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Abstract

We introduce another variant of Quantum MIP, where the provers do not share
entanglement, the communication between the verifier and the provers is quantum,
but the provers are unlimited in the classical communication between them. At
first, this model may seem very weak, as provers who exchange information seem
to be equivalent in power to a simple prover. This in fact is not the case—we
show that any language in NEXP can be recognized in this model efficiently, with
just two provers and two rounds of communication, with a constant completeness-
soundness gap. Similar ideas and techniques may help help with other models of
Quantum MIP, including the question of noncommunicating provers with unlim-
ited entanglement.

1 Introduction
Multi Prover Interactive Proofs (MIPs) have been studied extensively in the classical
setting, and provide an exact characterization of NEXP [2]. Extending MIPs to the
quantum setting poses many important open problems, and may give us more intuition
regarding the power of entanglement. There are several possible generalizations for
quantum multi-prover schemes, which differ in the power of the verifier (which can
be quantum or classical), and in the relation between the provers—for example, how
much entanglement they have. For a classical verifier, limited entanglement between
the provers can only weaken the expressive power of the model (or not change it).
When the verifier is quantum the situation can be more complicated, and entanglement
can, in theory, increase or decrease the expressive power.

There are many interesting results in the model where the verifier is classical and
the provers share (limited or unlimited) entanglement. The first results were obtained
by Kobayashi and Matsumoto [17]. They proved that as long as the provers share
a bounded (polynomial) amount of entanglement, the set of languages which can be
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recognized is contained in NEXP, even if the verifier is quantum. Cleve et al. [8]
provide examples where the proof is valid if the provers share no entanglement, but is
no longer sound when they do. Preda [22] showed that if the provers are not limited to
quantum entanglement, but instead have an unlimited amount of nonlocal boxes [21],
then the set of recognizable languages is contained in EXP.

A limited family of quantum games is XOR-Games. In this type of games, the
verifier is only allowed to look at the XOR of the answers sent by the provers. Cleve
et al. [10] showed a parallel repetition lemma for these type of games, even if the
provers share entanglement. However, Wehner [25] showed that if the provers share
entanglement then these games are in EXP.

There are also some positive results when the provers are quantum and share en-
tanglement. Cleve et al. [9] provide a proof system for NP when the verifier is clas-
sical and the provers share an unlimited amount of entanglement. The proof scheme
provides a constant gap, but the communication is linear. Kempe et al. [13] give a
quantum protocol for recognizing languages in NP by a quantum verifier with logarith-
mic communication, when the provers share unlimited entanglement. However, when
x /∈ L the probability that the verifier will discover this is 1 − O(1/poly(n)), which
means that it is necessary to repeat the protocol a polynomial number of times to get
constant soundness. Ito et al. [12] use this result, and give a two prover proof system
for NEXP with a classical verifier which is resistant to entanglement with soundness
of just 1− 2−poly.

1.1 Our Results
An important assumption underlying the work on multi prover schemes is that the
provers are not allowed to pass information between them. The results of Kitaev and
Watrous [16] and Preda [22] could lead us to believe that a proof system with a quantum
verifier and two provers who can pass classical information between them is limited to
EXP. Surprisingly, this is not the case (assuming EXP 6= NEXP). We show that:

Theorem 1.1. Let V be a polynomial time verifier that can exchange quantum mes-
sages with two computationally unbounded provers. The provers share no entangle-
ment, but can freely communicate classically between them. Then for any L ∈ NEXP
there is a two round protocol for the verifier and provers such that for any string x

• (completeness) If x ∈ L then there are two prover strategies such that V will
accept x with probability 1.

• (soundness) If x /∈ L then for any two prover strategies the probability that V
will accept x is at most c for some constant 0 < c < 1.

The communication between the verifier and the provers is is polynomial in the
length of the input1.

We note that augmenting the provers in our model with unlimited entanglement
gives something which is contained in EXP [16], as this is equivalent to quantum com-
munication and thus to a single quantum prover. Bounding the verifier to be classical

1Equivalently we can state our result for NP, bounding the communication to be logarithmic.
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would limit us to languages in PSPACE [24] (as this scenario is equivalent to a single
prover and a classical verifier), so both conditions are necessary.

An important reason to study quantum MIPs is to better understand quantum the-
ory, especially the power of entanglement. Surprisingly, our result, which is stated
in a model with no entanglement between the provers, is based on following the en-
tanglement between the provers and the verifier. Each message the verifier sends is a
superposition of two classical queries. Measuring the message would ruin the superpo-
sition, and will be caught by the verifier. However, a strategy which does not measure
the message “enough” does not extract enough useful classical information, and pre-
vents the provers from coordinating answers via the classical channel. Most of the
paper follows the amount of entanglement between the verifier and the provers during
the protocol, making sure that either the provers do not extract enough information to
answer with very high probability, or they have some chance of getting caught.

Another important task in quantum theory is to study the power of Local Operations
and Classical Communication. In this model two entities are allowed to perform quan-
tum computation locally, but they are limited to classical communication. They are
usually cooperating to achieve some task, such as transforming one shared entangled
state to another one. Characterizing the set of actions that can be performed by them is
a very hard problem (in fact the large number of entanglement monotones comes from
the fact that we do not have a complete characterization of what can be done in the
LOCC model). One can view the results of this work as trying to look at the LOCC
model from a complexity-theoretic perspective where the two entities are provers who
are trying to fool the verifier.

1.2 Related Work
It is interesting to view the results of this paper in light of the complexity class QMA(2),
defined by Kobayashi, Mastumoto and Yamakami [18]. Intuitively, this is the class
of languages which can be recognized by a polynomial time quantum verifier with
two unentangled quantum witnesses (the verifier is promised that the witnesses are
unentangled). While there is no classical analog for this problem (having two classical
witnesses is still NP), Liu, Christandl and Verstraete give evidence that QMA(2) strictly
contains QMA [19]. Blier and Tapp [5] showed that a verifier can recognize an NP-
complete language with soundness 1− O(1/n6). A constant soundness completeness
gap in their results would imply our own. We note, however, that Aaronson et al. [1]
give evidence towards QMA(2)⊆PSPACE, and therefore we do not expect that this is
the case.

Private Information Retrieval schemes (PIRs) were studied by Chor et al. and by
Kerenedis and DeWolf, among others [7, 15, 14]. The idea of using them for Multi
Prover Protocols has been suggested by Cleve et al. [9]. Our protocol is in a sense a
cheat sensitive PIR where the verifier can check whether the prover has tried to learn
information. A similar quantum PIR scheme has been independently presented by
Giovannetti, Lloyd and Maccone [11] in a different context. Cheat sensitive PIR’s are
usually characterized by their information disturbance tradeoff, which is defined as the
probability of getting caught when the provers extract one bit of information on the
query. However, in all existing PIR’s this value is a lot less than a constant, even in the
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simpler case of one server who wants to learn information on the query. As it is easy
to find two assignments such that each clause is satisfied by one of them, even one bit
of information can allow the provers to cheat the verifier. Moreover, in our protocol it
is possible for the provers to extract a constant amount of information without getting
caught. Therefore, instead of using information theoretic inequalities we tailor new
bounds.

2 Preliminaries
We assume the reader is familiar with quantum computation (see [20] for basic nota-
tion).

LetL ∈NEXP. By standard PCP machinery, we can assume that given x the verifier
has implicit efficient access to an exponentially long 3-SAT formula Φ, such that if
x ∈ L then Φ is satisfiable, and otherwise any assignment can satisfy at most a fraction
of 1 − γ of the clauses for some constant γ > 0. We can also assume that each
variable appears exactly 5 times, and each clause contains three different variables. Let
C denote the set of clauses and V the set of variables. If a variable v ∈ V appears in a
clause c ∈ C we write v ∈ c. Let M = |C| denote the number of clauses and N = |V |
the number of variables. Let T be a truth assignment for Φ. For a variable v ∈ V ,
let T (v) denote the value T assigns x. For a clause c ∈ C, if y contains the variables
vy1 , v

y
2 , v

y
3 , let T (c) = T (vc1), T (vc2), T (vc3).

