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Abstract
Suppose one has access to oracles generating samples from two unknown probability distributions p

and q on some N -element set. How many samples does one need to test whether the two distributions are
close or far from each other in the L1-norm? This and related questions have been extensively studied
during the last years in the field of property testing. In the present paper we study quantum algorithms
for testing properties of distributions. It is shown that the L1-distance ‖p− q‖1 can be estimated with a
constant precision using only O(N1/2) queries in the quantum settings, whereas classical computers need
Ω(N1−o(1)) queries. We also describe quantum algorithms for testing Uniformity and Orthogonality with
query complexity O(N1/3). The classical query complexity of these problems is known to be Ω(N1/2). A
quantum algorithm for testing Uniformity has been recently independently discovered by Chakraborty et
al [1].

1 Introduction

Suppose one has access to a black box generating independent samples from an unknown probability distri-
bution p on some N -element set. If the number of available samples grows linearly with N , one can use the
standard Monte Carlo method to simultaneously estimate the probability pi of every element i = 1, . . . , N
and thus obtain a good approximation to the entire distribution p. On the other hand, many important
questions that one usually encounters in statistical analysis can be answered using only a sublinear number
of samples. For example, deciding whether p is close in the L1-norm to another distribution q requires
approximately N1/2 samples if q is known [2] and approximately N2/3 samples if q is also specified by a
black-box [3]. Another example is estimating the Shannon entropy H(p) = −

∑
i pi log2 pi. It was shown

in [4, 8] that distinguishing whether H(p) ≤ a or H(p) ≥ b requires approximately N
a
b samples. Other

examples include deciding whether p is close to a monotone or a unimodal distribution [5], and deciding
whether a pair of distributions have disjoint supports [6]. These and other questions fall into the field of
distribution testing [7, 8] that studies how many samples one needs to decide whether an unknown distri-
bution has a certain property or is far from having this property. The purpose of the present paper is to
explore whether quantum computers are capable of solving distribution testing problems more efficiently.
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The black-box sampling model adopted in [2, 3, 4, 5, 7, 8] assumes that a tester is presented with a list of
samples drawn from an unknown distribution. What does it mean to sample from an unknown distribution
in the quantum settings? Let us start by casting the black-box sampling model into a form that admits a
quantum generalization. Suppose p is an unknown distribution on an N -element set [N ] ≡ {1, . . . , N} and
let S be some specified integer. We shall assume that p is represented by an oracle Op : [S]→ [N ] such that
a probability pi of any element i ∈ [N ] is proportional to the number of elements in the pre-image of i, that
is, the number of inputs s ∈ [S] such that Op(s) = i. In other words, one can sample from p by querying the
oracle Op on a random input s ∈ [S] drawn from the uniform distribution1. Note that a tester interacting
with an oracle can potentially be more powerful due to the possibility of making adaptive queries which
could allow him to learn the internal structure of the oracle as opposed to the black-box model. However,
it will be shown below (see Lemma 9 in Section 6) that the oracle model and the black-box model are in
fact equivalent. More precisely, for any fixed N one can always choose sufficiently large S such that a tester
will need the same number of queries in both models.

The oracle model admits a standard quantum generalization. Specifically, we shall transform the oracle
Op into a reversible form by keeping a copy of the input and writing the output of Op into an ancillary
register. A quantum oracle generating p is a unitary operator whose action on basis vectors coincides with
the reversible version of Op, see Section 2 for technical details.

The present paper focuses on testing three particular properties of distributions, namely, Statistical
Difference, Orthogonality, and Uniformity. The corresponding property testing problems are promise prob-
lems so that a tester is required to give a correct answer (with a bounded error probability) only for those
instances that satisfy the promise.

Problem 1 (Testing Uniformity).
Instance: Integers N,S, precision ε > 0. Access to an oracle generating a distribution p on [N ].
Promise: Either p is the uniform distribution or the L1-distance between p and the uniform distri-

bution is at least ε.
Decide which one is the case.

Problem 2 (Testing Orthogonality).
Instance: Integers N,S, precision ε > 0. Access to oracles generating distributions p, q on [N ].
Promise: Either p and q are orthogonal or the L1-distance between p and q is at most 2− ε.
Decide which one is the case.

Problem 3 (Testing Statistical Difference).
Instance: Integers N,S, thresholds 0 ≤ a < b ≤ 2. Access to oracles generating distributions p and

q on [N ].
Promise: Either ‖p− q‖1 ≤ a or ‖p− q‖1 ≥ b.
Decide which one is the case.

We assume that the precision ε is bounded from below by a fixed constant independent of N , for instance,
ε ≥ 1/10. The same applies to the decision gap b−a for testing Statistical Difference. Given a function f(N)

1Although in this model probabilities pi can only take values that are multiples of 1/S, choosing sufficiently large S allows
one to represent any distribution p with an arbitrarily small error.
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we shall say that a property is testable in f(N) queries if there exists a testing algorithm making at most
f(N) queries that gives a correct answer with a sufficiently high probability (say 2/3) for any distributions
p, q satisfying the promise and for any oracles2 specifying p and q. If a promise is violated, a tester can give
an arbitrary answer.

Our main results are the following theorems.

Theorem 1. Statistical Difference is testable on a quantum computer in O(N1/2) queries.

Theorem 2. Uniformity is testable on a quantum computer in O(N1/3) queries.

Theorem 3. Orthogonality is testable on a quantum computer in O(N1/3) queries.

