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Abstract

Almost all of the modern computers use multiple cores, and the number of cores is
expected to increase as hardware prices go down, and Moore’s law fails to hold. Most of
the theoretical algorithmic work so far has focused on the setting where multiple cores
are performing the same task. Indeed, one is tempted to assume that when the cores are
independent then the current design performs well.

This work infirms this assumption by showing that even when the cores run com-
pletely independent tasks, there exist dependencies arising from running on the same
chip, and using the same cache. These dependencies cause the standard caching algo-
rithms to underperform. To address the new challenge, we revisit some aspects of the
classical caching design.

More specifically, we focus on the page replacement policy of the first cache shared
between all the cores (usually the L2 cache). We make the simplifying assumption
that since the cores are running independent tasks, they are accessing disjoint memory
locations (in particular this means that maintaining coherency is not an issue). We
show, that even under this simplifying assumption, the multicore case is fundamentally
different then the single core case. In particular

1. LRU performs poorly, even with resource augmentation.

2. The offline version of the caching problem is NP complete.

Any attempt to design an efficient cache for a multicore machine in which the cores
may access the same memory has to perform well also in this simpler setting. We provide
some intuition to what an efficient solution could look like, by

1. Partly characterizing the offline solution, showing that it is determined by the part
of the cache which is devoted to each core at every timestep.

2. Presenting a PTAS for the offline problem, for some range of the parameters.

In the recent years, multicore caching was the subject of extensive experimental
research. The conclusions of some of these works are that LRU is inefficient in practice.
The heuristics which they propose to replace it are based on dividing the cache between
cores, and handling each part independently. Our work can be seen as a theoretical
explanation to the results of these experiments.
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1 Introduction

Almost all of today’s computers use multiple cores, and the number of cores is expected to
increase as hardware prices go down [4]. Yet, it is not clear what are the important aspects
of this change, and how to design the rest of the computer, hardware and software alike,
to incorporate it. In the theory community, there have been several recent works on the
subject, as well as a dedicated workshop [20]. There are several ways to model this setting,
such as the PRAM model [10], and the Bridging model [21] (see [13] for a survey on the
need for a good model and the challenges in finding one). However, all these models focus
on the limit where many cores are working together on the same data (e.g. sorting a large
array [6]). An implicit assumption in almost all the previous theoretical work is that if the
cores are running completely independent tasks, or if they are running algorithms which are
inherently parallel (such as brute force search in a large space), then there is not much that
needs to be done, and the situation is similar to the single core setting. Our goal in this
work is to revisit this assumption.

Replacement Policy for a Single Core. In the single core case, the processor presents
the cache with a series of requests for memory locations, where each request appears after
the last one has been served. The time to serve each request depends on whether the memory
location is in the cache (a cache hit occurs) or not (and then a miss occurs and the location
is fetched from the main memory). If the cache is full, the new memory location enters the
cache, and another memory location gets evicted. The exact miss time is not important, and
we measure algorithms by the number of misses they perform on a given series of requests.
In this case, [2] showed that the optimal (offline) algorithm to choose which location to evict
is Furthest in the Future (FITF), which evicts the memory location which will be used
in the latest possible time.

The more interesting question is the online version of the problem, in which the algorithm
sees the next request only after serving the last one. In this case, the common measure for
the performance of an algorithm is its competitive ratio, or the number of misses it makes
divided by the number an optimal offline algorithm would make, on the worst case sequence.
For the caching problem, attaining a good ratio is impossible, as all deterministic caching
strategies have a competitive ratio which is at least k, the size of the cache. In the same time,
we know that in practice very simple strategies give good results. In their seminal paper on
caching, Sleator and Tarjan elucidated this disparity, by introducing resource augmentation,
which compares the online algorithm using a cache of size k to an offline algorithm which
uses a smaller cache [19]. Let Least Recently Used (LRU) be the policy which evicts
the page for which his last use was the earliest in time. [19] proved that when LRU uses
a cache which is a constant factor bigger than the offline algorithm, its competitive ratio is
constant.

Not only does LRU have nice theoretical features, it also works well in practice. Although
it is a little complicated to exactly keep track of the exact time in which every memory
location in the cache was used, heuristics which approximate LRU’s behavior are used in
most of the standard caches.