Alice (Bob) has a private Hilbert space Hp
A (Hp

B), with some finite arbitrarily large
dimension t (we assume without loss of generality that the dimensions are identical).
The messages between Alice (Bob) and the verifier will be sent by passing a state which
is in a Hilbert spaceHm

A (Hm
B ). For convenience, we partition the private Hilbert space

of the verifier into three parts, Hv = Haux
v ⊗Hv

A ⊗Hv
B . The Hilbert spaces Hv

A, H
v
B

will be used with messages sent to different provers, but they are private spaces that
belong to the verifier. We let the verifier send and receive classical messages from
Alice2. For the protocol we present, the dimensions of the Hilbert spaces used are
dim(Hm

A ) = 8M , which would fit a clause y and the value an assignment T gives it,
T (y), dim(Hv

A) = M , dim(Hm
B ) = 2N which would fit a variable and the value it is

assigned, and dim(Hv
B) = N .

3 Algorithm
Let π be a probability distribution which chooses two clauses c, d uniformly at random
from C, and two variables v, w such that v is chosen uniformly at random from the
variables of c, and w is chosen uniformly from V . Figure 1 presents the protocol the
verifier follows, a well as the answers expected from the provers.

Note that the verifier does not generate any entanglement between the provers - the
states sent to Alice are unentangled with the ones sent to Bob, and they are measured
separately. This means that it is possible to repeat the protocol in order to reduce the

2This can be done by using a larger space Hm
A , with the verifier measuring the part of the space which

should be used for the classical message. Thus, this does not change the model, and is only done for clarity.
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Protocol for VERIFIER:

1. Sample π to get c, d, v, w. Generate the states on O(log(N)) qubits

1√
2

(|cc〉+ |dd〉)⊗ |000〉 ∈ Hv
A ⊗Hm

A

1√
2

(|vv〉+ |ww〉)⊗ |0〉 ∈ Hv
B ⊗Hm

B

Send Alice (Bob) the message space Hm
A (Hm

B ), which consists of the last
m+ 3 (respectively n+ 1) qubits.

2. Let T be a satisfying assignment for Φ (if one exists). Alice should apply the
unitary which takes |c〉 ⊗ |000〉 → |c〉 ⊗ |T (c)〉 for any clause c ∈ C, and
Bob should apply the unitary which takes |v〉 ⊗ |0〉 → |v〉|T (v)〉 for v ∈ V .
Cheating provers may apply any local operations and classical communication
(LOCC) protocol they want between them. Finally, Alice (Bob) returns the
verifier the message space Hm

A (Hm
B ).

3. The verifier sends Alice the classical values c, d, v, w. Alice returns 8 bits:
T (c), T (d), T (v), T (w). If Alice returned quantum values, the verifier mea-
sures them according to the standard basis.

4. The verifier does one of the following tests, each with probability 1/2

(a) SWAP Test: The verifier checks that the clause c is satisfied, and that
T (v) matches T (c). He performs the SWAP test [6] between the state in
Hv
A⊗Hm

A and 1√
2
(|cc〉⊗ |T (c)〉+ |dd〉⊗ |T (d)〉) and between the state

in Hv
B ⊗Hm

B and 1√
2
(|vv〉 ⊗ |T (v)〉 + |ww〉 ⊗ |T (w)〉), and accepts if

all tests passed.

(b) Quantum Consistency Test: The verifier measures Hv
B by projecting

it on all the variables. If he sees w, the provers win. If he sees v, he
projects Hm

B on |v0〉, |v1〉 and everything else. If the result is not either
|v0〉 or |v1〉 Bob is caught. He does a similar check on Hv

A ⊗Hm
A , and

rejects if T (v) does not match T (c).

Figure 1: The protocol applied by the verifier.
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error probability. Also, note that the second check (the measurement) does not depend
on the answers of the provers, and we can assume that it was done instead of sending
Alice the classical values.

Completeness: With a common satisfying assignment the provers can apply the
required quantum transformation, and all the tests will pass with probability 1.

4 Soundness of the Protocol
Most of this section will deal with the first test. The second test is only needed to make
sure that the provers do not keep too much entanglement to the answers they send the
verifier. This is handled in Subsection 4.6, and until then we assume that the SWAP
test is applied. As this section is a little technical, we begin with an informal sketch of
the main ideas.

4.1 Intuition
Consider the following two extreme strategies for the first round:

1. If Alice measures according to the standard basis, she can know one of the
clauses which were sent by the verifier. However, such a measurement would
destroy the entanglement between her and the verifier. Thus, she has a constant
probability of getting caught in the second round of the protocol, regardless of
the truth assignment she sends.

2. If both Alice and Bob apply unitary operations, then they are not utilizing the
classical channel. Therefore, their success probability is related to the success
probability of non-communicating provers, which is bounded.

There are two main obstacles in turning this observation into a proof. The first
obstacle is that these are only two of the possible strategies available to the provers.
For example, the provers might instead use a complicated protocol, which consists
of many communication rounds between themselves, as well as exponentially weak
measurements.

The second obstacle is that after the first round of the protocol, the verifier can not
check whether the provers measured or not, as she does not know the truth assignment.
To deal with the latter problem, the protocol has a second round, in which the provers
give the verifier a classical description of the state she holds (and thus the verifier can
verify that the provers did not measure too much). The two round protocol now resem-
bles a PIR scheme (or a bit commitment scheme) in which the provers first commit to
the assignment without knowing what questions the verifier asked, and then reveal the
committed assignment.

We now go over the argument, as it appears in the rest of the paper. The first step
is to purify the verifier. This enables us to consider the verifier’s measurement after
the provers have acted, and simplifies the analysis, without changing anything in the
protocol. The second step is to strengthen the provers, and allow them to perform any
separable outcome measurement (instead of an LOCC protocol). This modification can
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only help cheating provers. The first round of the modified protocol now consists of
the following stages.

1. The verifier generates a uniform superposition over the questions she can ask,
namely she creates the state

1
3M
√
N

∑
c,d,v,w , v∈c

|cdvw〉⊗ 1√
2

(|cc000〉+ |dd000〉)⊗ 1√
2

(|vv0〉+ |ww0〉)

where the first register is called the auxiliary register, and is used to purify the
protocol.

2. The provers perform a single separable measurement. Let k denote the result of
this measurement.

3. The verifier measures the auxiliary register. This undoes the purification, and
chooses what part of the assignment the verifier checks.

As the provers’ measurement can have an arbitrarily large number of outcomes
(where each outcome occurs with very small probability), we cannot afford to argue
that the provers will be caught only on the probable outcomes. Instead, we argue that
for every outcome of the provers’ measurement, the provers have a constant probability
of being caught. For the rest of this subsection, we fix a specific outcome k.

We begin by showing the following lemma, which is stated informally

Lemma 4.1 (Informal Lemma). Given measurement result k by the provers, either
they are caught with some constant probability, or the distribution on the verifier’s
measurement results on the auxiliary register is close to uniform.

Where the auxiliary register is the register which is used to purify the protocol. The
main idea is to show that if the probability distribution is ε far from uniform between
clauses, then there is a constant probability that after measuring the auxiliary register
the verifier will be left in the state

√
p|ccψc〉+

√
1− p|ddψd〉

for some p 6= 1/2 and states ψc, ψd (a similar lemma holds for variables). In this case,
there is a probability that the provers will fail the SWAP test, regardless of what Alice
sends in the second round of the protocol. Proving the global lemma when the provers
can take correlated actions, and with the required parameters is a little involved, and
takes most of Subsections 4.4, 4.5.