It is known that classically testing Orthogonality and Uniformity requires Ω(N1/2) queries, see Sec-
tions 6.2 and 6.3, while Statistical Difference is not testable in O(Nα) queries for any α < 1, see [8].
Therefore quantum computers provide a polynomial speedup for testing Uniformity, Orthogonality, and
Statistical Difference in terms of query complexity.

More interesting than the mere fact of a polynomial speedup is the way in which our algorithms achieve
it. Classically, it is trivially true that with M queries to the oracle the best strategy is to query it on a
random set of M distinct inputs. Additionally, the Wishful Thinking theorem of Ref. [?] gives a simple
characterization of any asymptotically optimal estimation algorithm. By contrast, our algorithms use a
variety of different strategies both to query the oracles and to analyze the results of those queries. These
strategies appear not to be special cases of the quantum walk framework which has been responsible for
most of the polynomial quantum speedups found to date[19, 18]. A major challenge for future research is to
give a quantum version of Ref. [?]’s Wishful Thinking theorem; in other words, we would like to characterize
optimal quantum algorithms for any symmetric property testing problem.

Testing Orthogonality is closely related to the Collision Problem studied in [14, 13]. In Section 6.2 we
describe a randomized reduction from the Collision Problem to testing Orthogonality. Using the quantum
lower bound for the Collision Problem due to Aaronson and Shi [15] we obtain the following result.

Theorem 4. Testing Orthogonality on a quantum computer requires Ω(N1/3) queries.

Quite recently Chakraborty, Fischer, Matsliah, and de Wolf [1] independently discovered a quantum
Uniformity testing algorithm with query complexity O(N1/3) and proved a lower bound Ω(N1/3) for testing
Uniformity. These authors also presented a quantum algorithm for testing whether an unknown distribution
p coincides with a known distribution q with query complexity Õ(N1/3).

The rest of the paper is organized as follows. Section 2 introduces necessary notations and basic facts
about the quantum counting algorithm by Brassard, Hoyer, Mosca, and Tapp [17]. The distribution testing
algorithms described in the rest of the paper are actually classical probabilistic algorithms using the quantum
counting as a subroutine. Theorem 1 is proved in Section 3. Theorem 2 is proved in Section 4. Theorem 3
is proved in Section 5. We discuss lower bounds for the above distribution testing problems in Section 6.

2Note that according to this definition a tester needs at most f(N) queries even in the limit S →∞.
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2 Preliminaries

Let DN be a set of probability distributions p = (p1, . . . , pN ) such that a probability pi of any element
i ∈ [N ] is a rational number. Let us say that an oracle O : [S] → [N ] generates a distribution p ∈ DN iff
for all i ∈ [N ] the probability pi equals the fraction of inputs s ∈ [S] such that O(s) = i,

pi =
1
S

#{s ∈ [S] : O(s) = i}.

Note that the identity of elements in the domain of an oracle O is irrelevant, so if O generates p and σ is
any permutation on [S] then O ◦ σ also generates p. By definition, any map O : [S]→ [N ] generates some
distribution p ∈ DN .

For any oracle O : [S] → [N ] we shall define a quantum oracle Ô by transforming O into a reversible
form and allowing it to accept coherent superpositions of queries. Specifically, a quantum oracle Ô is a
unitary operator acting on a Hilbert space CS ⊗ CN+1 equipped with a standard basis {|s〉 ⊗ |i〉}, s ∈ [S],
i ∈ {0} ∪ [N ] such that

Ô |s〉 ⊗ |0〉 = |s〉 ⊗ |O(s)〉 for all s ∈ [S]. (1)

In other words, querying Ô on a basis vector |s〉 ⊗ |0〉 one gets the output of the classical oracle O(s) in
the second register while the first register keeps a copy of s to maintain unitarity. The action of Ô on a
subspace in which the second register is orthogonal to the state |0〉 can be arbitrary. We shall assume that
a quantum tester can execute operators Ô, Ô† and the controlled versions of them. Execution of any one of
these operators counts as one query.

We shall see that all testing problems posed in Section 1 can be reduced (via classical randomized
reductions) to the following problem.

Problem 4 (Probability Estimation). Given integers S,N , description of a subset A ⊂ [N ], precision
δ, error probability ω, and access to an oracle generating some distribution p ∈ DN . Let pA =

∑
i∈A pi be

the total probability of A. One needs to generate an estimate p̃A satisfying

Pr [|p̃A − pA| ≤ δ] ≥ 1− ω. (2)

Our main technical tool will be the quantum counting algorithm by Brassard et al. [17]. Specifically, we
shall use the following version of Theorem 12 from [17].

Theorem 5. There exists a quantum algorithm EstProb(p,A,M) taking as input a distribution p ∈ DN
specified by an oracle, a subset A ⊂ [N ], and an integer M . The algorithm makes exactly M queries to the
oracle generating p and outputs an estimate p̃A such that

Pr [|p̃A − pA| ≤ δ] ≥ 1− ω (3)

for all δ > 0 and 0 ≤ ω ≤ 1/2 satisfying

M ≥
c
√
pA

ωδ
and M ≥ c

ω
√
δ
. (4)

Here c = O(1) is some constant. If pA = 0 then p̃A = 0 with certainty.

