex, as are the electroweak penguin amplitudes
P 1

ew and P 2
ew.

Warning: The BaBar and Belle asymmetries do not agree.

Cπ+π− Sπ+π−

Babar −0.09± 0.15 −0.30± 0.17
Belle −0.58± 0.17 −1.00± 0.22

Phenomenology for                   



Pure Isospin Analysis Gronau, London

2

The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and
αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s

,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓

√
1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from

T+C

a)
T

C(0,0)

apex
1 tc

!

!
b)

>0

<0

1-

tc
1-

FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and
Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and

A New Method for Determining γ from B → ππ Decays

Christian W. Bauer,1 Ira Z. Rothstein,2 and Iain W. Stewart3

1California Institute of Technology, Pasadena, CA 91125
2Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213

3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number
of hadronic parameters in an isospin analysis of B → ππ decays by one. This gives a theoretically
precise method for determining the CP violating phase γ by fitting to the B → ππ data without
Cπ0π0 . SCET predicts that γ lies close to the isospin bounds. With the current world averages we
find γ = 75◦ ± 2◦+9◦

−13◦ , where the uncertainties are theoretical, then experimental. The estimated
theory error shown here is obtained from assuming ΛQCD/Eπ ∼ 0.2 power corrections to our analysis.

I. INTRODUCTION

The standard model (SM) successfully explains all of
the CP violation observed to date in laboratory decays.
Possible hints for physics beyond the SM include the
amount of CP violation required for (non-lepto) baryo-
genesis, and observations in b → sqq̄ channels like B →
η′KS [1]. Standard model measurements of CP violation
in B-decays are usually expressed in terms of the angles
α, β, γ. It is important to remember that the goal is
not just to have a single accurate measurement of these
angles, but rather to test the SM picture of CP violation
and look for inconsistencies by making measurements of
the parameters in as many decay channels as possible.

Important observables for measuring γ (or α) are
the CP asymmetries and branching fractions in B →
ππ decays. Unfortunately, hadronic uncertainties and
“penguin-pollution” make the data difficult to interpret.
Gronau and London (GL) [2] have shown that using
isospin, Br(B̄ → π+π−), Br(B+ → π+π0), Br(B̄ →
π0π0), and the CP asymmetries Cπ+π−, Sπ+π−, Cπ0π0 ,
one can eliminate the hadronic uncertainty and deter-
mine γ. Thus data is used to determine the 5 hadronic
isospin parameters. This year Babar and Belle [3] re-
ported a first observation of Cπ0π0 bringing the GL anal-
ysis from the drawing board to reality. Unfortunately,
the uncertainties in Cπ0π0 and Br(B → π0π0) are still
too large to give strong constraints, leaving a four-fold
discrete ambiguity and a ±29◦ window of uncertainty in
γ (at 1-σ) near the SM preferred value.

In this letter we observe that the soft-collinear effec-
tive theory (SCET) [5] predicts that one hadronic pa-
rameter vanishes at leading order in a power expansion
in ΛQCD/Eπ, and that this provides a robust new method
for determining γ. The parameter is ε = Im(C/T ), where
T and C are ”tree” and ”color suppressed” amplitudes
(defined below). From the SCET analysis of B → ππ [6]
we know that ε vanishes to all orders in αs(

√
EπΛQCD)

since the “jet-function” does not involve a strong phase,
and so ε receives corrections suppressed by ΛQCD/Eπ or
αs(mb). Our method does not rely on a power expan-
sion for any of the other isospin parameters. Thus, is-

sues like the size of charm penguins and whether “hard-
scattering” or “soft” contributions dominate the B → π
form factors [6–10, 12] are irrelevant here. Our analy-
sis also remains robust if so-called “chirally enhanced”
power corrections [8] are included. It differs from the
QCDF [8] and pQCD [12] analyses; for example we work
to all orders in ΛQCD/mb for most quantities and do not
use QCD sum rules to obtain hadronic parameters.

The world averages for the CP averaged branching ra-
tios and the CP asymmetries are currently [3, 4]

Br× 106 Cππ Sππ

π+π− 4.6 ± 0.4 −0.37± 0.11 −0.61± 0.13
π0π0 1.51± 0.28 −0.28± 0.39
π+π0 5.61± 0.63

(1)

For later convenience we define the ratios

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0
= 0.446± 0.064 ,

Rn =
Br(B0 → π0π0)τB−

Br(B− → π0π−)τB0
= 0.293± 0.064 , (2)

and quote the product Rn Cπ0π0 = 0.082± 0.116.
To obtain general expressions for these observables, we

use isospin and unitarity of the CKM matrix to write

A(B̄0 → π+π−) = e−iγ |λu|T − |λc|P
A(B̄0 → π0π0) = e−iγ |λu|C + |λc|P√

2A(B− → π0π−) = e−iγ |λu| (T + C)
(3)

Here λu = VubV
∗
ud, λc = VcbV

∗
cd. The CP conjugate am-

plitudes are obtained from (3) with γ → −γ. With our
convention for the π0π0 amplitude one includes a 1/2 for
identical particles in the rate. The amplitudes T , C, P
are complex, as are the electroweak penguin amplitudes
P 1

ew and P 2
ew.

The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and

Parameters:     +4 from isospinγ
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FIG. 2: Isospin analysis showing the hadronic parameters
{pc, ps, tc, ε} versus γ using current central values of the
B → ππ data. Solutions for γ occur at crossings of the εi

curves. Experimental uncertainties are not shown, and are
especially large for ε3,4. This plots shows only one of two al-
lowed (pc, ps) solutions and one of the two allowed γ-regions.