It is intuitive that if the provers perform a unitary transformation, their success
probability is bounded. One way to prove this is to show a reduction from any strat-
egy of the communicating provers (in which a unitary is applied in the first round), to a
strategy for the provers in the classical game, where the verifier and the communication
channels are classical, and the provers are not communicating. An obstacle in showing
such a reduction is that we need to transform a query made by the classical verifier
in the one round protocol into messages sent in the two round protocol. In particular,
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in the second round of the quantum protocol, the verifier tells Alice classically what
part of the assignment she will verify, and this cannot be simulated by the classical
provers. Therefore, our reduction can only rely on the questions sent by the verifier in
the first round of the quantum protocol (since they can be generated by the classical
provers). Such a reduction can succeed if the quantum provers are already committed
to an assignment after the first round, and thus Alice’s answers in the second round
is determined before getting the extra information from the verifier. Perhaps surpris-
ingly, this amounts to showing that after the first round of the protocol, the provers are
unentangled with the verifier.

Subsection 4.6 is devoted to analyzing the entanglement between the provers and
the verifier after the first round of the protocol is over, that is, after Alice and Bob send
back their answers, and the verifiers measures the register which is used to purify the
protocol. We show that if the entanglement between Alice and the verifier in this stage
is greater than some constant, then the provers have a constant probability of failing the
quantum consistency test. This happens because if the state sent by Alice is entangled
with Alice’s private qubits, then there is a probability that the truth assignment mea-
sured by the verifier on the qubits sent by Alice will not match the truth assignment
measured by the verifier on the qubits sent by Bob (here we rely on the fact that Alice
and Bob are unentangled). This argument does not rely on the classical information
sent by Alice in the second round. A standard argument enables us to assume that the
provers are not entangled with the verifier at all after the first round.

To finish the proof, we consider the classical multi-prover game, in which Charlie
and Diane are two noncommunicating provers who are trying to fool a classical verifier.
We begin by presenting a reduction from any measurement result k (which doesn’t
generate entanglement after the first round) to a strategy for Charlie and Diane. The
reduction we use for Charlie (respectively Diane) is to consider the residual state of
Alice (respectively Bob) and the verifier after the first round of the quantum protocol,
and to send the truth assignment which would match its classical description.

The success probability of Charlie and Diane in the classical strategy is related
to the measurements done by the verifier in the quantum protocol. In particular, it is
related to the number of different tuples that the verifier can measure in the auxiliary
register (the register which is used to purify the protocol) on which the provers have
high success probability.

If the strategy employed by the provers is a unitary transformation, all the mea-
surement results on the auxiliary register are equally likely. Thus, the number of mea-
surement results of that register on which the provers succeed is related to the success
probability of the provers. This gives a bound on the success probability of the provers
in this case. This reduction is robust; even if almost all measurement results of the
auxiliary register are equally likely, there is still some relation between the number of
measurement results of this register on which the quantum provers are likely to suc-
ceed, and the overall success probability of the classical provers. As we already showed
that if (given k) the verifier has a far from uniform distribution on the measurement of
the auxiliary register then the provers have constant probability of getting caught, this
finishes the soundness proof.
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4.2 The Modified Protocol
As stated above, the first modification is to purify the sampling of π, postponing it until
after the provers act on the information. It uses Haux

v with dim(Haux
v ) = M2N2. The

verifier generates

ψπ =
∑
c,d∈C

∑
v∈c

∑
w∈V

(|cdvw〉

⊗ 1√
2

(|cc〉+ |dd〉)⊗ |000〉

⊗ 1√
2

(|vv〉+ |ww〉)⊗ |0〉)

∈ Haux
v ⊗HA

v ⊗HA
m ⊗HB

v ⊗HB
m

ignoring normalization factors.
As before, the verifier sends Alice (Bob) the Hilbert space HA

m (HB
m). Alice and

Bob act on the message spaces they get and return HA
m, H

B
m to the verifier. The verifier

measuresHaux
v to get c, d, v, w and sends them to Alice as in Protocol 1. This modifica-

tion does not change the cheating power of the provers (they cannot tell what protocol
is being used).

The second modification is to replace the LOCC done by the provers in the first
stage with a single joint separable measurement. Bennet et al. and Barnum [4, 3]
proved that this is strictly stronger than LOCC. In particular they showed how to trans-
form any LOCC protocol into such a measurement. As the provers are not entangled,
we can assume that their private spaces are initialized with the state |0 . . . 0〉. Let-
ting ρ = |ψπ〉〈ψπ|, the provers’ operation now becomes applying a measurement with
operators

(IM2N2 ⊗ IM ⊗Ak ⊗ IN ⊗Bk)†(IM2N2 ⊗ IM ⊗Ak ⊗ IN ⊗Bk)

where Ip is the p×p identity matrix,Ak is an 8Md×8Mdmatrix,Bk is a 2Nd×2Nd
matrix and ∑

k

(Ak ⊗Bk)†(Ak ⊗Bk) = I16NMd2

The Hilbert spaces HA
m, H

B
m are then returned to the verifier.

We now calculate the probability that the verifier measured a tuple r = (c, d, v, w),
conditioned on the fact that the provers’ measurement result was k. Denote

Ak(c) = tr(Ak(|c〉〈c| ⊗ I)A†k)

where we are tracing over the private qubits of the prover and the qubits which define
the assignment, and similarly Bk(v) = tr(Bk(|v〉〈v| ⊗ I)B†k). We shall omit the
subindex k when it is clear from context, using A(c) and B(v). In Appendix A, we
prove that for c 6= d, v 6= w̃

Pr(c, d, v, w|k) =
(Ak(c) +Ak(d))(Bk(v) +Bk(w))∑

c̃,d̃∈C,ṽ∈c̃,w̃∈V Pr(c̃, d̃, ṽ, w̃|k)
(1)
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where if c = d the numerator changes to 4Ak(c)(Bk(v) + Bk(w)), and similarly for
v, w.

We give some intuition for Equation (1). The numerator is the product of two
factors, because when the verifier measures before the provers (which is physically
equivalent) the provers are unentangled and operate on different spaces. Therefore the
probability of k is just the tr(AkρA

†
k) · tr(BkρB†k). Alice’s factor is composed of two

terms, because tracing out the verifier Alice just gets a mixed state of 1
2 |c〉〈c|+

1
2 |d〉〈d|.

Denote
WA = WAk

=
∑
i

Ak(i) = tr(Ak)

WB = WBk
=
∑
i

Bk(i) = tr(Bk)

W̃ = W̃k =
∑

c∈C,v∈c
Ak(c)Bk(v)

In Appendix A we bound the denominator of (1) to get the following:

Pr(c, d, v, w|k) ≥ Ak(c)Bk(v) +Ak(c)Bk(w) +Ak(d)Bk(v) +Ak(d)Bk(w)
2NMW̃k + 22MWAk

WBk

(2)

4.3 Auxiliary Lemmas
In subsections 4.3-4.5, we assume in all the probability computations that the verifier
performed the SWAP Test. This changes all the probabilities by a factor of two, and is
done to simplify the notation.

We show that if Ak(c) is not almost uniform in c, then for certain values of c, d,
Alice has a good chance of failing the SWAP test. Formally:

Lemma 4.2. Assume A(c) ≥ αA(d), α > 1. Then for any assignment T , the proba-
bility that the verifier will catch Alice cheating in the SWAP test is at least 1

2 −
√
α

1+α .

The intuition is that the super-operator which acts on the state diminishes the en-
tanglement between Hv

A and Hm
A . Therefore, there is a failure probability regardless

of the assignment Alice will send in the second round of the protocol.