The proof can be found in Ref. [20] and is omitted from this extended abstract.
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3 Quantum algorithm for estimating statistical difference

In this section we prove Theorem 1. Let p, q ∈ DN be unknown distributions specified by oracles. Define
an auxiliary distribution r ∈ DN such that ri = (pi + qi)/2 for all i ∈ [N ]. If we can sample i from both p
and q then by choosing randomly between these two options we can also sample i from r. Let x ∈ [0, 1] be
a random variable which takes value

xi =
|pi − qi|
pi + qi

with probability ri. It is evident that

E(x) =
∑
i∈[N ]

rixi =
1
2

∑
i∈[N ]

|pi − qi| =
1
2
‖p− q‖1. (5)

Thus in order to estimate the distance ‖p − q‖1 it suffices to estimate the expectation value E(x) which
can be done using the standard Monte Carlo method. Since we have to estimate E(x) only with a constant
precision, it suffices to generate O(1) samples of xi. Given a sample of i (which is easy to generate classically)
we can estimate xi by calling the probability estimation algorithm to get estimates of pi and qi. It suggests
the following algorithm for estimating the distance ‖p− q‖1.

EstDist(p, q, ε, τ)
Set n = 27/τε2, M = c

√
N/ε6τ4.

Let i1, . . . , in ∈ [N ] be a list of n independent samples drawn from r.
For a = 1, . . . , n
{

Let p̃ia be estimate of pia obtained using EstProb(p, {ia},M).
Let q̃ia be estimate of qia obtained using EstProb(q, {ia},M).
Let x̃ia = |p̃ia − q̃ia |/(p̃ia + q̃ia) be estimate of xia .

}
Output x̃ = (1/n)

∑n
a=1 x̃ia .

Here c = O(1) is a constant whose precise value will not be important for us.

Lemma 1. The algorithm EstDist(p, q, ε, τ) outputs an estimate x̃ satisfying

Pr [|x̃− E(x)| < ε] ≥ 1− τ, (6)

where E(x) = (1/2)‖p− q‖1.

Proof. Define a random variable

x̄ =
1
n

n∑
a=1

xia ,
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where i1, . . . , in is a list of samples generated at the first step of the algorithm. Note that E(x̄) = E(x) and
Var (x̄) = Var (x)/n. As |pi − qi| ≤ pi + qi we have 0 ≤ xi ≤ 1 and so one can bound the variance of x as
Var (x) ≤ E(x2) ≤ 1. Therefore Var (x̄) ≤ 1/n. Applying the Chebyshev inequality to x̄ one gets

Pr [|x̄− E(x)| ≥ ε/3] ≤ 9 Var (x̄)
ε2

≤ 9
nε2
≤ τ

3
. (7)

Let x̃ be the output of EstDist(p, q, ε, τ). The union bound implies that

Pr [|x̃− x̄| ≥ ε/3] ≤ Pr [∃a : |x̃ia − xia | ≥ ε/3n] ≤ nPr [|x̃i − xi| ≥ ε/3n] , (8)

where i ≡ ia is a sample drawn from r. Therefore it suffices to verify that

Pr [|x̃i − xi| ≥ ε/3n] ≤ 2τ
3n
. (9)

Let us say that an element i is bad iff

max (pi, qi) ≤
τ

3nN
(bad element). (10)

The probability that i is bad is at most

pbad =
∑
i is bad

ri ≤
τ

3n
.

Therefore it suffices to get a bound

Pr [|x̃i − xi| ≥ ε/3n | i is good] ≤ τ

3n
, (11)

where we conditioned on i being a good (not bad) element.
Let us translate the precision up to which one needs to estimate xi into a precision up to which one

needs to estimate pi and qi.

Proposition 1. Consider a real-valued function f(p, q) = (p− q)/(p+ q) where 0 ≤ p, q ≤ 1. Assume that
|p− p̃|, |q − q̃| ≤ δ(p+ q) for some δ ≤ 1/5. Then

|f(p, q)− f(p̃, q̃)| ≤ 5δ. (12)

The proof can be found in Ref. [20] and is omitted from this extended abstract. Note that

|x̃i − xi| = | |f(p̃i, q̃i)| − |f(pi, qi)|| ≤ |f(p̃i, q̃i)− f(pi, qi)|.

Since we want to estimate xi with a precision ε/3n, it suffices to estimate pi and qi with a precision
δ(pi + qi) ≥ δmax (pi, qi) where 5δ = ε/3n, that is, δ = ε/(15n). Summarizing,

|p̃i − pi|, |q̃i − qi| ≤
ε

15n
max (pi, qi) ⇒ |x̃i − xi| ≤

ε

3n
. (13)
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Thus it suffices to estimate pi and qi with precision

δ ∼ εn−1 max (pi, qi) ∼ τε3 max (pi, qi). (14)

We are going to get these estimates by calling EstProb(p, {i},M) and EstProb(q, {i},M). The number of
queries M has to be chosen sufficiently large such that conditions Eq. (4) are satisfied for precision δ defined
in Eq. (14) and error probability determined by Eq. (11), that is,

ω ∼ τn−1 ∼ τ2ε2. (15)

It leads to the condition

M ≥ Ω
(

1
τ3ε5 max (

√
pi,
√
qi)

)
. (16)

Recall that we are interested in the case when i is good. In this case max (pi, qi) ≥ τ/(3nN) ∼ N−1τ2ε2.
Therefore Eq. (16) is satisfied whenever

M ≥ Ω

(
1
√
N

τ4ε6

)
.

Theorem 1 follows directly from Lemma 1 since EstDist(p, q, ε, τ) makes O(
√
N) queries to the quantum

oracles generating p and q.