Our Results The main contribution of this work is to initiate the theoretical study of the
cache problem in multicore machines running (almost) independent tasks. To do this, we

1



show that new ideas are required for the cache replacement policy even when different cores
access a disjoint set of memory locations. The main negative result is
Theorem 3.1 (informal) For any α > 1, the competitive ratio of LRU is Ω(τ/α) when the
offline algorithm gets a cache of size k/α, and τ is equal to the miss time divided by the hit
time.

Moreover, we prove that the offline problem is NP complete.
On the positive side, we illustrate that a weak form of FITF does hold:

Theorem 4.1 (informal) Given that an offline scheduler evicts a memory location which
belongs to a specific core, it should evict the memory location which is used furthest in the
future.

Our two theorems essentially say that given the amount of cache which is dedicated
to each core, it is easy to decide which location to evict; in contrast the main challenge
is to divide the cache between the cores. We use this result to design a Polynomial Time
Approximation Scheme (PTAS), when the number of cores and the ratio between miss time
and hit time are constant.

The result about the inefficiency of LRU can be seen as a theoretical explanation to
practical experiments, which show that caching is problematic in multicore machines. A
more interesting connection to practical work comes from the heuristics which are being
studied today. These heuristics are phrased in terms of allocating cache to each core, while
in its own allocated share the core performs LRU. This fits well with Theorem 4.1, as LRU
is a pretty good approximation of FITF (in theory and in practice), and we know that after
allocating a part of the cache to each core then FITF is optimal.

Related work There are several recent results on the design of caches for multicore ma-
chines, e.g. [12, 14]. These results propose quite radical designs, and show that they have
some desirable properties, such as maintaining coherency, but make no attempt to give a
competitive analysis of the runtime.

There is a large body of work on sharing a cache, although in very different models.
[3] consider the case of sharing a cache among threads, which can be scheduled to perform
different parts of the computation. A different approach was taken by [1], which considers a
case in which there are n processes sharing a cache, but if one process makes a miss all the
processes stop issuing requests until this process gets served. This assumption is not realistic
in our case, but simplifies greatly the design of the algorithms.

A more practical approach was taken by [5], who proposed dynamic OS partitioning of
the L2 cache between cores. This was continued in the work of [15], who wrote a simulation to
evaluate different strategies to partition the caches between two duo-core processors. Other
examples for papers which evaluate different sharing policies are [18] (who use Bloom filters)
and [8]. The underlying assumption in these works is that the cache should be partitioned
between cores, and each core should manage its own cache.

2 Preliminaries

To state the problem of multicore caching, we introduce some notation. Let {1, . . . , n}
denote the cores, and let k be an upper bound on the size of the cache. The input to the
caching problem is n lists of requests to memory locations, where we let rc1, . . . r

c
mc

denote the
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requests made by core c. We say that two requests are equal if they ask for the same memory
location, and also allow empty requests, rcj = ⊥. This type of request means that the core is
using its L1 cache, or performing some computation which doesn’t require memory access.
Let Xc denote the set of memory locations that core c requests. We have |Xc| ≤ mc, and
Xc ∩Xd = ∅ for c 6= d.

We say that the n lists of requests can be satisfied in time T , if there exist sets S1, . . . , ST
(which describe the content of the cache at each time step), and functions f1, . . . , fn (which
describe when each core gets served), such that

1. Size constraint: For every time 1 ≤ t ≤ T , |St| ≤ k.

2. Requests served in order: fc : {1, . . . ,mc} 7→ {1, . . . , T} is strictly monotone.

3. Requests are served: If rci requests item xc ∈ Xc then xc ∈ Sfc(i).

4. The cache contains memory locations, or is fetching memory locations: For every t, we
have

St ⊂
⋃
c

(Xc ∪ X̃c)

where X̃c = {x̃c : xc ∈ Xc} is a set of formal variables which mean that the cache
is currently copying the memory location xc into some cache cell. We say that xci is
evicted at time t, if xci ∈ St−1 but xci 6∈ St. We say that xci is fetched at time t, if
xci , x̃

c
i 6∈ St−1 and x̃ci ∈ St.