Neglecting EW-penguins, ε is an RGE invariant quantity
since Eq. (6) fixes it in terms of observables. Eq. (9)
makes an extraction of γ from B → ππ possible without
needing precision data on Cπ0π0 . In this method the
central values for γ are determined by finding the places
where the ε1 and/or ε2 curves cross the x-axis, meaning
we solve ε1,2(γ) = 0. The other hadronic parameters,
pc, ps, and tc are determined in the same way as in the
isospin analysis. This proposal for determining γ using
Eq. (9) is the main result of this letter.

Using the central values for all the data besides Cπ0π0

and solving ε1,2(γ) = 0 gives the solutions

γ = −159◦ , −105◦ , 21.5◦ , 74.9◦ . (10)

We have four solutions rather than the eight of the isospin
analysis (which occur within the first and third isospin
bounds in (8)), because factorization for the B → ππ
amplitudes resolves the discrete ambiguity in ps and pc

in favor of |P/T | < 1 solutions (this follows from the
factorization for light-quark penguins, the size of Wilson
coefficients, charm velocity power counting, and factors
of αs(mc) [6, 8]). Next we analyze the theoretical and
experimental uncertainties in our method for γ, and con-
trast these with the isospin analysis, focusing on the two
solutions which can occur in the 17.1◦ ≤ γ ≤ 75.2◦ region
preferred by global fits for the unitarity triangle [16].

To estimate the theoretical uncertainty we take

−0.2 ≤ ε ≤ 0.2 , (11)

which corresponds to roughly a 20% effect from pertur-
bative or power corrections. We also consider a much
more pessimistic scenario where this range is doubled to
ε = ±0.4. Note that |ε| < 0.2 can accommodate the
so-called “chirally enhanced” power corrections, which
have been argued to dominate [8]. Using the results
from Ref. [8], including the known αs(mb) corrections
and their power corrections which involve randomly scan-
ning two complex parameters XA and XH , gives ε =
arg

(
C/T

)|QCDF $ −0.08, with rare points out to −0.17.

FIG. 3: Regions of γ preferred by the SCET analysis. The
shaded bands show our best estimate of the theoretical un-
certainty from power corrections, −0.2 ≤ ε ≤ 0.2 as well as
the pessimistic estimate −0.4 ≤ ε ≤ 0.4. Experimental un-
certainties are not shown.

This is below the uncertainty assigned to our analysis,
and so is consistent with our error estimate.

In Fig. 3 we show ε1,2 for the region 65◦ < γ < 78◦.
Here the solution is γ = 74.9◦, and the different shading
corresponds to the theory uncertainty with |ε| < 0.2(0.4).
The solution for γ is very close to the isospin bound,
so the upward uncertainty on γ is very small. For the
downward uncertainty we consider the overlap with the
shaded region. For |ε| < 0.2 we find ∆γ theo =+0.3◦

−1.5◦ , while
for |ε| < 0.4 we find ∆γ theo =+0.3◦

−5.2◦ . On top of that there
are uncertainties from isospin violation, which we take to
be ±2◦. Thus, with perfect data at the current central
values we arrive at a theory uncertainty with |ε| < 0.2
as ∆γ theo = ±2◦. Repeating for the smaller solution at
γ = 21.5◦, we find a larger theory uncertainty, ∆γ theo =
+8.7◦
−4.4◦ , since the ε1,2 curves are flatter near this solution.

To determine the experimental errors, we use the pro-
gram Minuit. Taking ε = 0 and fitting to γ and the four
hadronic parameters we find

γ = 21.5◦+9.4◦
−7.9◦ , γ = 74.9◦+8.1◦

−10.6◦ . (12)

These uncertainties are purely experimental and are
propagated with the assumption that the original input
data are uncorrelated. If we instead set ε = 0.2 then we
find γ = 73.3◦+8.8◦

−13.3◦ and γ = 30.7◦+11.1◦
−7.2◦ , whereas fix-

ing ε = −0.2 gives γ = 75.2◦+7.6◦
−9.5◦ and γ = 17.2◦+8.7◦

−6.9◦ .
Combining these numbers we obtain our final result for
γ including all sources of uncertainty

γ = 74.9◦ ± 2◦+9.4◦
−13.3◦ . (13)

Here the first error is theoretical, and the last errors are
experimental where we picked the largest range obtained
in varying ε = ±0.2. The theory error increases to ∆γ =
+2◦
−5.2◦ for the more pessimistic case. The analog for the
lower solution is γ = 21.5◦+8.7◦

−4.4◦
+11.1◦
−7.9◦ .

The analysis presented here relies on the fact that a
small value of |ε| is allowed only for a narrow range of
γ. While this is certainly true given the current central
values of the data, it is instructive to investigate how the
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B →M1M2 Factorization in SCET
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Same Jet function as 

Nonperturbative Result in :

A(B →M1M2) = Acc̄ + N

{
fM2 ζBM1

∫ 1

0
du T2ζ(u)φM2(u) + fM1ζ

BM2

∫ 1

0
du T1ζ(u)φM1(u)

+fM2

∫ 1

0
du

∫ 1

0
dz T2J(u, z)ζBM1

J (z)φM2(u) + fM1

∫ 1

0
du

∫ 1

0
dz T1J(u, z)ζBM2

J (z)φM1(u)
}

where ζBM ∼ ζBM
J (z) ∼ (Λ/Q)3/2 and appear in B →M

B →M form factors

αs(
√

EΛ)



3

M1M2 T1ζ(u) T2ζ(u) M1M2 T1ζ(u) T2ζ(u)

π−π+, ρ−π+, π−ρ+, ρ−‖ ρ+
‖ c(d)