4 Quantum algorithm for testing Uniformity

In this section we prove Theorem 2. Let p ∈ DN be an unknown distribution specified by an oracle. We are
promised that either p is the uniform distribution, or p is ε-nonuniform, that is, the L1-distance between p
and the uniform distribution is at least ε. The algorithm described below is based on the following simple
observation. Choose some integer M � N and let S = (i1, . . . , iM ) be a list of M independent samples drawn
from the distribution p. Define a random variable pS =

∑M
a=1 pia . It coincides with the total probability of

all elements in S unless S contains a collision (that is, ia = ib for some a 6= b). The characteristic property
of the uniform distribution is that pS = M/N with certainty. On the other hand, we shall see that for any
ε-nonuniform distribution pS takes values greater than (1 + δ)M/N for some constant δ > 0 depending on
ε with a non-negligible probability. This observation suggests the following algorithm for testing uniformity
(the constants K and M below will be chosen later).

UTest(p,K,M, ε)
Let S = (i1, . . . , iM ) be a list of M independent samples drawn from p.
Reject unless all elements in S are distinct.
Let pS =

∑M
a=1 pia be the total probability of elements in S.

Let p̃S be an estimate of pS obtained using EstProb(p, S,K).
If p̃S > (1 + ε2/8)M/N then reject. Otherwise accept.
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This procedure will need to be repeated several times to achieve the desired bound on the error probability,
see the proof of Theorem 2 below.

The main technical result of this section is the following lemma.

Lemma 2. Let p ∈ DN be an ε-nonuniform distribution. Let S = (i1, . . . , iM ) be a list of M independent
samples drawn from p, where

M3 =
32N
ε4

. (17)

Let pS =
∑M

a=1 pia and α = 28ε−4. Then

Pr
[
pS ≥ (1 + ε2/2)

M

N

]
≥ 1

2
exp (−α). (18)

Theorem 1 follows straightforwardly from the above lemma and Theorem 5.

Proof of Theorem 1. Let M be chosen as in Eq. (17) and

K = c
eαN1/3

ε4/3
,

where c = O(1) is a constant to be chosen later. Consider the following algorithm:

Perform L = 4 exp (α) independent tests UTest(p,K,M, ε). If at least one of the tests outputs ‘reject’ then
reject. Otherwise accept.

Let us show that this algorithm rejects any ε-nonuniform distribution with probability at least 2/3 and
accepts the uniform distribution with probability at least 2/3.
Part 1: Any ε-nonuniform distribution is rejected with high probability. Let Ps be the probability that for
at least one of the UTests one has

pS ≥ (1 + ε2/2)
M

N
(19)

Using Lemma 2 we conclude that

Ps ≥ 1−
(

1− 1
2eα

)4eα

≥ 1− e−2 ≥ 5
6
. (20)

In what follows we shall focus on a single test UTest(p,K,M, ε) that satisfies Eq. (19) and show that it
outputs ‘reject’ with high probability. Indeed, let S be the sample list generated by this UTest. If S contains
a collision, the test outputs ‘reject’. Otherwise pS coincides with the total probability of all elements in S.
The test outputs ‘reject’ whenever pS is estimated with a precision

δ = pS
ε2

4
. (21)
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In this case

p̃S ≥
(

1− ε2

4

)
pS ≥

(
1− ε2

4

)(
1 +

ε2

2

)
M

N
>

(
1 +

ε2

8

)
M

N
.

(Here we assumed for simplicity that ε ≤ 1.) Suppose we want the UTest to output ‘reject’ with probability
at least 5/6. Applying Eq. (4) with δ defined in Eq. (21) and ω = 1/6 we arrive at

K ≥ c

ε2
√
pS

(22)

for some constant c = O(1). Using Eq. (19) it suffices to choose

K = O

( √
N

ε2
√
M

)
= O

(
N1/3

ε4/3

)
(23)

Summarizing, if p is an ε-nonuniform distribution it will be rejected with probability at least (5/6)2 ≥ 2/3.

Part 2: The uniform distribution is accepted with high probability. Note that the uniform distribution can
be rejected for two possible reasons: (i) for some UTest the sample list S contains a collision; (ii) for some
UTest the estimate p̃S is sufficiently large, p̃S > (1 + ε2/8)M/N . We analyze these two possible sources of
errors below.

(i) For any fixed Utest let S = (i1, . . . , iM ) be a list of M samples drawn from p. Let C be the number
of collisions in S, that is, the number of pairs 1 ≤ a < b ≤M such that ia = ib. Then,

E(C) =
(
M

2

) N∑
i=1

p2
i ≤

M2

2N
.

Markov’s inequality implies that Pr [C ≥ 1] ≤ E(C) ≤ M2/(2N). Then the probability that at least one of
the UTests will find a collision can be bounded using the union bound as

Pc ≤
LM2

2N
= O

(
1

N1/3

)
since we have chosen M = O(N1/3) and L = O(1). Thus the error probability associated with finding
collisions can be neglected.

(ii) Let p̃S be the estimate of pS obtained in some fixed UTest. Since pS = M/N with certainty, the
test outputs ‘accept’ whenever the estimate p̃S returned by EstProb(p, S,K) satisfies |p̃S − pS | ≤ δ, where

δ =
ε2M

8N
. (24)

Since the total number of Utests is L = 4eα, we would like the estimate p̃S to have precision δ with error
probability ω ≤ 1

12e
−α. Applying Eq. (4) with δ, ω defined above and taking into account that pS = M/N ,

we find that we can take the number of queries K to be

K = O

(√
pS

ωδ

)
= O

(
eαN1/3

ε4/3

)
. (25)
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It remains to choose the largest of Eq. (23) and Eq. (25).