Proof. Let

σ = trHp
A

(I ⊗Ak)ρ(I ⊗Ak)†

where we ignored normalization factors. For a given assignment T (c) ∈ {0, 1}3 and
T (d) ∈ {0, 1}3, let

|ψ〉 =
1√
2

(|cc〉|T (c)〉+ |dd〉|T (d)〉)

Taking δ =
√
〈ψ|σ|ψ〉, the fidelity between |ψ〉 and ρ, the SWAP test has probability

at least 1−δ2
2 to distinguish between them [6].
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To calculate σ, we utilize the result in Appendix A. Write M ′ = 8M + 8. Since ρ
consists of four elements in a rectangle

(M ′c,M ′c), (M ′c,M ′d), (M ′d,M ′c), (M ′d,M ′d)

differentiated by a distance of at least M ′, the nondiagonal elements do not contribute
to the trace.
|ψ〉 is an equal superposition of two base vectors, one corresponding to the base

state |ccT (c)〉 and the other to |ddT (d)〉. Thus the multiplication is effectively the sum
of four elements arranged in a rectangle (multiplied by 1/2). To calculate each of these
four elements, we turn to Appendix A. Since, in the tensor product I ⊗ Ak, any cell
whose two coordinates differ by at least M ′ = 8M + 8 is zero, we can simplify and
get:

σ[ccT (c), ccT (c)] = tr(A|cT (c)〉〈cT (c)|A)
σ[ccT (c), ddT (d)] = tr(A|cT (c)〉〈dT (d)|A)

where we abuse notation a little, and treat c as its numerical index in the list of clauses.
We can now write the elements, sticking to the convention that the first m qubits de-
scribe the verifier’s private space, the next m fit the clause in the message space and
the last three fit the value of the assignment:

σ(M ′c+ a,M ′c+ a) =
t∑
i=1

t∑
j=1

|A[8pc+ ta+ i, 8tc+ ta+ j]|2

σ(M ′d+ b,M ′d+ b) =
∑
i

∑
j

|A[8td+ tb+ i, 8td+ tb+ j]|2

σ(M ′c+ a,M ′d+ b) =
∑
i

∑
j

A[8tc+ ta+ i, 8tc+ ta+ j] ·A[8tdy + tb+ i, 8td+ tb+ j]

σ(M ′d+ b,M ′c+ a) =
∑
i

∑
j

A[8td+ tb+ i, 8td+ tb+ j] ·A[8tc+ ta+ i, 8ty + ta+ j]

Note that as AA† is a measurement operator, we have that A(y) ≤ 1, so A(ỹ) ≤
1/p. Now calculating, reindexing by s = M ′y + T (y) and r = M ′ỹ + T (ỹ), and
folding the sum into the expression, we get:

σ[s, s] + |σ[r, r]|+ σ[s, r]σ[r, s]
2(A(y) +A(ỹ))

≤

A(y) +A(ỹ) + 2
√
A(y)A(ỹ)

2(A(y) +A(ỹ))
=

1
2

+

√
A(y)A(ỹ)

A(y) +A(ỹ)
≤ 1

2
+
√
α

α+ 1
< 1

The first inequality follows from the Cauchy-Schwarz inequality, which states that
σ[s, r] ≤

√
A(y)A(ỹ), and similarly for σ[r, s]. Further, A(y) is the sum of σ[s, s]

over all possible assignments for y, and thus dominates σ[s, s].

11



The last inequality follows from the AM-GM inequality. More precisely, since
the ratio is at least α, the extreme value is achieved when it is exactly α, which (when
substituting) gives what we need. When α ≥

√
2, this gives that the success probability

of the provers is at most 1/2 + 21/4/(1 +
√

2) ≤ 0.993. When α ≥ 2, we get 1/2 +√
2/3 ≤ 0.975. We use these numbers later to calculate the constants, but they are

otherwise not important.

If the condition of lemma 4.2 holds, we say that the measurement has α-damaged
the state. An analogous lemma holds for Bob.

Lemma 4.3. If there exists a set D ⊂ Y × Ỹ ×X × X̃ such that

1. For any r = (c, d, v, w) ∈ D we have v ∈ c, and either Alice or Bob α-damage
r for some constant α.

2.
∑
r∈D Pr(r|k) > εD for some constant εD

Then at least one of the provers gets caught in the SWAP test with probability
εD

(
1
2 −

√
α

1+α

)
.

In this case we say that D is an (εD, α) bad set.

Proof. Given k, the probability that the verifier measures an element of D (in the sec-
ond stage) is greater than εD. For any such element, at least one of the provers has
probability greater than 1

2 −
√
α

1+α to be caught.

The proof of Theorem 1.1 now splits into two cases, according to the dominant term
in the denominator of expression (2). If NMW̃ is the dominant term, then bad sets
exist; this is shown in Section 4.4. If NMW̃ is small and MWAWB is the dominant
term, then either a bad set exists or there is a “nice” set of clauses and variables which
together give a cheating strategy for the classical protocol. This is shown in Sections
4.5–4.7.

4.4 Large NMW̃k

Theorem 4.4. If NMW̃k ≥ 100MWAk
WBk

then at least one of the provers fails the
SWAP test with probability greater than some constant, given by εNMWk

= min
{

1
6.96·109 ,

1
4.2·107

}
.

To prove this, we show that in order to pass the SWAP test, the weights of the
clauses (Lemma 4.5) and the variables (Lemma 4.6) must be relatively uniformly dis-
tributed. On the other hand, the factor NMW̃k can be dominant only when they are
not uniformly distributed. For the rest of this subsection, we assume the premise of
Theorem 4.4.

We begin the proof by looking at the probability of each clause in the modified
protocol given measurement result k (from now on we omit the subindex). If there are
two sets of clauses such that

1. One set contains “heavy” clauses and the other contains “light” clauses

12



2. The “heavy” set contains a fraction of the weight

3. The “light” set contains a fraction of the clauses

then we can build a bad set. If this is not the case, then most clauses have almost the
same probability. We begin generating those sets by dividing the clauses according to
their weight, according to factors of two.

For c̃ ∈ C, let u(c̃) = Σṽ∈c̃A(c̃)B(ṽ), and for S ⊂ C, let U(S) =
∑
c̃∈S u(c̃). Let

Si =

{
c̃ :

W̃

2i+1
< u(c̃) ≤ W̃

2i

}
Lemma 4.5. If there exists an index j such that

j−1∑
i=0

U(Si) > W̃/100

∞∑
i=j+1

U(Si) > W̃/100

then the provers get caught with constant probability 1
6.96·109 , generated from a ( 1

4.8·107 ,
√

2)
bad set. We call the index j a separating index.

Proof. We construct such a bad set D. For any clause c̃ in variables v1, v2, v3, let
vmax(c̃) denote the variable vi ∈ c̃ such that B(vi) = max{B(vk) : k = 1, 2, 3},
and define vmin(c̃) analogously. Let Sup = ∪j−1

i=0Si, and Sdown = ∪∞i=j+1Si. As
U(Sdown) > W̃/100, and Sdown consists of “light” clauses, we must have |Sdown| >
M/100. Partition Sdown arbitrarily into two sets Sl and Sr, such that |Sl|, |Sr| ≥
M/200. The idea is that each clause in Sup will contribute |Sl| · |Sr| elements to D.

For each cup ∈ Sup, cl ∈ Sl, cr ∈ Sr, we have u(cup) > 2u(cl) and u(cup) >
2u(cr). Taking the maximal variable in the sum for cup, and the minimal variable for
cl, cr, we get:

A(cup)B(vmax(cup)) > 2A(cl)B(vmin(cl))
A(cup)B(vmax(cup)) > 2A(cr)B(vmin(cr))

Assume WLOG that A(cl) < A(cr). Then

A(cup)B(vmax(cup)) > 2A(cl)B(vmin(cr))

So in the tuple (cup, cl, vmax(cup), vmin(cr)) at least one of the provers damages the
state by at least

√
2. We add this tuple to D. Note that we have added a (distinct)

element to D for each of the |Sl| · |Sr| choices of cl, cr, as desired. Let D(cup) denote
the elements contributed to D by cup.