1 + c(d)
4 0 π+K(∗)−, ρ+K−, ρ+

‖ K∗−
‖ 0 c(s)

1 + c(s)
4

π−π0, ρ−π0 1√
2
(c(d)

1 +c(d)
4 ) 1√

2
(c(d)

2 −c(d)
3 −c(d)

4 ) π0K(∗)− 1√
2
(c(s)

2 −c(s)
3 ) 1√

2
(c(s)

1 +c(s)
4 )

π−ρ0, ρ−‖ ρ0
‖

1√
2
(c(d)

1 +c(d)
4 ) 1√

2
(c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K−, ρ0
‖K

∗−
‖

1√
2
(c(s)

2 +c(s)
3 ) 1√

2
(c(s)

1 +c(s)
4 )

π0π0 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) π−K̄(∗)0, ρ−K̄0, ρ−‖ K̄∗0
‖ 0 −c(s)

4

ρ0π0 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) π0K̄(∗)0 1√
2
(c(s)

2 −c(s)
3 ) − 1√

2
c(s)
4

ρ0
‖ρ

0
‖

1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K̄0, ρ0
‖K̄

∗0
‖

1√
2
(c(s)

2 +c(s)
3 ) − 1√

2
c(s)
4

K(∗)0K(∗)−, K(∗)0K̄(∗)0 −c(d)
4 0 K(∗)−K(∗)+ 0 0

M⊥
1 M⊥

2 T2J (u) M⊥
1 M⊥

2 T2J (u) M⊥
1 M⊥

2 T2J (u)

ρ+
Lρ−L −b(d)

7 − b(d)
8 ρ+

LK∗−
L −b(s)

7 − b(s)
8 ρ−L K̄∗0

L −b(s)
8

ρ0
Lρ0

L
1
2 b(d)

8 ρ0
LK̄∗0

L
1√
2
b(s)
8 K̄0∗

L K∗0
L b(d)

8

ρ0
Lρ−L , ρ−Lρ0

L
1√
2
(b(d)

7 +b(d)
8 ), − 1√

2
b(d)
8 ρ0

LK̄∗−
L

1√
2
(b(s)

7 +b(s)
8 ) K̄∗−

L K∗0
L −b(d)

8

TABLE I: Combinations of Wilson coefficients appearing in the factorization formula. Note that these results do not assume
isospin symmetry. The coefficients T1J,2J (u, z) are identical to T1ζ,2ζ(u) with each c(f)

i (u) replaced by b(f)
i (u, z).

A00(B̄ →M1M2) = Acc̄
00 +

GF m2
B√

2

{
fM2 ζBM1

∫ 1

0
du T2ζ(u)φM2(u) + fM1 ζBM2

∫ 1

0
du T1ζ(u)φM1(u) (9)

+
fBfM1fM2

mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz

∫ ∞
0
dk+ J(z, x, k+)

[
T2J(u, z)φM1(x)φM2 (u) + T1J(u, z)φM2(x)φM1 (u)

]
φ+

B(k+)
}

,

A⊥⊥(B̄ →M⊥
1 M⊥

2 ) = Acc̄
⊥⊥ +

GF m2
B√

2
fBfT

M1
fT

M2

2mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz T2J(u, z)J⊥(z, x, k+)φM1

⊥ (x)φ+
B(k+)φM2

⊥ (u) .

where Acc̄ denote long distance charming penguin ampli-
tudes and φM

⊥ (u) is the chiral-odd twist 2 wave function.
For each decay mode there is a separate set of hard co-
efficients, T which we give in Table I. In Ref. [1] the full
theory form factor appear in the factorization theorem.
The analog of this in Eq. (9) is that the non-perturbative
parameters ζ, φM , φM

⊥ , and φB also appear in the fac-
torization formula for the form factor [7, 13].

What is new from our analysis is that the jet functions
J and J⊥ in Eq. (9) are also the same as those in the
B → M form factors. For example, f+ = Cζ ζB→M +
fBfM

mB

∫
dxdzdk+ J(x, z, k+)Ca

J (z)φM (x)φ+
B(k+). The jet

functions depends on physics at the intermediate scale,
their perturbative expansion in αs(

√
EΛ) is not as con-

vergent as for the Ti which are expanded in αs(Q). In
fact perturbation theory may fail for J , J⊥ all together.
Without expanding J and J⊥ perturbatively, we find

A00 = Acc̄
00 +

GF m2
B√

2

{
fM2ζ

BM1

∫ 1

0
du T2ζ(u)φM2(u)

+fM1ζ
BM2

∫ 1

0
du T1ζ(u)φM1 (u) (10)

+fM2

∫ 1

0
du

∫ 1

0
dz T2J(u, z)ζBM1

J (z)φM2(u)

+fM1

∫ 1

0
du

∫ 1

0
dz T1J(u, z)ζBM2

J (z)φM1(u)
}

.

A⊥⊥ = Acc̄
⊥⊥ +

GF m2
B

2
√

2
fT

M1

∫ 1

0
du

∫ 1

0
dz

×T2J(u, z)ζBM1
J⊥ (z)φM2

⊥ (u) . (11)

Here the non-perturbative parameters ζBM , ζBM
J,J⊥(z),

φM (u), and φM
⊥ (u) still all occur in the B →M semilep-

tonic and rare form factors. Note that it was possible to
derive Eqs. (10) and (11) because in Eq. (9) we seperated
the scales Q2 and EΛ into T and J ’s respectively.