In the rest of this section we prove Lemma 2. We shall adopt notations introduced in the statement of
Lemma 2, that is, the number of samples M is defined by

M3 = 32ε−4N,

α ≡ 28ε−4, S = (i1, . . . , iM ) is a list of M independent samples drawn from p, and pS =
∑M

a=1 pia .

Definition 1. An element i ∈ [N ] is called big iff pi > 1/(2M2).

Define the set Big ⊂ [N ] of all big elements and their total probability:

Big = {i ∈ [N ] : pi > 1/(2M2)}, wbig =
∑
i∈Big

pi. (26)

We shall start in see subsection 4.1 by proving Lemma 2 for the special case when p has no big elements.
The proof is based on Chebyshev’s inequality. Then we shall leverage this result in subsection 4.2 to show
that distributions with a few big elements (small wbig) also satisfy Lemma 2. Finally in subsection 4.3, we
shall treat distributions with many big elements (large wbig) using a completely different technique.

4.1 Proof of Lemma 2: no big elements

Lemma 3 (No big elements). Suppose p ∈ DN is ε-nonuniform and has no big elements. Then

Pr
[
pS ≥

(
1 +

ε2

2

)
M

N

]
≥ 3

4
. (27)

Proof. One can easily check that

E(pS) = M〈p|p〉, Var (pS) = M

(
N∑
i=1

p3
i − 〈p|p〉2

)
. (28)

Proposition 2. Suppose p ∈ DN is ε-nonuniform. Then

〈p|p〉 ≥ 1 + ε2

N
. (29)

Proof. Let u be the uniform distribution. Then ε ≤ ‖p − u‖1 ≤
√
N ‖p − u‖2 =

√
N
√
〈p|p〉 −N−1 which

gives the desired bound.

10



Using the proposition and the assumption that p has no big elements we get

E(pS) ≥ M

N
(1 + ε2), Var (pS) ≤M‖p‖∞〈p|p〉 ≤

1
2M
〈p|p〉. (30)

Chebyshev’s inequality implies that

Pr [|pS − E(pS)| ≥ tE(pS)] ≤ Var (pS)
E(pS)2 t2

. (31)

Assuming for simplicity that ε2 ≤ 1/3 we can use the bound (1 + ε2)−1 ≤ 1− 3ε2/4 and thus

Pr
[
pS ≤

(
1 +

ε2

2

)
·
(
M

N

)]
≤ Pr

[
pS ≤ E(pS)

(1 + ε2/2)
(1 + ε2)

]
≤ Pr

[
pS ≤ (1− ε2/4)E(pS)

]
.

Using Eq. (31) with t = ε2/4 and Eqs. (28,30) we arrive at

Pr
[
pS ≤ (M/N)(1 + ε2/2)

]
≤ 〈p|p〉

2M
1

M2〈p|p〉2t2
≤ 8N
M3ε4

≤ 1
4

since 〈p|p〉 ≥ N−1 for any distribution p ∈ DN and since we have chosen M3 = 32ε−4N .

4.2 Proof of Lemma 2: a few big elements

Lemma 4 (A few big elements). Suppose p ∈ DN is ε-nonuniform and has only a few big elements such
that

wbig ≤
α

M
, α ≡ 28ε−4. (32)

Then

Pr
[
pS ≥ (1 + ε2/2)

M

N

]
≥ 1

2
exp (−α). (33)

Proof. Let S = (i1, . . . , iM ) be a list of M samples drawn from p. We can get a constant lower bound on
the probability that S contains no big elements:

Pr [S ∩ Big = ∅] = (1− wbig)M ≈ exp (−Mwbig) ≥ e−α. (34)

(Strictly speaking, one gets a lower bound e−α(1− o(1)).) It suffices to show that pS ≥ (1 + ε2/2)M/N with
probability at least 1/2 conditioned on S having no big elements.

The conditional distribution of the random variable pS given that S contains no big elements can be
obtained by setting the probability of all big elements to zero and renormalizing p by a factor (1−wbig)−1.
In other words, we can repeat all arguments of Lemma 3 if we replace p by a new distribution p′ ∈ DN such
that

p′i =

{
pi

(1−wbig) if i /∈ Big,
0 if i ∈ Big.

(35)

We have to check that p′ is also ε-nonuniform.
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Proposition 3. The distribution p′ is ε′-nonuniform, where ε′ ≥ ε−O(N−1/3).

Proof.
‖p− p′‖1 =

∑
i∈Big

pi +
∑
i/∈Big

[
(1− wbig)−1 − 1

]
pi ≤ wbig +

wbig

(1− wbig)
= O(N−1/3).

Let u be the uniform distribution. Using the triangle inequality we get

‖p′ − u‖1 ≥ ‖p− u‖1 − ‖p− p′‖1 ≥ ε−O(N−1/3).

To simplify notations we shall neglect the correction of order N−1/3 and assume that p′ is ε-nonuniform.
By construction,

‖p′‖∞ ≤
1

(1− wbig)2M2
= 1/(2M2) +O(N−1).

Neglecting the correction of order N−1 we can assume that p′ has no big elements. Then Lemma 3 implies
that p′S ≥ (1+ε2/2)M/N with probability at least 3/4. Combining it with Eq. (34) we arrive at Eq. (33).

4.3 Proof of Lemma 2: many big elements

Lemma 5 (Many big elements). Suppose p is ε-nonuniform and has many big elements such that

wbig >
α

M
, α ≡ 28ε−4. (36)

Then

Pr
[
pS ≥ 2

M

N

]
≥ 1

2
. (37)

Proof. Let S = (i1, . . . , iM ) be a list of M independent samples drawn from p. Since each big element
contained in S contributes at least 1/(2M2) to pS , the inequality pS ≥ 2M/N is satisfied whenever S
contains at least n big elements where

n

2M2
≥ 2M

N
.