5. Fetching takes time τ : If xc ∈ St and xc 6∈ St−1, then for every t− τ ≤ j < t, we have
x̃c ∈ Sj .

6. No prefetching: For every t, if x̃c ∈ St then there exists a request rci for the location
xc such that fc(i) ≤ t, and fc(i+ 1) > t

Some of the design choices, e.g. no prefetching, are necessary for the model to have
meaning, and are completely standard, while others require explanation. One such conven-
tion is to enable the cache to fetch multiple memory locations at the same time, if they are
requested by different cores. Any system which does not satisfy this assignment will have a
serious bottleneck as the number of cores grow. Practical designs usually allow a bus which is
wide and can pass multiple memory locations1. Most of our results carry over to the setting
where the bus has some width limitations, but this changes the proofs and complicates the
presentation.

An important property of the model, is that if one core makes a request which is a
miss, this specific core does not issue any more requests until it gets served, but the rest
of the cores continue independently. This means that the interleaving of requests that the
algorithms sees in the late stages depends on its actions in the earlier stages. Larger values
of τ can cause larger deviations in the request sequences. Due to this dependency we focus
on the Makespan, and not on the number of misses; most of the results would hold also when
counting the number of misses.

1The analogy between the model and the real world is tricky here, as real caches operate with cache lines,
which span multiple locations. A bus can be more wide than a memory location, and less wide than a cache
line. In this case, the design is based on spacial locality of the memory which the processor uses.
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A technical convention that we use is that first the contents of a cache cell is evicted, and
τ time units later the cell gets the new data from the memory; in the meantime the cell can
not be used. This is not important to the results of the paper, and indeed doesn’t change
the model by much as long as k � n.

2.1 Real World Parameters

Having presented the model, it is important to see that it captures some aspect of reality. To
do so, we present common values of the parameters, as well as the current trends. Modern
computers usually have 2 or 4 cores, and this number is expected to grow [4]. For example,
the new Nehalem architecture presented by Intel can work with 2,4,6 or 8 cores [22]. Each
core has its own private cache, and all the cores share some high level cache2. The time
to fetch a memory location grows, as it is fetched from more distant caches. For example,
in the Intel Pentium M it takes about 3 cycles to fetch from the level 1 cache, 14 cycles to
fetch from L2, and 240 cycles to fetch from the main memory [7]. When considering the
L2 cache replacement policy, this means that the ratio between hit time and miss time is
τ = 240/14 ≈ 17. This ratio is not expected to change much, as technological improvements
affect all layers of the cache.

Finally, the parameter k is not the size of the cache, but rather its associativity. When
a core needs to read a certain memory location, it is usually inefficient to search the entire
cache and check if it is there. Thus, the cache is partitioned into sets, such that each memory
location can be stored in a single set (usually determined according to the memory address).
The size of this set is called the associativity of the cache. If this set has size 1, we the cache
implements direct mapping; if the entire cache is such a set, the cache is fully associative;
and in any other case the cache is set associative. Most of the caches are set associative
(the TLB cache is sometimes fully associative - but it is very small), where the size of the
set grows as we get to higher caches. A typical set size for an L2 cache is 24 [7] or 32 [22].
Even for this set-size, the heuristic used in practice is often an approximate LRU, as it is
hard to keep track of all the uses. Experimental research about multicore caching shows that
increasing the associativity improves the runtime for multicore machines. This requires more
sophisticated replacement policies, which would be efficient and easy to implement [18].

3 Lower Bounds

3.1 Inefficiency of LRU

Sleator and Tarjan introduced resource augmentation in the design of online algorithms, as a
way to explain the poor worst case behavior of online algorithms, as opposed to their success
in practical scenarios. In caching, this amounts to comparing an online algorithm which has
a cache of size k, with an offline algorithm which has a cache of size h for h < k. Indeed,
[19] show that First-In-First-Out, or FIFO for short, the strategy which evicts the item
which first entered the cache3, has a competitive ratio of k/(k− h+ 1). This means that for

2Usually either each core has its own L1 cache, and they all share an L2 cache, or both the L1, L2 are
private, and there is a shared L3 cache, as in the Nehalem. As long as there are private caches and public
caches, the hierarchy does not effect our model and results.