The phenomenology of B → PP and B → PV de-
cays has been explored in Ref. [15] using a factoriza-
tion formula similar to Eq. (9) and in Ref. [16] using
a SU(3) analysis. The former relies on a perturbative
expansion in αs(

√
EΛ) $ 0.3 and requires some formally

power suppressed contributions for a reasonable fit to the
data, while the latter may have ∼ 30% corrections from
SU(3) violation. In the long term, Eqs. (10) and (11),
may be more useful phenomenologically since the correc-
tions are only from perturbative αs(mb) ∼ 0.2 corrections
and Λ/E ∼ 0.2 power corrections. A model independent
analysis requires knowledge of the ζ and φ parameters,
which can in principle be determined from the q2 depen-
dent B →M form factors and processes sensitive to the
light-cone distributions φM . Note that power counting
implies that ζBM ∼ ζBM

J,J⊥ ∼ (Λ/Q)3/2.
Eqs. (10) and (11) still require matching the full theory

Oi’s onto the Q(0,1)
if to determine the Wilson coefficients

the Wilson coefficients c(f)
i and b(f)

i . We find [f = d, s]

c(f)
1 = λ(f)

u

(
C1+

C2

Nc

)
− λ(f)

t

3

2

(
C10+

C9

Nc

)
+ ∆c(f)

1 ,

c(f)
2 = λ(f)

u

(
C2+

C1

Nc

)
− λ(f)

t

3

2

(
C9+

C10

Nc

)
+ ∆c(f)

2 ,

c(f)
3 =−λ(f)

t

3

2

(
C7 +

C8

Nc

)
+ ∆c(f)

3 , (11)

c(f)
4 =−λ(f)

t

(
C4 +

C3

Nc
− C10

2
− C9

2Nc

)
+ ∆c(f)

4 ,

b(f)
1 = λ(f)

u

[
C1 +

(
1−mb

ω3

)C2

Nc

]
(12)

−λ(f)
t

[3

2
C10 +

(
1−mb

ω3

)3C9

2Nc

]
+ ∆b(f)

1 ,

b(f)
2 = λ(f)

u

[
C2 +

(
1−mb

ω3

)C1

Nc

]
−λ(f)

t

[3

2
C9 +

(
1−mb

ω3

)3C10

2Nc

]
+ ∆b(f)

2 ,

b(f)
3 = −λ(f)

t

[3

2
C7 +

(
1−mb

ω2

)3C8

2Nc

]
+ ∆b(f)

3 ,

b(f)
4 = −λ(f)

t

[
C4−C10

2
+

(
1−mb

ω3

)(C3

Nc
− C9

2Nc

)]
+ ∆b(f)

4

b(f)
7 = −λ(d,s)

t

(mb

ω2
−mb

ω3

)3C9

2Nc
+∆b(d,s)

7 ,
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The O(αs) contribution to the ∆c(f)
j (u) have been calculated in Ref [? ] and later in Ref. [?

]. A full αs(mb) analysis requires ∆b(f)
j (u, z), which are currently unknown.

There is a hierarchy in the c(f)
i and b(f)

i due to the CKM factors and the Ci’s which

have to be accounted for. For example, C1 is about a factor of 6 larger than any of the

other coefficients, making c(d)
1 and b(d)

1 large. Thus any f = d decay in Table ?? that is

independent of c(d)
1 and b(d)

1 could receive large corrections, and will be called “contaminated”.

There could be large perturbative corrections proportional to αs(mb)C1 which is ∼ C2 and

# Ci≥3. These effects have been computed for the c(f)
i ’s [? ], but not yet for the b(f)

i ’s.

A more serious problem are large power corrections proportional to C1Λ/E which is also

∼ C2 and # Ci≥3. Unless these can be accounted for or such terms are absent, one should

assign ∼ 100% uncertainty to predictions for contaminated decays. An example of this type

is Br(B̄0 → π0π0).
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the Wilson coefficients c(f)
i and b(f)

i . We find [f = d, s]

c(f)
1 = λ(f)

u

(
C1+

C2

Nc

)
− λ(f)

t

3

2

(
C10+

C9

Nc

)
+ ∆c(f)

1 ,

c(f)
2 = λ(f)
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C1
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3

2
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C9+

C10

Nc
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+ ∆c(f)

2 ,

c(f)
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2

(
C7 +
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Nc

)
+ ∆c(f)

3 , (11)
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2Nc
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+ ∆c(f)

4 ,
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2Nc
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ω3
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)3C10

2Nc

]
+ ∆b(f)
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t
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Nc
− C9

2Nc

)
+∆b(d,s)
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The O(αs) contribution to the ∆c(f)
j (u) have been calculated in Ref [1] and later in Ref. [3].

A full αs(mb) analysis requires ∆b(f)
j (u, z), which are currently unknown.

There is a hierarchy in the c(f)
i and b(f)

i due to the CKM factors and the Ci’s which have

to be accounted for. For example, C1 is about a factor of 6 larger than any of the other

coefficients, making c(d)
1 and b(d)

1 large. Thus any f = d decay in Table I that is independent of

c(d)
1 and b(d)

1 could receive large corrections, and will be called “contaminated”. There could

be large perturbative corrections proportional to αs(mb)C1 which is ∼ C2 and # Ci≥3.

These effects have been computed for the c(f)
i ’s [1], but not yet for the b(f)

i ’s. A more

serious problem are large power corrections proportional to C1Λ/E which is also ∼ C2 and

# Ci≥3. Unless these can be accounted for or such terms are absent, one should assign

∼ 100% uncertainty to predictions for contaminated decays. An example of this type is

Br(B̄0 → π0π0).