Since M3 = 25ε−4N , we can choose
n = 27ε−4 = α/2. (38)

The total number of samples a ∈ [M ] such that ia is big can be represented as ξ =
∑M

i=1 ξi, where ξi ∈ {0, 1}
is a random variable such that ξi = 1 iff i is a big element. Note that E(ξ) = Mwbig > α. Using Chebyshev’s
inequality we get

Pr [ξ < n] ≤ Pr
[
|ξ − E(ξ)| ≥ 1

2
E(ξ)

]
≤ 4 Var (ξ)

E(ξ)2
≤ 4

E(ξ)
≤ 4
α
≤ 1

2
. (39)
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5 Quantum algorithm for testing orthogonality

Consider distributions p, q ∈ DN and let S = (i1, . . . , iM ) be a list of M independent samples drawn from
p. Let A ⊆ [N ] be the set of all elements that appear in S at least once. Define the collision probability

qA =
∑
i∈A

qi.

Note that qA is a deterministic function ofA, so the probability distribution of qA is determined by probability
distribution of A (which depends on p and M). For a fixed A the variable qA is the probability that a sample
drawn from q belongs to A.

Clearly if p and q are orthogonal then qA = 0 with probability 1. On the other hand, if p and q have a
constant overlap, we will show that qA takes values of order M/N with constant probability. Specifically,
we shall prove the following lemma.

Lemma 6. Consider a pair of distributions p, q ∈ DN such that ‖p − q‖1 ≤ 2 − ε. Let qA be a collision
probability constructed using M samples. Suppose M ≥ 29ε−2. Then

Pr
[
qA ≥

ε3M

211N

]
≥ 1

2
. (40)

It suggests the following algorithm for testing orthogonality.

OTest(p, q,M,K)
Let S = {i1, . . . , iM} be a list of M independent samples drawn from p.
Let A ⊆ [N ] be the set of elements that appear in S at least once.
Let qA =

∑
i∈A qi be the total probability of elements in A with respect to q.

Let q̃A be estimate of qA obtained using EstProb(q,A,K).
If q̃A ≥ ε3M

212N
then reject. Otherwise accept.

We note that if qA = 0 then q̃A = 0 with certainty (see Theorem 5) and so OTest accepts any pair of
orthogonal distributions with certainty. Theorem 3 is a direct consequence of the following lemma.

Lemma 7. Choose

M = K = O

(
N1/3

ε

)
. (41)

Then OTest(p, q,M,K) rejects any distributions p, q ∈ DN such that ‖p − q‖1 ≤ 2 − ε with probability at
least 1/4.

Proof. According Eq. (40), qA ≥ ε3M/(211N) with probability ≥ 1/2. When this holds, the algorithm
rejects whenever

|q̃A − qA| ≤
qA
2

13



since this implies q̃A ≥ qA/2 ≥ ε3M/(212N). Applying Theorem 5 with precision δ = qA/2 and error
probability ω = 1/2, we find (according to Eq. (4)), that K should be

K ≥ Ω
(

1
√
qA

)
(42)

Taking into account Eq. (40) it suffices to choose

K = Ω

(
N1/2

ε3/2M1/2

)

to guarantee that Otest outputs ‘reject’ with probability at least (1/2) · (1/2) = 1/4. Minimizing the total
number of queries K +M we arrive at Eq. (41).

In the rest of this section we prove Lemma 6.

Proof. Begin by defining two sets of indices:

B ≡ {i : qi <
ε

4
pi} (43)

C ≡ {i : pi ≤
ε

32
N−1} (44)

Let Bc, Cc denote the complements of B and C respectively. We will prove that

Pr
[
|A ∩Bc ∩ Cc| ≥ ε

16
M
]
≥ 1/2, (45)

which will imply the Lemma since

qA ≥
∑

i∈A∩Bc∩Cc
qi ≥

ε

4

∑
i∈A∩Bc∩Cc

pi ≥
ε2

27N
|A ∩Bc ∩ Cc|. (46)

First, we show that |A ∩ B| is likely to not be too big. Observe that qB < ε
4pB ≤

ε
4 . Next use the

fact that 1
2‖p − q‖1 = maxU⊂[N ] pU − qU ≤ 1 − ε

2 to bound pB ≤ 1 − ε
2 + ε

4 = 1 − ε
4 . Now we state a

Chernoff-Hoeffding bound.

Lemma 8. Let X1, . . . , XM be independent 0, 1 random variables with X ≡
∑M

i=1Xi. Then for any δ > 0,

Pr [X ≥ E (X) +Mδ] ≤ exp(−2Mδ2). (47)

Recall that A consists of the unique elements of S = {i1, . . . , iM}. For j = 1, . . . ,M , define Xj = 1 if
ij ∈ B and Xj = 0 if not. Then |A ∩ B| ≤

∑M
j=1Xj , with the possibility of an inequality in case there are

repeats. We can now use Lemma 8 with E (Xj) = pB ≤ 1− ε/4 and δ = ε/8 to prove that

Pr
[
|A ∩B| ≥

(
1− ε

8

)
M
]
≤ exp

(
−2M

( ε
8

)2
)

= exp
(
−Mε2

32

)
. (48)
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Next, we observe that pC ≤ ε/32. We can use the same method to show that |A ∩ C| is likely to not be
too big. This time we define Xj = 1 iff ij ∈ C, so that |A∩C| ≤

∑M
j=1Xj and E (Xj) = pC ≤ ε/16. Setting

δ = ε/32 we get

Pr
[
|A ∩ C| ≥ ε

16
M
]
≤ exp

(
−Mε2

29

)
. (49)

When M ≥ 29/ε2, we can combine (48) and (49) to find that with probability ≥ 1/2, both |A∩Bc| ≥ ε
8M

and |A ∩ Cc| ≥ (1− ε
16)M . Thus |A ∩Bc ∩ Cc| ≥ ε

16M with probability at least 1/2. This establishes (45),
and completes the proof of the lemma.