3The worst case guarantees of LRU can only be worse than those of FIFO. In this case, they are the same.
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any k cache misses made by FIFO, any algorithm which has a cache of size h must make
at least (k − h+ 1) misses. In particular, if the online cache is a constant factor better, we
get constant competitive ratio. Unfortunately, when there are multiple cores, the scenario
changes dramatically, as the following theorem shows

Theorem 3.1. For any α > 1, the competitive ratio of FIFO is O(τ/α) when h = k/α.
In particular, if we give FIFO a constant factor resource augmentation, the ratio is O(τ).
There is a setting with this ratio with just dαe+ 1 cores.

Proof. Let n = dαe+ 1. Consider the following sequence of requests for core c

xc1, x
c
2, . . . x

c
h, . . . , x

c
1, x

c
2, . . . x

c
h

where the request sequence xc1, x
c
2, . . . x

c
h appears 1 + τ times.

The offline algorithm can first serve only the first core, then proceed to the second core,
etc. Serving the first h requests of each core takes time τ · h (as they are all misses). The
next τh requests also take time τh, as they are all hits. The total runtime of this solution is
2τnh = O(τhα).

The online algorithm tries to serve all cores together. Similarly to the offline, it misses all
the requests in the first cycle. However, for each core c, when the request for xc1 appears in
the second time, xc1 is no longer in the cache - it was evicted to serve request k/(eαd+1) < h.
A similar analysis shows that every request is a miss. As the online solution fetches n pages
at the same time, it has a total runtime of τ · (τ + 1)h = O(τ2h), as required.

This theorem is very strong, as a competitive ratio of τ can be achieved by not using
the cache at all (in the classical setting when we count misses for the single core case we
implicitly assume that τ is unbounded). Note that when the number of cores is δ · α for
δ < 1, the competitive ratio is at most 1/(1−δ), by just giving each core k/(δ ·α) cache space
(which is more than the offline algorithm can distribute between all the cores it needs to
serve). We note that weaker results hold for other common heuristics, e.g. the randomized
MARK [9].

3.2 NP Completeness of the Offline Problem

In this subsection we show that computing the optimal offline schedule is NP complete, using
a reduction from 3-Partition. An instance of 3-Partition consists of n numbers y1, . . . , yn.
Letting B = 3

n

∑
i yi, it is NPC to decide if it is possible to partition them into sets T1, . . . Tn/3

such that |Tj | = 3 and
∑

yi∈Tj
yi = B for all j. The problem is NP hard in the strong sense

(i.e. it is NP complete even when the inputs are given in unary representation [11]), and
we can assume without loss of generality that B/2 ≥ yi ≥ B/4. Given an instance to
3-Partition, we generate the following caching problem:

1. There are n processors.

2. The cache has size k = n/3

3. The miss time τ can be any constant

4. The goal is to see if it is possible to schedule all cores in time T = B + 3τ − 3
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Core c only requests one page xc1, and it requires is yc times. Formally, the requests of
core c are

xc1, x
c
1, . . . , x

c
1

and there are yc such requests, that is rc1 = rc2 = . . . = rcyc
.

We sketch a proof for the reduction. It is easy to see that each core must miss at least
once. Each miss uses a cache line for time τ , for a total time of τn. If it is possible to finish
satisfying the requests until time T , every cell of the cache has to be busy at each time step
t (either there is a hit to it or it is used to fetch something from the memory). Also, each
cell is used to serve exactly three different cores. The cores who use the i’th cell in the cache
constitute the set Ti. In a similar manner, a solution to the 3-Partition admits a solution to
the caching instance.

4 Properties of the offline solution

In the case of one core, the optimal solution is Furthest-In-The-Future, or FITF. Upon
a request, FITF scans the cache, and attaches each memory location inside the cache the
time in which it will be needed again (or infinity if it will not be needed again). It then evicts
the location for which this time is maximal [2]. A similar theorem holds in the multicore
setting:

Theorem 4.1. Let S be a solution to the caching problem, and suppose that at time t, S
evicts xci . Then there exists another solution S̃ which is identical to S until time t, but at
time t, S̃ evicts the page in St ∩Xc for which the next usage time is maximal. The cost of
S̃ is at most that of S.

In particular, there is an optimal solution which at each step evicts a page which is used
furthest in the future for some core.