At leading order in Λ/E only the one-loop ∆ci, ∆bi are imaginary, producing calculable

strong phases [1]. Imaginary Λ/E corrections can compete with these. It is known from

8

similar for TJ ’s in terms of b(f)
i ’s

Matching

Note:  have not 
used isospin yet

Hard Coefficients
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αs(mb) [6]. For the dominant coefficients C9,10 we find

P 1
ew = e1 T + e2 C , P 2

ew = e3 T + e4 C , (4)

e1 =
C10(C1−C3)+C9(C4−C2)
(C1+C2)(C1−C2−C3+C4)

= −9.5×10−5 ,

e2 =
C9(C1+C4)−C10(C2+C3)
(C1+C2)(C1−C2−C3+C4)

= −9.0×10−3 ,

e3 = e4 =
3
2

(C9+C10)(C1+C2)−1 = −1.4× 10−2 ,

with Ci from the electroweak Hamiltonian. Since
e3|T |/|P | = e3(p2

s + p2
c)1/2|λc|/|λu| ∼ 0.06 for typical

values of the hadronic parameters ps and pc (from be-
low), we estimate that the electroweak penguins give at
most a ∼ 6% correction to any amplitude. It would be
easy to include P 1,2

ew in our analysis, but for simplicity we
neglect them in what follows. SCET allows contributions
from the smaller C7 and C8 to also be included in (4).

Of the five remaining isospin parameters, one, |λu(T +
C)|, is fixed by Br(B− → π0π−) and just sets the overall
scale. We choose the remaining four parameters as

pc ≡ − |λc|
|λu| Re

(P

T

)
, ps≡ − |λc|

|λu| Im
(P

T

)
,

tc ≡ |T |
|T + C| , ε≡ Im

(C

T

)
. (5)

The parameters pc and ps determine the size of the “pen-
guin” contribution P relative to the “tree” T , and the
parameters tc and ε determine the shape of the isospin
triangle as shown in Fig. 1. The relation to parameters
used previously [6, 14] are r2

c = p2
c +p2

s, tan δc = ps/pc,
|t| = 1/tc, and (1+|t|2−|tn|2)2/(2|t|)2 = 1−t2cε

2.
In terms of the parameters in (5) the observables can

be written as (neglecting electroweak penguins)

Sπ+π− = −[
sin(2β+2γ)+2 sin(2β+γ)pc

+ sin(2β)(p2
c +p2

s)
][

1+2pc cos γ+p2
c+p2

s

]−1
,

Cπ+π− =
2ps sin γ

1+2pc cos γ+p2
c +p2

s
,

Rc = t2c(1 + 2pc cos γ + p2
c + p2

s) ,

Rn = (1−tc)2+t2c(p
2
c +p2

s)−2tc(1−tc)pc cos γ

−ε (2 t2c ps) cos γ +
[
1∓√

1−ε2t2c

]
2tc(1+pc cos γ) ,

RnCπ0π0 = 2tc sin γ
[
tcps∓ps

√
1−ε2t2c + ε pctc

]
. (6)

The ∓ signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1a) is to the right/left of the (0, 0) point.
Since both |λc| and |λu| are absorbed into the hadronic
parameters ps and pc there is no added uncertainty from
parameters like |Vub|. For the CKM angle β we use the
latest precision world average [1, 4], β = 23.3◦ ± 1.5◦.

The full isospin analysis requires solving the five equa-
tions (6) to obtain the parameters pc, ps, tc and ε de-
fined in (5) and the weak angle γ. From Sπ+π− and

T+C

a)
T

C(0,0)

apex
1 tc

!

!
b)

>0

<0

1-

tc
1-

FIG. 1: a) Isospin triangle in |λu| sector, and b) the rescaled
triangle with solutions for positive and negative ε shown.

Cπ+π− one obtains two solutions for the parameters ps

and pc as functions of the angle γ. Using these, Rc deter-
mines tc(γ). Finally the equations for Rn and RnCπ0π0

each give two quadratic equations for ε, which in general
have four intersections in the ε − γ plane. We will call
ε1,2 the two solutions from Rn and ε3,4 the two solutions
from RnCπ0π0 . An example of this GL isospin analysis is
shown in Fig. 2, where we use the current central values
for the data. For illustration we picked the solution for
pc and ps with |P/T | < 1, but have shown all four εi’s.

An obvious feature in Fig. 2 are the isospin bounds on
γ. It is well known that there are bounds on γ in the
absence of a measurement of Cπ0π0 [15]. To find these
analytically, one defines γ = π − β − αeff + θ where

sin(2αeff) = Sππ(1−C2
ππ)−1/2 = −0.66± 0.14 , (7)

cos(2θ) ≥ (R−1)(1−C2
ππ)−1/2 = 0.53± 0.19 ,

with R = (1+Rc−Rn)2/(2Rc). The four solutions are

−163.◦ ≤ γ ≤ −105.◦ , −31.8◦ ≤ γ ≤ 26.3◦ ,

17.1◦ ≤ γ ≤ 75.2◦ , 148.◦ ≤ γ ≤ 206.◦ , (8)

with uncertainty ±8.2◦ on each lower or upper limit. At
each of these isospin bounds the two solutions ε1,2 become
degenerate and beyond they are complex, indicating that
the isospin triangle does not close.

Solutions for γ from the full isospin analysis are given
where the curves ε3,4 intersect the curves ε1,2. In gen-
eral, there are four solutions within each isospin bound,
which are symmetric around γeff = π − β − αeff . We
show in Fig. 2 the results for 17.1◦ ≤ γ ≤ 75.2◦, but
the analysis for different regions of γ is similar. From
Fig. 2 one can see that using current central values there
is no solution for γ. The current central values for the
observables are such that the solutions for ε from Rn and
RnCπ0π0 are almost tangential. Including experimental
uncertainties a large range of γ is allowed, with the high-
est confidence at γ = 27◦ and γ = 65◦. This conclusion
agrees with the CKMfitter group’s analysis which incor-
porates Cπ0π0 [16]. Below we analyze how this fact might
change in the future, considering both shifts in the central
experimental values and decreases in the uncertainties.