The next step is to prove that D has constant probability. According to (1) the
probability of D is bounded below by

Pr(D) ≥
∑

(c,d,v,w)∈D(A(c̃) +A(d̃))(B(v) +B(w))∑
c̃,d̃∈C,ṽ∈c̃,w̃∈V Pr(c̃, d̃, ṽ, w̃|k)

13



Under the conditions of Theorem 4.4, the denominator is bounded by∑
c̃,d̃∈C,ṽ∈c̃,w̃∈V

Pr(c̃, d̃, ṽ, w̃|k) < 22MWAWB + 2NMW̃ < 4NMW̃

and summing the probabilities of the elements in D, we get:∑
(c,d,v,w)∈D

Pr(c, d, v, w|k) =
∑
cup

∑
(d,w)∈D(cup)

Pr((cup, d,max(cup), w)|k)

≥ 1
4NMW̃

∑
cup

∑
(d,w)∈D(cup)

A(cup)B(max(cup))

=
1

4NMW̃
|Sl| · |Sr|

∑
cup

A(cup)B(max(cup))

≥ 1
4NMW̃

|Sl| · |Sr|
∑
cup

u(cup)/3

≥ 1
4NMW̃

|Sl| · |Sr|W̃/300

≥ 1
4NMW̃

· M
200
· M

200
· W̃

300

(because M > N ) >
NMW̃

4NMW̃ · 200 · 200 · 300
=

1
4.8 · 107

where the first inequality comes from taking one out of the four terms in (2).

If the condition of Lemma 4.5 does not hold, then there must be an index j such
that U(Sj) + U(Sj+1) > 0.98W̃ . Define F = Sj ∪ Sj+1. We want to prove that
most of the clauses in F have similar A(·) values. This is true because they are almost
equiprobable, so if there are two large sets with different values then these sets together
will generate a bad set. Remembering thatWA =

∑
c̃∈C A(c̃), we partition the clauses

in F , in a way similar to that employed in the previous lemma:

Ti =
{
c̃ ∈ F :

WA

2i+1
< A(c̃) ≤ WA

2i

}
Lemma 4.6. If there exists an index j such that

∑j−1
i=0 |Ti| > |F |/100, and

∑∞
i=j+1 |Ti| >

|F |/100, then the first prover gets caught with constant probability 1
4.2·107 , generated

from a ( 1
1.2·106 , 2) bad set.

Proof. Let Tup = ∪j−1
i=0Ti, Tdown = ∪∞i=j+1Ti. Note that any clause from Tup at least

2-damages any clause in Tdown. Take

D = ∪cup∈Tup{{cup} × Tdown × {vmax(cup)} × V }

Note that |Tdown| > 0.98M/100 > M/200, and as Tup ⊂ F , we have U(Tup) ≥
0.98W̃

400 ≥ W̃
500 , and thus

Pr(D) ≥ 1
4NMW̃

|Tdown|N
W̃

1500
≥ 1

1.2 · 106
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If the conditions of Lemmas 4.5 and 4.6 do not hold, then

∃i : |Ti|+ |Ti+1| > 0.98|F | ≥ 0.982M > 0.96M

Let G = Ti ∪ Ti+1. As G ⊂ F , and as ∀c1, c2 ∈ F : u(c1) < 4u(c2) we have

U(G) > 0.25 · 0.98U(F ) > 0.25 · 0.982W̃ (3)

Note
∑
c̃∈G

∑
ṽ∈c̃B(ṽ) ≤ 5WB , as each variable appears 5 times. Also, since ∀c̃ ∈

G : A(c̃) > WA/2i+1

0.96M
WA

2i+1
<
WA

2i+1
|G| <

∑
c̃∈G

A(c̃) < WA (4)

Putting this together, we get

0.25 · 0.982W̃
(3)
< U(G) =

∑
c̃∈G

u(c̃) =
∑
c̃∈G

∑
ṽ∈c̃

A(c̃)B(ṽ)

≤
∑
c̃∈G

∑
ṽ∈c̃

WA

2i−1
B(ṽ) =

4WA

2i+1

∑
c̃∈G

∑
ṽ∈c̃

B(ṽ)

≤ 20WAWB

2i+1

(4)

≤ 20WAWB

0.96M
≤ 20WAWB

0.96N

But NMW̃ ≥ 100MWAWB , which is a contradiction. This proves Theorem 4.4.

4.5 Small NMW̃

In this subsection we handle those values of k for which the premise of Theorem 4.4
does not hold, namely, NMW̃ < 100MWAWB . Define

Si =
{
c̃ ∈ C :

WA

2i+1
≤ A(c̃) <

WA

2i

}
For a set S ⊂ C, let W (S) = Σc̃∈SA(c̃). We want to define a separating index, as
we did in the previous section. However, in this section, if a large set of clauses is
roughly equiprobable we will need to show that it cannot be satisfied. To do this, a
necessary condition is that the set is large with respect to (1 − γ)M , where the PCP
theorem gives us that either ψ is satisfiable or any truth assignment can satisfy at most
(1− γ)M clauses. This motivates the following definition:

Lemma 4.7. If NMW̃ < 100MWAWB and there exists an index i such that

i−1∑
j=0

W (Sj) > γ10−4WA

∧ ∞∑
j=i+1

|Sj | > γ10−4M (5)

then Alice is caught cheating with probability γ2

2.6·1012 , generated from a
(

γ2

7.4·1010 , 2
)

bad set.
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Proof. Let Sup = ∪i−1
j=0Sj , Sdown = ∪∞j=i+1Sj . Let

D = ∪c∈Sup ∪v∈c {c} × Sdown × {v} × V

Every (c, d, v, w) ∈ D is 2-damaged by Alice. On the other hand, by inequality (2) we
get:

Pr(c, d, v, w|k)
(2)

≥ (A(c) +A(d)(B(v) +B(w))
22MWAWB + 2NMW̃

≥ A(y)B(x̃)
22MWAWB + 2NMW̃

≥ A(y)B(x̃)
222MWAWB

Summing this over D gives

Pr(D) ≥
∑
c∈Sup

∑
v∈c

∑
d∈Sdown

∑
w∈V

A(c)B(w)
222MWAWB

≥
∑
c∈Sup

3 · 10−4γMWBA(c)
222MWAWB

≥ 3γ2WA

222 · 108WA
≥ γ2

7.4 · 1010

Lemma 4.8. If NMW̃ < 100MWAWB and the second condition of Lemma 4.7 does
not hold, then there exists an index i such that for F = Si ∪ Si+1 we have

|F | ≥ (1− 0.0002γ)M
W (F ) ≥ (1− 0.0002γ)WA

and A(c) ≥WA/(5M) for all c ∈ F .

The proof of the lemma is based on the fact that if the set of heavy clauses is light
then it has to be small, and if the set of light clauses is small then it must be light. All
the rest of the clauses are in F , and therefore it is both heavy and large.

Proof. Choose r to be the smallest index for which the first half of the condition does
hold, i.e.,

∑r−1
j=0 W (Sj) > γ10−4WA. Then the second half of the condition cannot

hold, i.e.
∞∑

j=r+1

|Sj | ≤ γ10−4M
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Take i = r − 1 (note that r 6= 0 because otherwise the first half of the condition does
not hold). So:

|Si|+ |Si+1| = M −
i−1∑
j=0

|Sj | −
∞∑

j=i+2

|Sj |

≥ M −
i−1∑
j=0

|Sj | − γ10−4M

≥ M − γ10−4M − γ10−4M

where the last inequality follows since the total weight
∑i−1
j=0W (Sj) < γ10−4WA,

but each clause in the sets Sj contributes at least 2−iWA to W (Sj) while each clause
outside of the sets Sj contributes at most 2−i−1WA. A similar argument now applies
to the weight W (Si) +W (Si+1). Finally, for each c ∈ F we have

A(c) ≥ W (F )
4|F |

≥ (1− 0.0002γ)WA

4M
≥ WA

5M

Lemma 4.9 provides the equivalent claims of lemmata 4.7, 4.8 for Bob. Define the
sets Ti analogously to Si:

Ti =
{
v ∈ V :

WB

2i+1
≤ B(v) <

WB

2i

}
Lemma 4.9. Either Bob gets caught cheating with probability γ2

3.9·1012 which is gen-

erated from a
(

γ2

1.1·1011 , 2
)

bad set, or else there exists an index i such that for G =
Ti ∪ Ti+1 we have |G| > (1 − 0.0002γ)N , Σv∈GB(v) ≥ (1 − 0.0002γ)WB and
∀v ∈ G, B(v) ≥ WB

5N .