The proof of this theorem is somewhat long, and is thus deferred to the full version (a
sketch appears in the appendix). This is in stark contrast to the single core case, where
the proof of this greedy scheme is very simple. To demonstrate the difference between the
single core and the multicore case, we consider a generalization of caching called weighted
caching [16]. In this generalization, each memory location xi is associated with a cost g(xi),
which describes how much time it takes to fetch it from the memory4. For a single core, a
generalization of FITF is optimal: if an optimal solution evicts a memory location x with
cost g(x), the memory location evicted will be the one which is used in the furthest future,
out of all the memory location with this cost5. This property is no longer true for the
multicore case, as the following lemma shows

Lemma 4.2. FITF is not an optimal strategy, when different pages used by the same core
have a different fetching cost.

4This model of caching is especially relevant for web browsing [23, 17]. In a multicore scenario, it can be
used if different parts of the high level cache is located at different place on the chip, and thus the fetching
time is not uniform.

5In fact, sometimes a better model is to assume that each memory location has a different fetching cost,
and also takes a different amount of cache space. The appropriate generalization of FITF performs well.
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Proof. We present an example with n = 2, and k = 5. For ease of notation, in the proof of
this lemma we denote

X1 = {X,Y, α, β, γ}, X2 = {a, b, c, s}

The cost of fetching a, b, c, s, α, β, γ is τ > 18, and the cost of fetching X,Y is T > 20τ + 18.
To simplify notation, when a core asks for the empty page ⊥ for r times in a row we denote
this by r⊥. The sequences of requests are

X,Y, 4τ⊥, X, α, β, γ, α, β, γ, α, β, γ, 10τbot, α, β, γ, α, β, γ, α, β, γ, Y

a, b, c, 2T⊥, s, 6τ⊥, a, b, c, a, b, c, a, b, c, 10τbot, a, b, c, a, b, c, a, b, c, (T − 3τ − 2)bot

It is possible to satisfy all requests in time 3T + 17τ + 16, where both cores finish at the
same time. However, this requires that the second core misses at most 4 times (which is
also the minimum number of times it has to miss). To see that this makespan is possible,
note that the first replacement choice is made at time 2T + 3τ , when s is requested by the
second core. At that point, the cache contains elements {X,Y, a, b, c}, and the the optimal
algorithm evicts X from the cache. Given this eviction, the rest of the replacement policy
becomes very simple. Upon seeing a request for X, the optimal algorithm evicts s at time
2T + 4τ . Finally, by the time X is fetched from the main memory, the second core no longer
requires the cache (it is in the last stage of requesting the dummy page T − 3τ − 2 times),
and therefore a, b, c can be evicted to make room for α, β, γ.

The total time it takes the first core is

2T + 4τ + T + 3τ + 6 + 10τ + 9 + 1 = 3T + 17τ + 16

The total time it takes the second core is

3τ + 2T + τ + 6τ + 9 + 10τ + 9 + (T − 3τ − 2) = 3T + 17τ + 16

Giving a makespan of 3T + 17τ + 16 as required.
Consider now solution which makes the FITF decision in time 2T + 3τ upon seeing

the request for s. If it evicts a, b or c, the second core will later suffer an extra miss, and
satisfying its request will take too long.

If it evicts Y , then it will hit on X. In this case, the requests for the α, β, γ triplets and
the requests for the a, b, c triplets will be interleaved, and the makespan will grow.

Note that Theorem 4.1 gives the strong guarantee, that given that we are evicting a
memory location which belongs to a specific core, we are evicting the one which is furthest
in the future. Thus, to contradict it, we didn’t need to consider the case in which the schedule
evicts a, b, c, - it’s enough to show that evicting X is strictly better than evicting Y .

Lemma 4.2 shows a complicated scenario, where FITF is not optimal. However, the proof
of Theorem 4.1 has to explicitly use the fact that the fetching time of memory locations which
belong to the same core is uniform. We note that if each core has a fixed cost for all its
possible memory locations, Theorem 4.1 still holds (even if each core has a different fetching
cost which is uniform across its pages).
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5 The Approximation Algorithm

In this section we present a polynomial time approximation scheme (PTAS), when n, τ are
constant. According to theorem 4.1, once the algorithm knows which core should evict a
memory location, the decision which location to evict is obvious. Equivalently, each core is
facing a cache of varying size, and the algorithm has to decide how much cache to allocate
each core at every time step. When considering the algorithms, we will adhere to the latter,
and show how much cache each core gets.

We begin by presenting an algorithm when the number of requests each core makes is
small. We then extend it to lists of requests of arbitrary length by flushing the cache every
once in a while (thus eliminating long term dependencies).