6 Lower bounds

6.1 Sampling vs query complexity

Let p ∈ DN be any distribution and O : [S] → [N ] be an oracle generating p. Recall that pi coincides
with the fraction of inputs s ∈ [S] such that O(s) = i. It does not matter which particular inputs s are
mapped to i. The only thing that matters is the number of such inputs. Therefore one can choose an
arbitrary permutation of inputs σ : [S] → [S] and construct a new oracle O′ = O ◦ σ that generates the
same distribution p. We shall see below that if a classical testing algorithm A gives a correct answer with
high probability for any choice of S and σ then A cannot take any advantage from making adaptive queries
to O. Let us transform A into a ‘sampling’ algorithm As such that each query made in A is replaced by a
random query drawn from the uniform distribution on [S].

Lemma 9. Let A be any classical testing algorithm and p ∈ DN be some distribution such that A accepts
(rejects) p with probability at least 2/3 for any oracle O : [S] → [N ] generating p. Then the corresponding
sampling algorithm As accepts (rejects) p with probability at least 2/3.

Proof. Let Pacc(σ) be a probability that A accepts while interacting with the oracle O ◦ σ, where σ is a
permutation on [S]. Without loss of generality Pacc(σ) ≥ 2/3 for all σ. It implies that the average acceptance
probability

Pacc =
1
S!

∑
σ

Pacc(σ) ≥ 2
3
. (50)

An execution of the algorithm A can be represented by a history of queries Q = (s1, . . . , sT ) ∈ [S]×T . Let
P (Q) be a probability that an execution of A leads to a history Q. We can assume without loss of generality
that the output of A (accept or reject) is a deterministic function of Q. Let Ωacc be a set of histories Q that
make A to accept. We have Pacc(σ) =

∑
Q∈Ωacc

P (σ−1Q), where

σ−1Q ≡ (σ−1(s1), . . . , σ−1(sT )),

and thus
Pacc =

∑
Q∈Ωacc

1
S!

∑
σ

P (σ−1Q) ≥ 2
3
.
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Let P̄ (Q) = E(P (σ−1Q)) where σ is drawn from the uniform distribution. Let U(Q) be the uniform
distribution on the set [S]×T . We claim that

‖P̄ − U‖1 = O(TS−1). (51)

Assume without loss of generality that all queries in Q are different. Then

P̄ (Q) =
(S − T )!

S!
= S−T (1 +O(T 2/S)).

A probability that a history drawn from the uniform distribution contains two or more equal queries can
be bounded by O(T 2/S) and thus we arrive at Eq. (51). Therefore in the limit S → ∞ the acceptance
probability is at least 2/3 if Q is drawn from the uniform distribution. But this implies that the sampling
algorithm As accepts p with probability at least 2/3.

6.2 Reduction from the Collision Problem to testing Orthogonality

One can get lower bounds on the query complexity of testing Orthogonality using the lower bounds for the
Collision problem [14]. Indeed, let H : [N ]→ [3N/2] be an oracle function such that either H is one-to-one
(yes-instance) or H is two-to-one (no-instance). The Collision Problem is to decide which one is the case.
It was shown by Aaronson and Shi [15] that the quantum query complexity of the Collision problem is
Ω(N1/3). Below we show that the Collision problem can be reduced to testing Orthogonality3. It implies
that testing Orthogonality requires Ω(N1/2) queries classically and Ω(N1/3) queries quantumly.

Indeed, choose a random permutation σ : [N ] → [N ] and define functions Op, Oq : [N/2] → [3N/2] by
restricting the composition H ◦ σ to the subsets of odd and even integers respectively:

Op(s) = H(σ(2s− 1)), Oq(s) = H(σ(2s)), s ∈ [N/2].

For any yes-instance (i.e. H is one-to-one), the distributions p, q ∈ D3N/2 generated by Op and Oq are
uniform distributions on some pair of disjoint subsets of [3N/2]; that is, p and q are orthogonal.

We need to show that for any no-instance (H is two-to-one) the distance ‖p − q‖1 takes values smaller
than 2− ε with a sufficiently high probability for some constant ε.

Lemma 10. Let H : [N ]→ [3N/2] be any two-to-one function. Let σ : [N ]→ [N ] be a random permutation
drawn from the uniform distribution. Then

Pr
[
‖p− q‖1 ≤

7
4

]
≥ 1

2
.

Proof. Given the promise on H we can define a perfect matchingM on the set [N ] (considered as a complete
graph with N vertices) such that H(u) = H(v) iff u and v are matched. LetMσ = σ−1 ◦M. Clearly,Mσ is
a random perfect matching on [N ] drawn from the uniform distribution on the set of all perfect matchings.