A method for determining γ that does not require
Cπ0π0 is obtained using SCET. At LO in αs(mb) and
ΛQCD/mb we have ε = 0 [6], which corresponds to flat
isospin triangles in Fig. 1. Equivalently

ε ∼ O
(ΛQCD

mb
, αs(mb)

)
. (9)Factorization from SCET:

Bauer, Rothstein, I.S.
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FIG. 2: Isospin analysis showing the hadronic parameters
{pc, ps, tc, ε} versus γ using current central values of the
B → ππ data. Solutions for γ occur at crossings of the εi

curves. Experimental uncertainties are not shown, and are
especially large for ε3,4. This plots shows only one of two al-
lowed (pc, ps) solutions and one of the two allowed γ-regions.

Neglecting EW-penguins, ε is an RGE invariant quantity
since Eq. (6) fixes it in terms of observables. Eq. (9)
makes an extraction of γ from B → ππ possible without
needing precision data on Cπ0π0 . In this method the
central values for γ are determined by finding the places
where the ε1 and/or ε2 curves cross the x-axis, meaning
we solve ε1,2(γ) = 0. The other hadronic parameters,
pc, ps, and tc are determined in the same way as in the
isospin analysis. This proposal for determining γ using
Eq. (9) is the main result of this letter.

Using the central values for all the data besides Cπ0π0

and solving ε1,2(γ) = 0 gives the solutions

γ = −159◦ , −105◦ , 21.5◦ , 74.9◦ . (10)

We have four solutions rather than the eight of the isospin
analysis (which occur within the first and third isospin
bounds in (8)), because factorization for the B → ππ
amplitudes resolves the discrete ambiguity in ps and pc

in favor of |P/T | < 1 solutions (this follows from the
factorization for light-quark penguins, the size of Wilson
coefficients, charm velocity power counting, and factors
of αs(mc) [6, 8]). Next we analyze the theoretical and
experimental uncertainties in our method for γ, and con-
trast these with the isospin analysis, focusing on the two
solutions which can occur in the 17.1◦ ≤ γ ≤ 75.2◦ region
preferred by global fits for the unitarity triangle [16].

To estimate the theoretical uncertainty we take

−0.2 ≤ ε ≤ 0.2 , (11)

which corresponds to roughly a 20% effect from pertur-
bative or power corrections. We also consider a much
more pessimistic scenario where this range is doubled to
ε = ±0.4. Note that |ε| < 0.2 can accommodate the
so-called “chirally enhanced” power corrections, which
have been argued to dominate [8]. Using the results
from Ref. [8], including the known αs(mb) corrections
and their power corrections which involve randomly scan-
ning two complex parameters XA and XH , gives ε =
arg

(
C/T

)|QCDF $ −0.08, with rare points out to −0.17.

FIG. 3: Regions of γ preferred by the SCET analysis. The
shaded bands show our best estimate of the theoretical un-
certainty from power corrections, −0.2 ≤ ε ≤ 0.2 as well as
the pessimistic estimate −0.4 ≤ ε ≤ 0.4. Experimental un-
certainties are not shown.

This is below the uncertainty assigned to our analysis,
and so is consistent with our error estimate.

In Fig. 3 we show ε1,2 for the region 65◦ < γ < 78◦.
Here the solution is γ = 74.9◦, and the different shading
corresponds to the theory uncertainty with |ε| < 0.2(0.4).
The solution for γ is very close to the isospin bound,
so the upward uncertainty on γ is very small. For the
downward uncertainty we consider the overlap with the
shaded region. For |ε| < 0.2 we find ∆γ theo =+0.3◦

−1.5◦ , while
for |ε| < 0.4 we find ∆γ theo =+0.3◦

−5.2◦ . On top of that there
are uncertainties from isospin violation, which we take to
be ±2◦. Thus, with perfect data at the current central
values we arrive at a theory uncertainty with |ε| < 0.2
as ∆γ theo = ±2◦. Repeating for the smaller solution at
γ = 21.5◦, we find a larger theory uncertainty, ∆γ theo =
+8.7◦
−4.4◦ , since the ε1,2 curves are flatter near this solution.

To determine the experimental errors, we use the pro-
gram Minuit. Taking ε = 0 and fitting to γ and the four
hadronic parameters we find

γ = 21.5◦+9.4◦
−7.9◦ , γ = 74.9◦+8.1◦

−10.6◦ . (12)

These uncertainties are purely experimental and are
propagated with the assumption that the original input
data are uncorrelated. If we instead set ε = 0.2 then we
find γ = 73.3◦+8.8◦

−13.3◦ and γ = 30.7◦+11.1◦
−7.2◦ , whereas fix-

ing ε = −0.2 gives γ = 75.2◦+7.6◦
−9.5◦ and γ = 17.2◦+8.7◦

−6.9◦ .
Combining these numbers we obtain our final result for
γ including all sources of uncertainty

γ = 74.9◦ ± 2◦+9.4◦
−13.3◦ . (13)

Here the first error is theoretical, and the last errors are
experimental where we picked the largest range obtained
in varying ε = ±0.2. The theory error increases to ∆γ =
+2◦
−5.2◦ for the more pessimistic case. The analog for the
lower solution is γ = 21.5◦+8.7◦

−4.4◦
+11.1◦
−7.9◦ .