5.1 Short Sequences of Instructions

In this subsection we assume that each core only asks for a small number of locations, and
give a PTAS for this case. It is formalized in the next lemma:

Lemma 5.1. Assume that for some α > 0, kα > mc for all c. If the makespan of the
optimal solution is Tk, then for any ε > 0, upon input Tk, ε, Algorithm 1 finds a solution
with makespan (1 + ε)T . The runtime of the algorithm is exponential in τ, α, n, 1/ε.

Proof. Let Optk denote the optimal solution for a cache of size k, which ends in time Tk.
Let Optk(1−ε/nτ) be the optimal solution for a cache of size k(1 − ε/nτ), with makespan
Tk(1−ε/nτ). To upper bound Tk(1−ε/nτ) in terms of Tk, consider the number of times each
cell in the original cache was accessed in Optk. Since there are at most nTk operations, the
average cell was accessed at most nTk/k times. However, if a cell was accessed r times, we
can remove it from the cache, by increasing the makespan by at most τr. Removing the cells
which were least accessed, gives that

Tk(1−ε/nτ) < (1 + ε)Tk

Let gc(t) denote the amount of cache that Optk(1−ε/nτ) gives core c at time t. It is enough
to show that the solution produced by Algorithm 5.1 gives each core c at least gc(t) cache
space at each time step t. As a core can only get one new memory location loaded to its
part of the cache every τ time steps, we have that for every time t

gc(t) + 1 ≥ gc(t+ τ)

As
∑

c gc(t) = k(1− ε/nτ), we also have that g can not decrease too fast, and in particular

gc(t)− n ≤ gc(t+ τ)

So g is Lipschitz, with constant n/τ . Let

βci = max
i·r≤t<(i+1)r

gc(t)

d earlier]
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Algorithm 1: SHORT: algorithm for short sequences. Input - lists of requests, T , ε.
L1 = L2 =, . . . , Ln = ∅;1

r = εk
n3 , set m = Tn3

εk = T/r;2

for c = 0, . . . , n do3

for (`c1, . . . `
c
m) ∈ {0, . . . , k}m do4

if core c can finish in time T , when hc(t) = `ct/r then5

Lc = Lc ∪ {(`c1, . . . `cm)};6

Let B be the dynamic programming matrix defined as follows:7

if exists (`11, . . . , `
1
m) ∈ L1, . . . , (`

j
1, . . . , `

j
m) ∈ Lj and ∀1 ≤ d ≤ m,

∑j
i=1 `

i
d < k then8

Set B[
∑j

i=1 `
i
1, . . . ,

∑j
i=1 `

i
m, j] = 1;9

if B[i1, . . . , im, n] = 1 for any tuple (i1, . . . , im) then10

Return the solution ;11

where r = εk/n3 and i is at most to Tk/r . Letting hc(t) = βct/r, we have hc(t) ≥ gc(t).
Therefore, βci ∈ Lc, when we run Algorithm 1, with input Tk, ε. Moreover, for every i

n∑
c=1

βci ≤
n∑
c=1

(
gc(i · r) +

rn

τ

)
=
n2r

τ
+

n∑
c=1

gc(i · r)

=
εk

nτ
+

n∑
c=1

gc(i · r) ≤
εk

nτ
+ k(1− εn

τ
) = k

And thus the solution (β11, . . . , β
1
m), . . . (βn1, . . . , β

n
m) survives the consistency check, and

some solution is returned.
Analysis of the runtime can be done by following each step. It is deferred to the final

version.

We note that it is not necessary to be precise about the amount of cache given to each
core. For example, one can use O(1/ε) different values for βci , instead of k values. Moreover,
it is possible to find different approximate solutions. These improvements lead to a better
dependency in the parameters, but this is not important for the main algorithm.