3In order to apply the lower bound proved in [15] one has to choose the range of H of size 3N/2 rather than N which would
be more natural.
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Let (u, v) ∈ Mσ be some pair of matched vertices and w = H(σ(u)) = H(σ(v)). Note that if u and v have
different parity then pw = qw = 2/N . On the other hand, if u and v have the same parity then pw = 4/N ,
qw = 0 or vice verse. Thus

‖p− q‖1 = 2− 4
N

#{(u, v) ∈Mσ : u and v have different parity}. (52)

A nice property of the uniform distribution on the set of perfect matchings on [N ] is that a conditional
distribution given that (u, v) ∈Mσ is the uniform distribution on the set of perfect matchings on [N ]\{u, v}.
Thus we can generate Mσ using the following algorithm. Let U ⊆ [N ] be the set of all unpaired vertices
(in the beginning U = [N ]). Let Ueven and Uodd be the subsets of all even and all odd integers in U . The
algorithm starts from an empty matching Mσ = ∅. Suppose at some step of the algorithm we have some
matching Mσ and some sets of unpaired vertices U = Ueven ∪ Uodd. If |Ueven| ≥ |Uodd| choose a random
vertex u ∈ Uodd. If |Ueven| < |Uodd| choose a random vertex u ∈ Ueven. Pair u with a random vertex
v ∈ U\{u} and update

Mσ →Mσ ∪ {u, v}, U → U\{u, v}

with the corresponding update for Ueven and Uodd. After N/2 steps of the algorithm we generate a random
uniform Mσ.

By construction, at each step of the algorithm we pair a vertex u to a vertex v with the opposite parity
with probability at least 1/2. Thus the probability P (k) of having a matching Mσ with less than k pairs
having opposite parity is

P (k) ≤
k∑
i=0

(
N/2
i

)
2−

N
2

+k ≤ 2
N
2

[H(x)+x−1+o(1)],

where x = 2k/N . One can check that H(x) +x− 1 < 0 for x ≤ 1/8 and thus P (N/16) ≤ 1/2 for sufficiently
large N . Thus Eq. (52) implies that ‖p− q‖1 ≤ 2− 1/4 = 7/4 with probability at least 1/2.

6.3 Classical lower bound for testing Uniformity

In this section we prove that classically testing Uniformity requires Ω(N1/2). A proof uses the machinery
developed by Valiant in [8]. Valiant’s techniques apply to testing symmetric properties of distributions,
that is, properties that are invariant under relabeling of elements in the domain of a distribution. Clearly,
Uniformity is a symmetric property.

We shall need two technical tools from [8], namely, the Positive-Negative Distance lemma and Wishful
Thinking theorem (see Theorem 4 and Lemma 3 in [8]). Let us start from introducing some notations. Let
p ∈ DN be an unknown distribution and S = (i1, . . . , iM ) be a list of M independent samples drawn from
p. We shall say that S has a collision of order r iff some element i ∈ [N ] appears in S exactly r times.
Let cr be the total number of collisions of order r, where r ≥ 1. A sequence of integers {cr}r≥1 is called a
fingerprint of S. Define a probability distribution DM

p on a set of fingerprints as follows: (1) draw k from
the Poisson distribution Poi(k) = e−MMk/k!. (2) Generate a list S of k independent samples drawn from
p. (3) Output a fingerprint of S.
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An important observation made in [8] is that a fingerprint contains all relevant information about a
sample list as far as testing symmetric properties is concerned. Thus without loss of generality, a testing
algorithm has to make its decision by looking only on a fingerprint of a sample list. Applying Positive-
Negative Distance lemma from [8] to testing Uniformity we get the following result.

Lemma 11 ([8]). Let u be the uniform distribution on [N ] and p ∈ DN be any distribution such that
‖p− u‖1 ≥ 1. If for some integer M

‖DM
p −DM

u ‖1 <
1
12

(53)

then Uniformity is not testable in M samples.

The second technical tool is a usable upper bound on the distance between the distributions of finger-
prints. For any integer k define an k-th moment of p as

mk(p) =
N∑
i=1

pki . (54)

Clearly mk(u) = N1−k which is the smallest possible value of a k-th moment for distributions on [N ].
Applying Wishful Thinking theorem from [8] to testing Uniformity we get the following result.

Lemma 12 ([8]). Let p ∈ DN be any distribution such that ‖p‖∞ ≤ δ/M for some δ > 0. Then

‖DM
p −DM

u ‖1 ≤ 40δ + 10
∑
k≥2

Mk mk(p)−N1−k

bk/2c!
√

1 +Mkmk(p)
. (55)

Corollary 1. Uniformity is not testable classically in 32−1N1/2 queries.

Proof. Consider a distribution

pi =
{

2/N if 1 ≤ i ≤ N/2,
0 otherwise.

Clearly ‖p− u‖1 = 1 and
mk(p) = 2k−1N1−k.

In particular, choosing M = 2−aN1/2 we have

Mkmk(p) = 2−k(a−1)−1N1− k
2 ≤ 2−2a+1 for all k ≥ 2.

Taking into account that ∑
k≥2

1
bk/2c!

≤ 2(e− 1) ≤ 4

we can use Eq. (55) to infer that

‖DM
p −DM

u ‖1 ≤ 40δ + 10 · 2−2a+3. (56)
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Clearly, condition ‖p‖∞ ≤ δ/M can be satisfied for any constant δ > 0 and sufficiently large N . Then
Lemma 11 implies that Uniformity is not testable in M samples whenever 10 · 2−2a+3 < 1/12. It suffices to
choose a = 5. Finally, Lemma 9 implies that Uniformity is not testable in M queries in the oracle model.
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