The analysis presented here relies on the fact that a
small value of |ε| is allowed only for a narrow range of
γ. While this is certainly true given the current central
values of the data, it is instructive to investigate how the

This gives

global fits give
γ ! 62◦ ± 12◦

γ = 21.5◦+8.7◦
−4.4◦

+11.1◦
−7.9◦

2nd 
solution

γ

(or+2◦
−5.2◦)

Theory uncertainty is small since 
curves are steep near  ε = 0
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FIG. 4: Uncertainties in the isospin analysis (y-axis) vs. un-
certainties from our new method (x-axis). The upper (lower)
two plots use a ±0.5 (±0.25) uncertainty in ε3,4. The plots
on the left (right) correspond to the solution near the lower
(upper) isospin bound.

quality of the analysis is affected if the data central val-
ues change. For example, it could be that the value of ε1

never exceeds 0.2, increasing the uncertainties from the
small-ε analysis significantly. A second extreme situation
is that ε never reaches zero. To study these questions,
we generate random sets of data using Gaussian distri-
butions with the current central values and width of the
1-σ uncertainties. We generate 10000 sets of “data”, and
after imposing sin(2αeff) < 1 and cos(2θ) < 1 are left
with 9688 sets. Of these 96.4% have solutions for ε = 0.
For ε1 we find 88% (70%) of the sets have the maximum
value above 0.2 (0.4). For ε2 we find that 90% (70%) of
the sets have their minimum below -0.2 (-0.4). Thus, the
ε = 0 analysis works well in most cases.

We can also study the uncertainty in our analysis, com-
pared to the GL isospin analysis. Rather than performing
a full error analysis for the 9688 sets, we use the follow-

ing approximation. We assume that experimental un-
certainty ∆Cπ0π0 dominates, and compare the resulting
uncertainty in the GL isospin analysis to the theoretical
uncertainty in our analysis. The current ∆Cπ0π0 = 0.39
gives rise to a ∼ ±0.5 uncertainty in ε3,4. In Fig. 4 we
show the uncertainties in the GL analysis compared with
the theoretical uncertainties of the analysis presented
here, for both solutions of γ. If we halve ∆Cπ0π0 , the
GL analysis still has uncertainties considerably larger
than the ε = 0 analysis for the upper solutions, while
the lower solutions are closer. An eightfold decrease in
∆Cπ0π0 brings the uncertainties to the same level.

We have presented a new method for obtaining γ from
B → ππ decays. Our analysis uses SCET to eliminate
one hadronic parameter, making a measurement of γ pos-
sible without Cπ0π0 . It does not rely on a power expan-
sion for any of the other parameters, and thus does not
care about issues like the size of charm penguins and the-
oretical results for the B → π form factors. A solution
γ = 74.9◦ is in the allowed values from CKM global fits
and the theory uncertainty for this solution are small,
±2 or +2◦

−5.2◦ , depending on the estimate for power cor-
rections. Analyzing possible future shifts in the data
and decreases in the Cπ0π0 uncertainty, we find that this
method can be expected to remain very competitive with
the isospin analysis for quite some time. Since the the-
ory error is small, the analysis can be redone including
the electroweak penguins with no loss of predictive power.
Also the experimental uncertainty should be reconsidered
with the correct error correlation matrix for the data.
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Λ~p 22 Λ~p 22Λ~p2 Q

~p2 Q2

pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

f(E) =
∫ 1

0
dz T (z,E,mb) ζBM

J (z,E)

+ C(E,mb) ζBM (QΛ,Λ2)

B →
B →

Relation to Form Factors in SCET

}
}

“hard spectator”,
“factorizable”

“soft form factor”,
“non-factorizable”

result at LO in λ, all
orders in αs, where
Q = {mb, EM}

Λ/Q! 1

corrections are ∼ 20%
power

Which of ζBM , ζBM
J is bigger?



pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

f(E) =
fBfMmB

4E2

∫ 1

0
dz

∫ 1

0
dx

∫ ∞
0
dr+ T (z,E,mb)

×J(z, x, r+, E)φM (x)φ+
B(r+)

+ C(E,mb) ζBM (QΛ,Λ2)

B →
B →

One Loop 
Matching
Known:

Ck(E,mb) Bauer, Fleming, Pirjol, I.S.

Ti(z,E,mb) Beneke, Kiyo, Yang

J(z, x, r+, E) Becher, Hill, Lee, Neubert

Log Resummation: Lange, Neubert 

Sudakov suppression of “soft” relative to “hard” form factors
small for physical  b-quark mass

Relation to Form Factors in SCET
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FIG. 5: Model independent results for ζBπ , ζBπ
J , and the

B → π form factor f+(q2 = 0) as a function of γ. The shaded
bands show the 1-σ errors propagated from the B → ππ data.

non-perturbative parameters ζBπ , ζBπ
J ,

T = Nπ
1
3
(C1 + C2)

[
4ζBπ + (4 + 〈ū−1〉π)ζBπ

J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
C2 + C3

3

)
ζBπ
J

]
,

where 〈ū−1〉π =
∫ 1
0 φπ(u)/(1−u), and ζBπ

J =
∫

dz ζBπ
J (z).