5.2 Long Sequences of Requests

After analyzing SHORT, we can use it as a subroutine to handle long sequences of requests,
presenting a PTAS for constant n and τ . The approximation is done via dynamic program-
ming. Let B be a matrix, of dimensions m1 ×m2 . . .×mn. We set

B[i1, . . . , in] = min
p1,...,pn<2τk/ε

B[i1−p1, . . . , in−pn]+τk+COST
(
r1[i1 − p1 : p1], . . . rn[in − pn : pn]

)
where rc[ic−pc : pc] is a shorthand for rcic−pc

, . . . , rcic , and COST
(
r1[i1 − p1 : p1], . . . rn[in − pn : pn]

)
is a (1+ε/2) approximation to the optimal solution for the requests

(
r1[i1 − p1 : p1], . . . rn[in − pn : pn]

)
,

which is obtained using SHORT. Finally, the output is B[m1, . . .mn].
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Theorem 5.2. The dynamic programming procedure returns a 1 + ε approximation to the
makespan of the requests, where the runtime is exponential in n, τ, 1/ε.

Proof. Let Opt be the optimal solution, with makespan T . Consider a solution Õpt, which
flushes the cache every 2kτ/ε time steps6. We have

T
Õpt
≤ (1 +

ε

2
)TOpt

where TOpt is the makespan of Opt, and T
Õpt

is the makespan of Õpt.

The solution Õpt is divided into stage, where in each stage, each core performs at most
2kτ/ε instructions. Thus, performing these instructions together will be considered as one
of the options when computing the minimum solution in the dynamic programming matrix
B. As we loose a multiplicative factor of (1 + ε/2) when computing the COST of a short
series of requests, the solution given by B satisfies

B[m1, . . .mn] ≤ (1 + ε/2)T
Õpt
≤ (1 + ε)TOpt

as required.

Note that we could improve the runtime guarantee, by uploading n memory cells at the
same time each time we flush the cache. Again, this leads to a small improvement in the
runtime, but the dependency in n, τ is still exponential, and thus we presented the simpler
analysis.

6 Conclusions and Open Questions

Both of the negative results of this work may be theoretically surprising, but they match
what is already known to the experimentalists. Theorem 3.1 could have been anticipated
by the experiments which show that LRU is not optimal in practice. Theorem 4.1 could
have been anticipated by considering the heuristics which perform well - first a division of
the cache, and then applying LRU on the part which is given core. There seems to be a
difference between LRU and FITF in this context, but since they are very similar from the
practical standpoint (or from the theoretical one when introducing resource augmentation),
the experimental heuristic and the theorem match.

Two algorithmic questions are obvious: finding approximation algorithms for the offline
problem for a wider range of parameters, and finding an online algorithm with a good
competitive ratio. Interesting candidates for such an algorithm can come from the heuristics
used to partition the cache today (where each core uses LRU on its part).

Even if an algorithm has a nice worst case guarantees, to be actually used it has to be
efficient. Moreover, some coherency issues exist even when the cores are running different
processes (for example because the operating system is shared). Thus, it is important to
perform an analysis of a more realistic system where some conflicts can occur. Finally,
it is interesting to identify other areas in the current architecture which are effected by
introducing multiple cores, and to model them.

6According to the exact definition in the preliminaries Õpt may not be a legal solution, because it violates
the technical condition used to prevent prefetching. This point can be overcome by giving a more exact (and

less restrictive) definition in the preliminaries, or by a more careful definition of Õpt. We keep the notation
simple, and ignore this point for the rest of the presentation.
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A Inductive proof for FITF

The following is a sketch of the proof for the optimality of FITF. Assume A throws away y
before the first instruction, and B throws away z. Let xn be the first occurrence of z in the
series, and assume wlog that A hits on z (otherwise it should be easy). Also assume wlog
that x1 = y. Denote the miss time by T , the hit time is 1, and in any operation xi which
came at time t we

1. Look into the cache to see if xi is a miss or a hit

2. Compute the state of the cache for the next operation. This is A(t), and we must now
have |A(t)| < k(t)

If xi was finished at time t, we denote by A(t) the cache status after we computed the
state of the cache. We first increase if required, and then maintain that |A(t)| ≤ k(t).