Proof. If no such index exists then there is a separating index i such that letting Tup =
∪i−1
j=0Sj , Tdown = ∪∞j=i+1Sj , we have

∑
v∈Tup

B(v) > 10−4γWB

|Tdown| > 10−4γN

Let
D = ∪v∈Tup ∪c:v∈c {c} × C × {v} × Tdown
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Then

Pr(D|k) ≥
∑

(c,d,v,w)

A(d)B(v)
222MWAWB

≥
∑
v∈Tup

γNWAB(v)
222MWAWB

≥ γ2NWB

2.22 · 1010MWA

≥ γ2M

1.1 · 1011M
=

γ2

1.1 · 1011

where we used the fact that each variable appears in the formula 5 times. As before,
if a separating index does not exist most of the weight (and most of the variables) lie
in two adjacent steps. As these steps are adjacent, the variables on them are almost
equiprobable.

We now define a set of clauses, which are all almost equiprobable, when consid-
ering the information the provers have about the clause, as well as information the
provers have about variables. This combines the results of Lemmas 4.9,4.7 and 4.8.

H = {c ∈ F : ∀v ∈ c, v ∈ G} (6)

As |G| ≥ (1− 0.0002γ)N , and each variable appears 5 times we have

|H| ≥ (1− 0.0002γ)M − 5 · 0.0002γN ≥ (1− 0.002γ)M

So far we have proved that either the provers have a constant probability of getting
caught, or the set H is very large, and all the legal tuples inside H have almost the
same probability.

4.6 The Measurement Test
To finish the proof we later claim that if the provers can cheat very well when the
measurement result is k, then Ak and Bk also define a good classical cheating strategy.
This may not be true however, if, following the first round, the provers are strongly
entangled to the verifier. The Measurement Test is designed to catch the provers if this
is the case. In this subsection we assume that the verifier performed the Measurement
Test. This changes the probabilities by a factor of 2, and saves the need to multiply all
the computations by 1/2. The goal of this subsection is to prove the following theorem.

Theorem 4.10. If there is a protocol for QMIP with communicating provers where the
provers fail with probability at most ε, then there is a protocol in which the provers
fail with probability which is at most a constant times ε and after the first round of the
communication they are unentangled with the verifier.

To prove this theorem, we deal with two cases:
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1. We show that if after the first round the entanglement between the verifier and
the provers is greater than ε, the the provers are caught with constant probability.

2. If the entanglement after the first round between the verifier and the provers is
small, then there exists a product state such that if we replace the state of the
system after the first round with this product state the success probability of the
provers will not change by much.

We begin by showing that making small changes to the state does not change the
success probability by much, and thus it suffices to show that the state is close to a
nonentangled state.

Lemma 4.11. Denote by u the pure state of the system after the first round, and by
P (u) the success probability of the provers at that stage, if they are allowed to make
any separable measurement. Then if 〈v|u〉 > 1− ε, then the success probability of the
provers P (v) if v we change the state of the system to v is at most P (u) + ε.

We omit the proof of this approximation lemma. It is based on the fact that the success
probability of the protocol is derived from a probability distribution on measurement
results, and these statistics cannot change by much if u, v are very close.

We look atBk’s effect on |vv0〉, although in the protocol it operates on 1√
2
(|vv0〉+

|ww0〉). Let

|φB(v)〉 = (I ⊗Bk)(|vv0〉 ⊗ |0B〉) =
∑
b,ṽ

aBṽb|vṽb〉 ⊗ ψBṽb

where |0B〉 is the initial state in Bob’s Hilbert space Hp
B , and the ṽ’s span a basis.

Lemma 4.12. If
∑
b,ṽ 6=v |aBṽb|2 > ε, then Bob fails the Measurement Test with proba-

bility at least ε/2.

Proof. Regardless of T (v) and the measurement done by the provers, If the verifier
measures either |vṽ0〉 or |vṽ1〉 with v 6= ṽ the provers are caught cheating. This occurs
with probability

∑
b,ṽ 6=v |aBṽb|2.

Using Lemma 4.11 we can assume that

|φB(v)〉 =
∑
b

aBvb|vvb〉 ⊗ ψBb

by changing the success probability by a tiny amount.
A similar lemma holds for the system held by Alice and the verifier. Formally, by a

small change in the success probability, we can assume that the state inHv
A⊗Hm

A ⊗H
p
A

is of the form

|φA(c)〉 =
∑
T (c)

aAcT (c)|ccT (c)〉 ⊗ ψAT (c)

where the sum is over at most 8 elements (as there are three qubits for the truth assign-
ment.)
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Lemma 4.13. If there are two different values α, β ∈ {0, 1}3 such that aAα , a
A
β > ε/8,

and c is sent in superposition with some d then the provers are caught with probability
at least ε/372.

Proof. With probability at least 1/2, the first measurement by the verifier returned c.
Let v be a variable which is assigned different values by α and β. As we are in H (the
variables are almost uniform), with probability at least 1/12 we know that v was sent
by the verifier to Bob. With probability 1/2 the verifier will measure v and not w.

Note that the measurements made by the provers and the verifier commute (because
they are on different spaces). Ignoring the answers of the provers, there is probability
at least ε/8 for the verifier to measure |cα〉, and probability at least ε/8 for |cβ〉. As
φB(v) and φA(c) are unentangled, there is probability at least ε/8 that the measurement
on φB(v) will not match the one on φA(c). In this case, the provers fail.

Using the approximation of Lemma 4.11 we assume that

|φA(c)〉 = |ccT (c)〉 ⊗ ψAT (c)

for a specific value T (c). By a similar argument we can assume:

|φB(v)〉 = |vvT (v)〉 ⊗ ψBT (v)

for some value T (v). This finishes the proof of Theorem 4.10.
In the next subsection, we use Theorem 4.10 to generate a strategy for the classical

game (namely using T (x), T (y) as an assignment). This will show that a high success
probability in our quantum variant implies a high success probability for the classical
variant. As the classical success probability is bounded, this will give a bound for the
quantum success probability. Before we begin, we go over the classical setting.

4.7 Classical Setting
Let Charlie and Diana be two classical provers who are faced with a classical verifier.
The verifier sends Charlie a random clause c, and Diana a random variable v which
appears in c. Charlie is expected to answer with the values that some satisfying assign-
ment gives the variables in c, and Diana with the value that the same assignment gives
v. Remember that according to the PCP theorem, either the formula is satisfiable, or
there exists a global constant γ such that any assignment satisfies at most a fraction of
(1− γ) of the clauses. It can be shown that in the second case, the success probability
of Charlie and Diana is bounded by 1− γ

3 .
We assume that the measurement result k was such that H exists as in 6, and the

provers are not entangled to the verifier (by Theorem 4.10) after the first round. This
enables us to prove a reduction from the quantum case to the classical one. First, a
simple lemma.

Lemma 4.14. If 〈u|v〉 ≤ 1/2 and |u| = |v| = |w| = 1 then

〈u|w〉 > 1− ε =⇒ 〈v|w〉 < 1/2 +
√

3ε
2
− ε

2
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The proof follows from Taylor’s approximation. A specific case: if ε < 0.01 the bound
is less than 0.99.

Let FP(c, d, v, w, k) denote the probability that the provers failed to convince the
verifier, given the measurement results (c, d, v, w) and k.