The penguin amplitude also gets a contribution from the
complex Aππ

cc̄ amplitude, so

P ≡ −
∣∣∣λ(d)

u

λ(d)
c

∣∣∣ Tc rc eiδc = Nπ

[(
C4 +

C3

3

)
ζBπ

+
(

C4+(1+〈ū−1〉π)
C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=64◦ =

(
0.05± 0.05

)(3.9× 10−3

|Vub|
)

, (40)

ζBπ
J

∣∣
γ=64◦ =

(
0.11± 0.03

)(3.9× 10−3

|Vub|
)

,

where the quoted errors are propagated from the exper-
imental errors from |T | and |t| in Eq. (35). Using the
results for rc and δc in Eq. (34) and |Vcb| = 0.041 the
penguin amplitude is

P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦ =

(
0.17± 0.02

)(3.9× 10−3

|Vub|
)

. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).

Use nonleptonic data: B → ππ

hard scattering bigger than 
soft form factor

determines the parameters

A Precision Method for Determining γ from B → ππ Decays 7

Here the first errors are experimental and our
best estimate for incorporating the asymmetry
observed in Eqs. (20,21,22). The last errors are
theoretical. The small upper uncertainty +2◦ is a
direct consequence of the isospin bound, and the
2◦ uncertainty is a reflection of uncertainty due
to isospin symmetry. There is some uncertainty
in the location of this bound (±8.3◦) however this
is an experimental rather than theoretical uncer-
tainty and so is reflected in that number. The
larger lower uncertainty is a consequence of the
fact that the SCET prediction is not bounded be-
low and so this estimate relies on our variation of
the parameter ε and the steepness of the ε curves
in figure 3. Note that a more optimistic estimate
of the size of power corrections could be obtained
by taking ε " ±0.12 corresponding to power cor-
rections of order 2ΛQCD/mb " 0.2, rather than
the range considered here.

The corresponding lower solution result is

γ = 21.5◦+8.3◦
−15.4◦

+14.7◦
−4.3◦ . (24)

In this case it is the lower theoretical uncertainty
which is greatly reduced by the presence of the
isospin bound.

Currently the values of Sπ+π− and Cπ+π− dif-
fer from BaBar and Belle, so the values used in
our analysis along with the central values deter-
mined for γ might shift in the future. The impor-
tant point is that the results in Eq. (23) and (24)
demonstrate that using the ε = 0 result allows the
B → ππ data to be used to give a precision deter-
mination of γ where the theoretical uncertainties
are under control.

5. Predictions for the B → π$ν̄ form factor
f+(0)

In this section we go beyond the isospin anal-
ysis with small ε and assume that the power ex-
pansion also converges for the amplitudes T and
C. In SCET at lowest order we have

T = Nπ

{[
C1 +

C2

3
+ C4 +

C3

3

]
ζBπ (25)

+
[
C1 + C4 + (C2 + C3)

1+〈ū−1〉π
3

]
ζBπ
J

}
,

C = Nπ

{[C1

3
+ C2 − C4 − C3

3

]
ζBπ

Figure 4. Model independent results for ζBπ ,
ζBπ
J , and the B → π form factor f+(q2 = 0) as

a function of γ. The shaded bands show the 1-σ
errors propagated from the B → ππ data.

+
[
(C1 − C3)

1+〈ū−1〉π
3

+ C2 − C4

]
ζBπ
J

}
,

where the Ci are Wilson coefficients from the elec-
troweak Hamiltonian and we have dependence on
a moment of the pion light-cone distribution func-
tion 〈ū−1〉π =

∫ 1
0 φπ(u)/(1 − u), as well as the

hadronic parameters ζBπ and ζBπ
J . These same

hadronic parameters also determine the B → π$ν̄
form factor at q2 = 0

f+(0) = ζBπ + ζBπ
J . (26)

Using the numbers in Eq. (18) for |T | and |t|
we can extract ζ, ζJ and then predict |Vub|f+(0).
Taking LL order for the coefficients (C1 =
1.107, C2 = −0.248, C3 = 0.011, C4 = −0.025 at
µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=75◦ =

(
0.052± 0.023

)(4.7× 10−3

|Vub|
)

,

ζBπ
J

∣∣
γ=75◦ =

(
0.095± 0.017

)(4.7× 10−3

|Vub|
)

, (27)

where the errors are from from |T | and |t| in
Eq. (18). Including the correlation in the experi-
mental errors this gives

f+(0) = (0.15± 0.01± 0.04)
(4.7× 10−3

|Vub|
)

(28)

where the first error is experimental and the sec-
ond is our estimate of the theoretical uncertainty.
In Fig. 4 we show results for ζBπ, ζBπ

J , and f+(0)
for other values of γ, generalizing these results.
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troweak Hamiltonian and we have dependence on
a moment of the pion light-cone distribution func-
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where the first error is experimental and the sec-
ond is our estimate of the theoretical uncertainty.
In Fig. 4 we show results for ζBπ, ζBπ

J , and f+(0)
for other values of γ, generalizing these results.

theory
estimate

∫
dx

φπ(x)
x

= 3

∫
dx

φπ(x)
x

= 2.25∫
dx

φπ(x)
x

= 3.75

ζBπ
J |γ=75◦ = 0.13

ζBπ
J |γ=75◦ = 0.08

ζBπ|γ=75◦ = 0.02

ζBπ|γ=75◦ = 0.07



•
Possible explanations for small value of               :

its correct
• current                WA should not be trustedB → ππ

• there are large corrections to the above analysis

f+(0)

Note:  a smaller             would increase exclusive Vub 
determinations, bringing them closer to the inclusive result

f+(0)



Outlook

SCET

We have only seen 
the tip of the iceberg

•
Lots of theory left to work out:  new factorization theorems,  
one-loop Wilson coefficient calculations

Allows power corrections to be addressed in a model independent way

•

• Lots of data to study, phenomenology to do 

• The theory of  B decays is challenging, but progress is 
begin made