We prove by induction on i that

1. if xi is finished by B at time t+ 1, then it is finished by A in time t+ T

2. The cache status after it is finished has the property

B(t+ 1) ∪ {z} ⊃ A(t+ T )

Base case
x1 (which is y by assumption) ends in time t = 1 for B, and T for A. The caches B(0) =

A(0) − {y} ∪ {z} (just before the operation x1 = y). Remember that A(T ) ⊂ A(1) ∪ {y},
where A(1) is interpreted again as the status of the cache in the end of the t = 1 time. In
particular, denoting κ = min(k(1), |A(0)|), we have

A(1) = {α1, . . . , ακ−1, z}

and also A(1) ⊂ A(0) ⊂ B(0) ∪ {z}. We can now therefore throw away elements from B(1),
such that we remain in the end with

B(1) = {α1, . . . , ακ−1, y}

Which satisfies |B(1)| ≤ k(1), and gives

A(T ) ⊂ A(1) ∪ {y} ⊂ B(1) ∪ {z}

as required.
We move to the inductive step. Assume that xi−1 was ended by B in time t, and by A

in time t+ T − 1. Also assume that i < n, and that B(t) ∪ {z} ⊃ A(t+ T − 1).
According to the induction hypothesis, A will start taking care of xi in time t+ T , and

B will start in time t+ 1. We now need to consider two cases
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A.1 xi is a hit in A or a noop

If xi is a noop, it takes one unit of time both in A and in B. Therefore, clearly A will also
finish in time t+ T , and B will finish in time t+ 1. We will later consider the status of the
cache after the operation.

If xi is a hit in A, then xi ∈ A(T + t − 1) ⊂ B(t) ∪ {z}. But as i < n we know that
xi 6= z, and therefore xi is a hit also on B. Again the action is finished in A in time t+ T ,
and in B in time t+ 1, as required.

We now take care of the status of the cache for both operations. If k(t + 1) ≥ |B(t)|,
then we can afford to have B(t + 1) = B(t), and still |B(t + 1)| < k(t + 1). As no element
entered A in time t+ T , we have

A(t+ T ) ⊂ A(t+ T − 1) ⊂ B(t) ∪ {z} = B(t+ 1) ∪ {z}

where we used the inductive hypothesis.
Finally, we need to consider the case k(t+ 1) < |B(t)|. Denoting k(t+ 1) = κ we have

|A(t+ T − 1)| ≤ |A(t+ 1)|+ 1 ≤ k(t+ 1) + 1 = κ+ 1

which is true because in T time steps the size of a cache can grow by at most 1 (because
there can be at most one entry). As z ∈ A(t), we can denote

A(t+ T − 1) = {α1, . . . , ακ, z}

And as B(t) ∪ {z} ⊃ A(t+ T − 1), we can choose to leave in B(t+ 1) the elements

B(t+ 1) = {α1, . . . , ακ}

This would still give |B(t+ 1)| = κ = k(t+ 1) so it fits the cache size, and also

A(t+ T ) ⊂ A(t+ T − 1) ⊂ B(t+ 1) ∪ {z}

as required.

A.2 xi is a miss in A

This is the most involved scenario. We can assume wlog that xi is also a miss in B (otherwise
- just hit on it and stall).

As A started taking care of xi at time t + T , it finishes in time t + 2T − 1. Similarly,
B stated at time t+ 1, and therefore it finishes in time t+ T . We now need to go over the
content of the cache. We need to consider three cases

case 1: For any T − 1 ≥ j ≥ 1 we have k(t + j) ≥ |B(t)|, and k(t + T ) > |B(t)|.
In this case we have B(t + T ) = B(t) ∪ xi. Size is not an issue here (Throughout stages
t, t+ 1, . . . t+ T ), and

A(t+ 2T − 1) ⊂ A(t+ T − 1) ∪ {xi} ⊂ B(t) ∪ {z} ∪ {xi} ⊂ B(t+ T ) ∪ {z}

and we are done.
To define cases 2, 3, we let τ denote the index j which minimizes minT−1≥j≥1 k(t+ j).
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case 2: k(t+τ) < |B(t)|, and k(t+T ) ≥ k(t+τ)+1. In this case, we again use the fact
that |A(t+T )| ≤ k(t+τ)+1. Denoting κ = k(t+τ), we have A(t+T ) = {α1, . . . ακ, z}, and
therefore we can choose B(t + T ) = {α1, . . . ακ, xi}. This means that whenever we needed
to throw away elements from time t to time t+ T we kept {α1, . . . ακ} and acted arbitrarily
on the rest. This is possible, because k(t+ τ) = κ is the minimum.

case 3: k(t+ τ) < |B(t)|, and k(t+ T ) < k(t+ τ) + 1. the same argument holds as in
case 2, only that the limiting factor is different.
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