Lemma 4.15. If there is an index k, measurement operators Ak, Bk and a set of
clauses R ⊂ C such that

1. |R| ≥ (1− ε1)M

2. ∀c ∈ R : ∀v ∈ c : |{(d,w) ∈ C × V : FP(c, d, v, w, k) > ε3/2}| < ε2NM

3. ε3 < 1/200

4. After the first stage in the purified protocol there is no entanglement between the
provers and the verifier (see Theorem 4.10)

then there is a classical strategy for Charlie and Diana which gives them a success
probability of at least (1− ε1)(1− ε2)(1− ε3).

Proof. Charlie and Diana can now simulate Alice and Bob. Charlie gets as an input a
clause c from the verifier. He chooses a random clause d, and generates the quantum
state

(I ⊗Ak)
1√
2

(|cc000〉+ |dd000〉)⊗ |0〉

which is exactly the quantum state shared between Alice and the verifier in the quantum
protocol. Since we assume that k passes the measurement test, this state can be written
as

1√
2

(|ccT (c)〉+ |ddT (d)〉)⊗ |garbage〉

where the garbage qubits are in Hp
A, Alice’s private space. Note that Charlie cannot

simulate the second round of the protocol, in which Alice is being told c, v classically.
Therefore, Charlie reports the standard basis state which is closest to |T (c)〉.

Diane simulates Bob in a similar manner. Note that if Charlie and Diane are compu-
tationally unbounded but are not quantum they can just simulate a quantum computer
to compute what assignment they should send.

We analyze the success probability of Charlie and Diane. There are three events
we need to consider:

1. The verifier in the classical game sends a clause and variable for which Ak⊗Bk
succeeds with high probability.

2. Charlie and Diane succeed in simulating the classical answers Alice would return
in the second round of the quantum game.

3. Alice and Bob succeed in the quantum game, conditioned on the fact that k is
usually good for c, v.

21



If all three events happen, Charlie and Diane succeed.
As the verifier in the classical case is random, the probability that a c ∈ R is at

least (1− ε1). Given that c ∈ R, a Markovian bound on the success probability of the
provers gives the factor (1− ε2)(1− ε3) (taking care of the first and third bad events).
We concentrate on the second event, and show that it cannot happen if ε3 < 1/200. To
analyze this, we expand the state after Charlie applied I ⊗Ak

(I ⊗Ak)
1√
2

(|cc000〉+ |dd000〉) |0〉 =
7∑
i=0

1√
2
αi,c|cc〉|i〉|gc,i〉+

1√
2
αi,d|dd〉|i〉|gd,i〉

=
7∑
i=0

1√
2
αi,c|cc〉|i〉 ⊗ |gc〉+

1√
2
αi,d|dd〉|i〉 ⊗ |gd〉

where gc,i, and gd,i are on the private space of the prover, and they are independent
of i due to the assumption that Charlie is not entangled with the verifier after the first
round. The state |i〉 is the truth assignment, and Charlie sends the i for which αi,c is
maximal. If in the quantum protocol Alice would choose a different truth assignment
T (c) 6= i, it means that αc,T (c) ≤ 1

2 . But in this case, Alice gets caught with probability
greater than 1/200: With probability 1/2 the verifier performs the SWAP test, and with
according to Lemma 4.14, the state Alice sent doesn’t pass the test with probability at
least 1/100. A similar analysis holds for Diane and Bob, showing that if ε3 ≤ 200 both
classical provers correctly guess the answers Alice gives in the second round.

Lemma 4.16. If the failure probability of Alice and Bob given result k is less than
γ3

5.55·1013 then there exists a set R with the properties stated in Lemma 4.15, with ε1 =
0.003γ, ε2 = γ10−3 and ε3 = γ10−4.

Proof. Since the failure probability is less than 1
6.96·109 , we must have, by Theorem

4.4, that NMW̃ < 100MWAWB . By Lemmas 4.7, 4.8 and 4.9, we have a set H as in
(6) such that |H| ≥ (1− 0.002γ)M , and

∀y ∈ H : A(y) > WA/(5M)
∀y ∈ H : ∀v ∈ c : B(v) > WB/(5N)

Using inequality (2), this means that for any tuple (c, d, v, w) where c ∈ H and v ∈ c

Pr(c, d, v, w|k) ≥ A(c)B(v)
222MWAWB

≥ WAWB

25MN · 222MWAWB

=
1

5.55 · 103NM2

Denote

L(c, v) = {(d,w) : FP(c, d, v, w, k) > 10−4γ}
Hfail = {c ∈ H : ∃v ∈ c : |L(c, v)| > 10−3γNM}
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For any clause c ∈ Hfail, let fail(c) ∈ c denote the variable in v for which L(c, v) is
maximal. We bound Alice and Bob’s failure probability from below, to get an upper
bound on |Hfail|.

Pr(The provers fail) ≥∑
c∈Hfail,v∈c

(d,w)∈L(c,v)

FP(c, d, v, w, k) Pr(c, d, v, w|k) ≥

∑
c∈Hfail

∑
(d,w)∈L(c,fail(c))

γ10−4 Pr(c, d, fail(c), w : k) ≥

∑
c∈Hfail

γ10−4|L(c, fail(c))|Pr(c, d, fail(c), w : k) ≥

∑
c∈Hfail

γ2NMWAWB

25NM · 107 · 222MWAWB
=

γ2|Hfail|
M · 5.55 · 1010

where the last inequality follows from taking a tuple in H . As Pr(The provers fail)
< γ3

5.55·1013 , we have

|Hfail| <
γ3

5.55 · 1013
· M · 5.55 · 1010

γ2
= 10−3γM

Taking R = H\Hfail, we get

|R| ≥ (1− 0.002γ)M − |Hfail| ≥ (1− 0.003γ)M

as required.

This enables us to finally prove Theorem 1.1:
Proof of Theorem 1.1. Assume Φ is not satisfiable, and assume by contradiction
that the provers had some strategy which would work with success probability ≥ 1 −

γ3

5.55·1013 . Then there has to be a measurement result k such that the success probability

given k is at least 1− γ3

5.55·1013 . However, according to Lemma 4.16, either the provers

are caught with probability greater than γ3

5.55·1013 (which contradicts our assumption
on the success probability), or there exists a set R as in the premises of that lemma.
However, this would imply that there is a strategy in the classical protocol with success
probability> (1−0.003γ)(1−γ10−3)(1−γ10−4) > 1−γ/3, which is a contradiction.

5 Conclusions and Open Problems
We have shown that NEXP can be recognized in a quantum MIP protocol, even if the
provers have unlimited classical communication between them, but are not allowed to
share entanglement. Our protocol achieves perfect completeness and constant sound-
ness. It only sends O(log(N)) qubits, and thus can also be used for NP-complete lan-
guages with a polylogarithmic communication. Some interesting questions still remain
open:
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• What is the correct upper bound on the power of this proof system? Note that
if the provers were allowed to make any joint separable measurement it would
be exactly NEXP. Does adding provers or communication rounds help? What
happens if there is just one quantum round?

• Is there a parallel repetition lemma for protocols when the provers are allowed
to communicate with each other? The original proof of [23] does not apply here.

• What happens in the related scenario, when the provers are allowed to share
entanglement but are not allowed to communicate? Can similar ideas work here?

• Does our result hold when the provers have a bounded amount of entanglement
in addition to their communication channel?
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A Calculating Probabilities
Let r = (c, d, v, w). We wish to estimate Pr(r|k). Bayes’ rule gives

Pr(r|k) =
Pr(k|r) Pr(r)

Pr(k)
=

Pr(k|r) Pr(r)∑
s Pr(k|s) Pr(s)

where s denotes any legal tuple s = (c̃, d̃, ṽ, w̃) with c̃, d̃ ∈ C, ṽ, w̃ ∈ V and ṽ ∈ c̃. As
the prior distribution for all legal tuples is identical, we are only interested in calculating
Pr(k|s) for any legal tuple s = (c̃, d̃, ṽ, w̃).

In the protocol we presented, the provers first apply their measurement and get k,
and then the verifier measures to get s. However, it is physically equivalent to assume
the verifier measured first. As the states sent to the provers are unentangled after tracing
out the verifier, we have that

Pr(k|s) = tr((I ⊗Ak)ρA(I ⊗Ak)†) · tr((I ⊗Bk)ρB(I ⊗Bk)†)

where ρA is the state in Hv
A ⊗ HM

A , ρB is the state in Hv
B ⊗ HM

B , and the identity is
applied on the verifier’s side.

When considering states in Hv
A ⊗ Hm

A ⊗ H
p
A, we stick to the convention that the

first m qubits define the verifier’s private space, then next m+ 3 describe the message
qubits, and the last t define Alice’s private space. We can now calculate

Ak(c) = tr(Ak(|c〉〈c| ⊗ I)Ak)

=
8Mt∑
j=1

8tc∑
h=8t(c−1)+1

Ak[j, h]Ak[j, h]

=
8Mt∑
j=1

8tc∑
h=8t(c−1)+1

|Ak[j, h]|2

where we abuse notation and treat c as an index. Similarly,

Bk(v) = tr(Bk(|v〉〈v| ⊗ I)Bk)

=
2Nt∑
j=1

2tv∑
h=2t(v−1)+1

Bk[j, h]Bk[j, h]

=
2Nt∑
j=1

2tv∑
h=2t(v−1)+1

|Bk[j, h]|2
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where again v was treated as an index. We now assume that the v, w is being traced out,
and only look at the probabilities for c, d, generated from tr((I⊗Ak)ρA(I⊗Ak)†). As
Ak(c) is just the trace out of the private data of the prover and the qubits which fit the
assignment, then Ak(c) = tr((I ⊗ Ak)ρA(I ⊗ Ak)†). We are analyzing the following
expression:

tr((IM ⊗A8Mt)ρA(IM ⊗A8Mt)†)

Up to normalization, ρA is a matrix which contains exactly four 1s, arranged: (a, a),
(a, b), (b, a), (b, b). However, as we shall soon see, either a = b (in which case we have
a single cell with a 4 in it) or else |a− b| ≥ 8Mt and thus, by the previous paragraph,
we can ignore the off-diagonal entries. To conclude, in both cases we can restrict our
attention to the diagonal entries.

Thus the structure of the ρA matrix is:

ρ =
1√
2

(|cc〉+ |dd〉)⊗ |000〉〈000|(〈cc|+ 〈dd|) 1√
2
⊗ |0t〉〈0t| ∈ HA

v ⊗HA
M ⊗HA

p

Note that the term 0t refers to element in a space of dimension t, as opposed to 000, an
element in a space of dimension 23. If c = d then obviously there is only one nonzero
cell in the final matrix, on the diagonal. Otherwise, since |cc〉 is located in the cell
Mc + c = (M + 1)c, and d 6= c, they are differentiated (after tensoring) by at least
(M + 1) · 8 · t > 8Mt, as required. Let

Ak(i) =
8Mt∑
j=1

8ti∑
h=8t(i−1)+1

Ak[j, h]Ak[j, h] =
8Mt∑
j=1

8ti∑
h=8t(i−1)+1

|Ak[j, h]|2

The probability that the verifier measures c, d in the modified protocol given k is

P (c, d|k) =
P (k|c, d)P (c, d)

P (k)

=
P (k|c, d)P (c, d)∑
c̃,d̃ P (k|c̃, d̃)P (c̃, d̃)

=
tr(Akρc,dA

†
k)∑

c̃,d̃ tr(Akρc̃,d̃A
†
k)

(equal unless c = d) ≥ Ak(c) +Ak(d)∑
c̃6=d̃(Ak(c̃) +Ak(d̃)) +

∑
c̃ 4Ak(c̃)

=
Ak(c) +Ak(d)∑

c̃,d̃(Ak(c̃) +Ak(d̃)) +
∑
c̃ 2Ak(c̃)

=
Ak(c) +Ak(d)

2MWAk
+ 2WAk

where WAk
is the total weight: WAk

=
∑
c̃Ak(c̃). Note that if c = d we use 4Ak(c)

instead of Ak(c) +Ak(d).
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A.1 Bounding the Denominator
Let

WAk
=

∑
i

Ak(i)

WBk
=

∑
i

Bk(i)

W̃k = Σc̃∈C,ṽ∈c̃Ak(c̃)Bk(ṽ)

We want to bound the denominator in

Pr(c, d, v, w|k) =
(Ak(c) +Ak(d))(Bk(v) +Bk(w))∑

c̃,d̃∈C,ṽ∈c,w̃∈V Pr(c̃, d̃, ṽ, w̃|k)

Note that if c̃ = d̃, then tr((I ⊗ Ak)ρA(I ⊗ Ak)†) = 4Ak(c̃). However, when
c̃ 6= d̃, we account this twice (because any of them can be considered first in the sum).
Thus, the denominator becomes

∑
c̃,d̃

∑
ṽ∈c̃,w̃

(Ak(c̃)+Ak(d̃))(Bk(ṽ)+Bk(w̃))+2

 ∑
c̃=d̃,ṽ,w̃

+
∑

c̃,d̃,ṽ=w̃

+4
∑

c̃=d̃,ṽ=w̃

(7)

where all the sums are on (Ak(c̃) + Ak(d̃))(Bk(ṽ) + Bk(w̃)), and factors of two and
four come from c̃ = d̃, and ṽ = w̃. We begin by bounding the first two sums (which
will contribute most of the weight).∑
c̃,d̃

∑
ṽ∈c̃,w̃

(Ak(c̃)+Ak(d̃))(Bk(ṽ)+Bk(w̃)) =
∑
c̃,d̃

∑
ṽ∈c̃,w̃

Ak(c̃)Bk(ṽ)+Ak(c̃)Bk(w̃)+Ak(d̃)Bk(ṽ)+Ak(d̃)Bk(w̃)

We now look at each of the four terms separately:∑
c̃,d̃

∑
ṽ∈c̃,w̃

Ak(c̃)Bk(ṽ) =
∑
d̃,w̃

∑
c̃,ṽ∈c̃

Ak(c̃)Bk(ṽ) = NM
∑
c̃,ṽ∈c̃

Ak(c̃)Bk(ṽ) = NMW̃k

∑
c̃,d̃

∑
ṽ∈c̃,w̃

Ak(c̃)Bk(w̃) = 3M
∑
c̃,w̃∈V

Ak(c̃)Bk(w̃) = 3MWAk
WBk∑

c̃,d̃

∑
ṽ∈c̃,w̃

Ak(d̃)Bk(ṽ) = 5NWAk
WBk

< 5MWAk
WBk∑

c̃,d̃

∑
ṽ∈c̃,w̃

Ak(d̃)Bk(w̃) = 3MWAk
WBk

We used the fact that Φ is 3-SAT, and that each variable appears exactly five times.
We return to bounding the sums in (7). By fixing c̃, we get that if c̃ = d̃ the second

sum is bounded, relative to the first, by a factor of 2/M . Fixing ṽ = w̃, we can bound
the third sum by a factor of 2/N . Fixing both, the fourth sum is bounded by a factor of
4/(NM). We get an overall bound for the denominator of:

(NMW̃k+3MWAk
WBk

+5NWAk
WBk

+3MWAk
WBk

)(1+2/M+2/N+4/(NM))
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Since M and N are arbitrarily large, and M ≥ N , we deduce our bound:

2(NMW̃k + 11MWAk
WBk

)

which finally gives

Pr(c, d, v, w|k) ≥ Ak(c)Bk(v) +Ak(c)Bk(w) +Ak(d)Bk(v) +Ak(d)Bk(w)
2NMW̃k + 22MWAk

WBk
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